kern_sysctl.c revision 1.117 1 /* $NetBSD: kern_sysctl.c,v 1.117 2002/11/20 04:29:31 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.117 2002/11/20 04:29:31 simonb Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 #include "rnd.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/buf.h>
60 #include <sys/device.h>
61 #include <sys/disklabel.h>
62 #include <sys/dkstat.h>
63 #include <sys/exec.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/msgbuf.h>
69 #include <sys/pool.h>
70 #include <sys/proc.h>
71 #include <sys/resource.h>
72 #include <sys/resourcevar.h>
73 #include <sys/syscallargs.h>
74 #include <sys/tty.h>
75 #include <sys/unistd.h>
76 #include <sys/vnode.h>
77 #include <sys/socketvar.h>
78 #define __SYSCTL_PRIVATE
79 #include <sys/sysctl.h>
80 #include <sys/lock.h>
81 #include <sys/namei.h>
82
83 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
84 #include <sys/ipc.h>
85 #endif
86 #ifdef SYSVMSG
87 #include <sys/msg.h>
88 #endif
89 #ifdef SYSVSEM
90 #include <sys/sem.h>
91 #endif
92 #ifdef SYSVSHM
93 #include <sys/shm.h>
94 #endif
95
96 #include <dev/cons.h>
97
98 #if defined(DDB)
99 #include <ddb/ddbvar.h>
100 #endif
101
102 #ifndef PIPE_SOCKETPAIR
103 #include <sys/pipe.h>
104 #endif
105
106 #if NRND > 0
107 #include <sys/rnd.h>
108 #endif
109
110 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
111
112 static int sysctl_file(void *, size_t *);
113 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
114 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
115 #endif
116 static int sysctl_msgbuf(void *, size_t *);
117 static int sysctl_doeproc(int *, u_int, void *, size_t *);
118 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
119 #ifdef MULTIPROCESSOR
120 static int sysctl_docptime(void *, size_t *, void *);
121 static int sysctl_ncpus(void);
122 #endif
123 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
124 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
125 #if NPTY > 0
126 static int sysctl_pty(void *, size_t *, void *, size_t);
127 #endif
128
129 /*
130 * The `sysctl_memlock' is intended to keep too many processes from
131 * locking down memory by doing sysctls at once. Whether or not this
132 * is really a good idea to worry about it probably a subject of some
133 * debate.
134 */
135 struct lock sysctl_memlock;
136
137 void
138 sysctl_init(void)
139 {
140
141 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
142 }
143
144 int
145 sys___sysctl(struct proc *p, void *v, register_t *retval)
146 {
147 struct sys___sysctl_args /* {
148 syscallarg(int *) name;
149 syscallarg(u_int) namelen;
150 syscallarg(void *) old;
151 syscallarg(size_t *) oldlenp;
152 syscallarg(void *) new;
153 syscallarg(size_t) newlen;
154 } */ *uap = v;
155 int error;
156 size_t savelen = 0, oldlen = 0;
157 sysctlfn *fn;
158 int name[CTL_MAXNAME];
159 size_t *oldlenp;
160
161 /*
162 * all top-level sysctl names are non-terminal
163 */
164 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
165 return (EINVAL);
166 error = copyin(SCARG(uap, name), &name,
167 SCARG(uap, namelen) * sizeof(int));
168 if (error)
169 return (error);
170
171 /*
172 * For all but CTL_PROC, must be root to change a value.
173 * For CTL_PROC, must be root, or owner of the proc (and not suid),
174 * this is checked in proc_sysctl() (once we know the targer proc).
175 */
176 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
177 (error = suser(p->p_ucred, &p->p_acflag)))
178 return error;
179
180 switch (name[0]) {
181 case CTL_KERN:
182 fn = kern_sysctl;
183 break;
184 case CTL_HW:
185 fn = hw_sysctl;
186 break;
187 case CTL_VM:
188 fn = uvm_sysctl;
189 break;
190 case CTL_NET:
191 fn = net_sysctl;
192 break;
193 case CTL_VFS:
194 fn = vfs_sysctl;
195 break;
196 case CTL_MACHDEP:
197 fn = cpu_sysctl;
198 break;
199 #ifdef DEBUG
200 case CTL_DEBUG:
201 fn = debug_sysctl;
202 break;
203 #endif
204 #ifdef DDB
205 case CTL_DDB:
206 fn = ddb_sysctl;
207 break;
208 #endif
209 case CTL_PROC:
210 fn = proc_sysctl;
211 break;
212
213 case CTL_EMUL:
214 fn = emul_sysctl;
215 break;
216 default:
217 return (EOPNOTSUPP);
218 }
219
220 /*
221 * XXX Hey, we wire `old', but what about `new'?
222 */
223
224 oldlenp = SCARG(uap, oldlenp);
225 if (oldlenp) {
226 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
227 return (error);
228 oldlenp = &oldlen;
229 }
230 if (SCARG(uap, old) != NULL) {
231 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
232 if (error)
233 return (error);
234 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
235 if (error) {
236 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
237 return error;
238 }
239 savelen = oldlen;
240 }
241 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
242 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
243 if (SCARG(uap, old) != NULL) {
244 uvm_vsunlock(p, SCARG(uap, old), savelen);
245 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
246 }
247 if (error)
248 return (error);
249 if (SCARG(uap, oldlenp))
250 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
251 return (error);
252 }
253
254 /*
255 * Attributes stored in the kernel.
256 */
257 char hostname[MAXHOSTNAMELEN];
258 int hostnamelen;
259
260 char domainname[MAXHOSTNAMELEN];
261 int domainnamelen;
262
263 long hostid;
264
265 #ifdef INSECURE
266 int securelevel = -1;
267 #else
268 int securelevel = 0;
269 #endif
270
271 #ifndef DEFCORENAME
272 #define DEFCORENAME "%n.core"
273 #endif
274 char defcorename[MAXPATHLEN] = DEFCORENAME;
275 int defcorenamelen = sizeof(DEFCORENAME);
276
277 extern int kern_logsigexit;
278 extern fixpt_t ccpu;
279
280 #ifndef MULTIPROCESSOR
281 #define sysctl_ncpus() 1
282 #endif
283
284 #ifdef MULTIPROCESSOR
285
286 #ifndef CPU_INFO_FOREACH
287 #define CPU_INFO_ITERATOR int
288 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
289 #endif
290
291 static int
292 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
293 {
294 u_int64_t cp_time[CPUSTATES];
295 int i;
296 struct cpu_info *ci;
297 CPU_INFO_ITERATOR cii;
298
299 for (i = 0; i < CPUSTATES; i++)
300 cp_time[i] = 0;
301
302 for (CPU_INFO_FOREACH(cii, ci)) {
303 for (i = 0; i < CPUSTATES; i++)
304 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
305 }
306 return (sysctl_rdstruct(oldp, oldlenp, newp,
307 cp_time, sizeof(cp_time)));
308 }
309
310 static int
311 sysctl_ncpus(void)
312 {
313 struct cpu_info *ci;
314 CPU_INFO_ITERATOR cii;
315
316 int ncpus = 0;
317 for (CPU_INFO_FOREACH(cii, ci))
318 ncpus++;
319 return ncpus;
320 }
321
322 #endif
323
324 /*
325 * kernel related system variables.
