kern_sysctl.c revision 1.111 1 /* $NetBSD: kern_sysctl.c,v 1.111 2002/08/25 22:51:07 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.111 2002/08/25 22:51:07 thorpej Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 #include "rnd.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/buf.h>
60 #include <sys/device.h>
61 #include <sys/disklabel.h>
62 #include <sys/dkstat.h>
63 #include <sys/exec.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/msgbuf.h>
69 #include <sys/pool.h>
70 #include <sys/proc.h>
71 #include <sys/resource.h>
72 #include <sys/resourcevar.h>
73 #include <sys/syscallargs.h>
74 #include <sys/tty.h>
75 #include <sys/unistd.h>
76 #include <sys/vnode.h>
77 #include <sys/socketvar.h>
78 #define __SYSCTL_PRIVATE
79 #include <sys/sysctl.h>
80 #include <sys/lock.h>
81 #include <sys/namei.h>
82
83 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
84 #include <sys/ipc.h>
85 #endif
86 #ifdef SYSVMSG
87 #include <sys/msg.h>
88 #endif
89 #ifdef SYSVSEM
90 #include <sys/sem.h>
91 #endif
92 #ifdef SYSVSHM
93 #include <sys/shm.h>
94 #endif
95
96 #include <dev/cons.h>
97
98 #if defined(DDB)
99 #include <ddb/ddbvar.h>
100 #endif
101
102 #ifndef PIPE_SOCKETPAIR
103 #include <sys/pipe.h>
104 #endif
105
106 #if NRND > 0
107 #include <sys/rnd.h>
108 #endif
109
110 #include "ubtbcmfw.h"
111 #if NUBTBCMFW
112 #include <dev/usb/ubtbcmfw.h>
113 #endif
114
115 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
116
117 static int sysctl_file(void *, size_t *);
118 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
119 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
120 #endif
121 static int sysctl_msgbuf(void *, size_t *);
122 static int sysctl_doeproc(int *, u_int, void *, size_t *);
123 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
124 static int sysctl_dodev(int *, u_int, void *, size_t *, void *, size_t,
125 struct proc *);
126 #ifdef MULTIPROCESSOR
127 static int sysctl_docptime(void *, size_t *, void *);
128 static int sysctl_ncpus(void);
129 #endif
130 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
131 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
132 #if NPTY > 0
133 static int sysctl_pty(void *, size_t *, void *, size_t);
134 #endif
135
136 /*
137 * The `sysctl_memlock' is intended to keep too many processes from
138 * locking down memory by doing sysctls at once. Whether or not this
139 * is really a good idea to worry about it probably a subject of some
140 * debate.
141 */
142 struct lock sysctl_memlock;
143
144 void
145 sysctl_init(void)
146 {
147
148 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
149 }
150
151 int
152 sys___sysctl(struct proc *p, void *v, register_t *retval)
153 {
154 struct sys___sysctl_args /* {
155 syscallarg(int *) name;
156 syscallarg(u_int) namelen;
157 syscallarg(void *) old;
158 syscallarg(size_t *) oldlenp;
159 syscallarg(void *) new;
160 syscallarg(size_t) newlen;
161 } */ *uap = v;
162 int error;
163 size_t savelen = 0, oldlen = 0;
164 sysctlfn *fn;
165 int name[CTL_MAXNAME];
166 size_t *oldlenp;
167
168 /*
169 * all top-level sysctl names are non-terminal
170 */
171 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
172 return (EINVAL);
173 error = copyin(SCARG(uap, name), &name,
174 SCARG(uap, namelen) * sizeof(int));
175 if (error)
176 return (error);
177
178 /*
179 * For all but CTL_PROC, must be root to change a value.
180 * For CTL_PROC, must be root, or owner of the proc (and not suid),
181 * this is checked in proc_sysctl() (once we know the targer proc).
182 */
183 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
184 (error = suser(p->p_ucred, &p->p_acflag)))
185 return error;
186
187 switch (name[0]) {
188 case CTL_KERN:
189 fn = kern_sysctl;
190 break;
191 case CTL_HW:
192 fn = hw_sysctl;
193 break;
194 case CTL_VM:
195 fn = uvm_sysctl;
196 break;
197 case CTL_NET:
198 fn = net_sysctl;
199 break;
200 case CTL_VFS:
201 fn = vfs_sysctl;
202 break;
203 case CTL_MACHDEP:
204 fn = cpu_sysctl;
205 break;
206 #ifdef DEBUG
207 case CTL_DEBUG:
208 fn = debug_sysctl;
209 break;
210 #endif
211 #ifdef DDB
212 case CTL_DDB:
213 fn = ddb_sysctl;
214 break;
215 #endif
216 case CTL_PROC:
217 fn = proc_sysctl;
218 break;
219
220 case CTL_EMUL:
221 fn = emul_sysctl;
222 break;
223 default:
224 return (EOPNOTSUPP);
225 }
226
227 /*
228 * XXX Hey, we wire `old', but what about `new'?
229 */
230
231 oldlenp = SCARG(uap, oldlenp);
232 if (oldlenp) {
233 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
234 return (error);
235 oldlenp = &oldlen;
236 }
237 if (SCARG(uap, old) != NULL) {
238 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
239 if (error)
240 return (error);
241 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
242 if (error) {
243 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
244 return error;
245 }
246 savelen = oldlen;
247 }
248 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
249 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
250 if (SCARG(uap, old) != NULL) {
251 uvm_vsunlock(p, SCARG(uap, old), savelen);
252 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
253 }
254 if (error)
255 return (error);
256 if (SCARG(uap, oldlenp))
257 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
258 return (error);
259 }
260
261 /*
262 * Attributes stored in the kernel.
263 */
264 char hostname[MAXHOSTNAMELEN];
265 int hostnamelen;
266
267 char domainname[MAXHOSTNAMELEN];
268 int domainnamelen;
269
270 long hostid;
271
272 #ifdef INSECURE
273 int securelevel = -1;
274 #else
275 int securelevel = 0;
276 #endif
277
278 #ifndef DEFCORENAME
279 #define DEFCORENAME "%n.core"
280 #endif
281 char defcorename[MAXPATHLEN] = DEFCORENAME;
282 int defcorenamelen = sizeof(DEFCORENAME);
283
284 extern int kern_logsigexit;
285 extern fixpt_t ccpu;
286
287 #ifndef MULTIPROCESSOR
288 #define sysctl_ncpus() 1
289 #endif
290
291 #ifdef MULTIPROCESSOR
292
293 #ifndef CPU_INFO_FOREACH
294 #define CPU_INFO_ITERATOR int
295 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
296 #endif
297
298 static int
299 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
300 {
301 u_int64_t cp_time[CPUSTATES];
302 int i;
303 struct cpu_info *ci;
304 CPU_INFO_ITERATOR cii;
305
306 for (i=0; i<CPUSTATES; i++)
307 cp_time[i] = 0;
308
309 for (CPU_INFO_FOREACH(cii, ci)) {
310 for (i=0; i<CPUSTATES; i++)
311 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
312 }
313 return (sysctl_rdstruct(oldp, oldlenp, newp,
314 cp_time, sizeof(cp_time)));
315 }
316
317 static int
318 sysctl_ncpus(void)
319 {
320 struct cpu_info *ci;
321 CPU_INFO_ITERATOR cii;
322
323 int ncpus = 0;
324 for (CPU_INFO_FOREACH(cii, ci))
325 ncpus++;
326 return ncpus;
327 }
328
329 #endif
330
331 /*
332 * kernel related system variables.
