kern_sysctl.c revision 1.110 1 /* $NetBSD: kern_sysctl.c,v 1.110 2002/08/24 17:27:01 augustss Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.110 2002/08/24 17:27:01 augustss Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 #include "rnd.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/buf.h>
60 #include <sys/device.h>
61 #include <sys/disklabel.h>
62 #include <sys/dkstat.h>
63 #include <sys/exec.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/msgbuf.h>
69 #include <sys/pool.h>
70 #include <sys/proc.h>
71 #include <sys/resource.h>
72 #include <sys/resourcevar.h>
73 #include <sys/syscallargs.h>
74 #include <sys/tty.h>
75 #include <sys/unistd.h>
76 #include <sys/vnode.h>
77 #include <sys/socketvar.h>
78 #define __SYSCTL_PRIVATE
79 #include <sys/sysctl.h>
80 #include <sys/lock.h>
81 #include <sys/namei.h>
82
83 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
84 #include <sys/ipc.h>
85 #endif
86 #ifdef SYSVMSG
87 #include <sys/msg.h>
88 #endif
89 #ifdef SYSVSEM
90 #include <sys/sem.h>
91 #endif
92 #ifdef SYSVSHM
93 #include <sys/shm.h>
94 #endif
95
96 #include <dev/cons.h>
97
98 #if defined(DDB)
99 #include <ddb/ddbvar.h>
100 #endif
101
102 #ifndef PIPE_SOCKETPAIR
103 #include <sys/pipe.h>
104 #endif
105
106 #if NRND > 0
107 #include <sys/rnd.h>
108 #endif
109
110 #include "ubtbcmfw.h"
111 #if NUBTBCMFW
112 #include <dev/usb/ubtbcmfw.h>
113 #endif
114
115 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
116
117 static int sysctl_file(void *, size_t *);
118 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
119 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
120 #endif
121 static int sysctl_msgbuf(void *, size_t *);
122 static int sysctl_doeproc(int *, u_int, void *, size_t *);
123 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
124 static int sysctl_dodev(int *, u_int, void *, size_t *, void *, size_t,
125 struct proc *);
126 #ifdef MULTIPROCESSOR
127 static int sysctl_docptime(void *, size_t *, void *);
128 static int sysctl_ncpus(void);
129 #endif
130 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
131 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
132 #if NPTY > 0
133 static int sysctl_pty(void *, size_t *, void *, size_t);
134 #endif
135
136 /*
137 * The `sysctl_memlock' is intended to keep too many processes from
138 * locking down memory by doing sysctls at once. Whether or not this
139 * is really a good idea to worry about it probably a subject of some
140 * debate.
141 */
142 struct lock sysctl_memlock;
143
144 void
145 sysctl_init(void)
146 {
147
148 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
149 }
150
151 int
152 sys___sysctl(struct proc *p, void *v, register_t *retval)
153 {
154 struct sys___sysctl_args /* {
155 syscallarg(int *) name;
156 syscallarg(u_int) namelen;
157 syscallarg(void *) old;
158 syscallarg(size_t *) oldlenp;
159 syscallarg(void *) new;
160 syscallarg(size_t) newlen;
161 } */ *uap = v;
162 int error;
163 size_t savelen = 0, oldlen = 0;
164 sysctlfn *fn;
165 int name[CTL_MAXNAME];
166 size_t *oldlenp;
167
168 /*
169 * all top-level sysctl names are non-terminal
170 */
171 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
172 return (EINVAL);
173 error = copyin(SCARG(uap, name), &name,
174 SCARG(uap, namelen) * sizeof(int));
175 if (error)
176 return (error);
177
178 /*
179 * For all but CTL_PROC, must be root to change a value.
180 * For CTL_PROC, must be root, or owner of the proc (and not suid),
181 * this is checked in proc_sysctl() (once we know the targer proc).
182 */
183 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
184 (error = suser(p->p_ucred, &p->p_acflag)))
185 return error;
186
187 switch (name[0]) {
188 case CTL_KERN:
189 fn = kern_sysctl;
190 break;
191 case CTL_HW:
192 fn = hw_sysctl;
193 break;
194 case CTL_VM:
195 fn = uvm_sysctl;
196 break;
197 case CTL_NET:
198 fn = net_sysctl;
199 break;
200 case CTL_VFS:
201 fn = vfs_sysctl;
202 break;
203 case CTL_MACHDEP:
204 fn = cpu_sysctl;
205 break;
206 #ifdef DEBUG
207 case CTL_DEBUG:
208 fn = debug_sysctl;
209 break;
210 #endif
211 #ifdef DDB
212 case CTL_DDB:
213 fn = ddb_sysctl;
214 break;
215 #endif
216 case CTL_PROC:
217 fn = proc_sysctl;
218 break;
219
220 case CTL_EMUL:
221 fn = emul_sysctl;
222 break;
223 default:
224 return (EOPNOTSUPP);
225 }
226
227 /*
228 * XXX Hey, we wire `old', but what about `new'?
229 */
230
231 oldlenp = SCARG(uap, oldlenp);
232 if (oldlenp) {
233 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
234 return (error);
235 oldlenp = &oldlen;
236 }
237 if (SCARG(uap, old) != NULL) {
238 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
239 if (error)
240 return (error);
241 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
242 if (error) {
243 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
244 return error;
245 }
246 savelen = oldlen;
247 }
248 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
249 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
250 if (SCARG(uap, old) != NULL) {
251 uvm_vsunlock(p, SCARG(uap, old), savelen);
252 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
253 }
254 if (error)
255 return (error);
256 if (SCARG(uap, oldlenp))
257 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
258 return (error);
259 }
260
261 /*
262 * Attributes stored in the kernel.
263 */
264 char hostname[MAXHOSTNAMELEN];
265 int hostnamelen;
266
267 char domainname[MAXHOSTNAMELEN];
268 int domainnamelen;
269
270 long hostid;
271
272 #ifdef INSECURE
273 int securelevel = -1;
274 #else
275 int securelevel = 0;
276 #endif
277
278 #ifndef DEFCORENAME
279 #define DEFCORENAME "%n.core"
280 #endif
281 char defcorename[MAXPATHLEN] = DEFCORENAME;
282 int defcorenamelen = sizeof(DEFCORENAME);
283
284 extern int kern_logsigexit;
285 extern fixpt_t ccpu;
286
287 #ifndef MULTIPROCESSOR
288 #define sysctl_ncpus() 1
289 #endif
290
291 #ifdef MULTIPROCESSOR
292
293 #ifndef CPU_INFO_FOREACH
294 #define CPU_INFO_ITERATOR int
295 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
296 #endif
297
298 static int
299 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
300 {
301 u_int64_t cp_time[CPUSTATES];
302 int i;
303 struct cpu_info *ci;
304 CPU_INFO_ITERATOR cii;
305
306 for (i=0; i<CPUSTATES; i++)
307 cp_time[i] = 0;
308
309 for (CPU_INFO_FOREACH(cii, ci)) {
310 for (i=0; i<CPUSTATES; i++)
311 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
312 }
313 return (sysctl_rdstruct(oldp, oldlenp, newp,
314 cp_time, sizeof(cp_time)));
315 }
316
317 static int
318 sysctl_ncpus(void)
319 {
320 struct cpu_info *ci;
321 CPU_INFO_ITERATOR cii;
322
323 int ncpus = 0;
324 for (CPU_INFO_FOREACH(cii, ci))
325 ncpus++;
326 return ncpus;
327 }
328
329 #endif
330
331 /*
332 * kernel related system variables.
