kern_sysctl.c revision 1.125 1 /* $NetBSD: kern_sysctl.c,v 1.125 2003/02/10 00:35:16 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.125 2003/02/10 00:35:16 atatat Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 #include "rnd.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/buf.h>
60 #include <sys/device.h>
61 #include <sys/disklabel.h>
62 #include <sys/dkstat.h>
63 #include <sys/exec.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/msgbuf.h>
69 #include <sys/pool.h>
70 #include <sys/proc.h>
71 #include <sys/resource.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sa.h>
74 #include <sys/syscallargs.h>
75 #include <sys/tty.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/socketvar.h>
79 #define __SYSCTL_PRIVATE
80 #include <sys/sysctl.h>
81 #include <sys/lock.h>
82 #include <sys/namei.h>
83
84 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
85 #include <sys/ipc.h>
86 #endif
87 #ifdef SYSVMSG
88 #include <sys/msg.h>
89 #endif
90 #ifdef SYSVSEM
91 #include <sys/sem.h>
92 #endif
93 #ifdef SYSVSHM
94 #include <sys/shm.h>
95 #endif
96
97 #include <dev/cons.h>
98
99 #if defined(DDB)
100 #include <ddb/ddbvar.h>
101 #endif
102
103 #ifndef PIPE_SOCKETPAIR
104 #include <sys/pipe.h>
105 #endif
106
107 #if NRND > 0
108 #include <sys/rnd.h>
109 #endif
110
111 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
112
113 static int sysctl_file(void *, size_t *);
114 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
115 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
116 #endif
117 static int sysctl_msgbuf(void *, size_t *);
118 static int sysctl_doeproc(int *, u_int, void *, size_t *);
119 static int sysctl_dolwp(int *, u_int, void *, size_t *);
120 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
121 #ifdef MULTIPROCESSOR
122 static int sysctl_docptime(void *, size_t *, void *);
123 static int sysctl_ncpus(void);
124 #endif
125 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
126 static void fill_lwp(struct lwp *, struct kinfo_lwp *);
127 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
128 #if NPTY > 0
129 static int sysctl_pty(void *, size_t *, void *, size_t);
130 #endif
131
132 /*
133 * The `sysctl_memlock' is intended to keep too many processes from
134 * locking down memory by doing sysctls at once. Whether or not this
135 * is really a good idea to worry about it probably a subject of some
136 * debate.
137 */
138 struct lock sysctl_memlock;
139
140 void
141 sysctl_init(void)
142 {
143
144 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
145 }
146
147 int
148 sys___sysctl(struct lwp *l, void *v, register_t *retval)
149 {
150 struct sys___sysctl_args /* {
151 syscallarg(int *) name;
152 syscallarg(u_int) namelen;
153 syscallarg(void *) old;
154 syscallarg(size_t *) oldlenp;
155 syscallarg(void *) new;
156 syscallarg(size_t) newlen;
157 } */ *uap = v;
158 struct proc *p = l->l_proc;
159 int error;
160 size_t savelen = 0, oldlen = 0;
161 sysctlfn *fn;
162 int name[CTL_MAXNAME];
163 size_t *oldlenp;
164
165 /*
166 * all top-level sysctl names are non-terminal
167 */
168 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
169 return (EINVAL);
170 error = copyin(SCARG(uap, name), &name,
171 SCARG(uap, namelen) * sizeof(int));
172 if (error)
173 return (error);
174
175 /*
176 * For all but CTL_PROC, must be root to change a value.
177 * For CTL_PROC, must be root, or owner of the proc (and not suid),
178 * this is checked in proc_sysctl() (once we know the targer proc).
179 */
180 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
181 (error = suser(p->p_ucred, &p->p_acflag)))
182 return error;
183
184 switch (name[0]) {
185 case CTL_KERN:
186 fn = kern_sysctl;
187 break;
188 case CTL_HW:
189 fn = hw_sysctl;
190 break;
191 case CTL_VM:
192 fn = uvm_sysctl;
193 break;
194 case CTL_NET:
195 fn = net_sysctl;
196 break;
197 case CTL_VFS:
198 fn = vfs_sysctl;
199 break;
200 case CTL_MACHDEP:
201 fn = cpu_sysctl;
202 break;
203 #ifdef DEBUG
204 case CTL_DEBUG:
205 fn = debug_sysctl;
206 break;
207 #endif
208 #ifdef DDB
209 case CTL_DDB:
210 fn = ddb_sysctl;
211 break;
212 #endif
213 case CTL_PROC:
214 fn = proc_sysctl;
215 break;
216
217 case CTL_EMUL:
218 fn = emul_sysctl;
219 break;
220 default:
221 return (EOPNOTSUPP);
222 }
223
224 /*
225 * XXX Hey, we wire `old', but what about `new'?