326 */
327 int
328 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
329 void *newp, size_t newlen, struct proc *p)
330 {
331 int error, level, inthostid;
332 int old_autonicetime;
333 int old_vnodes;
334 dev_t consdev;
335 #if NRND > 0
336 int v;
337 #endif
338
339 /* All sysctl names at this level, except for a few, are terminal. */
340 switch (name[0]) {
341 case KERN_PROC:
342 case KERN_PROC2:
343 case KERN_PROF:
344 case KERN_MBUF:
345 case KERN_PROC_ARGS:
346 case KERN_SYSVIPC_INFO:
347 case KERN_PIPE:
348 case KERN_TKSTAT:
349 /* Not terminal. */
350 break;
351 default:
352 if (namelen != 1)
353 return (ENOTDIR); /* overloaded */
354 }
355
356 switch (name[0]) {
357 case KERN_OSTYPE:
358 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
359 case KERN_OSRELEASE:
360 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
361 case KERN_OSREV:
362 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
363 case KERN_VERSION:
364 return (sysctl_rdstring(oldp, oldlenp, newp, version));
365 case KERN_MAXVNODES:
366 old_vnodes = desiredvnodes;
367 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
368 if (newp && !error) {
369 if (old_vnodes > desiredvnodes) {
370 desiredvnodes = old_vnodes;
371 return (EINVAL);
372 }
373 vfs_reinit();
374 nchreinit();
375 }
376 return (error);
377 case KERN_MAXPROC:
378 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
379 case KERN_MAXFILES:
380 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
381 case KERN_ARGMAX:
382 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
383 case KERN_SECURELVL:
384 level = securelevel;
385 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
386 newp == NULL)
387 return (error);
388 if (level < securelevel && p->p_pid != 1)
389 return (EPERM);
390 securelevel = level;
391 return (0);
392 case KERN_HOSTNAME:
393 error = sysctl_string(oldp, oldlenp, newp, newlen,
394 hostname, sizeof(hostname));
395 if (newp && !error)
396 hostnamelen = newlen;
397 return (error);
398 case KERN_DOMAINNAME:
399 error = sysctl_string(oldp, oldlenp, newp, newlen,
400 domainname, sizeof(domainname));
401 if (newp && !error)
402 domainnamelen = newlen;
403 return (error);
404 case KERN_HOSTID:
405 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
406 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
407 if (newp && !error)
408 hostid = inthostid;
409 return (error);
410 case KERN_CLOCKRATE:
411 return (sysctl_clockrate(oldp, oldlenp));
412 case KERN_BOOTTIME:
413 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
414 sizeof(struct timeval)));
415 case KERN_VNODE:
416 return (sysctl_vnode(oldp, oldlenp, p));
417 case KERN_PROC:
418 case KERN_PROC2:
419 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
420 case KERN_PROC_ARGS:
421 return (sysctl_procargs(name + 1, namelen - 1,
422 oldp, oldlenp, p));
423 case KERN_FILE:
424 return (sysctl_file(oldp, oldlenp));
425 #ifdef GPROF
426 case KERN_PROF:
427 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
428 newp, newlen));
429 #endif
430 case KERN_POSIX1:
431 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
432 case KERN_NGROUPS:
433 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
434 case KERN_JOB_CONTROL:
435 return (sysctl_rdint(oldp, oldlenp, newp, 1));
436 case KERN_SAVED_IDS:
437 #ifdef _POSIX_SAVED_IDS
438 return (sysctl_rdint(oldp, oldlenp, newp, 1));
439 #else
440 return (sysctl_rdint(oldp, oldlenp, newp, 0));
441 #endif
442 case KERN_MAXPARTITIONS:
443 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
444 case KERN_RAWPARTITION:
445 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
446 #ifdef NTP
447 case KERN_NTPTIME:
448 return (sysctl_ntptime(oldp, oldlenp));
449 #endif
450 case KERN_AUTONICETIME:
451 old_autonicetime = autonicetime;
452 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
453 if (autonicetime < 0)
454 autonicetime = old_autonicetime;
455 return (error);
456 case KERN_AUTONICEVAL:
457 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
458 if (autoniceval < PRIO_MIN)
459 autoniceval = PRIO_MIN;
460 if (autoniceval > PRIO_MAX)
461 autoniceval = PRIO_MAX;
462 return (error);
463 case KERN_RTC_OFFSET:
464 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
465 case KERN_ROOT_DEVICE:
466 return (sysctl_rdstring(oldp, oldlenp, newp,
467 root_device->dv_xname));
468 case KERN_MSGBUFSIZE:
469 /*
470 * deal with cases where the message buffer has
471 * become corrupted.
472 */
473 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
474 msgbufenabled = 0;
475 return (ENXIO);
476 }
477 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
478 case KERN_FSYNC:
479 return (sysctl_rdint(oldp, oldlenp, newp, 1));
480 case KERN_SYSVMSG:
481 #ifdef SYSVMSG
482 return (sysctl_rdint(oldp, oldlenp, newp, 1));
483 #else
484 return (sysctl_rdint(oldp, oldlenp, newp, 0));
485 #endif
486 case KERN_SYSVSEM:
487 #ifdef SYSVSEM
488 return (sysctl_rdint(oldp, oldlenp, newp, 1));
489 #else
490 return (sysctl_rdint(oldp, oldlenp, newp, 0));
491 #endif
492 case KERN_SYSVSHM:
493 #ifdef SYSVSHM
494 return (sysctl_rdint(oldp, oldlenp, newp, 1));
495 #else
496 return (sysctl_rdint(oldp, oldlenp, newp, 0));
497 #endif
498 case KERN_DEFCORENAME:
499 if (newp && newlen < 1)
500 return (EINVAL);
501 error = sysctl_string(oldp, oldlenp, newp, newlen,
502 defcorename, sizeof(defcorename));
503 if (newp && !error)
504 defcorenamelen = newlen;
505 return (error);
506 case KERN_SYNCHRONIZED_IO:
507 return (sysctl_rdint(oldp, oldlenp, newp, 1));
508 case KERN_IOV_MAX:
509 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
510 case KERN_MBUF:
511 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
512 newp, newlen));
513 case KERN_MAPPED_FILES:
514 return (sysctl_rdint(oldp, oldlenp, newp, 1));
515 case KERN_MEMLOCK:
516 return (sysctl_rdint(oldp, oldlenp, newp, 1));
517 case KERN_MEMLOCK_RANGE:
518 return (sysctl_rdint(oldp, oldlenp, newp, 1));
519 case KERN_MEMORY_PROTECTION:
520 return (sysctl_rdint(oldp, oldlenp, newp, 1));
521 case KERN_LOGIN_NAME_MAX:
522 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
523 case KERN_LOGSIGEXIT:
524 return (sysctl_int(oldp, oldlenp, newp, newlen,
525 &kern_logsigexit));
526 case KERN_FSCALE:
527 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
528 case KERN_CCPU:
529 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
530 case KERN_CP_TIME:
531 #ifndef MULTIPROCESSOR
532 return (sysctl_rdstruct(oldp, oldlenp, newp,
533 curcpu()->ci_schedstate.spc_cp_time,
534 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
535 #else
536 return (sysctl_docptime(oldp, oldlenp, newp));
537 #endif
538 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
539 case KERN_SYSVIPC_INFO:
540 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
541 #endif
542 case KERN_MSGBUF:
543 return (sysctl_msgbuf(oldp, oldlenp));
544 case KERN_CONSDEV:
545 if (cn_tab != NULL)
546 consdev = cn_tab->cn_dev;
547 else
548 consdev = NODEV;
549 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
550 sizeof consdev));
551 #if NPTY > 0
552 case KERN_MAXPTYS:
553 return sysctl_pty(oldp, oldlenp, newp, newlen);
554 #endif
555 #ifndef PIPE_SOCKETPAIR
556 case KERN_PIPE:
557 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
558 newp, newlen));
559 #endif
560 case KERN_MAXPHYS:
561 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
562 case KERN_SBMAX:
563 {
564 int new_sbmax = sb_max;
565
566 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
567 if (newp && !error) {
568 if (new_sbmax < (16 * 1024)) /* sanity */
569 return (EINVAL);
570 sb_max = new_sbmax;
571 }
572 return (error);
573 }
574 case KERN_TKSTAT:
575 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
576 newp));
577 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
578 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
579 case KERN_URND:
580 #if NRND > 0
581 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
582 sizeof(v))
583 return (sysctl_rdint(oldp, oldlenp, newp, v));
584 else
585 return (EIO); /*XXX*/
586 #else
587 return (EOPNOTSUPP);
588 #endif
589 default:
590 return (EOPNOTSUPP);
591 }
592 /* NOTREACHED */
593 }
594
595 /*
596 * hardware related system variables.