333 */
334 int
335 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
336 void *newp, size_t newlen, struct proc *p)
337 {
338 int error, level, inthostid;
339 int old_autonicetime;
340 int old_vnodes;
341 dev_t consdev;
342 #if NRND > 0
343 int v;
344 #endif
345
346 /* All sysctl names at this level, except for a few, are terminal. */
347 switch (name[0]) {
348 case KERN_PROC:
349 case KERN_PROC2:
350 case KERN_PROF:
351 case KERN_MBUF:
352 case KERN_PROC_ARGS:
353 case KERN_SYSVIPC_INFO:
354 case KERN_PIPE:
355 case KERN_TKSTAT:
356 /* Not terminal. */
357 break;
358 default:
359 if (namelen != 1)
360 return (ENOTDIR); /* overloaded */
361 }
362
363 switch (name[0]) {
364 case KERN_OSTYPE:
365 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
366 case KERN_OSRELEASE:
367 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
368 case KERN_OSREV:
369 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
370 case KERN_VERSION:
371 return (sysctl_rdstring(oldp, oldlenp, newp, version));
372 case KERN_MAXVNODES:
373 old_vnodes = desiredvnodes;
374 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
375 if (newp && !error) {
376 if (old_vnodes > desiredvnodes) {
377 desiredvnodes = old_vnodes;
378 return (EINVAL);
379 }
380 vfs_reinit();
381 nchreinit();
382 }
383 return (error);
384 case KERN_MAXPROC:
385 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
386 case KERN_MAXFILES:
387 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
388 case KERN_ARGMAX:
389 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
390 case KERN_SECURELVL:
391 level = securelevel;
392 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
393 newp == NULL)
394 return (error);
395 if (level < securelevel && p->p_pid != 1)
396 return (EPERM);
397 securelevel = level;
398 return (0);
399 case KERN_HOSTNAME:
400 error = sysctl_string(oldp, oldlenp, newp, newlen,
401 hostname, sizeof(hostname));
402 if (newp && !error)
403 hostnamelen = newlen;
404 return (error);
405 case KERN_DOMAINNAME:
406 error = sysctl_string(oldp, oldlenp, newp, newlen,
407 domainname, sizeof(domainname));
408 if (newp && !error)
409 domainnamelen = newlen;
410 return (error);
411 case KERN_HOSTID:
412 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
413 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
414 if (newp && !error)
415 hostid = inthostid;
416 return (error);
417 case KERN_CLOCKRATE:
418 return (sysctl_clockrate(oldp, oldlenp));
419 case KERN_BOOTTIME:
420 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
421 sizeof(struct timeval)));
422 case KERN_VNODE:
423 return (sysctl_vnode(oldp, oldlenp, p));
424 case KERN_PROC:
425 case KERN_PROC2:
426 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
427 case KERN_PROC_ARGS:
428 return (sysctl_procargs(name + 1, namelen - 1,
429 oldp, oldlenp, p));
430 case KERN_FILE:
431 return (sysctl_file(oldp, oldlenp));
432 #ifdef GPROF
433 case KERN_PROF:
434 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
435 newp, newlen));
436 #endif
437 case KERN_POSIX1:
438 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
439 case KERN_NGROUPS:
440 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
441 case KERN_JOB_CONTROL:
442 return (sysctl_rdint(oldp, oldlenp, newp, 1));
443 case KERN_SAVED_IDS:
444 #ifdef _POSIX_SAVED_IDS
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 #else
447 return (sysctl_rdint(oldp, oldlenp, newp, 0));
448 #endif
449 case KERN_MAXPARTITIONS:
450 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
451 case KERN_RAWPARTITION:
452 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
453 #ifdef NTP
454 case KERN_NTPTIME:
455 return (sysctl_ntptime(oldp, oldlenp));
456 #endif
457 case KERN_AUTONICETIME:
458 old_autonicetime = autonicetime;
459 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
460 if (autonicetime < 0)
461 autonicetime = old_autonicetime;
462 return (error);
463 case KERN_AUTONICEVAL:
464 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
465 if (autoniceval < PRIO_MIN)
466 autoniceval = PRIO_MIN;
467 if (autoniceval > PRIO_MAX)
468 autoniceval = PRIO_MAX;
469 return (error);
470 case KERN_RTC_OFFSET:
471 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
472 case KERN_ROOT_DEVICE:
473 return (sysctl_rdstring(oldp, oldlenp, newp,
474 root_device->dv_xname));
475 case KERN_MSGBUFSIZE:
476 /*
477 * deal with cases where the message buffer has
478 * become corrupted.
479 */
480 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
481 msgbufenabled = 0;
482 return (ENXIO);
483 }
484 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
485 case KERN_FSYNC:
486 return (sysctl_rdint(oldp, oldlenp, newp, 1));
487 case KERN_SYSVMSG:
488 #ifdef SYSVMSG
489 return (sysctl_rdint(oldp, oldlenp, newp, 1));
490 #else
491 return (sysctl_rdint(oldp, oldlenp, newp, 0));
492 #endif
493 case KERN_SYSVSEM:
494 #ifdef SYSVSEM
495 return (sysctl_rdint(oldp, oldlenp, newp, 1));
496 #else
497 return (sysctl_rdint(oldp, oldlenp, newp, 0));
498 #endif
499 case KERN_SYSVSHM:
500 #ifdef SYSVSHM
501 return (sysctl_rdint(oldp, oldlenp, newp, 1));
502 #else
503 return (sysctl_rdint(oldp, oldlenp, newp, 0));
504 #endif
505 case KERN_DEFCORENAME:
506 if (newp && newlen < 1)
507 return (EINVAL);
508 error = sysctl_string(oldp, oldlenp, newp, newlen,
509 defcorename, sizeof(defcorename));
510 if (newp && !error)
511 defcorenamelen = newlen;
512 return (error);
513 case KERN_SYNCHRONIZED_IO:
514 return (sysctl_rdint(oldp, oldlenp, newp, 1));
515 case KERN_IOV_MAX:
516 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
517 case KERN_MBUF:
518 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
519 newp, newlen));
520 case KERN_MAPPED_FILES:
521 return (sysctl_rdint(oldp, oldlenp, newp, 1));
522 case KERN_MEMLOCK:
523 return (sysctl_rdint(oldp, oldlenp, newp, 1));
524 case KERN_MEMLOCK_RANGE:
525 return (sysctl_rdint(oldp, oldlenp, newp, 1));
526 case KERN_MEMORY_PROTECTION:
527 return (sysctl_rdint(oldp, oldlenp, newp, 1));
528 case KERN_LOGIN_NAME_MAX:
529 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
530 case KERN_LOGSIGEXIT:
531 return (sysctl_int(oldp, oldlenp, newp, newlen,
532 &kern_logsigexit));
533 case KERN_FSCALE:
534 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
535 case KERN_CCPU:
536 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
537 case KERN_CP_TIME:
538 #ifndef MULTIPROCESSOR
539 return (sysctl_rdstruct(oldp, oldlenp, newp,
540 curcpu()->ci_schedstate.spc_cp_time,
541 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
542 #else
543 return (sysctl_docptime(oldp, oldlenp, newp));
544 #endif
545 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
546 case KERN_SYSVIPC_INFO:
547 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
548 #endif
549 case KERN_MSGBUF:
550 return (sysctl_msgbuf(oldp, oldlenp));
551 case KERN_CONSDEV:
552 if (cn_tab != NULL)
553 consdev = cn_tab->cn_dev;
554 else
555 consdev = NODEV;
556 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
557 sizeof consdev));
558 #if NPTY > 0
559 case KERN_MAXPTYS:
560 return sysctl_pty(oldp, oldlenp, newp, newlen);
561 #endif
562 #ifndef PIPE_SOCKETPAIR
563 case KERN_PIPE:
564 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
565 newp, newlen));
566 #endif
567 case KERN_MAXPHYS:
568 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
569 case KERN_SBMAX:
570 {
571 int new_sbmax = sb_max;
572
573 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
574 if (newp && !error) {
575 if (new_sbmax < (16 * 1024)) /* sanity */
576 return (EINVAL);
577 sb_max = new_sbmax;
578 }
579 return (error);
580 }
581 case KERN_TKSTAT:
582 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
583 newp));
584 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
585 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
586 case KERN_URND:
587 #if NRND > 0
588 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
589 sizeof(v))
590 return (sysctl_rdint(oldp, oldlenp, newp, v));
591 else
592 return (EIO); /*XXX*/
593 #else
594 return (EOPNOTSUPP);
595 #endif
596 default:
597 return (EOPNOTSUPP);
598 }
599 /* NOTREACHED */
600 }
601
602 /*
603 * hardware related system variables.