333 */
334 int
335 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
336 void *newp, size_t newlen, struct proc *p)
337 {
338 int error, level, inthostid;
339 int old_autonicetime;
340 int old_vnodes;
341 dev_t consdev;
342 #if NRND > 0
343 int v;
344 #endif
345
346 /* All sysctl names at this level, except for a few, are terminal. */
347 switch (name[0]) {
348 case KERN_PROC:
349 case KERN_PROC2:
350 case KERN_PROF:
351 case KERN_MBUF:
352 case KERN_PROC_ARGS:
353 case KERN_SYSVIPC_INFO:
354 case KERN_PIPE:
355 case KERN_TKSTAT:
356 /* Not terminal. */
357 break;
358 default:
359 if (namelen != 1)
360 return (ENOTDIR); /* overloaded */
361 }
362
363 switch (name[0]) {
364 case KERN_OSTYPE:
365 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
366 case KERN_OSRELEASE:
367 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
368 case KERN_OSREV:
369 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
370 case KERN_VERSION:
371 return (sysctl_rdstring(oldp, oldlenp, newp, version));
372 case KERN_MAXVNODES:
373 old_vnodes = desiredvnodes;
374 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
375 if (newp && !error) {
376 if (old_vnodes > desiredvnodes) {
377 desiredvnodes = old_vnodes;
378 return (EINVAL);
379 }
380 vfs_reinit();
381 nchreinit();
382 }
383 return (error);
384 case KERN_MAXPROC:
385 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
386 case KERN_MAXFILES:
387 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
388 case KERN_ARGMAX:
389 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
390 case KERN_SECURELVL:
391 level = securelevel;
392 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
393 newp == NULL)
394 return (error);
395 if (level < securelevel && p->p_pid != 1)
396 return (EPERM);
397 securelevel = level;
398 return (0);
399 case KERN_HOSTNAME:
400 error = sysctl_string(oldp, oldlenp, newp, newlen,
401 hostname, sizeof(hostname));
402 if (newp && !error)
403 hostnamelen = newlen;
404 return (error);
405 case KERN_DOMAINNAME:
406 error = sysctl_string(oldp, oldlenp, newp, newlen,
407 domainname, sizeof(domainname));
408 if (newp && !error)
409 domainnamelen = newlen;
410 return (error);
411 case KERN_HOSTID:
412 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
413 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
414 if (newp && !error)
415 hostid = inthostid;
416 return (error);
417 case KERN_CLOCKRATE:
418 return (sysctl_clockrate(oldp, oldlenp));
419 case KERN_BOOTTIME:
420 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
421 sizeof(struct timeval)));
422 case KERN_VNODE:
423 return (sysctl_vnode(oldp, oldlenp, p));
424 case KERN_PROC:
425 case KERN_PROC2:
426 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
427 case KERN_PROC_ARGS:
428 return (sysctl_procargs(name + 1, namelen - 1,
429 oldp, oldlenp, p));
430 case KERN_FILE:
431 return (sysctl_file(oldp, oldlenp));
432 #ifdef GPROF
433 case KERN_PROF:
434 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
435 newp, newlen));
436 #endif
437 case KERN_POSIX1:
438 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
439 case KERN_NGROUPS:
440 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
441 case KERN_JOB_CONTROL:
442 return (sysctl_rdint(oldp, oldlenp, newp, 1));
443 case KERN_SAVED_IDS:
444 #ifdef _POSIX_SAVED_IDS
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 #else
447 return (sysctl_rdint(oldp, oldlenp, newp, 0));
448 #endif
449 case KERN_MAXPARTITIONS:
450 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
451 case KERN_RAWPARTITION:
452 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
453 #ifdef NTP
454 case KERN_NTPTIME:
455 return (sysctl_ntptime(oldp, oldlenp));
456 #endif
457 case KERN_AUTONICETIME:
458 old_autonicetime = autonicetime;
459 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
460 if (autonicetime < 0)
461 autonicetime = old_autonicetime;
462 return (error);
463 case KERN_AUTONICEVAL:
464 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
465 if (autoniceval < PRIO_MIN)
466 autoniceval = PRIO_MIN;
467 if (autoniceval > PRIO_MAX)
468 autoniceval = PRIO_MAX;
469 return (error);
470 case KERN_RTC_OFFSET:
471 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
472 case KERN_ROOT_DEVICE:
473 return (sysctl_rdstring(oldp, oldlenp, newp,
474 root_device->dv_xname));
475 case KERN_MSGBUFSIZE:
476 /*
477 * deal with cases where the message buffer has
478 * become corrupted.
479 */
480 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
481 msgbufenabled = 0;
482 return (ENXIO);
483 }
484 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
485 case KERN_FSYNC:
486 return (sysctl_rdint(oldp, oldlenp, newp, 1));
487 case KERN_SYSVMSG:
488 #ifdef SYSVMSG
489 return (sysctl_rdint(oldp, oldlenp, newp, 1));
490 #else
491 return (sysctl_rdint(oldp, oldlenp, newp, 0));
492 #endif
493 case KERN_SYSVSEM:
494 #ifdef SYSVSEM
495 return (sysctl_rdint(oldp, oldlenp, newp, 1));
496 #else
497 return (sysctl_rdint(oldp, oldlenp, newp, 0));
498 #endif
499 case KERN_SYSVSHM:
500 #ifdef SYSVSHM
501 return (sysctl_rdint(oldp, oldlenp, newp, 1));
502 #else
503 return (sysctl_rdint(oldp, oldlenp, newp, 0));
504 #endif
505 case KERN_DEFCORENAME:
506 if (newp && newlen < 1)
507 return (EINVAL);
508 error = sysctl_string(oldp, oldlenp, newp, newlen,
509 defcorename, sizeof(defcorename));
510 if (newp && !error)
511 defcorenamelen = newlen;
512 return (error);
513 case KERN_SYNCHRONIZED_IO:
514 return (sysctl_rdint(oldp, oldlenp, newp, 1));
515 case KERN_IOV_MAX:
516 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
517 case KERN_MBUF:
518 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
519 newp, newlen));
520 case KERN_MAPPED_FILES:
521 return (sysctl_rdint(oldp, oldlenp, newp, 1));
522 case KERN_MEMLOCK:
523 return (sysctl_rdint(oldp, oldlenp, newp, 1));
524 case KERN_MEMLOCK_RANGE:
525 return (sysctl_rdint(oldp, oldlenp, newp, 1));
526 case KERN_MEMORY_PROTECTION:
527 return (sysctl_rdint(oldp, oldlenp, newp, 1));
528 case KERN_LOGIN_NAME_MAX:
529 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
530 case KERN_LOGSIGEXIT:
531 return (sysctl_int(oldp, oldlenp, newp, newlen,
532 &kern_logsigexit));
533 case KERN_FSCALE:
534 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
535 case KERN_CCPU:
536 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
537 case KERN_CP_TIME:
538 #ifndef MULTIPROCESSOR
539 return (sysctl_rdstruct(oldp, oldlenp, newp,
540 curcpu()->ci_schedstate.spc_cp_time,
541 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
542 #else
543 return (sysctl_docptime(oldp, oldlenp, newp));
544 #endif
545 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
546 case KERN_SYSVIPC_INFO:
547 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
548 #endif
549 case KERN_MSGBUF:
550 return (sysctl_msgbuf(oldp, oldlenp));
551 case KERN_CONSDEV:
552 if (cn_tab != NULL)
553 consdev = cn_tab->cn_dev;
554 else
555 consdev = NODEV;
556 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
557 sizeof consdev));
558 #if NPTY > 0
559 case KERN_MAXPTYS:
560 return sysctl_pty(oldp, oldlenp, newp, newlen);
561 #endif
562 #ifndef PIPE_SOCKETPAIR
563 case KERN_PIPE:
564 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
565 newp, newlen));
566 #endif
567 case KERN_MAXPHYS:
568 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
569 case KERN_SBMAX:
570 {
571 int new_sbmax = sb_max;
572
573 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
574 if (newp && !error) {
575 if (new_sbmax < (16 * 1024)) /* sanity */
576 return (EINVAL);
577 sb_max = new_sbmax;
578 }
579 return (error);
580 }
581 case KERN_TKSTAT:
582 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
583 newp));
584 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
585 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
586 case KERN_URND:
587 #if NRND > 0
588 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
589 sizeof(v))
590 return (sysctl_rdint(oldp, oldlenp, newp, v));
591 else
592 return (EIO); /*XXX*/
593 #else
594 return (EOPNOTSUPP);
595 #endif
596 default:
597 return (EOPNOTSUPP);
598 }
599 /* NOTREACHED */
600 }
601
602 /*
603 * hardware related system variables.