597 */
598 int
599 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
600 void *newp, size_t newlen, struct proc *p)
601 {
602
603 /* All sysctl names at this level, except for a few, are terminal. */
604 switch (name[0]) {
605 case HW_DISKSTATS:
606 /* Not terminal. */
607 break;
608 default:
609 if (namelen != 1)
610 return (ENOTDIR); /* overloaded */
611 }
612
613 switch (name[0]) {
614 case HW_MACHINE:
615 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
616 case HW_MACHINE_ARCH:
617 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
618 case HW_MODEL:
619 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
620 case HW_NCPU:
621 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
622 case HW_BYTEORDER:
623 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
624 case HW_PHYSMEM:
625 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
626 case HW_USERMEM:
627 return (sysctl_rdint(oldp, oldlenp, newp,
628 ctob(physmem - uvmexp.wired)));
629 case HW_PAGESIZE:
630 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
631 case HW_ALIGNBYTES:
632 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
633 case HW_DISKNAMES:
634 return (sysctl_disknames(oldp, oldlenp));
635 case HW_DISKSTATS:
636 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
637 case HW_CNMAGIC: {
638 char magic[CNS_LEN];
639 int error;
640
641 if (oldp)
642 cn_get_magic(magic, CNS_LEN);
643 error = sysctl_string(oldp, oldlenp, newp, newlen,
644 magic, sizeof(magic));
645 if (newp && !error) {
646 error = cn_set_magic(magic);
647 }
648 return (error);
649 }
650 default:
651 return (EOPNOTSUPP);
652 }
653 /* NOTREACHED */
654 }
655
656 #ifdef DEBUG
657 /*
658 * Debugging related system variables.
659 */
660 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
661 struct ctldebug debug5, debug6, debug7, debug8, debug9;
662 struct ctldebug debug10, debug11, debug12, debug13, debug14;
663 struct ctldebug debug15, debug16, debug17, debug18, debug19;
664 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
665 &debug0, &debug1, &debug2, &debug3, &debug4,
666 &debug5, &debug6, &debug7, &debug8, &debug9,
667 &debug10, &debug11, &debug12, &debug13, &debug14,
668 &debug15, &debug16, &debug17, &debug18, &debug19,
669 };
670
671 int
672 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
673 void *newp, size_t newlen, struct proc *p)
674 {
675 struct ctldebug *cdp;
676
677 /* all sysctl names at this level are name and field */
678 if (namelen != 2)
679 return (ENOTDIR); /* overloaded */
680 if (name[0] >= CTL_DEBUG_MAXID)
681 return (EOPNOTSUPP);
682 cdp = debugvars[name[0]];
683 if (cdp->debugname == 0)
684 return (EOPNOTSUPP);
685 switch (name[1]) {
686 case CTL_DEBUG_NAME:
687 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
688 case CTL_DEBUG_VALUE:
689 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
690 default:
691 return (EOPNOTSUPP);
692 }
693 /* NOTREACHED */
694 }
695 #endif /* DEBUG */
696
697 int
698 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
699 void *newp, size_t newlen, struct proc *p)
700 {
701 struct proc *ptmp = NULL;
702 const struct proclist_desc *pd;
703 int error = 0;
704 struct rlimit alim;
705 struct plimit *newplim;
706 char *tmps = NULL;
707 size_t len, curlen;
708 u_int i;
709
710 if (namelen < 2)
711 return EINVAL;
712
713 if (name[0] == PROC_CURPROC) {
714 ptmp = p;
715 } else {
716 proclist_lock_read();
717 for (pd = proclists; pd->pd_list != NULL; pd++) {
718 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
719 ptmp = LIST_NEXT(ptmp, p_list)) {
720 /* Skip embryonic processes. */
721 if (ptmp->p_stat == SIDL)
722 continue;
723 if (ptmp->p_pid == (pid_t)name[0])
724 break;
725 }
726 if (ptmp != NULL)
727 break;
728 }
729 proclist_unlock_read();
730 if (ptmp == NULL)
731 return(ESRCH);
732 if (p->p_ucred->cr_uid != 0) {
733 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
734 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
735 return EPERM;
736 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
737 return EPERM; /* sgid proc */
738 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
739 if (p->p_ucred->cr_groups[i] ==
740 ptmp->p_cred->p_rgid)
741 break;
742 }
743 if (i == p->p_ucred->cr_ngroups)
744 return EPERM;
745 }
746 }
747 switch(name[1]) {
748 case PROC_PID_STOPFORK:
749 if (namelen != 2)
750 return EINVAL;
751 i = ((ptmp->p_flag & P_STOPFORK) != 0);
752 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
753 return error;
754 if (i != 0)
755 ptmp->p_flag |= P_STOPFORK;
756 else
757 ptmp->p_flag &= ~P_STOPFORK;
758 return 0;
759 break;
760
761 case PROC_PID_STOPEXEC:
762 if (namelen != 2)
763 return EINVAL;
764 i = ((ptmp->p_flag & P_STOPEXEC) != 0);
765 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
766 return error;
767 if (i != 0)
768 ptmp->p_flag |= P_STOPEXEC;
769 else
770 ptmp->p_flag &= ~P_STOPEXEC;
771 return 0;
772 break;
773
774 case PROC_PID_CORENAME:
775 if (namelen != 2)
776 return EINVAL;
777 /*
778 * Can't use sysctl_string() here because we may malloc a new
779 * area during the process, so we have to do it by hand.