226 */
227
228 oldlenp = SCARG(uap, oldlenp);
229 if (oldlenp) {
230 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
231 return (error);
232 oldlenp = &oldlen;
233 }
234 if (SCARG(uap, old) != NULL) {
235 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
236 if (error)
237 return (error);
238 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
239 if (error) {
240 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
241 return error;
242 }
243 savelen = oldlen;
244 }
245 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
246 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
247 if (SCARG(uap, old) != NULL) {
248 uvm_vsunlock(p, SCARG(uap, old), savelen);
249 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
250 }
251 if (error)
252 return (error);
253 if (SCARG(uap, oldlenp))
254 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
255 return (error);
256 }
257
258 /*
259 * Attributes stored in the kernel.
260 */
261 char hostname[MAXHOSTNAMELEN];
262 int hostnamelen;
263
264 char domainname[MAXHOSTNAMELEN];
265 int domainnamelen;
266
267 long hostid;
268
269 #ifdef INSECURE
270 int securelevel = -1;
271 #else
272 int securelevel = 0;
273 #endif
274
275 #ifndef DEFCORENAME
276 #define DEFCORENAME "%n.core"
277 #endif
278 char defcorename[MAXPATHLEN] = DEFCORENAME;
279 int defcorenamelen = sizeof(DEFCORENAME);
280
281 extern int kern_logsigexit;
282 extern fixpt_t ccpu;
283 extern int forkfsleep;
284 extern int dumponpanic;
285
286 #ifndef MULTIPROCESSOR
287 #define sysctl_ncpus() 1
288 #endif
289
290 #ifdef MULTIPROCESSOR
291
292 #ifndef CPU_INFO_FOREACH
293 #define CPU_INFO_ITERATOR int
294 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
295 #endif
296
297 static int
298 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
299 {
300 u_int64_t cp_time[CPUSTATES];
301 int i;
302 struct cpu_info *ci;
303 CPU_INFO_ITERATOR cii;
304
305 for (i = 0; i < CPUSTATES; i++)
306 cp_time[i] = 0;
307
308 for (CPU_INFO_FOREACH(cii, ci)) {
309 for (i = 0; i < CPUSTATES; i++)
310 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
311 }
312 return (sysctl_rdstruct(oldp, oldlenp, newp,
313 cp_time, sizeof(cp_time)));
314 }
315
316 static int
317 sysctl_ncpus(void)
318 {
319 struct cpu_info *ci;
320 CPU_INFO_ITERATOR cii;
321
322 int ncpus = 0;
323 for (CPU_INFO_FOREACH(cii, ci))
324 ncpus++;
325 return ncpus;
326 }
327
328 #endif
329
330 /*
331 * kernel related system variables.
332 */
333 int
334 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
335 void *newp, size_t newlen, struct proc *p)
336 {
337 int error, level, inthostid;
338 int old_autonicetime;
339 int old_vnodes;
340 dev_t consdev;
341 #if NRND > 0
342 int v;
343 #endif
344
345 /* All sysctl names at this level, except for a few, are terminal. */
346 switch (name[0]) {
347 case KERN_PROC:
348 case KERN_PROC2:
349 case KERN_LWP:
350 case KERN_PROF:
351 case KERN_MBUF:
352 case KERN_PROC_ARGS:
353 case KERN_SYSVIPC_INFO:
354 case KERN_PIPE:
355 case KERN_TKSTAT:
356 /* Not terminal. */
357 break;
358 default:
359 if (namelen != 1)
360 return (ENOTDIR); /* overloaded */
361 }
362
363 switch (name[0]) {
364 case KERN_OSTYPE:
365 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
366 case KERN_OSRELEASE:
367 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
368 case KERN_OSREV:
369 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
370 case KERN_VERSION:
371 return (sysctl_rdstring(oldp, oldlenp, newp, version));
372 case KERN_MAXVNODES:
373 old_vnodes = desiredvnodes;
374 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
375 if (newp && !error) {
376 if (old_vnodes > desiredvnodes) {