604 */
605 int
606 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
607 void *newp, size_t newlen, struct proc *p)
608 {
609
610 /* All sysctl names at this level, except for a few, are terminal. */
611 switch (name[0]) {
612 case HW_DISKSTATS:
613 case HW_DEV:
614 /* Not terminal. */
615 break;
616 default:
617 if (namelen != 1)
618 return (ENOTDIR); /* overloaded */
619 }
620
621 switch (name[0]) {
622 case HW_MACHINE:
623 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
624 case HW_MACHINE_ARCH:
625 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
626 case HW_MODEL:
627 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
628 case HW_NCPU:
629 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
630 case HW_BYTEORDER:
631 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
632 case HW_PHYSMEM:
633 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
634 case HW_USERMEM:
635 return (sysctl_rdint(oldp, oldlenp, newp,
636 ctob(physmem - uvmexp.wired)));
637 case HW_PAGESIZE:
638 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
639 case HW_ALIGNBYTES:
640 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
641 case HW_DISKNAMES:
642 return (sysctl_disknames(oldp, oldlenp));
643 case HW_DISKSTATS:
644 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
645 case HW_CNMAGIC: {
646 char magic[CNS_LEN];
647 int error;
648
649 if (oldp)
650 cn_get_magic(magic, CNS_LEN);
651 error = sysctl_string(oldp, oldlenp, newp, newlen,
652 magic, sizeof(magic));
653 if (newp && !error) {
654 error = cn_set_magic(magic);
655 }
656 return (error);
657 }
658 case HW_DEV:
659 return (sysctl_dodev(name + 1, namelen - 1, oldp, oldlenp,
660 newp, newlen, p));
661 default:
662 return (EOPNOTSUPP);
663 }
664 /* NOTREACHED */
665 }
666
667 #ifdef DEBUG
668 /*
669 * Debugging related system variables.
670 */
671 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
672 struct ctldebug debug5, debug6, debug7, debug8, debug9;
673 struct ctldebug debug10, debug11, debug12, debug13, debug14;
674 struct ctldebug debug15, debug16, debug17, debug18, debug19;
675 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
676 &debug0, &debug1, &debug2, &debug3, &debug4,
677 &debug5, &debug6, &debug7, &debug8, &debug9,
678 &debug10, &debug11, &debug12, &debug13, &debug14,
679 &debug15, &debug16, &debug17, &debug18, &debug19,
680 };
681
682 int
683 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
684 void *newp, size_t newlen, struct proc *p)
685 {
686 struct ctldebug *cdp;
687
688 /* all sysctl names at this level are name and field */
689 if (namelen != 2)
690 return (ENOTDIR); /* overloaded */
691 if (name[0] >= CTL_DEBUG_MAXID)
692 return (EOPNOTSUPP);
693 cdp = debugvars[name[0]];
694 if (cdp->debugname == 0)
695 return (EOPNOTSUPP);
696 switch (name[1]) {
697 case CTL_DEBUG_NAME:
698 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
699 case CTL_DEBUG_VALUE:
700 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
701 default:
702 return (EOPNOTSUPP);
703 }
704 /* NOTREACHED */
705 }
706 #endif /* DEBUG */
707
708 int
709 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
710 void *newp, size_t newlen, struct proc *p)
711 {
712 struct proc *ptmp = NULL;
713 const struct proclist_desc *pd;
714 int error = 0;
715 struct rlimit alim;
716 struct plimit *newplim;
717 char *tmps = NULL;
718 int i, curlen, len;
719
720 if (namelen < 2)
721 return EINVAL;
722
723 if (name[0] == PROC_CURPROC) {
724 ptmp = p;
725 } else {
726 proclist_lock_read();
727 for (pd = proclists; pd->pd_list != NULL; pd++) {
728 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
729 ptmp = LIST_NEXT(ptmp, p_list)) {
730 /* Skip embryonic processes. */
731 if (ptmp->p_stat == SIDL)
732 continue;
733 if (ptmp->p_pid == (pid_t)name[0])
734 break;
735 }
736 if (ptmp != NULL)
737 break;
738 }
739 proclist_unlock_read();
740 if (ptmp == NULL)
741 return(ESRCH);
742 if (p->p_ucred->cr_uid != 0) {
743 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
744 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
745 return EPERM;
746 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
747 return EPERM; /* sgid proc */
748 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
749 if (p->p_ucred->cr_groups[i] ==
750 ptmp->p_cred->p_rgid)
751 break;
752 }
753 if (i == p->p_ucred->cr_ngroups)
754 return EPERM;
755 }
756 }
757 if (name[1] == PROC_PID_CORENAME) {
758 if (namelen != 2)
759 return EINVAL;
760 /*
761 * Can't use sysctl_string() here because we may malloc a new
762 * area during the process, so we have to do it by hand.