780 */
781 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
782 if (oldlenp && *oldlenp < curlen) {
783 if (!oldp)
784 *oldlenp = curlen;
785 return (ENOMEM);
786 }
787 if (newp) {
788 if (securelevel > 2)
789 return EPERM;
790 if (newlen > MAXPATHLEN)
791 return ENAMETOOLONG;
792 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
793 if (tmps == NULL)
794 return ENOMEM;
795 error = copyin(newp, tmps, newlen + 1);
796 tmps[newlen] = '\0';
797 if (error)
798 goto cleanup;
799 /* Enforce to be either 'core' for end with '.core' */
800 if (newlen < 4) { /* c.o.r.e */
801 error = EINVAL;
802 goto cleanup;
803 }
804 len = newlen - 4;
805 if (len > 0) {
806 if (tmps[len - 1] != '.' &&
807 tmps[len - 1] != '/') {
808 error = EINVAL;
809 goto cleanup;
810 }
811 }
812 if (strcmp(&tmps[len], "core") != 0) {
813 error = EINVAL;
814 goto cleanup;
815 }
816 }
817 if (oldp && oldlenp) {
818 *oldlenp = curlen;
819 error = copyout(ptmp->p_limit->pl_corename, oldp,
820 curlen);
821 }
822 if (newp && error == 0) {
823 /* if the 2 strings are identical, don't limcopy() */
824 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
825 error = 0;
826 goto cleanup;
827 }
828 if (ptmp->p_limit->p_refcnt > 1 &&
829 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
830 newplim = limcopy(ptmp->p_limit);
831 limfree(ptmp->p_limit);
832 ptmp->p_limit = newplim;
833 }
834 if (ptmp->p_limit->pl_corename != defcorename) {
835 free(ptmp->p_limit->pl_corename, M_TEMP);
836 }
837 ptmp->p_limit->pl_corename = tmps;
838 return (0);
839 }
840 cleanup:
841 if (tmps)
842 free(tmps, M_TEMP);
843 return (error);
844 break;
845
846 case PROC_PID_LIMIT:
847 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
848 return EINVAL;
849 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
850 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
851 error = sysctl_quad(oldp, oldlenp, newp, newlen,
852 &alim.rlim_max);
853 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
854 error = sysctl_quad(oldp, oldlenp, newp, newlen,
855 &alim.rlim_cur);
856 else
857 error = EINVAL;
858
859 if (error)
860 return error;
861
862 if (newp)
863 error = dosetrlimit(ptmp, p->p_cred,
864 name[2] - 1, &alim);
865 return error;
866 break;
867
868 default:
869 return (EINVAL);
870 break;
871 }
872 /* NOTREACHED */
873 return (EINVAL);
874 }
875
876 int
877 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
878 void *newp, size_t newlen, struct proc *p)
879 {
880 static struct {
881 const char *name;
882 int type;
883 } emulations[] = CTL_EMUL_NAMES;
884 const struct emul *e;
885 const char *ename;
886 #ifdef LKM
887 extern struct lock exec_lock; /* XXX */
888 int error;
889 #else
890 extern int nexecs_builtin;
891 extern const struct execsw execsw_builtin[];
892 int i;
893 #endif
894
895 /* all sysctl names at this level are name and field */
896 if (namelen < 2)
897 return (ENOTDIR); /* overloaded */
898
899 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
900 return (EOPNOTSUPP);
901
902 ename = emulations[name[0]].name;
903
904 #ifdef LKM
905 lockmgr(&exec_lock, LK_SHARED, NULL);
906 if ((e = emul_search(ename))) {
907 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
908 newp, newlen, p);
909 } else
910 error = EOPNOTSUPP;
911 lockmgr(&exec_lock, LK_RELEASE, NULL);
912
913 return (error);
914 #else
915 for (i = 0; i < nexecs_builtin; i++) {
916 e = execsw_builtin[i].es_emul;
917 /*
918 * In order to match e.g. e->e_name "irix o32" with ename "irix",
919 * we limit the comparison to the length of ename.
920 */
921 if (e == NULL || strncmp(ename, e->e_name, strlen(ename)) != 0 ||
922 e->e_sysctl == NULL)
923 continue;
924
925 return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
926 newp, newlen, p);
927 }
928
929 return (EOPNOTSUPP);
930 #endif
931 }
932 /*
933 * Convenience macros.
934 */
935
936 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
937 if (oldlenp) { \
938 if (!oldp) \
939 *oldlenp = len; \
940 else { \
941 if (*oldlenp < len) \
942 return(ENOMEM); \
943 *oldlenp = len; \
944 error = copyout((caddr_t)valp, oldp, len); \
945 } \
946 }
947
948 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
949 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
950
951 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
952 if (newp && newlen != len) \
953 return (EINVAL);
954
955 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
956 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
957
958 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
959 if (error == 0 && newp) \
960 error = copyin(newp, valp, len);
961
962 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
963 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
964
965 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
966 if (oldlenp) { \
967 len = strlen(str) + 1; \
968 if (!oldp) \
969 *oldlenp = len; \
970 else { \
971 if (*oldlenp < len) { \
972 err2 = ENOMEM; \
973 len = *oldlenp; \
974 } else \
975 *oldlenp = len; \
976 error = copyout(str, oldp, len);\
977 if (error == 0) \
978 error = err2; \
979 } \
980 }
981
982 /*
983 * Validate parameters and get old / set new parameters
984 * for an integer-valued sysctl function.
985 */
986 int
987 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
988 {
989 int error = 0;
990
991 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
992 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
993 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
994
995 return (error);
996 }
997
998
999 /*
1000 * As above, but read-only.
1001 */
1002 int
1003 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
1004 {
1005 int error = 0;
1006
1007 if (newp)
1008 return (EPERM);
1009
1010 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
1011
1012 return (error);
1013 }
1014
1015 /*
1016 * Validate parameters and get old / set new parameters
1017 * for an quad-valued sysctl function.
1018 */
1019 int
1020 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1021 quad_t *valp)
1022 {
1023 int error = 0;
1024
1025 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
1026 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
1027 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1028
1029 return (error);
1030 }
1031
1032 /*
1033 * As above, but read-only.
1034 */
1035 int
1036 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1037 {
1038 int error = 0;
1039
1040 if (newp)
1041 return (EPERM);
1042
1043 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1044
1045 return (error);
1046 }
1047
1048 /*
1049 * Validate parameters and get old / set new parameters
1050 * for a string-valued sysctl function.
1051 */
1052 int
1053 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1054 size_t maxlen)
1055 {
1056 int error = 0, err2 = 0;
1057 size_t len;
1058
1059 if (newp && newlen >= maxlen)
1060 return (EINVAL);
1061
1062 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1063
1064 if (error == 0 && newp) {
1065 error = copyin(newp, str, newlen);
1066 str[newlen] = 0;
1067 }
1068 return (error);
1069 }
1070
1071 /*
1072 * As above, but read-only.
1073 */
1074 int
1075 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1076 {
1077 int error = 0, err2 = 0;
1078 size_t len;
1079
1080 if (newp)
1081 return (EPERM);
1082
1083 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1084
1085 return (error);
1086 }
1087
1088 /*
1089 * Validate parameters and get old / set new parameters
1090 * for a structure oriented sysctl function.