377 desiredvnodes = old_vnodes;
378 return (EINVAL);
379 }
380 vfs_reinit();
381 nchreinit();
382 }
383 return (error);
384 case KERN_MAXPROC:
385 {
386 int nmaxproc = maxproc;
387
388 error = (sysctl_int(oldp, oldlenp, newp, newlen, &nmaxproc));
389
390 if (!error && newp) {
391 if (nmaxproc < 0 || nmaxproc >= PID_MAX - PID_SKIP)
392 return (EINVAL);
393
394 #ifdef __HAVE_CPU_MAXPROC
395 if (nmaxproc > cpu_maxproc())
396 return (EINVAL);
397 #endif
398 maxproc = nmaxproc;
399 }
400
401 return (error);
402 }
403 case KERN_MAXFILES:
404 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
405 case KERN_ARGMAX:
406 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
407 case KERN_SECURELVL:
408 level = securelevel;
409 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
410 newp == NULL)
411 return (error);
412 if (level < securelevel && p->p_pid != 1)
413 return (EPERM);
414 securelevel = level;
415 return (0);
416 case KERN_HOSTNAME:
417 error = sysctl_string(oldp, oldlenp, newp, newlen,
418 hostname, sizeof(hostname));
419 if (newp && !error)
420 hostnamelen = newlen;
421 return (error);
422 case KERN_DOMAINNAME:
423 error = sysctl_string(oldp, oldlenp, newp, newlen,
424 domainname, sizeof(domainname));
425 if (newp && !error)
426 domainnamelen = newlen;
427 return (error);
428 case KERN_HOSTID:
429 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
430 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
431 if (newp && !error)
432 hostid = inthostid;
433 return (error);
434 case KERN_CLOCKRATE:
435 return (sysctl_clockrate(oldp, oldlenp));
436 case KERN_BOOTTIME:
437 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
438 sizeof(struct timeval)));
439 case KERN_VNODE:
440 return (sysctl_vnode(oldp, oldlenp, p));
441 case KERN_PROC:
442 case KERN_PROC2:
443 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
444 case KERN_LWP:
445 return (sysctl_dolwp(name, namelen, oldp, oldlenp));
446 case KERN_PROC_ARGS:
447 return (sysctl_procargs(name + 1, namelen - 1,
448 oldp, oldlenp, p));
449 case KERN_FILE:
450 return (sysctl_file(oldp, oldlenp));
451 #ifdef GPROF
452 case KERN_PROF:
453 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
454 newp, newlen));
455 #endif
456 case KERN_POSIX1:
457 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
458 case KERN_NGROUPS:
459 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
460 case KERN_JOB_CONTROL:
461 return (sysctl_rdint(oldp, oldlenp, newp, 1));
462 case KERN_SAVED_IDS:
463 #ifdef _POSIX_SAVED_IDS
464 return (sysctl_rdint(oldp, oldlenp, newp, 1));
465 #else
466 return (sysctl_rdint(oldp, oldlenp, newp, 0));
467 #endif
468 case KERN_MAXPARTITIONS:
469 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
470 case KERN_RAWPARTITION:
471 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
472 #ifdef NTP
473 case KERN_NTPTIME:
474 return (sysctl_ntptime(oldp, oldlenp));
475 #endif
476 case KERN_AUTONICETIME:
477 old_autonicetime = autonicetime;
478 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
479 if (autonicetime < 0)
480 autonicetime = old_autonicetime;
481 return (error);
482 case KERN_AUTONICEVAL:
483 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
484 if (autoniceval < PRIO_MIN)
485 autoniceval = PRIO_MIN;
486 if (autoniceval > PRIO_MAX)
487 autoniceval = PRIO_MAX;
488 return (error);
489 case KERN_RTC_OFFSET:
490 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
491 case KERN_ROOT_DEVICE:
492 return (sysctl_rdstring(oldp, oldlenp, newp,
493 root_device->dv_xname));
494 case KERN_MSGBUFSIZE:
495 /*
496 * deal with cases where the message buffer has
497 * become corrupted.