763 */
764 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
765 if (oldlenp && *oldlenp < curlen) {
766 if (!oldp)
767 *oldlenp = curlen;
768 return (ENOMEM);
769 }
770 if (newp) {
771 if (securelevel > 2)
772 return EPERM;
773 if (newlen > MAXPATHLEN)
774 return ENAMETOOLONG;
775 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
776 if (tmps == NULL)
777 return ENOMEM;
778 error = copyin(newp, tmps, newlen + 1);
779 tmps[newlen] = '\0';
780 if (error)
781 goto cleanup;
782 /* Enforce to be either 'core' for end with '.core' */
783 if (newlen < 4) { /* c.o.r.e */
784 error = EINVAL;
785 goto cleanup;
786 }
787 len = newlen - 4;
788 if (len > 0) {
789 if (tmps[len - 1] != '.' &&
790 tmps[len - 1] != '/') {
791 error = EINVAL;
792 goto cleanup;
793 }
794 }
795 if (strcmp(&tmps[len], "core") != 0) {
796 error = EINVAL;
797 goto cleanup;
798 }
799 }
800 if (oldp && oldlenp) {
801 *oldlenp = curlen;
802 error = copyout(ptmp->p_limit->pl_corename, oldp,
803 curlen);
804 }
805 if (newp && error == 0) {
806 /* if the 2 strings are identical, don't limcopy() */
807 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
808 error = 0;
809 goto cleanup;
810 }
811 if (ptmp->p_limit->p_refcnt > 1 &&
812 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
813 newplim = limcopy(ptmp->p_limit);
814 limfree(ptmp->p_limit);
815 ptmp->p_limit = newplim;
816 }
817 if (ptmp->p_limit->pl_corename != defcorename) {
818 free(ptmp->p_limit->pl_corename, M_TEMP);
819 }
820 ptmp->p_limit->pl_corename = tmps;
821 return (0);
822 }
823 cleanup:
824 if (tmps)
825 free(tmps, M_TEMP);
826 return (error);
827 }
828 if (name[1] == PROC_PID_LIMIT) {
829 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
830 return EINVAL;
831 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
832 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
833 error = sysctl_quad(oldp, oldlenp, newp, newlen,
834 &alim.rlim_max);
835 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
836 error = sysctl_quad(oldp, oldlenp, newp, newlen,
837 &alim.rlim_cur);
838 else
839 error = EINVAL;
840
841 if (error)
842 return error;
843
844 if (newp)
845 error = dosetrlimit(ptmp, p->p_cred,
846 name[2] - 1, &alim);
847 return error;
848 }
849 return (EINVAL);
850 }
851
852 int
853 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
854 void *newp, size_t newlen, struct proc *p)
855 {
856 static struct {
857 const char *name;
858 int type;
859 } emulations[] = CTL_EMUL_NAMES;
860 const struct emul *e;
861 const char *ename;
862 #ifdef LKM
863 extern struct lock exec_lock; /* XXX */
864 int error;
865 #else
866 extern int nexecs_builtin;
867 extern const struct execsw execsw_builtin[];
868 int i;
869 #endif
870
871 /* all sysctl names at this level are name and field */
872 if (namelen < 2)
873 return (ENOTDIR); /* overloaded */
874
875 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
876 return (EOPNOTSUPP);
877
878 ename = emulations[name[0]].name;
879
880 #ifdef LKM
881 lockmgr(&exec_lock, LK_SHARED, NULL);
882 if ((e = emul_search(ename))) {
883 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
884 newp, newlen, p);
885 } else
886 error = EOPNOTSUPP;
887 lockmgr(&exec_lock, LK_RELEASE, NULL);
888
889 return (error);
890 #else
891 for (i = 0; i < nexecs_builtin; i++) {
892 e = execsw_builtin[i].es_emul;
893 if (e == NULL || strcmp(ename, e->e_name) != 0 ||
894 e->e_sysctl != NULL)
895 continue;
896
897 return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
898 newp, newlen, p);
899 }
900
901 return (EOPNOTSUPP);
902 #endif
903 }
904 /*
905 * Convenience macros.
906 */
907
908 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
909 if (oldlenp) { \
910 if (!oldp) \
911 *oldlenp = len; \
912 else { \
913 if (*oldlenp < len) \
914 return(ENOMEM); \
915 *oldlenp = len; \
916 error = copyout((caddr_t)valp, oldp, len); \
917 } \
918 }
919
920 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
921 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
922
923 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
924 if (newp && newlen != len) \
925 return (EINVAL);
926
927 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
928 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
929
930 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
931 if (error == 0 && newp) \
932 error = copyin(newp, valp, len);
933
934 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
935 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
936
937 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
938 if (oldlenp) { \
939 len = strlen(str) + 1; \
940 if (!oldp) \
941 *oldlenp = len; \
942 else { \
943 if (*oldlenp < len) { \
944 err2 = ENOMEM; \
945 len = *oldlenp; \
946 } else \
947 *oldlenp = len; \
948 error = copyout(str, oldp, len);\
949 if (error == 0) \
950 error = err2; \
951 } \
952 }
953
954 /*
955 * Validate parameters and get old / set new parameters
956 * for an integer-valued sysctl function.
957 */
958 int
959 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
960 {
961 int error = 0;
962
963 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
964 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
965 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
966
967 return (error);
968 }
969
970
971 /*
972 * As above, but read-only.
973 */
974 int
975 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
976 {
977 int error = 0;
978
979 if (newp)
980 return (EPERM);
981
982 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
983
984 return (error);
985 }
986
987 /*
988 * Validate parameters and get old / set new parameters
989 * for an quad-valued sysctl function.
990 */
991 int
992 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
993 quad_t *valp)
994 {
995 int error = 0;
996
997 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
998 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
999 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1000
1001 return (error);
1002 }
1003
1004 /*
1005 * As above, but read-only.
1006 */
1007 int
1008 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1009 {
1010 int error = 0;
1011
1012 if (newp)
1013 return (EPERM);
1014
1015 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1016
1017 return (error);
1018 }
1019
1020 /*
1021 * Validate parameters and get old / set new parameters
1022 * for a string-valued sysctl function.
1023 */
1024 int
1025 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1026 int maxlen)
1027 {
1028 int len, error = 0, err2 = 0;
1029
1030 if (newp && newlen >= maxlen)
1031 return (EINVAL);
1032
1033 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1034
1035 if (error == 0 && newp) {
1036 error = copyin(newp, str, newlen);
1037 str[newlen] = 0;
1038 }
1039 return (error);
1040 }
1041
1042 /*
1043 * As above, but read-only.
1044 */
1045 int
1046 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1047 {
1048 int len, error = 0, err2 = 0;
1049
1050 if (newp)
1051 return (EPERM);
1052
1053 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1054
1055 return (error);
1056 }
1057
1058 /*
1059 * Validate parameters and get old / set new parameters
1060 * for a structure oriented sysctl function.
1061 */
1062 int
1063 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1064 int len)
1065 {
1066 int error = 0;
1067
1068 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1069 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1070 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1071
1072 return (error);
1073 }
1074
1075 /*
1076 * Validate parameters and get old parameters
1077 * for a structure oriented sysctl function.
1078 */
1079 int
1080 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1081 int len)
1082 {
1083 int error = 0;
1084
1085 if (newp)
1086 return (EPERM);
1087
1088 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1089
1090 return (error);
1091 }
1092
1093 /*
1094 * As above, but can return a truncated result.
1095 */
1096 int
1097 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1098 int len)
1099 {
1100 int error = 0;
1101
1102 if (newp)
1103 return (EPERM);
1104
1105 len = min(*oldlenp, len);
1106 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1107
1108 return (error);
1109 }
1110
1111 /*
1112 * Get file structures.