604 */
605 int
606 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
607 void *newp, size_t newlen, struct proc *p)
608 {
609
610 /* All sysctl names at this level, except for a few, are terminal. */
611 switch (name[0]) {
612 case HW_DISKSTATS:
613 case HW_DEV:
614 /* Not terminal. */
615 break;
616 default:
617 if (namelen != 1)
618 return (ENOTDIR); /* overloaded */
619 }
620
621 switch (name[0]) {
622 case HW_MACHINE:
623 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
624 case HW_MACHINE_ARCH:
625 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
626 case HW_MODEL:
627 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
628 case HW_NCPU:
629 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
630 case HW_BYTEORDER:
631 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
632 case HW_PHYSMEM:
633 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
634 case HW_USERMEM:
635 return (sysctl_rdint(oldp, oldlenp, newp,
636 ctob(physmem - uvmexp.wired)));
637 case HW_PAGESIZE:
638 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
639 case HW_ALIGNBYTES:
640 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
641 case HW_DISKNAMES:
642 return (sysctl_disknames(oldp, oldlenp));
643 case HW_DISKSTATS:
644 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
645 case HW_CNMAGIC: {
646 char magic[CNS_LEN];
647 int error;
648
649 if (oldp)
650 cn_get_magic(magic, CNS_LEN);
651 error = sysctl_string(oldp, oldlenp, newp, newlen,
652 magic, sizeof(magic));
653 if (newp && !error) {
654 error = cn_set_magic(magic);
655 }
656 return (error);
657 }
658 case HW_DEV:
659 return (sysctl_dodev(name + 1, namelen - 1, oldp, oldlenp,
660 newp, newlen, p));
661 default:
662 return (EOPNOTSUPP);
663 }
664 /* NOTREACHED */
665 }
666
667 #ifdef DEBUG
668 /*
669 * Debugging related system variables.
670 */
671 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
672 struct ctldebug debug5, debug6, debug7, debug8, debug9;
673 struct ctldebug debug10, debug11, debug12, debug13, debug14;
674 struct ctldebug debug15, debug16, debug17, debug18, debug19;
675 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
676 &debug0, &debug1, &debug2, &debug3, &debug4,
677 &debug5, &debug6, &debug7, &debug8, &debug9,
678 &debug10, &debug11, &debug12, &debug13, &debug14,
679 &debug15, &debug16, &debug17, &debug18, &debug19,
680 };
681
682 int
683 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
684 void *newp, size_t newlen, struct proc *p)
685 {
686 struct ctldebug *cdp;
687
688 /* all sysctl names at this level are name and field */
689 if (namelen != 2)
690 return (ENOTDIR); /* overloaded */
691 if (name[0] >= CTL_DEBUG_MAXID)
692 return (EOPNOTSUPP);
693 cdp = debugvars[name[0]];
694 if (cdp->debugname == 0)
695 return (EOPNOTSUPP);
696 switch (name[1]) {
697 case CTL_DEBUG_NAME:
698 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
699 case CTL_DEBUG_VALUE:
700 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
701 default:
702 return (EOPNOTSUPP);
703 }
704 /* NOTREACHED */
705 }
706 #endif /* DEBUG */
707
708 int
709 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
710 void *newp, size_t newlen, struct proc *p)
711 {
712 struct proc *ptmp = NULL;
713 const struct proclist_desc *pd;
714 int error = 0;
715 struct rlimit alim;
716 struct plimit *newplim;
717 char *tmps = NULL;
718 size_t len, curlen;
719 u_int i;
720
721 if (namelen < 2)
722 return EINVAL;
723
724 if (name[0] == PROC_CURPROC) {
725 ptmp = p;
726 } else {
727 proclist_lock_read();
728 for (pd = proclists; pd->pd_list != NULL; pd++) {
729 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
730 ptmp = LIST_NEXT(ptmp, p_list)) {
731 /* Skip embryonic processes. */
732 if (ptmp->p_stat == SIDL)
733 continue;
734 if (ptmp->p_pid == (pid_t)name[0])
735 break;
736 }
737 if (ptmp != NULL)
738 break;
739 }
740 proclist_unlock_read();
741 if (ptmp == NULL)
742 return(ESRCH);
743 if (p->p_ucred->cr_uid != 0) {
744 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
745 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
746 return EPERM;
747 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
748 return EPERM; /* sgid proc */
749 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
750 if (p->p_ucred->cr_groups[i] ==
751 ptmp->p_cred->p_rgid)
752 break;
753 }
754 if (i == p->p_ucred->cr_ngroups)
755 return EPERM;
756 }
757 }
758 if (name[1] == PROC_PID_CORENAME) {
759 if (namelen != 2)
760 return EINVAL;
761 /*
762 * Can't use sysctl_string() here because we may malloc a new
763 * area during the process, so we have to do it by hand.