498 */
499 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
500 msgbufenabled = 0;
501 return (ENXIO);
502 }
503 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
504 case KERN_FSYNC:
505 return (sysctl_rdint(oldp, oldlenp, newp, 1));
506 case KERN_SYSVMSG:
507 #ifdef SYSVMSG
508 return (sysctl_rdint(oldp, oldlenp, newp, 1));
509 #else
510 return (sysctl_rdint(oldp, oldlenp, newp, 0));
511 #endif
512 case KERN_SYSVSEM:
513 #ifdef SYSVSEM
514 return (sysctl_rdint(oldp, oldlenp, newp, 1));
515 #else
516 return (sysctl_rdint(oldp, oldlenp, newp, 0));
517 #endif
518 case KERN_SYSVSHM:
519 #ifdef SYSVSHM
520 return (sysctl_rdint(oldp, oldlenp, newp, 1));
521 #else
522 return (sysctl_rdint(oldp, oldlenp, newp, 0));
523 #endif
524 case KERN_DEFCORENAME:
525 if (newp && newlen < 1)
526 return (EINVAL);
527 error = sysctl_string(oldp, oldlenp, newp, newlen,
528 defcorename, sizeof(defcorename));
529 if (newp && !error)
530 defcorenamelen = newlen;
531 return (error);
532 case KERN_SYNCHRONIZED_IO:
533 return (sysctl_rdint(oldp, oldlenp, newp, 1));
534 case KERN_IOV_MAX:
535 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
536 case KERN_MBUF:
537 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
538 newp, newlen));
539 case KERN_MAPPED_FILES:
540 return (sysctl_rdint(oldp, oldlenp, newp, 1));
541 case KERN_MEMLOCK:
542 return (sysctl_rdint(oldp, oldlenp, newp, 1));
543 case KERN_MEMLOCK_RANGE:
544 return (sysctl_rdint(oldp, oldlenp, newp, 1));
545 case KERN_MEMORY_PROTECTION:
546 return (sysctl_rdint(oldp, oldlenp, newp, 1));
547 case KERN_LOGIN_NAME_MAX:
548 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
549 case KERN_LOGSIGEXIT:
550 return (sysctl_int(oldp, oldlenp, newp, newlen,
551 &kern_logsigexit));
552 case KERN_FSCALE:
553 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
554 case KERN_CCPU:
555 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
556 case KERN_CP_TIME:
557 #ifndef MULTIPROCESSOR
558 return (sysctl_rdstruct(oldp, oldlenp, newp,
559 curcpu()->ci_schedstate.spc_cp_time,
560 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
561 #else
562 return (sysctl_docptime(oldp, oldlenp, newp));
563 #endif
564 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
565 case KERN_SYSVIPC_INFO:
566 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
567 #endif
568 case KERN_MSGBUF:
569 return (sysctl_msgbuf(oldp, oldlenp));
570 case KERN_CONSDEV:
571 if (cn_tab != NULL)
572 consdev = cn_tab->cn_dev;
573 else
574 consdev = NODEV;
575 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
576 sizeof consdev));
577 #if NPTY > 0
578 case KERN_MAXPTYS:
579 return sysctl_pty(oldp, oldlenp, newp, newlen);
580 #endif
581 #ifndef PIPE_SOCKETPAIR
582 case KERN_PIPE:
583 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
584 newp, newlen));
585 #endif
586 case KERN_MAXPHYS:
587 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
588 case KERN_SBMAX:
589 {
590 int new_sbmax = sb_max;
591
592 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
593 if (newp && !error) {
594 if (new_sbmax < (16 * 1024)) /* sanity */
595 return (EINVAL);
596 sb_max = new_sbmax;
597 }
598 return (error);
599 }
600 case KERN_TKSTAT:
601 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
602 newp));
603 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
604 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
605 case KERN_URND:
606 #if NRND > 0
607 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
608 sizeof(v))
609 return (sysctl_rdint(oldp, oldlenp, newp, v));
610 else
611 return (EIO); /*XXX*/
612 #else
613 return (EOPNOTSUPP);
614 #endif
615 case KERN_LABELSECTOR:
616 return (sysctl_rdint(oldp, oldlenp, newp, LABELSECTOR));
617 case KERN_LABELOFFSET:
618 return (sysctl_rdint(oldp, oldlenp, newp, LABELOFFSET));
619 case KERN_FORKFSLEEP:
620 {
621 /* userland sees value in ms, internally is in ticks */
622 int timo, lsleep = forkfsleep * 1000 / hz;
623
624 error = (sysctl_int(oldp, oldlenp, newp, newlen, &lsleep));
625 if (newp && !error) {
626 /* refuse negative values, and overly 'long time' */
627 if (lsleep < 0 || lsleep > MAXSLP * 1000)
628 return (EINVAL);
629
630 timo = mstohz(lsleep);
631
632 /* if the interval is >0 ms && <1 tick, use 1 tick */
633 if (lsleep != 0 && timo == 0)
634 forkfsleep = 1;
635 else
636 forkfsleep = timo;
637 }
638 return (error);
639 }
640 case KERN_POSIX_THREADS: /* XXX _POSIX_VERSION */
641 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
642 case KERN_POSIX_SEMAPHORES: /* XXX _POSIX_VERSION */
643 #ifdef P1003_1B_SEMAPHORE
644 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
645 #else
646 return (sysctl_rdint(oldp, oldlenp, newp, 0));
647 #endif
648 case KERN_POSIX_BARRIERS: /* XXX _POSIX_VERSION */
649 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
650 case KERN_POSIX_TIMERS: /* XXX _POSIX_VERSION */
651 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
652 case KERN_POSIX_SPIN_LOCKS: /* XXX _POSIX_VERSION */
653 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
654 case KERN_POSIX_READER_WRITER_LOCKS: /* XXX _POSIX_VERSION */
655 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
656 case KERN_DUMP_ON_PANIC:
657 return (sysctl_int(oldp, oldlenp, newp, newlen, &dumponpanic));
658
659 default:
660 return (EOPNOTSUPP);
661 }
662 /* NOTREACHED */
663 }
664
665 /*
666 * hardware related system variables.