1113 */
1114 static int
1115 sysctl_file(void *vwhere, size_t *sizep)
1116 {
1117 int buflen, error;
1118 struct file *fp;
1119 char *start, *where;
1120
1121 start = where = vwhere;
1122 buflen = *sizep;
1123 if (where == NULL) {
1124 /*
1125 * overestimate by 10 files
1126 */
1127 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1128 return (0);
1129 }
1130
1131 /*
1132 * first copyout filehead
1133 */
1134 if (buflen < sizeof(filehead)) {
1135 *sizep = 0;
1136 return (0);
1137 }
1138 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1139 if (error)
1140 return (error);
1141 buflen -= sizeof(filehead);
1142 where += sizeof(filehead);
1143
1144 /*
1145 * followed by an array of file structures
1146 */
1147 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1148 if (buflen < sizeof(struct file)) {
1149 *sizep = where - start;
1150 return (ENOMEM);
1151 }
1152 error = copyout((caddr_t)fp, where, sizeof(struct file));
1153 if (error)
1154 return (error);
1155 buflen -= sizeof(struct file);
1156 where += sizeof(struct file);
1157 }
1158 *sizep = where - start;
1159 return (0);
1160 }
1161
1162 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1163 #define FILL_PERM(src, dst) do { \
1164 (dst)._key = (src)._key; \
1165 (dst).uid = (src).uid; \
1166 (dst).gid = (src).gid; \
1167 (dst).cuid = (src).cuid; \
1168 (dst).cgid = (src).cgid; \
1169 (dst).mode = (src).mode; \
1170 (dst)._seq = (src)._seq; \
1171 } while (0);
1172 #define FILL_MSG(src, dst) do { \
1173 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1174 (dst).msg_qnum = (src).msg_qnum; \
1175 (dst).msg_qbytes = (src).msg_qbytes; \
1176 (dst)._msg_cbytes = (src)._msg_cbytes; \
1177 (dst).msg_lspid = (src).msg_lspid; \
1178 (dst).msg_lrpid = (src).msg_lrpid; \
1179 (dst).msg_stime = (src).msg_stime; \
1180 (dst).msg_rtime = (src).msg_rtime; \
1181 (dst).msg_ctime = (src).msg_ctime; \
1182 } while (0)
1183 #define FILL_SEM(src, dst) do { \
1184 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1185 (dst).sem_nsems = (src).sem_nsems; \
1186 (dst).sem_otime = (src).sem_otime; \
1187 (dst).sem_ctime = (src).sem_ctime; \
1188 } while (0)
1189 #define FILL_SHM(src, dst) do { \
1190 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1191 (dst).shm_segsz = (src).shm_segsz; \
1192 (dst).shm_lpid = (src).shm_lpid; \
1193 (dst).shm_cpid = (src).shm_cpid; \
1194 (dst).shm_atime = (src).shm_atime; \
1195 (dst).shm_dtime = (src).shm_dtime; \
1196 (dst).shm_ctime = (src).shm_ctime; \
1197 (dst).shm_nattch = (src).shm_nattch; \
1198 } while (0)
1199
1200 static int
1201 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1202 {
1203 #ifdef SYSVMSG
1204 struct msg_sysctl_info *msgsi;
1205 #endif
1206 #ifdef SYSVSEM
1207 struct sem_sysctl_info *semsi;
1208 #endif
1209 #ifdef SYSVSHM
1210 struct shm_sysctl_info *shmsi;
1211 #endif
1212 size_t infosize, dssize, tsize, buflen;
1213 void *buf = NULL;
1214 char *start;
1215 int32_t nds;
1216 int i, error, ret;
1217
1218 if (namelen != 1)
1219 return (EINVAL);
1220
1221 start = where;
1222 buflen = *sizep;
1223
1224 switch (*name) {
1225 case KERN_SYSVIPC_MSG_INFO:
1226 #ifdef SYSVMSG
1227 infosize = sizeof(msgsi->msginfo);
1228 nds = msginfo.msgmni;
1229 dssize = sizeof(msgsi->msgids[0]);
1230 break;
1231 #else
1232 return (EINVAL);
1233 #endif
1234 case KERN_SYSVIPC_SEM_INFO:
1235 #ifdef SYSVSEM
1236 infosize = sizeof(semsi->seminfo);
1237 nds = seminfo.semmni;
1238 dssize = sizeof(semsi->semids[0]);
1239 break;
1240 #else
1241 return (EINVAL);
1242 #endif
1243 case KERN_SYSVIPC_SHM_INFO:
1244 #ifdef SYSVSHM
1245 infosize = sizeof(shmsi->shminfo);
1246 nds = shminfo.shmmni;
1247 dssize = sizeof(shmsi->shmids[0]);
1248 break;
1249 #else
1250 return (EINVAL);
1251 #endif
1252 default:
1253 return (EINVAL);
1254 }
1255 /*
1256 * Round infosize to 64 bit boundary if requesting more than just
1257 * the info structure or getting the total data size.
1258 */
1259 if (where == NULL || *sizep > infosize)
1260 infosize = ((infosize + 7) / 8) * 8;
1261 tsize = infosize + nds * dssize;
1262
1263 /* Return just the total size required. */
1264 if (where == NULL) {
1265 *sizep = tsize;
1266 return (0);
1267 }
1268
1269 /* Not enough room for even the info struct. */
1270 if (buflen < infosize) {
1271 *sizep = 0;
1272 return (ENOMEM);
1273 }
1274 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1275 memset(buf, 0, min(tsize, buflen));
1276
1277 switch (*name) {
1278 #ifdef SYSVMSG
1279 case KERN_SYSVIPC_MSG_INFO:
1280 msgsi = (struct msg_sysctl_info *)buf;
1281 msgsi->msginfo = msginfo;
1282 break;
1283 #endif
1284 #ifdef SYSVSEM
1285 case KERN_SYSVIPC_SEM_INFO:
1286 semsi = (struct sem_sysctl_info *)buf;
1287 semsi->seminfo = seminfo;
1288 break;
1289 #endif
1290 #ifdef SYSVSHM
1291 case KERN_SYSVIPC_SHM_INFO:
1292 shmsi = (struct shm_sysctl_info *)buf;
1293 shmsi->shminfo = shminfo;
1294 break;
1295 #endif
1296 }
1297 buflen -= infosize;
1298
1299 ret = 0;
1300 if (buflen > 0) {
1301 /* Fill in the IPC data structures. */
1302 for (i = 0; i < nds; i++) {
1303 if (buflen < dssize) {
1304 ret = ENOMEM;
1305 break;
1306 }
1307 switch (*name) {
1308 #ifdef SYSVMSG
1309 case KERN_SYSVIPC_MSG_INFO:
1310 FILL_MSG(msqids[i], msgsi->msgids[i]);
1311 break;
1312 #endif
1313 #ifdef SYSVSEM
1314 case KERN_SYSVIPC_SEM_INFO:
1315 FILL_SEM(sema[i], semsi->semids[i]);
1316 break;
1317 #endif
1318 #ifdef SYSVSHM
1319 case KERN_SYSVIPC_SHM_INFO:
1320 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1321 break;
1322 #endif
1323 }
1324 buflen -= dssize;
1325 }
1326 }
1327 *sizep -= buflen;
1328 error = copyout(buf, start, *sizep);
1329 /* If copyout succeeded, use return code set earlier. */
1330 if (error == 0)
1331 error = ret;
1332 if (buf)
1333 free(buf, M_TEMP);
1334 return (error);
1335 }
1336 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1337
1338 static int
1339 sysctl_msgbuf(void *vwhere, size_t *sizep)
1340 {
1341 char *where = vwhere;
1342 size_t len, maxlen = *sizep;
1343 long beg, end;
1344 int error;
1345
1346 /*
1347 * deal with cases where the message buffer has
1348 * become corrupted.