1091 */
1092 int
1093 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1094 size_t len)
1095 {
1096 int error = 0;
1097
1098 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1099 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1100 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1101
1102 return (error);
1103 }
1104
1105 /*
1106 * Validate parameters and get old parameters
1107 * for a structure oriented sysctl function.
1108 */
1109 int
1110 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1111 size_t len)
1112 {
1113 int error = 0;
1114
1115 if (newp)
1116 return (EPERM);
1117
1118 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1119
1120 return (error);
1121 }
1122
1123 /*
1124 * As above, but can return a truncated result.
1125 */
1126 int
1127 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1128 size_t len)
1129 {
1130 int error = 0;
1131
1132 if (newp)
1133 return (EPERM);
1134
1135 len = min(*oldlenp, len);
1136 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1137
1138 return (error);
1139 }
1140
1141 /*
1142 * Get file structures.
1143 */
1144 static int
1145 sysctl_file(void *vwhere, size_t *sizep)
1146 {
1147 int error;
1148 size_t buflen;
1149 struct file *fp;
1150 char *start, *where;
1151
1152 start = where = vwhere;
1153 buflen = *sizep;
1154 if (where == NULL) {
1155 /*
1156 * overestimate by 10 files
1157 */
1158 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1159 return (0);
1160 }
1161
1162 /*
1163 * first copyout filehead
1164 */
1165 if (buflen < sizeof(filehead)) {
1166 *sizep = 0;
1167 return (0);
1168 }
1169 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1170 if (error)
1171 return (error);
1172 buflen -= sizeof(filehead);
1173 where += sizeof(filehead);
1174
1175 /*
1176 * followed by an array of file structures
1177 */
1178 LIST_FOREACH(fp, &filehead, f_list) {
1179 if (buflen < sizeof(struct file)) {
1180 *sizep = where - start;
1181 return (ENOMEM);
1182 }
1183 error = copyout((caddr_t)fp, where, sizeof(struct file));
1184 if (error)
1185 return (error);
1186 buflen -= sizeof(struct file);
1187 where += sizeof(struct file);
1188 }
1189 *sizep = where - start;
1190 return (0);
1191 }
1192
1193 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1194 #define FILL_PERM(src, dst) do { \
1195 (dst)._key = (src)._key; \
1196 (dst).uid = (src).uid; \
1197 (dst).gid = (src).gid; \
1198 (dst).cuid = (src).cuid; \
1199 (dst).cgid = (src).cgid; \
1200 (dst).mode = (src).mode; \
1201 (dst)._seq = (src)._seq; \
1202 } while (/*CONSTCOND*/ 0);
1203 #define FILL_MSG(src, dst) do { \
1204 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1205 (dst).msg_qnum = (src).msg_qnum; \
1206 (dst).msg_qbytes = (src).msg_qbytes; \
1207 (dst)._msg_cbytes = (src)._msg_cbytes; \
1208 (dst).msg_lspid = (src).msg_lspid; \
1209 (dst).msg_lrpid = (src).msg_lrpid; \
1210 (dst).msg_stime = (src).msg_stime; \
1211 (dst).msg_rtime = (src).msg_rtime; \
1212 (dst).msg_ctime = (src).msg_ctime; \
1213 } while (/*CONSTCOND*/ 0)
1214 #define FILL_SEM(src, dst) do { \
1215 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1216 (dst).sem_nsems = (src).sem_nsems; \
1217 (dst).sem_otime = (src).sem_otime; \
1218 (dst).sem_ctime = (src).sem_ctime; \
1219 } while (/*CONSTCOND*/ 0)
1220 #define FILL_SHM(src, dst) do { \
1221 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1222 (dst).shm_segsz = (src).shm_segsz; \
1223 (dst).shm_lpid = (src).shm_lpid; \
1224 (dst).shm_cpid = (src).shm_cpid; \
1225 (dst).shm_atime = (src).shm_atime; \
1226 (dst).shm_dtime = (src).shm_dtime; \
1227 (dst).shm_ctime = (src).shm_ctime; \
1228 (dst).shm_nattch = (src).shm_nattch; \
1229 } while (/*CONSTCOND*/ 0)
1230
1231 static int
1232 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1233 {
1234 #ifdef SYSVMSG
1235 struct msg_sysctl_info *msgsi;
1236 #endif
1237 #ifdef SYSVSEM
1238 struct sem_sysctl_info *semsi;
1239 #endif
1240 #ifdef SYSVSHM
1241 struct shm_sysctl_info *shmsi;
1242 #endif
1243 size_t infosize, dssize, tsize, buflen;
1244 void *buf = NULL;
1245 char *start;
1246 int32_t nds;
1247 int i, error, ret;
1248
1249 if (namelen != 1)
1250 return (EINVAL);
1251
1252 start = where;
1253 buflen = *sizep;
1254
1255 switch (*name) {
1256 case KERN_SYSVIPC_MSG_INFO:
1257 #ifdef SYSVMSG
1258 infosize = sizeof(msgsi->msginfo);
1259 nds = msginfo.msgmni;
1260 dssize = sizeof(msgsi->msgids[0]);
1261 break;
1262 #else
1263 return (EINVAL);
1264 #endif
1265 case KERN_SYSVIPC_SEM_INFO:
1266 #ifdef SYSVSEM
1267 infosize = sizeof(semsi->seminfo);
1268 nds = seminfo.semmni;
1269 dssize = sizeof(semsi->semids[0]);
1270 break;
1271 #else
1272 return (EINVAL);
1273 #endif
1274 case KERN_SYSVIPC_SHM_INFO:
1275 #ifdef SYSVSHM
1276 infosize = sizeof(shmsi->shminfo);
1277 nds = shminfo.shmmni;
1278 dssize = sizeof(shmsi->shmids[0]);
1279 break;
1280 #else
1281 return (EINVAL);
1282 #endif
1283 default:
1284 return (EINVAL);
1285 }
1286 /*
1287 * Round infosize to 64 bit boundary if requesting more than just
1288 * the info structure or getting the total data size.