764 */
765 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
766 if (oldlenp && *oldlenp < curlen) {
767 if (!oldp)
768 *oldlenp = curlen;
769 return (ENOMEM);
770 }
771 if (newp) {
772 if (securelevel > 2)
773 return EPERM;
774 if (newlen > MAXPATHLEN)
775 return ENAMETOOLONG;
776 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
777 if (tmps == NULL)
778 return ENOMEM;
779 error = copyin(newp, tmps, newlen + 1);
780 tmps[newlen] = '\0';
781 if (error)
782 goto cleanup;
783 /* Enforce to be either 'core' for end with '.core' */
784 if (newlen < 4) { /* c.o.r.e */
785 error = EINVAL;
786 goto cleanup;
787 }
788 len = newlen - 4;
789 if (len > 0) {
790 if (tmps[len - 1] != '.' &&
791 tmps[len - 1] != '/') {
792 error = EINVAL;
793 goto cleanup;
794 }
795 }
796 if (strcmp(&tmps[len], "core") != 0) {
797 error = EINVAL;
798 goto cleanup;
799 }
800 }
801 if (oldp && oldlenp) {
802 *oldlenp = curlen;
803 error = copyout(ptmp->p_limit->pl_corename, oldp,
804 curlen);
805 }
806 if (newp && error == 0) {
807 /* if the 2 strings are identical, don't limcopy() */
808 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
809 error = 0;
810 goto cleanup;
811 }
812 if (ptmp->p_limit->p_refcnt > 1 &&
813 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
814 newplim = limcopy(ptmp->p_limit);
815 limfree(ptmp->p_limit);
816 ptmp->p_limit = newplim;
817 }
818 if (ptmp->p_limit->pl_corename != defcorename) {
819 free(ptmp->p_limit->pl_corename, M_TEMP);
820 }
821 ptmp->p_limit->pl_corename = tmps;
822 return (0);
823 }
824 cleanup:
825 if (tmps)
826 free(tmps, M_TEMP);
827 return (error);
828 }
829 if (name[1] == PROC_PID_LIMIT) {
830 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
831 return EINVAL;
832 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
833 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
834 error = sysctl_quad(oldp, oldlenp, newp, newlen,
835 &alim.rlim_max);
836 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
837 error = sysctl_quad(oldp, oldlenp, newp, newlen,
838 &alim.rlim_cur);
839 else
840 error = EINVAL;
841
842 if (error)
843 return error;
844
845 if (newp)
846 error = dosetrlimit(ptmp, p->p_cred,
847 name[2] - 1, &alim);
848 return error;
849 }
850 return (EINVAL);
851 }
852
853 int
854 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
855 void *newp, size_t newlen, struct proc *p)
856 {
857 static struct {
858 const char *name;
859 int type;
860 } emulations[] = CTL_EMUL_NAMES;
861 const struct emul *e;
862 const char *ename;
863 #ifdef LKM
864 extern struct lock exec_lock; /* XXX */
865 int error;
866 #else
867 extern int nexecs_builtin;
868 extern const struct execsw execsw_builtin[];
869 int i;
870 #endif
871
872 /* all sysctl names at this level are name and field */
873 if (namelen < 2)
874 return (ENOTDIR); /* overloaded */
875
876 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
877 return (EOPNOTSUPP);
878
879 ename = emulations[name[0]].name;
880
881 #ifdef LKM
882 lockmgr(&exec_lock, LK_SHARED, NULL);
883 if ((e = emul_search(ename))) {
884 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
885 newp, newlen, p);
886 } else
887 error = EOPNOTSUPP;
888 lockmgr(&exec_lock, LK_RELEASE, NULL);
889
890 return (error);
891 #else
892 for (i = 0; i < nexecs_builtin; i++) {
893 e = execsw_builtin[i].es_emul;
894 if (e == NULL || strcmp(ename, e->e_name) != 0 ||
895 e->e_sysctl != NULL)
896 continue;
897
898 return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
899 newp, newlen, p);
900 }
901
902 return (EOPNOTSUPP);
903 #endif
904 }
905 /*
906 * Convenience macros.
907 */
908
909 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
910 if (oldlenp) { \
911 if (!oldp) \
912 *oldlenp = len; \
913 else { \
914 if (*oldlenp < len) \
915 return(ENOMEM); \
916 *oldlenp = len; \
917 error = copyout((caddr_t)valp, oldp, len); \
918 } \
919 }
920
921 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
922 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
923
924 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
925 if (newp && newlen != len) \
926 return (EINVAL);
927
928 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
929 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
930
931 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
932 if (error == 0 && newp) \
933 error = copyin(newp, valp, len);
934
935 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
936 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
937
938 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
939 if (oldlenp) { \
940 len = strlen(str) + 1; \
941 if (!oldp) \
942 *oldlenp = len; \
943 else { \
944 if (*oldlenp < len) { \
945 err2 = ENOMEM; \
946 len = *oldlenp; \
947 } else \
948 *oldlenp = len; \
949 error = copyout(str, oldp, len);\
950 if (error == 0) \
951 error = err2; \
952 } \
953 }
954
955 /*
956 * Validate parameters and get old / set new parameters
957 * for an integer-valued sysctl function.
958 */
959 int
960 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
961 {
962 int error = 0;
963
964 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
965 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
966 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
967
968 return (error);
969 }
970
971
972 /*
973 * As above, but read-only.
974 */
975 int
976 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
977 {
978 int error = 0;
979
980 if (newp)
981 return (EPERM);
982
983 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
984
985 return (error);
986 }
987
988 /*
989 * Validate parameters and get old / set new parameters
990 * for an quad-valued sysctl function.
991 */
992 int
993 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
994 quad_t *valp)
995 {
996 int error = 0;
997
998 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
999 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
1000 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1001
1002 return (error);
1003 }
1004
1005 /*
1006 * As above, but read-only.
1007 */
1008 int
1009 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1010 {
1011 int error = 0;
1012
1013 if (newp)
1014 return (EPERM);
1015
1016 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1017
1018 return (error);
1019 }
1020
1021 /*
1022 * Validate parameters and get old / set new parameters
1023 * for a string-valued sysctl function.
1024 */
1025 int
1026 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1027 size_t maxlen)
1028 {
1029 int error = 0, err2 = 0;
1030 size_t len;
1031
1032 if (newp && newlen >= maxlen)
1033 return (EINVAL);
1034
1035 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1036
1037 if (error == 0 && newp) {
1038 error = copyin(newp, str, newlen);
1039 str[newlen] = 0;
1040 }
1041 return (error);
1042 }
1043
1044 /*
1045 * As above, but read-only.
1046 */
1047 int
1048 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1049 {
1050 int error = 0, err2 = 0;
1051 size_t len;
1052
1053 if (newp)
1054 return (EPERM);
1055
1056 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1057
1058 return (error);
1059 }
1060
1061 /*
1062 * Validate parameters and get old / set new parameters
1063 * for a structure oriented sysctl function.
1064 */
1065 int
1066 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1067 size_t len)
1068 {
1069 int error = 0;
1070
1071 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1072 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1073 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1074
1075 return (error);
1076 }
1077
1078 /*
1079 * Validate parameters and get old parameters
1080 * for a structure oriented sysctl function.
1081 */
1082 int
1083 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1084 size_t len)
1085 {
1086 int error = 0;
1087
1088 if (newp)
1089 return (EPERM);
1090
1091 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1092
1093 return (error);
1094 }
1095
1096 /*
1097 * As above, but can return a truncated result.
1098 */
1099 int
1100 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1101 size_t len)
1102 {
1103 int error = 0;
1104
1105 if (newp)
1106 return (EPERM);
1107
1108 len = min(*oldlenp, len);
1109 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1110
1111 return (error);
1112 }
1113
1114 /*
1115 * Get file structures.