1349 */
1350 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1351 msgbufenabled = 0;
1352 return (ENXIO);
1353 }
1354
1355 if (where == NULL) {
1356 /* always return full buffer size */
1357 *sizep = msgbufp->msg_bufs;
1358 return (0);
1359 }
1360
1361 error = 0;
1362 maxlen = min(msgbufp->msg_bufs, maxlen);
1363
1364 /*
1365 * First, copy from the write pointer to the end of
1366 * message buffer.
1367 */
1368 beg = msgbufp->msg_bufx;
1369 end = msgbufp->msg_bufs;
1370 while (maxlen > 0) {
1371 len = min(end - beg, maxlen);
1372 if (len == 0)
1373 break;
1374 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1375 if (error)
1376 break;
1377 where += len;
1378 maxlen -= len;
1379
1380 /*
1381 * ... then, copy from the beginning of message buffer to
1382 * the write pointer.
1383 */
1384 beg = 0;
1385 end = msgbufp->msg_bufx;
1386 }
1387 return (error);
1388 }
1389
1390 /*
1391 * try over estimating by 5 procs
1392 */
1393 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1394
1395 static int
1396 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1397 {
1398 struct eproc eproc;
1399 struct kinfo_proc2 kproc2;
1400 struct kinfo_proc *dp;
1401 struct proc *p;
1402 const struct proclist_desc *pd;
1403 char *where, *dp2;
1404 int type, op, arg, elem_size, elem_count;
1405 int buflen, needed, error;
1406
1407 dp = vwhere;
1408 dp2 = where = vwhere;
1409 buflen = where != NULL ? *sizep : 0;
1410 error = needed = 0;
1411 type = name[0];
1412
1413 if (type == KERN_PROC) {
1414 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1415 return (EINVAL);
1416 op = name[1];
1417 if (op != KERN_PROC_ALL)
1418 arg = name[2];
1419 } else {
1420 if (namelen != 5)
1421 return (EINVAL);
1422 op = name[1];
1423 arg = name[2];
1424 elem_size = name[3];
1425 elem_count = name[4];
1426 }
1427
1428 proclist_lock_read();
1429
1430 pd = proclists;
1431 again:
1432 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1433 /*
1434 * Skip embryonic processes.
1435 */
1436 if (p->p_stat == SIDL)
1437 continue;
1438 /*
1439 * TODO - make more efficient (see notes below).
1440 * do by session.
1441 */
1442 switch (op) {
1443
1444 case KERN_PROC_PID:
1445 /* could do this with just a lookup */
1446 if (p->p_pid != (pid_t)arg)
1447 continue;
1448 break;
1449
1450 case KERN_PROC_PGRP:
1451 /* could do this by traversing pgrp */
1452 if (p->p_pgrp->pg_id != (pid_t)arg)
1453 continue;
1454 break;
1455
1456 case KERN_PROC_SESSION:
1457 if (p->p_session->s_sid != (pid_t)arg)
1458 continue;
1459 break;
1460
1461 case KERN_PROC_TTY:
1462 if (arg == KERN_PROC_TTY_REVOKE) {
1463 if ((p->p_flag & P_CONTROLT) == 0 ||
1464 p->p_session->s_ttyp == NULL ||
1465 p->p_session->s_ttyvp != NULL)
1466 continue;
1467 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1468 p->p_session->s_ttyp == NULL) {
1469 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1470 continue;
1471 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1472 continue;
1473 break;
1474
1475 case KERN_PROC_UID:
1476 if (p->p_ucred->cr_uid != (uid_t)arg)
1477 continue;
1478 break;
1479
1480 case KERN_PROC_RUID:
1481 if (p->p_cred->p_ruid != (uid_t)arg)
1482 continue;
1483 break;
1484
1485 case KERN_PROC_GID:
1486 if (p->p_ucred->cr_gid != (uid_t)arg)
1487 continue;
1488 break;
1489
1490 case KERN_PROC_RGID:
1491 if (p->p_cred->p_rgid != (uid_t)arg)
1492 continue;
1493 break;
1494
1495 case KERN_PROC_ALL:
1496 /* allow everything */
1497 break;
1498
1499 default:
1500 error = EINVAL;
1501 goto cleanup;
1502 }
1503 if (type == KERN_PROC) {
1504 if (buflen >= sizeof(struct kinfo_proc)) {
1505 fill_eproc(p, &eproc);
1506 error = copyout((caddr_t)p, &dp->kp_proc,
1507 sizeof(struct proc));
1508 if (error)
1509 goto cleanup;
1510 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1511 sizeof(eproc));
1512 if (error)
1513 goto cleanup;
1514 dp++;
1515 buflen -= sizeof(struct kinfo_proc);
1516 }
1517 needed += sizeof(struct kinfo_proc);
1518 } else { /* KERN_PROC2 */
1519 if (buflen >= elem_size && elem_count > 0) {
1520 fill_kproc2(p, &kproc2);
1521 /*
1522 * Copy out elem_size, but not larger than
1523 * the size of a struct kinfo_proc2.
1524 */
1525 error = copyout(&kproc2, dp2,
1526 min(sizeof(kproc2), elem_size));
1527 if (error)
1528 goto cleanup;
1529 dp2 += elem_size;
1530 buflen -= elem_size;
1531 elem_count--;
1532 }
1533 needed += elem_size;
1534 }
1535 }
1536 pd++;
1537 if (pd->pd_list != NULL)
1538 goto again;
1539 proclist_unlock_read();
1540
1541 if (where != NULL) {
1542 if (type == KERN_PROC)
1543 *sizep = (caddr_t)dp - where;
1544 else
1545 *sizep = dp2 - where;
1546 if (needed > *sizep)
1547 return (ENOMEM);
1548 } else {
1549 needed += KERN_PROCSLOP;
1550 *sizep = needed;
1551 }
1552 return (0);
1553 cleanup:
1554 proclist_unlock_read();
1555 return (error);
1556 }
1557
1558 /*
1559 * Fill in an eproc structure for the specified process.