1289 */
1290 if (where == NULL || *sizep > infosize)
1291 infosize = ((infosize + 7) / 8) * 8;
1292 tsize = infosize + nds * dssize;
1293
1294 /* Return just the total size required. */
1295 if (where == NULL) {
1296 *sizep = tsize;
1297 return (0);
1298 }
1299
1300 /* Not enough room for even the info struct. */
1301 if (buflen < infosize) {
1302 *sizep = 0;
1303 return (ENOMEM);
1304 }
1305 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1306 memset(buf, 0, min(tsize, buflen));
1307
1308 switch (*name) {
1309 #ifdef SYSVMSG
1310 case KERN_SYSVIPC_MSG_INFO:
1311 msgsi = (struct msg_sysctl_info *)buf;
1312 msgsi->msginfo = msginfo;
1313 break;
1314 #endif
1315 #ifdef SYSVSEM
1316 case KERN_SYSVIPC_SEM_INFO:
1317 semsi = (struct sem_sysctl_info *)buf;
1318 semsi->seminfo = seminfo;
1319 break;
1320 #endif
1321 #ifdef SYSVSHM
1322 case KERN_SYSVIPC_SHM_INFO:
1323 shmsi = (struct shm_sysctl_info *)buf;
1324 shmsi->shminfo = shminfo;
1325 break;
1326 #endif
1327 }
1328 buflen -= infosize;
1329
1330 ret = 0;
1331 if (buflen > 0) {
1332 /* Fill in the IPC data structures. */
1333 for (i = 0; i < nds; i++) {
1334 if (buflen < dssize) {
1335 ret = ENOMEM;
1336 break;
1337 }
1338 switch (*name) {
1339 #ifdef SYSVMSG
1340 case KERN_SYSVIPC_MSG_INFO:
1341 FILL_MSG(msqids[i], msgsi->msgids[i]);
1342 break;
1343 #endif
1344 #ifdef SYSVSEM
1345 case KERN_SYSVIPC_SEM_INFO:
1346 FILL_SEM(sema[i], semsi->semids[i]);
1347 break;
1348 #endif
1349 #ifdef SYSVSHM
1350 case KERN_SYSVIPC_SHM_INFO:
1351 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1352 break;
1353 #endif
1354 }
1355 buflen -= dssize;
1356 }
1357 }
1358 *sizep -= buflen;
1359 error = copyout(buf, start, *sizep);
1360 /* If copyout succeeded, use return code set earlier. */
1361 if (error == 0)
1362 error = ret;
1363 if (buf)
1364 free(buf, M_TEMP);
1365 return (error);
1366 }
1367 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1368
1369 static int
1370 sysctl_msgbuf(void *vwhere, size_t *sizep)
1371 {
1372 char *where = vwhere;
1373 size_t len, maxlen = *sizep;
1374 long beg, end;
1375 int error;
1376
1377 /*
1378 * deal with cases where the message buffer has
1379 * become corrupted.
1380 */
1381 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1382 msgbufenabled = 0;
1383 return (ENXIO);
1384 }
1385
1386 if (where == NULL) {
1387 /* always return full buffer size */
1388 *sizep = msgbufp->msg_bufs;
1389 return (0);
1390 }
1391
1392 error = 0;
1393 maxlen = min(msgbufp->msg_bufs, maxlen);
1394
1395 /*
1396 * First, copy from the write pointer to the end of
1397 * message buffer.
1398 */
1399 beg = msgbufp->msg_bufx;
1400 end = msgbufp->msg_bufs;
1401 while (maxlen > 0) {
1402 len = min(end - beg, maxlen);
1403 if (len == 0)
1404 break;
1405 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1406 if (error)
1407 break;
1408 where += len;
1409 maxlen -= len;
1410
1411 /*
1412 * ... then, copy from the beginning of message buffer to
1413 * the write pointer.
1414 */
1415 beg = 0;
1416 end = msgbufp->msg_bufx;
1417 }
1418 return (error);
1419 }
1420
1421 /*
1422 * try over estimating by 5 procs
1423 */
1424 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1425
1426 static int
1427 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1428 {
1429 struct eproc eproc;
1430 struct kinfo_proc2 kproc2;
1431 struct kinfo_proc *dp;
1432 struct proc *p;
1433 const struct proclist_desc *pd;
1434 char *where, *dp2;
1435 int type, op, arg;
1436 u_int elem_size, elem_count;
1437 size_t buflen, needed;
1438 int error;
1439
1440 dp = vwhere;
1441 dp2 = where = vwhere;
1442 buflen = where != NULL ? *sizep : 0;
1443 error = 0;
1444 needed = 0;
1445 type = name[0];
1446
1447 if (type == KERN_PROC) {
1448 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1449 return (EINVAL);
1450 op = name[1];
1451 if (op != KERN_PROC_ALL)
1452 arg = name[2];
1453 } else {
1454 if (namelen != 5)
1455 return (EINVAL);
1456 op = name[1];
1457 arg = name[2];
1458 elem_size = name[3];
1459 elem_count = name[4];
1460 }
1461
1462 proclist_lock_read();
1463
1464 pd = proclists;
1465 again:
1466 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1467 /*
1468 * Skip embryonic processes.
1469 */
1470 if (p->p_stat == SIDL)
1471 continue;
1472 /*
1473 * TODO - make more efficient (see notes below).
1474 * do by session.
1475 */
1476 switch (op) {
1477
1478 case KERN_PROC_PID:
1479 /* could do this with just a lookup */
1480 if (p->p_pid != (pid_t)arg)
1481 continue;
1482 break;
1483
1484 case KERN_PROC_PGRP:
1485 /* could do this by traversing pgrp */
1486 if (p->p_pgrp->pg_id != (pid_t)arg)
1487 continue;
1488 break;
1489
1490 case KERN_PROC_SESSION:
1491 if (p->p_session->s_sid != (pid_t)arg)
1492 continue;
1493 break;
1494
1495 case KERN_PROC_TTY:
1496 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1497 if ((p->p_flag & P_CONTROLT) == 0 ||
1498 p->p_session->s_ttyp == NULL ||
1499 p->p_session->s_ttyvp != NULL)
1500 continue;
1501 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1502 p->p_session->s_ttyp == NULL) {
1503 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1504 continue;
1505 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1506 continue;
1507 break;
1508
1509 case KERN_PROC_UID:
1510 if (p->p_ucred->cr_uid != (uid_t)arg)
1511 continue;
1512 break;
1513
1514 case KERN_PROC_RUID:
1515 if (p->p_cred->p_ruid != (uid_t)arg)
1516 continue;
1517 break;
1518
1519 case KERN_PROC_GID:
1520 if (p->p_ucred->cr_gid != (uid_t)arg)
1521 continue;
1522 break;
1523
1524 case KERN_PROC_RGID:
1525 if (p->p_cred->p_rgid != (uid_t)arg)
1526 continue;
1527 break;
1528
1529 case KERN_PROC_ALL:
1530 /* allow everything */
1531 break;
1532
1533 default:
1534 error = EINVAL;
1535 goto cleanup;
1536 }
1537 if (type == KERN_PROC) {
1538 if (buflen >= sizeof(struct kinfo_proc)) {
1539 fill_eproc(p, &eproc);
1540 error = copyout((caddr_t)p, &dp->kp_proc,
1541 sizeof(struct proc));
1542 if (error)
1543 goto cleanup;
1544 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1545 sizeof(eproc));
1546 if (error)
1547 goto cleanup;
1548 dp++;
1549 buflen -= sizeof(struct kinfo_proc);
1550 }
1551 needed += sizeof(struct kinfo_proc);
1552 } else { /* KERN_PROC2 */
1553 if (buflen >= elem_size && elem_count > 0) {
1554 fill_kproc2(p, &kproc2);
1555 /*
1556 * Copy out elem_size, but not larger than
1557 * the size of a struct kinfo_proc2.
1558 */
1559 error = copyout(&kproc2, dp2,
1560 min(sizeof(kproc2), elem_size));
1561 if (error)
1562 goto cleanup;
1563 dp2 += elem_size;
1564 buflen -= elem_size;
1565 elem_count--;
1566 }
1567 needed += elem_size;
1568 }
1569 }
1570 pd++;
1571 if (pd->pd_list != NULL)
1572 goto again;
1573 proclist_unlock_read();
1574
1575 if (where != NULL) {
1576 if (type == KERN_PROC)
1577 *sizep = (caddr_t)dp - where;
1578 else
1579 *sizep = dp2 - where;
1580 if (needed > *sizep)
1581 return (ENOMEM);
1582 } else {
1583 needed += KERN_PROCSLOP;
1584 *sizep = needed;
1585 }
1586 return (0);
1587 cleanup:
1588 proclist_unlock_read();
1589 return (error);
1590 }
1591
1592 /*
1593 * Fill in an eproc structure for the specified process.