1116 */
1117 static int
1118 sysctl_file(void *vwhere, size_t *sizep)
1119 {
1120 int error;
1121 size_t buflen;
1122 struct file *fp;
1123 char *start, *where;
1124
1125 start = where = vwhere;
1126 buflen = *sizep;
1127 if (where == NULL) {
1128 /*
1129 * overestimate by 10 files
1130 */
1131 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1132 return (0);
1133 }
1134
1135 /*
1136 * first copyout filehead
1137 */
1138 if (buflen < sizeof(filehead)) {
1139 *sizep = 0;
1140 return (0);
1141 }
1142 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1143 if (error)
1144 return (error);
1145 buflen -= sizeof(filehead);
1146 where += sizeof(filehead);
1147
1148 /*
1149 * followed by an array of file structures
1150 */
1151 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1152 if (buflen < sizeof(struct file)) {
1153 *sizep = where - start;
1154 return (ENOMEM);
1155 }
1156 error = copyout((caddr_t)fp, where, sizeof(struct file));
1157 if (error)
1158 return (error);
1159 buflen -= sizeof(struct file);
1160 where += sizeof(struct file);
1161 }
1162 *sizep = where - start;
1163 return (0);
1164 }
1165
1166 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1167 #define FILL_PERM(src, dst) do { \
1168 (dst)._key = (src)._key; \
1169 (dst).uid = (src).uid; \
1170 (dst).gid = (src).gid; \
1171 (dst).cuid = (src).cuid; \
1172 (dst).cgid = (src).cgid; \
1173 (dst).mode = (src).mode; \
1174 (dst)._seq = (src)._seq; \
1175 } while (0);
1176 #define FILL_MSG(src, dst) do { \
1177 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1178 (dst).msg_qnum = (src).msg_qnum; \
1179 (dst).msg_qbytes = (src).msg_qbytes; \
1180 (dst)._msg_cbytes = (src)._msg_cbytes; \
1181 (dst).msg_lspid = (src).msg_lspid; \
1182 (dst).msg_lrpid = (src).msg_lrpid; \
1183 (dst).msg_stime = (src).msg_stime; \
1184 (dst).msg_rtime = (src).msg_rtime; \
1185 (dst).msg_ctime = (src).msg_ctime; \
1186 } while (0)
1187 #define FILL_SEM(src, dst) do { \
1188 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1189 (dst).sem_nsems = (src).sem_nsems; \
1190 (dst).sem_otime = (src).sem_otime; \
1191 (dst).sem_ctime = (src).sem_ctime; \
1192 } while (0)
1193 #define FILL_SHM(src, dst) do { \
1194 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1195 (dst).shm_segsz = (src).shm_segsz; \
1196 (dst).shm_lpid = (src).shm_lpid; \
1197 (dst).shm_cpid = (src).shm_cpid; \
1198 (dst).shm_atime = (src).shm_atime; \
1199 (dst).shm_dtime = (src).shm_dtime; \
1200 (dst).shm_ctime = (src).shm_ctime; \
1201 (dst).shm_nattch = (src).shm_nattch; \
1202 } while (0)
1203
1204 static int
1205 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1206 {
1207 #ifdef SYSVMSG
1208 struct msg_sysctl_info *msgsi;
1209 #endif
1210 #ifdef SYSVSEM
1211 struct sem_sysctl_info *semsi;
1212 #endif
1213 #ifdef SYSVSHM
1214 struct shm_sysctl_info *shmsi;
1215 #endif
1216 size_t infosize, dssize, tsize, buflen;
1217 void *buf = NULL;
1218 char *start;
1219 int32_t nds;
1220 int i, error, ret;
1221
1222 if (namelen != 1)
1223 return (EINVAL);
1224
1225 start = where;
1226 buflen = *sizep;
1227
1228 switch (*name) {
1229 case KERN_SYSVIPC_MSG_INFO:
1230 #ifdef SYSVMSG
1231 infosize = sizeof(msgsi->msginfo);
1232 nds = msginfo.msgmni;
1233 dssize = sizeof(msgsi->msgids[0]);
1234 break;
1235 #else
1236 return (EINVAL);
1237 #endif
1238 case KERN_SYSVIPC_SEM_INFO:
1239 #ifdef SYSVSEM
1240 infosize = sizeof(semsi->seminfo);
1241 nds = seminfo.semmni;
1242 dssize = sizeof(semsi->semids[0]);
1243 break;
1244 #else
1245 return (EINVAL);
1246 #endif
1247 case KERN_SYSVIPC_SHM_INFO:
1248 #ifdef SYSVSHM
1249 infosize = sizeof(shmsi->shminfo);
1250 nds = shminfo.shmmni;
1251 dssize = sizeof(shmsi->shmids[0]);
1252 break;
1253 #else
1254 return (EINVAL);
1255 #endif
1256 default:
1257 return (EINVAL);
1258 }
1259 /*
1260 * Round infosize to 64 bit boundary if requesting more than just
1261 * the info structure or getting the total data size.
1262 */
1263 if (where == NULL || *sizep > infosize)
1264 infosize = ((infosize + 7) / 8) * 8;
1265 tsize = infosize + nds * dssize;
1266
1267 /* Return just the total size required. */
1268 if (where == NULL) {
1269 *sizep = tsize;
1270 return (0);
1271 }
1272
1273 /* Not enough room for even the info struct. */
1274 if (buflen < infosize) {
1275 *sizep = 0;
1276 return (ENOMEM);
1277 }
1278 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1279 memset(buf, 0, min(tsize, buflen));
1280
1281 switch (*name) {
1282 #ifdef SYSVMSG
1283 case KERN_SYSVIPC_MSG_INFO:
1284 msgsi = (struct msg_sysctl_info *)buf;
1285 msgsi->msginfo = msginfo;
1286 break;
1287 #endif
1288 #ifdef SYSVSEM
1289 case KERN_SYSVIPC_SEM_INFO:
1290 semsi = (struct sem_sysctl_info *)buf;
1291 semsi->seminfo = seminfo;
1292 break;
1293 #endif
1294 #ifdef SYSVSHM
1295 case KERN_SYSVIPC_SHM_INFO:
1296 shmsi = (struct shm_sysctl_info *)buf;
1297 shmsi->shminfo = shminfo;
1298 break;
1299 #endif
1300 }
1301 buflen -= infosize;
1302
1303 ret = 0;
1304 if (buflen > 0) {
1305 /* Fill in the IPC data structures. */
1306 for (i = 0; i < nds; i++) {
1307 if (buflen < dssize) {
1308 ret = ENOMEM;
1309 break;
1310 }
1311 switch (*name) {
1312 #ifdef SYSVMSG
1313 case KERN_SYSVIPC_MSG_INFO:
1314 FILL_MSG(msqids[i], msgsi->msgids[i]);
1315 break;
1316 #endif
1317 #ifdef SYSVSEM
1318 case KERN_SYSVIPC_SEM_INFO:
1319 FILL_SEM(sema[i], semsi->semids[i]);
1320 break;
1321 #endif
1322 #ifdef SYSVSHM
1323 case KERN_SYSVIPC_SHM_INFO:
1324 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1325 break;
1326 #endif
1327 }
1328 buflen -= dssize;
1329 }
1330 }
1331 *sizep -= buflen;
1332 error = copyout(buf, start, *sizep);
1333 /* If copyout succeeded, use return code set earlier. */
1334 if (error == 0)
1335 error = ret;
1336 if (buf)
1337 free(buf, M_TEMP);
1338 return (error);
1339 }
1340 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1341
1342 static int
1343 sysctl_msgbuf(void *vwhere, size_t *sizep)
1344 {
1345 char *where = vwhere;
1346 size_t len, maxlen = *sizep;
1347 long beg, end;
1348 int error;
1349
1350 /*
1351 * deal with cases where the message buffer has
1352 * become corrupted.