667 */
668 int
669 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
670 void *newp, size_t newlen, struct proc *p)
671 {
672
673 /* All sysctl names at this level, except for a few, are terminal. */
674 switch (name[0]) {
675 case HW_DISKSTATS:
676 /* Not terminal. */
677 break;
678 default:
679 if (namelen != 1)
680 return (ENOTDIR); /* overloaded */
681 }
682
683 switch (name[0]) {
684 case HW_MACHINE:
685 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
686 case HW_MACHINE_ARCH:
687 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
688 case HW_MODEL:
689 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
690 case HW_NCPU:
691 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
692 case HW_BYTEORDER:
693 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
694 case HW_PHYSMEM:
695 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
696 case HW_USERMEM:
697 return (sysctl_rdint(oldp, oldlenp, newp,
698 ctob(physmem - uvmexp.wired)));
699 case HW_PAGESIZE:
700 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
701 case HW_ALIGNBYTES:
702 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
703 case HW_DISKNAMES:
704 return (sysctl_disknames(oldp, oldlenp));
705 case HW_DISKSTATS:
706 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
707 case HW_CNMAGIC: {
708 char magic[CNS_LEN];
709 int error;
710
711 if (oldp)
712 cn_get_magic(magic, CNS_LEN);
713 error = sysctl_string(oldp, oldlenp, newp, newlen,
714 magic, sizeof(magic));
715 if (newp && !error) {
716 error = cn_set_magic(magic);
717 }
718 return (error);
719 }
720 default:
721 return (EOPNOTSUPP);
722 }
723 /* NOTREACHED */
724 }
725
726 #ifdef DEBUG
727 /*
728 * Debugging related system variables.
729 */
730 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
731 struct ctldebug debug5, debug6, debug7, debug8, debug9;
732 struct ctldebug debug10, debug11, debug12, debug13, debug14;
733 struct ctldebug debug15, debug16, debug17, debug18, debug19;
734 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
735 &debug0, &debug1, &debug2, &debug3, &debug4,
736 &debug5, &debug6, &debug7, &debug8, &debug9,
737 &debug10, &debug11, &debug12, &debug13, &debug14,
738 &debug15, &debug16, &debug17, &debug18, &debug19,
739 };
740
741 int
742 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
743 void *newp, size_t newlen, struct proc *p)
744 {
745 struct ctldebug *cdp;
746
747 /* all sysctl names at this level are name and field */
748 if (namelen != 2)
749 return (ENOTDIR); /* overloaded */
750 if (name[0] >= CTL_DEBUG_MAXID)
751 return (EOPNOTSUPP);
752 cdp = debugvars[name[0]];
753 if (cdp->debugname == 0)
754 return (EOPNOTSUPP);
755 switch (name[1]) {
756 case CTL_DEBUG_NAME:
757 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
758 case CTL_DEBUG_VALUE:
759 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
760 default:
761 return (EOPNOTSUPP);
762 }
763 /* NOTREACHED */
764 }
765 #endif /* DEBUG */
766
767 int
768 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
769 void *newp, size_t newlen, struct proc *p)
770 {
771 struct proc *ptmp = NULL;
772 const struct proclist_desc *pd;
773 int error = 0;
774 struct rlimit alim;
775 struct plimit *newplim;
776 char *tmps = NULL;
777 size_t len, curlen;
778 u_int i;
779
780 if (namelen < 2)
781 return EINVAL;
782
783 if (name[0] == PROC_CURPROC) {
784 ptmp = p;
785 } else {
786 proclist_lock_read();
787 for (pd = proclists; pd->pd_list != NULL; pd++) {
788 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
789 ptmp = LIST_NEXT(ptmp, p_list)) {
790 /* Skip embryonic processes. */
791 if (ptmp->p_stat == SIDL)
792 continue;
793 if (ptmp->p_pid == (pid_t)name[0])
794 break;
795 }
796 if (ptmp != NULL)
797 break;
798 }
799 proclist_unlock_read();
800 if (ptmp == NULL)
801 return(ESRCH);
802 if (p->p_ucred->cr_uid != 0) {
803 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
804 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
805 return EPERM;
806 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
807 return EPERM; /* sgid proc */
808 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
809 if (p->p_ucred->cr_groups[i] ==
810 ptmp->p_cred->p_rgid)
811 break;
812 }
813 if (i == p->p_ucred->cr_ngroups)
814 return EPERM;
815 }
816 }
817 switch(name[1]) {
818 case PROC_PID_STOPFORK:
819 if (namelen != 2)
820 return EINVAL;
821 i = ((ptmp->p_flag & P_STOPFORK) != 0);
822 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
823 return error;
824 if (i != 0)
825 ptmp->p_flag |= P_STOPFORK;
826 else
827 ptmp->p_flag &= ~P_STOPFORK;
828 return 0;
829 break;
830
831 case PROC_PID_STOPEXEC:
832 if (namelen != 2)
833 return EINVAL;
834 i = ((ptmp->p_flag & P_STOPEXEC) != 0);
835 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
836 return error;
837 if (i != 0)
838 ptmp->p_flag |= P_STOPEXEC;
839 else
840 ptmp->p_flag &= ~P_STOPEXEC;
841 return 0;
842 break;
843
844 case PROC_PID_CORENAME:
845 if (namelen != 2)
846 return EINVAL;
847 /*
848 * Can't use sysctl_string() here because we may malloc a new
849 * area during the process, so we have to do it by hand.
850 */
851 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
852 if (oldlenp && *oldlenp < curlen) {
853 if (!oldp)
854 *oldlenp = curlen;
855 return (ENOMEM);
856 }
857 if (newp) {
858 if (securelevel > 2)
859 return EPERM;
860 if (newlen > MAXPATHLEN)
861 return ENAMETOOLONG;
862 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
863 if (tmps == NULL)
864 return ENOMEM;
865 error = copyin(newp, tmps, newlen + 1);
866 tmps[newlen] = '\0';
867 if (error)
868 goto cleanup;
869 /* Enforce to be either 'core' for end with '.core' */
870 if (newlen < 4) { /* c.o.r.e */
871 error = EINVAL;
872 goto cleanup;
873 }
874 len = newlen - 4;
875 if (len > 0) {
876 if (tmps[len - 1] != '.' &&
877 tmps[len - 1] != '/') {
878 error = EINVAL;
879 goto cleanup;
880 }
881 }
882 if (strcmp(&tmps[len], "core") != 0) {
883 error = EINVAL;
884 goto cleanup;
885 }
886 }
887 if (oldp && oldlenp) {
888 *oldlenp = curlen;
889 error = copyout(ptmp->p_limit->pl_corename, oldp,
890 curlen);
891 }
892 if (newp && error == 0) {
893 /* if the 2 strings are identical, don't limcopy() */
894 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
895 error = 0;
896 goto cleanup;
897 }
898 if (ptmp->p_limit->p_refcnt > 1 &&
899 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
900 newplim = limcopy(ptmp->p_limit);
901 limfree(ptmp->p_limit);
902 ptmp->p_limit = newplim;
903 }
904 if (ptmp->p_limit->pl_corename != defcorename) {
905 free(ptmp->p_limit->pl_corename, M_TEMP);
906 }
907 ptmp->p_limit->pl_corename = tmps;
908 return (0);
909 }
910 cleanup:
911 if (tmps)
912 free(tmps, M_TEMP);
913 return (error);
914 break;
915
916 case PROC_PID_LIMIT:
917 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
918 return EINVAL;
919 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
920 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
921 error = sysctl_quad(oldp, oldlenp, newp, newlen,
922 &alim.rlim_max);
923 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
924 error = sysctl_quad(oldp, oldlenp, newp, newlen,
925 &alim.rlim_cur);
926 else
927 error = EINVAL;
928
929 if (error)
930 return error;
931
932 if (newp)
933 error = dosetrlimit(ptmp, p->p_cred,
934 name[2] - 1, &alim);
935 return error;
936 break;
937
938 default:
939 return (EINVAL);
940 break;
941 }
942 /* NOTREACHED */
943 return (EINVAL);
944 }
945
946 int
947 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
948 void *newp, size_t newlen, struct proc *p)
949 {
950 static struct {
951 const char *name;
952 int type;
953 } emulations[] = CTL_EMUL_NAMES;
954 const struct emul *e;
955 const char *ename;
956 #ifdef LKM
957 extern struct lock exec_lock; /* XXX */
958 int error;
959 #else
960 extern int nexecs_builtin;
961 extern const struct execsw execsw_builtin[];
962 int i;
963 #endif
964
965 /* all sysctl names at this level are name and field */
966 if (namelen < 2)
967 return (ENOTDIR); /* overloaded */
968
969 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
970 return (EOPNOTSUPP);
971
972 ename = emulations[name[0]].name;
973
974 #ifdef LKM
975 lockmgr(&exec_lock, LK_SHARED, NULL);
976 if ((e = emul_search(ename))) {
977 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
978 newp, newlen, p);
979 } else
980 error = EOPNOTSUPP;
981 lockmgr(&exec_lock, LK_RELEASE, NULL);
982
983 return (error);
984 #else
985 for (i = 0; i < nexecs_builtin; i++) {
986 e = execsw_builtin[i].es_emul;
987 /*
988 * In order to match e.g. e->e_name "irix o32" with ename "irix",
989 * we limit the comparison to the length of ename.