1594 */
1595 void
1596 fill_eproc(struct proc *p, struct eproc *ep)
1597 {
1598 struct tty *tp;
1599
1600 ep->e_paddr = p;
1601 ep->e_sess = p->p_session;
1602 ep->e_pcred = *p->p_cred;
1603 ep->e_ucred = *p->p_ucred;
1604 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1605 ep->e_vm.vm_rssize = 0;
1606 ep->e_vm.vm_tsize = 0;
1607 ep->e_vm.vm_dsize = 0;
1608 ep->e_vm.vm_ssize = 0;
1609 /* ep->e_vm.vm_pmap = XXX; */
1610 } else {
1611 struct vmspace *vm = p->p_vmspace;
1612
1613 ep->e_vm.vm_rssize = vm_resident_count(vm);
1614 ep->e_vm.vm_tsize = vm->vm_tsize;
1615 ep->e_vm.vm_dsize = vm->vm_dsize;
1616 ep->e_vm.vm_ssize = vm->vm_ssize;
1617 }
1618 if (p->p_pptr)
1619 ep->e_ppid = p->p_pptr->p_pid;
1620 else
1621 ep->e_ppid = 0;
1622 ep->e_pgid = p->p_pgrp->pg_id;
1623 ep->e_sid = ep->e_sess->s_sid;
1624 ep->e_jobc = p->p_pgrp->pg_jobc;
1625 if ((p->p_flag & P_CONTROLT) &&
1626 (tp = ep->e_sess->s_ttyp)) {
1627 ep->e_tdev = tp->t_dev;
1628 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1629 ep->e_tsess = tp->t_session;
1630 } else
1631 ep->e_tdev = NODEV;
1632 if (p->p_wmesg)
1633 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1634 ep->e_xsize = ep->e_xrssize = 0;
1635 ep->e_xccount = ep->e_xswrss = 0;
1636 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1637 if (SESS_LEADER(p))
1638 ep->e_flag |= EPROC_SLEADER;
1639 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1640 }
1641
1642 /*
1643 * Fill in an eproc structure for the specified process.
1644 */
1645 static void
1646 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1647 {
1648 struct tty *tp;
1649
1650 memset(ki, 0, sizeof(*ki));
1651
1652 ki->p_forw = PTRTOINT64(p->p_forw);
1653 ki->p_back = PTRTOINT64(p->p_back);
1654 ki->p_paddr = PTRTOINT64(p);
1655
1656 ki->p_addr = PTRTOINT64(p->p_addr);
1657 ki->p_fd = PTRTOINT64(p->p_fd);
1658 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1659 ki->p_stats = PTRTOINT64(p->p_stats);
1660 ki->p_limit = PTRTOINT64(p->p_limit);
1661 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1662 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1663 ki->p_sess = PTRTOINT64(p->p_session);
1664 ki->p_tsess = 0; /* may be changed if controlling tty below */
1665 ki->p_ru = PTRTOINT64(p->p_ru);
1666
1667 ki->p_eflag = 0;
1668 ki->p_exitsig = p->p_exitsig;
1669 ki->p_flag = p->p_flag;
1670
1671 ki->p_pid = p->p_pid;
1672 if (p->p_pptr)
1673 ki->p_ppid = p->p_pptr->p_pid;
1674 else
1675 ki->p_ppid = 0;
1676 ki->p_sid = p->p_session->s_sid;
1677 ki->p__pgid = p->p_pgrp->pg_id;
1678
1679 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1680
1681 ki->p_uid = p->p_ucred->cr_uid;
1682 ki->p_ruid = p->p_cred->p_ruid;
1683 ki->p_gid = p->p_ucred->cr_gid;
1684 ki->p_rgid = p->p_cred->p_rgid;
1685
1686 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1687 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1688 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1689
1690 ki->p_jobc = p->p_pgrp->pg_jobc;
1691 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1692 ki->p_tdev = tp->t_dev;
1693 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1694 ki->p_tsess = PTRTOINT64(tp->t_session);
1695 } else {
1696 ki->p_tdev = NODEV;
1697 }
1698
1699 ki->p_estcpu = p->p_estcpu;
1700 ki->p_rtime_sec = p->p_rtime.tv_sec;
1701 ki->p_rtime_usec = p->p_rtime.tv_usec;
1702 ki->p_cpticks = p->p_cpticks;
1703 ki->p_pctcpu = p->p_pctcpu;
1704 ki->p_swtime = p->p_swtime;
1705 ki->p_slptime = p->p_slptime;
1706 if (p->p_stat == SONPROC) {
1707 KDASSERT(p->p_cpu != NULL);
1708 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1709 } else
1710 ki->p_schedflags = 0;
1711
1712 ki->p_uticks = p->p_uticks;
1713 ki->p_sticks = p->p_sticks;
1714 ki->p_iticks = p->p_iticks;
1715
1716 ki->p_tracep = PTRTOINT64(p->p_tracep);
1717 ki->p_traceflag = p->p_traceflag;
1718
1719 ki->p_holdcnt = p->p_holdcnt;
1720
1721 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1722 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1723 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1724 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1725
1726 ki->p_stat = p->p_stat;
1727 ki->p_priority = p->p_priority;
1728 ki->p_usrpri = p->p_usrpri;
1729 ki->p_nice = p->p_nice;
1730
1731 ki->p_xstat = p->p_xstat;
1732 ki->p_acflag = p->p_acflag;
1733
1734 strncpy(ki->p_comm, p->p_comm,
1735 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1736
1737 if (p->p_wmesg)
1738 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1739 ki->p_wchan = PTRTOINT64(p->p_wchan);
1740
1741 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1742
1743 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1744 ki->p_vm_rssize = 0;
1745 ki->p_vm_tsize = 0;
1746 ki->p_vm_dsize = 0;
1747 ki->p_vm_ssize = 0;
1748 } else {
1749 struct vmspace *vm = p->p_vmspace;
1750
1751 ki->p_vm_rssize = vm_resident_count(vm);
1752 ki->p_vm_tsize = vm->vm_tsize;
1753 ki->p_vm_dsize = vm->vm_dsize;
1754 ki->p_vm_ssize = vm->vm_ssize;
1755 }
1756
1757 if (p->p_session->s_ttyvp)
1758 ki->p_eflag |= EPROC_CTTY;
1759 if (SESS_LEADER(p))
1760 ki->p_eflag |= EPROC_SLEADER;
1761
1762 /* XXX Is this double check necessary? */
1763 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1764 ki->p_uvalid = 0;
1765 } else {
1766 ki->p_uvalid = 1;
1767
1768 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1769 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1770
1771 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1772 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1773 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1774 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1775
1776 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1777 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1778 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1779 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1780 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1781 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1782 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1783 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1784 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1785 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1786 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1787 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1788 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1789 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1790
1791 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1792 p->p_stats->p_cru.ru_stime.tv_sec;
1793 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1794 p->p_stats->p_cru.ru_stime.tv_usec;
1795 }
1796 #ifdef MULTIPROCESSOR
1797 if (p->p_cpu != NULL)
1798 ki->p_cpuid = p->p_cpu->ci_cpuid;
1799 else
1800 #endif
1801 ki->p_cpuid = KI_NOCPU;
1802 }
1803
1804 int
1805 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1806 struct proc *up)
1807 {
1808 struct ps_strings pss;
1809 struct proc *p;
1810 size_t len, upper_bound, xlen, i;
1811 struct uio auio;
1812 struct iovec aiov;
1813 vaddr_t argv;
1814 pid_t pid;
1815 int nargv, type, error;
1816 char *arg;
1817 char *tmp;
1818
1819 if (namelen != 2)
1820 return (EINVAL);
1821 pid = name[0];
1822 type = name[1];
1823
1824 switch (type) {
1825 case KERN_PROC_ARGV:
1826 case KERN_PROC_NARGV:
1827 case KERN_PROC_ENV:
1828 case KERN_PROC_NENV:
1829 /* ok */
1830 break;
1831 default:
1832 return (EINVAL);
1833 }
1834
1835 /* check pid */
1836 if ((p = pfind(pid)) == NULL)
1837 return (EINVAL);
1838
1839 /* only root or same user change look at the environment */
1840 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1841 if (up->p_ucred->cr_uid != 0) {
1842 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1843 up->p_cred->p_ruid != p->p_cred->p_svuid)
1844 return (EPERM);
1845 }
1846 }
1847
1848 if (sizep != NULL && where == NULL) {
1849 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1850 *sizep = sizeof (int);
1851 else
1852 *sizep = ARG_MAX; /* XXX XXX XXX */
1853 return (0);
1854 }
1855 if (where == NULL || sizep == NULL)
1856 return (EINVAL);
1857
1858 /*
1859 * Zombies don't have a stack, so we can't read their psstrings.