1353 */
1354 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1355 msgbufenabled = 0;
1356 return (ENXIO);
1357 }
1358
1359 if (where == NULL) {
1360 /* always return full buffer size */
1361 *sizep = msgbufp->msg_bufs;
1362 return (0);
1363 }
1364
1365 error = 0;
1366 maxlen = min(msgbufp->msg_bufs, maxlen);
1367
1368 /*
1369 * First, copy from the write pointer to the end of
1370 * message buffer.
1371 */
1372 beg = msgbufp->msg_bufx;
1373 end = msgbufp->msg_bufs;
1374 while (maxlen > 0) {
1375 len = min(end - beg, maxlen);
1376 if (len == 0)
1377 break;
1378 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1379 if (error)
1380 break;
1381 where += len;
1382 maxlen -= len;
1383
1384 /*
1385 * ... then, copy from the beginning of message buffer to
1386 * the write pointer.
1387 */
1388 beg = 0;
1389 end = msgbufp->msg_bufx;
1390 }
1391 return (error);
1392 }
1393
1394 /*
1395 * try over estimating by 5 procs
1396 */
1397 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1398
1399 static int
1400 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1401 {
1402 struct eproc eproc;
1403 struct kinfo_proc2 kproc2;
1404 struct kinfo_proc *dp;
1405 struct proc *p;
1406 const struct proclist_desc *pd;
1407 char *where, *dp2;
1408 int type, op, arg;
1409 u_int elem_size, elem_count;
1410 size_t buflen, needed;
1411 int error;
1412
1413 dp = vwhere;
1414 dp2 = where = vwhere;
1415 buflen = where != NULL ? *sizep : 0;
1416 error = 0;
1417 needed = 0;
1418 type = name[0];
1419
1420 if (type == KERN_PROC) {
1421 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1422 return (EINVAL);
1423 op = name[1];
1424 if (op != KERN_PROC_ALL)
1425 arg = name[2];
1426 } else {
1427 if (namelen != 5)
1428 return (EINVAL);
1429 op = name[1];
1430 arg = name[2];
1431 elem_size = name[3];
1432 elem_count = name[4];
1433 }
1434
1435 proclist_lock_read();
1436
1437 pd = proclists;
1438 again:
1439 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1440 /*
1441 * Skip embryonic processes.
1442 */
1443 if (p->p_stat == SIDL)
1444 continue;
1445 /*
1446 * TODO - make more efficient (see notes below).
1447 * do by session.
1448 */
1449 switch (op) {
1450
1451 case KERN_PROC_PID:
1452 /* could do this with just a lookup */
1453 if (p->p_pid != (pid_t)arg)
1454 continue;
1455 break;
1456
1457 case KERN_PROC_PGRP:
1458 /* could do this by traversing pgrp */
1459 if (p->p_pgrp->pg_id != (pid_t)arg)
1460 continue;
1461 break;
1462
1463 case KERN_PROC_SESSION:
1464 if (p->p_session->s_sid != (pid_t)arg)
1465 continue;
1466 break;
1467
1468 case KERN_PROC_TTY:
1469 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1470 if ((p->p_flag & P_CONTROLT) == 0 ||
1471 p->p_session->s_ttyp == NULL ||
1472 p->p_session->s_ttyvp != NULL)
1473 continue;
1474 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1475 p->p_session->s_ttyp == NULL) {
1476 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1477 continue;
1478 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1479 continue;
1480 break;
1481
1482 case KERN_PROC_UID:
1483 if (p->p_ucred->cr_uid != (uid_t)arg)
1484 continue;
1485 break;
1486
1487 case KERN_PROC_RUID:
1488 if (p->p_cred->p_ruid != (uid_t)arg)
1489 continue;
1490 break;
1491
1492 case KERN_PROC_GID:
1493 if (p->p_ucred->cr_gid != (uid_t)arg)
1494 continue;
1495 break;
1496
1497 case KERN_PROC_RGID:
1498 if (p->p_cred->p_rgid != (uid_t)arg)
1499 continue;
1500 break;
1501
1502 case KERN_PROC_ALL:
1503 /* allow everything */
1504 break;
1505
1506 default:
1507 error = EINVAL;
1508 goto cleanup;
1509 }
1510 if (type == KERN_PROC) {
1511 if (buflen >= sizeof(struct kinfo_proc)) {
1512 fill_eproc(p, &eproc);
1513 error = copyout((caddr_t)p, &dp->kp_proc,
1514 sizeof(struct proc));
1515 if (error)
1516 goto cleanup;
1517 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1518 sizeof(eproc));
1519 if (error)
1520 goto cleanup;
1521 dp++;
1522 buflen -= sizeof(struct kinfo_proc);
1523 }
1524 needed += sizeof(struct kinfo_proc);
1525 } else { /* KERN_PROC2 */
1526 if (buflen >= elem_size && elem_count > 0) {
1527 fill_kproc2(p, &kproc2);
1528 /*
1529 * Copy out elem_size, but not larger than
1530 * the size of a struct kinfo_proc2.
1531 */
1532 error = copyout(&kproc2, dp2,
1533 min(sizeof(kproc2), elem_size));
1534 if (error)
1535 goto cleanup;
1536 dp2 += elem_size;
1537 buflen -= elem_size;
1538 elem_count--;
1539 }
1540 needed += elem_size;
1541 }
1542 }
1543 pd++;
1544 if (pd->pd_list != NULL)
1545 goto again;
1546 proclist_unlock_read();
1547
1548 if (where != NULL) {
1549 if (type == KERN_PROC)
1550 *sizep = (caddr_t)dp - where;
1551 else
1552 *sizep = dp2 - where;
1553 if (needed > *sizep)
1554 return (ENOMEM);
1555 } else {
1556 needed += KERN_PROCSLOP;
1557 *sizep = needed;
1558 }
1559 return (0);
1560 cleanup:
1561 proclist_unlock_read();
1562 return (error);
1563 }
1564
1565 /*
1566 * Fill in an eproc structure for the specified process.