990 */
991 if (e == NULL || strncmp(ename, e->e_name, strlen(ename)) != 0 ||
992 e->e_sysctl == NULL)
993 continue;
994
995 return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
996 newp, newlen, p);
997 }
998
999 return (EOPNOTSUPP);
1000 #endif
1001 }
1002 /*
1003 * Convenience macros.
1004 */
1005
1006 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
1007 if (oldlenp) { \
1008 if (!oldp) \
1009 *oldlenp = len; \
1010 else { \
1011 if (*oldlenp < len) \
1012 return(ENOMEM); \
1013 *oldlenp = len; \
1014 error = copyout((caddr_t)valp, oldp, len); \
1015 } \
1016 }
1017
1018 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
1019 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
1020
1021 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
1022 if (newp && newlen != len) \
1023 return (EINVAL);
1024
1025 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
1026 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
1027
1028 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
1029 if (error == 0 && newp) \
1030 error = copyin(newp, valp, len);
1031
1032 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
1033 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
1034
1035 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
1036 if (oldlenp) { \
1037 len = strlen(str) + 1; \
1038 if (!oldp) \
1039 *oldlenp = len; \
1040 else { \
1041 if (*oldlenp < len) { \
1042 err2 = ENOMEM; \
1043 len = *oldlenp; \
1044 } else \
1045 *oldlenp = len; \
1046 error = copyout(str, oldp, len);\
1047 if (error == 0) \
1048 error = err2; \
1049 } \
1050 }
1051
1052 /*
1053 * Validate parameters and get old / set new parameters
1054 * for an integer-valued sysctl function.
1055 */
1056 int
1057 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
1058 {
1059 int error = 0;
1060
1061 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1062 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
1063 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
1064
1065 return (error);
1066 }
1067
1068
1069 /*
1070 * As above, but read-only.
1071 */
1072 int
1073 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
1074 {
1075 int error = 0;
1076
1077 if (newp)
1078 return (EPERM);
1079
1080 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
1081
1082 return (error);
1083 }
1084
1085 /*
1086 * Validate parameters and get old / set new parameters
1087 * for an quad-valued sysctl function.
1088 */
1089 int
1090 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1091 quad_t *valp)
1092 {
1093 int error = 0;
1094
1095 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
1096 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
1097 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1098
1099 return (error);
1100 }
1101
1102 /*
1103 * As above, but read-only.
1104 */
1105 int
1106 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1107 {
1108 int error = 0;
1109
1110 if (newp)
1111 return (EPERM);
1112
1113 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1114
1115 return (error);
1116 }
1117
1118 /*
1119 * Validate parameters and get old / set new parameters
1120 * for a string-valued sysctl function.
1121 */
1122 int
1123 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1124 size_t maxlen)
1125 {
1126 int error = 0, err2 = 0;
1127 size_t len;
1128
1129 if (newp && newlen >= maxlen)
1130 return (EINVAL);
1131
1132 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1133
1134 if (error == 0 && newp) {
1135 error = copyin(newp, str, newlen);
1136 str[newlen] = 0;
1137 }
1138 return (error);
1139 }
1140
1141 /*
1142 * As above, but read-only.
1143 */
1144 int
1145 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1146 {
1147 int error = 0, err2 = 0;
1148 size_t len;
1149
1150 if (newp)
1151 return (EPERM);
1152
1153 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1154
1155 return (error);
1156 }
1157
1158 /*
1159 * Validate parameters and get old / set new parameters
1160 * for a structure oriented sysctl function.