1560 */
1561 void
1562 fill_eproc(struct proc *p, struct eproc *ep)
1563 {
1564 struct tty *tp;
1565
1566 ep->e_paddr = p;
1567 ep->e_sess = p->p_session;
1568 ep->e_pcred = *p->p_cred;
1569 ep->e_ucred = *p->p_ucred;
1570 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1571 ep->e_vm.vm_rssize = 0;
1572 ep->e_vm.vm_tsize = 0;
1573 ep->e_vm.vm_dsize = 0;
1574 ep->e_vm.vm_ssize = 0;
1575 /* ep->e_vm.vm_pmap = XXX; */
1576 } else {
1577 struct vmspace *vm = p->p_vmspace;
1578
1579 ep->e_vm.vm_rssize = vm_resident_count(vm);
1580 ep->e_vm.vm_tsize = vm->vm_tsize;
1581 ep->e_vm.vm_dsize = vm->vm_dsize;
1582 ep->e_vm.vm_ssize = vm->vm_ssize;
1583 }
1584 if (p->p_pptr)
1585 ep->e_ppid = p->p_pptr->p_pid;
1586 else
1587 ep->e_ppid = 0;
1588 ep->e_pgid = p->p_pgrp->pg_id;
1589 ep->e_sid = ep->e_sess->s_sid;
1590 ep->e_jobc = p->p_pgrp->pg_jobc;
1591 if ((p->p_flag & P_CONTROLT) &&
1592 (tp = ep->e_sess->s_ttyp)) {
1593 ep->e_tdev = tp->t_dev;
1594 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1595 ep->e_tsess = tp->t_session;
1596 } else
1597 ep->e_tdev = NODEV;
1598 if (p->p_wmesg)
1599 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1600 ep->e_xsize = ep->e_xrssize = 0;
1601 ep->e_xccount = ep->e_xswrss = 0;
1602 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1603 if (SESS_LEADER(p))
1604 ep->e_flag |= EPROC_SLEADER;
1605 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1606 }
1607
1608 /*
1609 * Fill in an eproc structure for the specified process.
1610 */
1611 static void
1612 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1613 {
1614 struct tty *tp;
1615
1616 memset(ki, 0, sizeof(*ki));
1617
1618 ki->p_forw = PTRTOINT64(p->p_forw);
1619 ki->p_back = PTRTOINT64(p->p_back);
1620 ki->p_paddr = PTRTOINT64(p);
1621
1622 ki->p_addr = PTRTOINT64(p->p_addr);
1623 ki->p_fd = PTRTOINT64(p->p_fd);
1624 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1625 ki->p_stats = PTRTOINT64(p->p_stats);
1626 ki->p_limit = PTRTOINT64(p->p_limit);
1627 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1628 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1629 ki->p_sess = PTRTOINT64(p->p_session);
1630 ki->p_tsess = 0; /* may be changed if controlling tty below */
1631 ki->p_ru = PTRTOINT64(p->p_ru);
1632
1633 ki->p_eflag = 0;
1634 ki->p_exitsig = p->p_exitsig;
1635 ki->p_flag = p->p_flag;
1636
1637 ki->p_pid = p->p_pid;
1638 if (p->p_pptr)
1639 ki->p_ppid = p->p_pptr->p_pid;
1640 else
1641 ki->p_ppid = 0;
1642 ki->p_sid = p->p_session->s_sid;
1643 ki->p__pgid = p->p_pgrp->pg_id;
1644
1645 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1646
1647 ki->p_uid = p->p_ucred->cr_uid;
1648 ki->p_ruid = p->p_cred->p_ruid;
1649 ki->p_gid = p->p_ucred->cr_gid;
1650 ki->p_rgid = p->p_cred->p_rgid;
1651
1652 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1653 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1654 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1655
1656 ki->p_jobc = p->p_pgrp->pg_jobc;
1657 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1658 ki->p_tdev = tp->t_dev;
1659 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1660 ki->p_tsess = PTRTOINT64(tp->t_session);
1661 } else {
1662 ki->p_tdev = NODEV;
1663 }
1664
1665 ki->p_estcpu = p->p_estcpu;
1666 ki->p_rtime_sec = p->p_rtime.tv_sec;
1667 ki->p_rtime_usec = p->p_rtime.tv_usec;
1668 ki->p_cpticks = p->p_cpticks;
1669 ki->p_pctcpu = p->p_pctcpu;
1670 ki->p_swtime = p->p_swtime;
1671 ki->p_slptime = p->p_slptime;
1672 if (p->p_stat == SONPROC) {
1673 KDASSERT(p->p_cpu != NULL);
1674 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1675 } else
1676 ki->p_schedflags = 0;
1677
1678 ki->p_uticks = p->p_uticks;
1679 ki->p_sticks = p->p_sticks;
1680 ki->p_iticks = p->p_iticks;
1681
1682 ki->p_tracep = PTRTOINT64(p->p_tracep);
1683 ki->p_traceflag = p->p_traceflag;
1684
1685 ki->p_holdcnt = p->p_holdcnt;
1686
1687 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1688 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1689 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1690 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1691
1692 ki->p_stat = p->p_stat;
1693 ki->p_priority = p->p_priority;
1694 ki->p_usrpri = p->p_usrpri;
1695 ki->p_nice = p->p_nice;
1696
1697 ki->p_xstat = p->p_xstat;
1698 ki->p_acflag = p->p_acflag;
1699
1700 strncpy(ki->p_comm, p->p_comm,
1701 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1702
1703 if (p->p_wmesg)
1704 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1705 ki->p_wchan = PTRTOINT64(p->p_wchan);
1706
1707 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1708
1709 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1710 ki->p_vm_rssize = 0;
1711 ki->p_vm_tsize = 0;
1712 ki->p_vm_dsize = 0;
1713 ki->p_vm_ssize = 0;
1714 } else {
1715 struct vmspace *vm = p->p_vmspace;
1716
1717 ki->p_vm_rssize = vm_resident_count(vm);
1718 ki->p_vm_tsize = vm->vm_tsize;
1719 ki->p_vm_dsize = vm->vm_dsize;
1720 ki->p_vm_ssize = vm->vm_ssize;
1721 }
1722
1723 if (p->p_session->s_ttyvp)
1724 ki->p_eflag |= EPROC_CTTY;
1725 if (SESS_LEADER(p))
1726 ki->p_eflag |= EPROC_SLEADER;
1727
1728 /* XXX Is this double check necessary? */
1729 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1730 ki->p_uvalid = 0;
1731 } else {
1732 ki->p_uvalid = 1;
1733
1734 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1735 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1736
1737 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1738 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1739 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1740 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1741
1742 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1743 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1744 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1745 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1746 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1747 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1748 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1749 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1750 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1751 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1752 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1753 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1754 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1755 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1756
1757 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1758 p->p_stats->p_cru.ru_stime.tv_sec;
1759 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1760 p->p_stats->p_cru.ru_stime.tv_usec;
1761 }
1762 #ifdef MULTIPROCESSOR
1763 if (p->p_cpu != NULL)
1764 ki->p_cpuid = p->p_cpu->ci_cpuid;
1765 else
1766 #endif
1767 ki->p_cpuid = KI_NOCPU;
1768 }
1769
1770 int
1771 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1772 struct proc *up)
1773 {
1774 struct ps_strings pss;
1775 struct proc *p;
1776 size_t len, upper_bound, xlen;
1777 struct uio auio;
1778 struct iovec aiov;
1779 vaddr_t argv;
1780 pid_t pid;
1781 int nargv, type, error, i;
1782 char *arg;
1783 char *tmp;
1784
1785 if (namelen != 2)
1786 return (EINVAL);
1787 pid = name[0];
1788 type = name[1];
1789
1790 switch (type) {
1791 case KERN_PROC_ARGV:
1792 case KERN_PROC_NARGV:
1793 case KERN_PROC_ENV:
1794 case KERN_PROC_NENV:
1795 /* ok */
1796 break;
1797 default:
1798 return (EINVAL);
1799 }
1800
1801 /* check pid */
1802 if ((p = pfind(pid)) == NULL)
1803 return (EINVAL);
1804
1805 /* only root or same user change look at the environment */
1806 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1807 if (up->p_ucred->cr_uid != 0) {
1808 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1809 up->p_cred->p_ruid != p->p_cred->p_svuid)
1810 return (EPERM);
1811 }
1812 }
1813
1814 if (sizep != NULL && where == NULL) {
1815 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1816 *sizep = sizeof (int);
1817 else
1818 *sizep = ARG_MAX; /* XXX XXX XXX */
1819 return (0);
1820 }
1821 if (where == NULL || sizep == NULL)
1822 return (EINVAL);
1823
1824 /*
1825 * Zombies don't have a stack, so we can't read their psstrings.