1567 */
1568 void
1569 fill_eproc(struct proc *p, struct eproc *ep)
1570 {
1571 struct tty *tp;
1572
1573 ep->e_paddr = p;
1574 ep->e_sess = p->p_session;
1575 ep->e_pcred = *p->p_cred;
1576 ep->e_ucred = *p->p_ucred;
1577 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1578 ep->e_vm.vm_rssize = 0;
1579 ep->e_vm.vm_tsize = 0;
1580 ep->e_vm.vm_dsize = 0;
1581 ep->e_vm.vm_ssize = 0;
1582 /* ep->e_vm.vm_pmap = XXX; */
1583 } else {
1584 struct vmspace *vm = p->p_vmspace;
1585
1586 ep->e_vm.vm_rssize = vm_resident_count(vm);
1587 ep->e_vm.vm_tsize = vm->vm_tsize;
1588 ep->e_vm.vm_dsize = vm->vm_dsize;
1589 ep->e_vm.vm_ssize = vm->vm_ssize;
1590 }
1591 if (p->p_pptr)
1592 ep->e_ppid = p->p_pptr->p_pid;
1593 else
1594 ep->e_ppid = 0;
1595 ep->e_pgid = p->p_pgrp->pg_id;
1596 ep->e_sid = ep->e_sess->s_sid;
1597 ep->e_jobc = p->p_pgrp->pg_jobc;
1598 if ((p->p_flag & P_CONTROLT) &&
1599 (tp = ep->e_sess->s_ttyp)) {
1600 ep->e_tdev = tp->t_dev;
1601 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1602 ep->e_tsess = tp->t_session;
1603 } else
1604 ep->e_tdev = NODEV;
1605 if (p->p_wmesg)
1606 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1607 ep->e_xsize = ep->e_xrssize = 0;
1608 ep->e_xccount = ep->e_xswrss = 0;
1609 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1610 if (SESS_LEADER(p))
1611 ep->e_flag |= EPROC_SLEADER;
1612 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1613 }
1614
1615 /*
1616 * Fill in an eproc structure for the specified process.
1617 */
1618 static void
1619 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1620 {
1621 struct tty *tp;
1622
1623 memset(ki, 0, sizeof(*ki));
1624
1625 ki->p_forw = PTRTOINT64(p->p_forw);
1626 ki->p_back = PTRTOINT64(p->p_back);
1627 ki->p_paddr = PTRTOINT64(p);
1628
1629 ki->p_addr = PTRTOINT64(p->p_addr);
1630 ki->p_fd = PTRTOINT64(p->p_fd);
1631 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1632 ki->p_stats = PTRTOINT64(p->p_stats);
1633 ki->p_limit = PTRTOINT64(p->p_limit);
1634 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1635 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1636 ki->p_sess = PTRTOINT64(p->p_session);
1637 ki->p_tsess = 0; /* may be changed if controlling tty below */
1638 ki->p_ru = PTRTOINT64(p->p_ru);
1639
1640 ki->p_eflag = 0;
1641 ki->p_exitsig = p->p_exitsig;
1642 ki->p_flag = p->p_flag;
1643
1644 ki->p_pid = p->p_pid;
1645 if (p->p_pptr)
1646 ki->p_ppid = p->p_pptr->p_pid;
1647 else
1648 ki->p_ppid = 0;
1649 ki->p_sid = p->p_session->s_sid;
1650 ki->p__pgid = p->p_pgrp->pg_id;
1651
1652 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1653
1654 ki->p_uid = p->p_ucred->cr_uid;
1655 ki->p_ruid = p->p_cred->p_ruid;
1656 ki->p_gid = p->p_ucred->cr_gid;
1657 ki->p_rgid = p->p_cred->p_rgid;
1658
1659 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1660 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1661 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1662
1663 ki->p_jobc = p->p_pgrp->pg_jobc;
1664 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1665 ki->p_tdev = tp->t_dev;
1666 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1667 ki->p_tsess = PTRTOINT64(tp->t_session);
1668 } else {
1669 ki->p_tdev = NODEV;
1670 }
1671
1672 ki->p_estcpu = p->p_estcpu;
1673 ki->p_rtime_sec = p->p_rtime.tv_sec;
1674 ki->p_rtime_usec = p->p_rtime.tv_usec;
1675 ki->p_cpticks = p->p_cpticks;
1676 ki->p_pctcpu = p->p_pctcpu;
1677 ki->p_swtime = p->p_swtime;
1678 ki->p_slptime = p->p_slptime;
1679 if (p->p_stat == SONPROC) {
1680 KDASSERT(p->p_cpu != NULL);
1681 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1682 } else
1683 ki->p_schedflags = 0;
1684
1685 ki->p_uticks = p->p_uticks;
1686 ki->p_sticks = p->p_sticks;
1687 ki->p_iticks = p->p_iticks;
1688
1689 ki->p_tracep = PTRTOINT64(p->p_tracep);
1690 ki->p_traceflag = p->p_traceflag;
1691
1692 ki->p_holdcnt = p->p_holdcnt;
1693
1694 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1695 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1696 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1697 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1698
1699 ki->p_stat = p->p_stat;
1700 ki->p_priority = p->p_priority;
1701 ki->p_usrpri = p->p_usrpri;
1702 ki->p_nice = p->p_nice;
1703
1704 ki->p_xstat = p->p_xstat;
1705 ki->p_acflag = p->p_acflag;
1706
1707 strncpy(ki->p_comm, p->p_comm,
1708 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1709
1710 if (p->p_wmesg)
1711 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1712 ki->p_wchan = PTRTOINT64(p->p_wchan);
1713
1714 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1715
1716 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1717 ki->p_vm_rssize = 0;
1718 ki->p_vm_tsize = 0;
1719 ki->p_vm_dsize = 0;
1720 ki->p_vm_ssize = 0;
1721 } else {
1722 struct vmspace *vm = p->p_vmspace;
1723
1724 ki->p_vm_rssize = vm_resident_count(vm);
1725 ki->p_vm_tsize = vm->vm_tsize;
1726 ki->p_vm_dsize = vm->vm_dsize;
1727 ki->p_vm_ssize = vm->vm_ssize;
1728 }
1729
1730 if (p->p_session->s_ttyvp)
1731 ki->p_eflag |= EPROC_CTTY;
1732 if (SESS_LEADER(p))
1733 ki->p_eflag |= EPROC_SLEADER;
1734
1735 /* XXX Is this double check necessary? */
1736 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1737 ki->p_uvalid = 0;
1738 } else {
1739 ki->p_uvalid = 1;
1740
1741 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1742 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1743
1744 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1745 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1746 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1747 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1748
1749 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1750 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1751 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1752 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1753 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1754 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1755 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1756 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1757 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1758 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1759 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1760 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1761 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1762 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1763
1764 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1765 p->p_stats->p_cru.ru_stime.tv_sec;
1766 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1767 p->p_stats->p_cru.ru_stime.tv_usec;
1768 }
1769 #ifdef MULTIPROCESSOR
1770 if (p->p_cpu != NULL)
1771 ki->p_cpuid = p->p_cpu->ci_cpuid;
1772 else
1773 #endif
1774 ki->p_cpuid = KI_NOCPU;
1775 }
1776
1777 int
1778 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1779 struct proc *up)
1780 {
1781 struct ps_strings pss;
1782 struct proc *p;
1783 size_t len, upper_bound, xlen, i;
1784 struct uio auio;
1785 struct iovec aiov;
1786 vaddr_t argv;
1787 pid_t pid;
1788 int nargv, type, error;
1789 char *arg;
1790 char *tmp;
1791
1792 if (namelen != 2)
1793 return (EINVAL);
1794 pid = name[0];
1795 type = name[1];
1796
1797 switch (type) {
1798 case KERN_PROC_ARGV:
1799 case KERN_PROC_NARGV:
1800 case KERN_PROC_ENV:
1801 case KERN_PROC_NENV:
1802 /* ok */
1803 break;
1804 default:
1805 return (EINVAL);
1806 }
1807
1808 /* check pid */
1809 if ((p = pfind(pid)) == NULL)
1810 return (EINVAL);
1811
1812 /* only root or same user change look at the environment */
1813 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1814 if (up->p_ucred->cr_uid != 0) {
1815 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1816 up->p_cred->p_ruid != p->p_cred->p_svuid)
1817 return (EPERM);
1818 }
1819 }
1820
1821 if (sizep != NULL && where == NULL) {
1822 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1823 *sizep = sizeof (int);
1824 else
1825 *sizep = ARG_MAX; /* XXX XXX XXX */
1826 return (0);
1827 }
1828 if (where == NULL || sizep == NULL)
1829 return (EINVAL);
1830
1831 /*
1832 * Zombies don't have a stack, so we can't read their psstrings.