1860 * System processes also don't have a user stack.
1861 */
1862 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1863 return (EINVAL);
1864
1865 /*
1866 * Lock the process down in memory.
1867 */
1868 /* XXXCDC: how should locking work here? */
1869 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1870 return (EFAULT);
1871 p->p_vmspace->vm_refcnt++; /* XXX */
1872
1873 /*
1874 * Allocate a temporary buffer to hold the arguments.
1875 */
1876 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1877
1878 /*
1879 * Read in the ps_strings structure.
1880 */
1881 aiov.iov_base = &pss;
1882 aiov.iov_len = sizeof(pss);
1883 auio.uio_iov = &aiov;
1884 auio.uio_iovcnt = 1;
1885 auio.uio_offset = (vaddr_t)p->p_psstr;
1886 auio.uio_resid = sizeof(pss);
1887 auio.uio_segflg = UIO_SYSSPACE;
1888 auio.uio_rw = UIO_READ;
1889 auio.uio_procp = NULL;
1890 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1891 if (error)
1892 goto done;
1893
1894 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1895 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1896 else
1897 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1898 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1899 error = copyout(&nargv, where, sizeof(nargv));
1900 *sizep = sizeof(nargv);
1901 goto done;
1902 }
1903 /*
1904 * Now read the address of the argument vector.
1905 */
1906 switch (type) {
1907 case KERN_PROC_ARGV:
1908 /* XXX compat32 stuff here */
1909 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1910 break;
1911 case KERN_PROC_ENV:
1912 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1913 break;
1914 default:
1915 return (EINVAL);
1916 }
1917 auio.uio_offset = (off_t)(long)tmp;
1918 aiov.iov_base = &argv;
1919 aiov.iov_len = sizeof(argv);
1920 auio.uio_iov = &aiov;
1921 auio.uio_iovcnt = 1;
1922 auio.uio_resid = sizeof(argv);
1923 auio.uio_segflg = UIO_SYSSPACE;
1924 auio.uio_rw = UIO_READ;
1925 auio.uio_procp = NULL;
1926 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1927 if (error)
1928 goto done;
1929
1930 /*
1931 * Now copy in the actual argument vector, one page at a time,
1932 * since we don't know how long the vector is (though, we do
1933 * know how many NUL-terminated strings are in the vector).
1934 */
1935 len = 0;
1936 upper_bound = *sizep;
1937 for (; nargv != 0 && len < upper_bound; len += xlen) {
1938 aiov.iov_base = arg;
1939 aiov.iov_len = PAGE_SIZE;
1940 auio.uio_iov = &aiov;
1941 auio.uio_iovcnt = 1;
1942 auio.uio_offset = argv + len;
1943 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1944 auio.uio_resid = xlen;
1945 auio.uio_segflg = UIO_SYSSPACE;
1946 auio.uio_rw = UIO_READ;
1947 auio.uio_procp = NULL;
1948 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1949 if (error)
1950 goto done;
1951
1952 for (i = 0; i < xlen && nargv != 0; i++) {
1953 if (arg[i] == '\0')
1954 nargv--; /* one full string */
1955 }
1956
1957 /*
1958 * Make sure we don't copyout past the end of the user's
1959 * buffer.
1960 */
1961 if (len + i > upper_bound)
1962 i = upper_bound - len;
1963
1964 error = copyout(arg, (char *)where + len, i);
1965 if (error)
1966 break;
1967
1968 if (nargv == 0) {
1969 len += i;
1970 break;
1971 }
1972 }
1973 *sizep = len;
1974
1975 done:
1976 uvmspace_free(p->p_vmspace);
1977
1978 free(arg, M_TEMP);
1979 return (error);
1980 }
1981
1982 #if NPTY > 0
1983 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1984
1985 /*
1986 * Validate parameters and get old / set new parameters
1987 * for pty sysctl function.
1988 */
1989 static int
1990 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1991 {
1992 int error = 0;
1993 int oldmax = 0, newmax = 0;
1994
1995 /* get current value of maxptys */
1996 oldmax = pty_maxptys(0, 0);
1997
1998 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1999
2000 if (!error && newp) {
2001 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
2002 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
2003
2004 if (newmax != pty_maxptys(newmax, (newp != NULL)))
2005 return (EINVAL);
2006
2007 }
2008
2009 return (error);
2010 }
2011 #endif /* NPTY > 0 */
2012
2013 static int
2014 sysctl_dotkstat(name, namelen, where, sizep, newp)
2015 int *name;
2016 u_int namelen;
2017 void *where;
2018 size_t *sizep;
2019 void *newp;
2020 {
2021 /* all sysctl names at this level are terminal */
2022 if (namelen != 1)
2023 return (ENOTDIR); /* overloaded */
2024
2025 switch (name[0]) {
2026 case KERN_TKSTAT_NIN:
2027 return (sysctl_rdquad(where, sizep, newp, tk_nin));
2028 case KERN_TKSTAT_NOUT:
2029 return (sysctl_rdquad(where, sizep, newp, tk_nout));
2030 case KERN_TKSTAT_CANCC:
2031 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
2032 case KERN_TKSTAT_RAWCC:
2033 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
2034 default:
2035 return (EOPNOTSUPP);
2036 }
2037 }
2038