1826 * System processes also don't have a user stack.
1827 */
1828 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1829 return (EINVAL);
1830
1831 /*
1832 * Lock the process down in memory.
1833 */
1834 /* XXXCDC: how should locking work here? */
1835 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1836 return (EFAULT);
1837 p->p_vmspace->vm_refcnt++; /* XXX */
1838
1839 /*
1840 * Allocate a temporary buffer to hold the arguments.
1841 */
1842 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1843
1844 /*
1845 * Read in the ps_strings structure.
1846 */
1847 aiov.iov_base = &pss;
1848 aiov.iov_len = sizeof(pss);
1849 auio.uio_iov = &aiov;
1850 auio.uio_iovcnt = 1;
1851 auio.uio_offset = (vaddr_t)p->p_psstr;
1852 auio.uio_resid = sizeof(pss);
1853 auio.uio_segflg = UIO_SYSSPACE;
1854 auio.uio_rw = UIO_READ;
1855 auio.uio_procp = NULL;
1856 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1857 if (error)
1858 goto done;
1859
1860 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1861 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1862 else
1863 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1864 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1865 error = copyout(&nargv, where, sizeof(nargv));
1866 *sizep = sizeof(nargv);
1867 goto done;
1868 }
1869 /*
1870 * Now read the address of the argument vector.
1871 */
1872 switch (type) {
1873 case KERN_PROC_ARGV:
1874 /* XXX compat32 stuff here */
1875 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1876 break;
1877 case KERN_PROC_ENV:
1878 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1879 break;
1880 default:
1881 return (EINVAL);
1882 }
1883 auio.uio_offset = (off_t)(long)tmp;
1884 aiov.iov_base = &argv;
1885 aiov.iov_len = sizeof(argv);
1886 auio.uio_iov = &aiov;
1887 auio.uio_iovcnt = 1;
1888 auio.uio_resid = sizeof(argv);
1889 auio.uio_segflg = UIO_SYSSPACE;
1890 auio.uio_rw = UIO_READ;
1891 auio.uio_procp = NULL;
1892 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1893 if (error)
1894 goto done;
1895
1896 /*
1897 * Now copy in the actual argument vector, one page at a time,
1898 * since we don't know how long the vector is (though, we do
1899 * know how many NUL-terminated strings are in the vector).
1900 */
1901 len = 0;
1902 upper_bound = *sizep;
1903 for (; nargv != 0 && len < upper_bound; len += xlen) {
1904 aiov.iov_base = arg;
1905 aiov.iov_len = PAGE_SIZE;
1906 auio.uio_iov = &aiov;
1907 auio.uio_iovcnt = 1;
1908 auio.uio_offset = argv + len;
1909 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1910 auio.uio_resid = xlen;
1911 auio.uio_segflg = UIO_SYSSPACE;
1912 auio.uio_rw = UIO_READ;
1913 auio.uio_procp = NULL;
1914 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1915 if (error)
1916 goto done;
1917
1918 for (i = 0; i < xlen && nargv != 0; i++) {
1919 if (arg[i] == '\0')
1920 nargv--; /* one full string */
1921 }
1922
1923 /* make sure we don't copyout past the end of the user's buffer */
1924 if (len + i > upper_bound)
1925 i = upper_bound - len;
1926
1927 error = copyout(arg, (char *)where + len, i);
1928 if (error)
1929 break;
1930
1931 if (nargv == 0) {
1932 len += i;
1933 break;
1934 }
1935 }
1936 *sizep = len;
1937
1938 done:
1939 uvmspace_free(p->p_vmspace);
1940
1941 free(arg, M_TEMP);
1942 return (error);
1943 }
1944
1945 #if NPTY > 0
1946 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1947
1948 /*
1949 * Validate parameters and get old / set new parameters
1950 * for pty sysctl function.
1951 */
1952 static int
1953 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1954 {
1955 int error = 0;
1956 int oldmax = 0, newmax = 0;
1957
1958 /* get current value of maxptys */
1959 oldmax = pty_maxptys(0, 0);
1960
1961 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1962
1963 if (!error && newp) {
1964 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1965 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1966
1967 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1968 return (EINVAL);
1969
1970 }
1971
1972 return (error);
1973 }
1974 #endif /* NPTY > 0 */
1975
1976 static int
1977 sysctl_dotkstat(name, namelen, where, sizep, newp)
1978 int *name;
1979 u_int namelen;
1980 void *where;
1981 size_t *sizep;
1982 void *newp;
1983 {
1984 /* all sysctl names at this level are terminal */
1985 if (namelen != 1)
1986 return (ENOTDIR); /* overloaded */
1987
1988 switch (name[0]) {
1989 case KERN_TKSTAT_NIN:
1990 return (sysctl_rdquad(where, sizep, newp, tk_nin));
1991 case KERN_TKSTAT_NOUT:
1992 return (sysctl_rdquad(where, sizep, newp, tk_nout));
1993 case KERN_TKSTAT_CANCC:
1994 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
1995 case KERN_TKSTAT_RAWCC:
1996 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
1997 default:
1998 return (EOPNOTSUPP);
1999 }
2000 }
2001
2002 static int
2003 sysctl_dodev(name, namelen, oldp, oldlenp, newp, newlen, p)
2004 int *name;
2005 u_int namelen;
2006 void *oldp;
2007 size_t *oldlenp;
2008 void *newp;
2009 size_t newlen;
2010 struct proc *p;
2011 {
2012 /* no sysctl names at this level are terminal */
2013 if (namelen < 1)
2014 return (ENOTDIR); /* overloaded */
2015
2016 switch (name[0]) {
2017 #if NUBTBCMFW
2018 case HW_DEV_UBTBCMFW:
2019 return (hw_dev_ubtbcmfw_sysctl(name + 1, namelen - 1,
2020 oldp, oldlenp, newp, newlen, p));
2021 #endif
2022 default:
2023 return (EOPNOTSUPP);
2024 }
2025 }
2026