1833 * System processes also don't have a user stack.
1834 */
1835 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1836 return (EINVAL);
1837
1838 /*
1839 * Lock the process down in memory.
1840 */
1841 /* XXXCDC: how should locking work here? */
1842 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1843 return (EFAULT);
1844 p->p_vmspace->vm_refcnt++; /* XXX */
1845
1846 /*
1847 * Allocate a temporary buffer to hold the arguments.
1848 */
1849 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1850
1851 /*
1852 * Read in the ps_strings structure.
1853 */
1854 aiov.iov_base = &pss;
1855 aiov.iov_len = sizeof(pss);
1856 auio.uio_iov = &aiov;
1857 auio.uio_iovcnt = 1;
1858 auio.uio_offset = (vaddr_t)p->p_psstr;
1859 auio.uio_resid = sizeof(pss);
1860 auio.uio_segflg = UIO_SYSSPACE;
1861 auio.uio_rw = UIO_READ;
1862 auio.uio_procp = NULL;
1863 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1864 if (error)
1865 goto done;
1866
1867 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1868 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1869 else
1870 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1871 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1872 error = copyout(&nargv, where, sizeof(nargv));
1873 *sizep = sizeof(nargv);
1874 goto done;
1875 }
1876 /*
1877 * Now read the address of the argument vector.
1878 */
1879 switch (type) {
1880 case KERN_PROC_ARGV:
1881 /* XXX compat32 stuff here */
1882 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1883 break;
1884 case KERN_PROC_ENV:
1885 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1886 break;
1887 default:
1888 return (EINVAL);
1889 }
1890 auio.uio_offset = (off_t)(long)tmp;
1891 aiov.iov_base = &argv;
1892 aiov.iov_len = sizeof(argv);
1893 auio.uio_iov = &aiov;
1894 auio.uio_iovcnt = 1;
1895 auio.uio_resid = sizeof(argv);
1896 auio.uio_segflg = UIO_SYSSPACE;
1897 auio.uio_rw = UIO_READ;
1898 auio.uio_procp = NULL;
1899 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1900 if (error)
1901 goto done;
1902
1903 /*
1904 * Now copy in the actual argument vector, one page at a time,
1905 * since we don't know how long the vector is (though, we do
1906 * know how many NUL-terminated strings are in the vector).
1907 */
1908 len = 0;
1909 upper_bound = *sizep;
1910 for (; nargv != 0 && len < upper_bound; len += xlen) {
1911 aiov.iov_base = arg;
1912 aiov.iov_len = PAGE_SIZE;
1913 auio.uio_iov = &aiov;
1914 auio.uio_iovcnt = 1;
1915 auio.uio_offset = argv + len;
1916 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1917 auio.uio_resid = xlen;
1918 auio.uio_segflg = UIO_SYSSPACE;
1919 auio.uio_rw = UIO_READ;
1920 auio.uio_procp = NULL;
1921 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1922 if (error)
1923 goto done;
1924
1925 for (i = 0; i < xlen && nargv != 0; i++) {
1926 if (arg[i] == '\0')
1927 nargv--; /* one full string */
1928 }
1929
1930 /*
1931 * Make sure we don't copyout past the end of the user's
1932 * buffer.
1933 */
1934 if (len + i > upper_bound)
1935 i = upper_bound - len;
1936
1937 error = copyout(arg, (char *)where + len, i);
1938 if (error)
1939 break;
1940
1941 if (nargv == 0) {
1942 len += i;
1943 break;
1944 }
1945 }
1946 *sizep = len;
1947
1948 done:
1949 uvmspace_free(p->p_vmspace);
1950
1951 free(arg, M_TEMP);
1952 return (error);
1953 }
1954
1955 #if NPTY > 0
1956 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1957
1958 /*
1959 * Validate parameters and get old / set new parameters
1960 * for pty sysctl function.
1961 */
1962 static int
1963 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1964 {
1965 int error = 0;
1966 int oldmax = 0, newmax = 0;
1967
1968 /* get current value of maxptys */
1969 oldmax = pty_maxptys(0, 0);
1970
1971 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1972
1973 if (!error && newp) {
1974 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1975 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1976
1977 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1978 return (EINVAL);
1979
1980 }
1981
1982 return (error);
1983 }
1984 #endif /* NPTY > 0 */
1985
1986 static int
1987 sysctl_dotkstat(name, namelen, where, sizep, newp)
1988 int *name;
1989 u_int namelen;
1990 void *where;
1991 size_t *sizep;
1992 void *newp;
1993 {
1994 /* all sysctl names at this level are terminal */
1995 if (namelen != 1)
1996 return (ENOTDIR); /* overloaded */
1997
1998 switch (name[0]) {
1999 case KERN_TKSTAT_NIN:
2000 return (sysctl_rdquad(where, sizep, newp, tk_nin));
2001 case KERN_TKSTAT_NOUT:
2002 return (sysctl_rdquad(where, sizep, newp, tk_nout));
2003 case KERN_TKSTAT_CANCC:
2004 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
2005 case KERN_TKSTAT_RAWCC:
2006 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
2007 default:
2008 return (EOPNOTSUPP);
2009 }
2010 }
2011
2012 static int
2013 sysctl_dodev(name, namelen, oldp, oldlenp, newp, newlen, p)
2014 int *name;
2015 u_int namelen;
2016 void *oldp;
2017 size_t *oldlenp;
2018 void *newp;
2019 size_t newlen;
2020 struct proc *p;
2021 {
2022 /* no sysctl names at this level are terminal */
2023 if (namelen < 1)
2024 return (ENOTDIR); /* overloaded */
2025
2026 switch (name[0]) {
2027 #if NUBTBCMFW
2028 case HW_DEV_UBTBCMFW:
2029 return (hw_dev_ubtbcmfw_sysctl(name + 1, namelen - 1,
2030 oldp, oldlenp, newp, newlen, p));
2031 #endif
2032 default:
2033 return (EOPNOTSUPP);
2034 }
2035 }
2036