1161 */
1162 int
1163 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1164 size_t len)
1165 {
1166 int error = 0;
1167
1168 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1169 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1170 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1171
1172 return (error);
1173 }
1174
1175 /*
1176 * Validate parameters and get old parameters
1177 * for a structure oriented sysctl function.
1178 */
1179 int
1180 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1181 size_t len)
1182 {
1183 int error = 0;
1184
1185 if (newp)
1186 return (EPERM);
1187
1188 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1189
1190 return (error);
1191 }
1192
1193 /*
1194 * As above, but can return a truncated result.
1195 */
1196 int
1197 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1198 size_t len)
1199 {
1200 int error = 0;
1201
1202 if (newp)
1203 return (EPERM);
1204
1205 len = min(*oldlenp, len);
1206 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1207
1208 return (error);
1209 }
1210
1211 /*
1212 * Get file structures.
1213 */
1214 static int
1215 sysctl_file(void *vwhere, size_t *sizep)
1216 {
1217 int error;
1218 size_t buflen;
1219 struct file *fp;
1220 char *start, *where;
1221
1222 start = where = vwhere;
1223 buflen = *sizep;
1224 if (where == NULL) {
1225 /*
1226 * overestimate by 10 files
1227 */
1228 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1229 return (0);
1230 }
1231
1232 /*
1233 * first copyout filehead
1234 */
1235 if (buflen < sizeof(filehead)) {
1236 *sizep = 0;
1237 return (0);
1238 }
1239 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1240 if (error)
1241 return (error);
1242 buflen -= sizeof(filehead);
1243 where += sizeof(filehead);
1244
1245 /*
1246 * followed by an array of file structures
1247 */
1248 LIST_FOREACH(fp, &filehead, f_list) {
1249 if (buflen < sizeof(struct file)) {
1250 *sizep = where - start;
1251 return (ENOMEM);
1252 }
1253 error = copyout((caddr_t)fp, where, sizeof(struct file));
1254 if (error)
1255 return (error);
1256 buflen -= sizeof(struct file);
1257 where += sizeof(struct file);
1258 }
1259 *sizep = where - start;
1260 return (0);
1261 }
1262
1263 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1264 #define FILL_PERM(src, dst) do { \
1265 (dst)._key = (src)._key; \
1266 (dst).uid = (src).uid; \
1267 (dst).gid = (src).gid; \
1268 (dst).cuid = (src).cuid; \
1269 (dst).cgid = (src).cgid; \
1270 (dst).mode = (src).mode; \
1271 (dst)._seq = (src)._seq; \
1272 } while (/*CONSTCOND*/ 0);
1273 #define FILL_MSG(src, dst) do { \
1274 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1275 (dst).msg_qnum = (src).msg_qnum; \
1276 (dst).msg_qbytes = (src).msg_qbytes; \
1277 (dst)._msg_cbytes = (src)._msg_cbytes; \
1278 (dst).msg_lspid = (src).msg_lspid; \
1279 (dst).msg_lrpid = (src).msg_lrpid; \
1280 (dst).msg_stime = (src).msg_stime; \
1281 (dst).msg_rtime = (src).msg_rtime; \
1282 (dst).msg_ctime = (src).msg_ctime; \
1283 } while (/*CONSTCOND*/ 0)
1284 #define FILL_SEM(src, dst) do { \
1285 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1286 (dst).sem_nsems = (src).sem_nsems; \
1287 (dst).sem_otime = (src).sem_otime; \
1288 (dst).sem_ctime = (src).sem_ctime; \
1289 } while (/*CONSTCOND*/ 0)
1290 #define FILL_SHM(src, dst) do { \
1291 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1292 (dst).shm_segsz = (src).shm_segsz; \
1293 (dst).shm_lpid = (src).shm_lpid; \
1294 (dst).shm_cpid = (src).shm_cpid; \
1295 (dst).shm_atime = (src).shm_atime; \
1296 (dst).shm_dtime = (src).shm_dtime; \
1297 (dst).shm_ctime = (src).shm_ctime; \
1298 (dst).shm_nattch = (src).shm_nattch; \
1299 } while (/*CONSTCOND*/ 0)
1300
1301 static int
1302 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1303 {
1304 #ifdef SYSVMSG
1305 struct msg_sysctl_info *msgsi = NULL;
1306 #endif
1307 #ifdef SYSVSEM
1308 struct sem_sysctl_info *semsi = NULL;
1309 #endif
1310 #ifdef SYSVSHM
1311 struct shm_sysctl_info *shmsi = NULL;
1312 #endif
1313 size_t infosize, dssize, tsize, buflen;
1314 void *buf = NULL;
1315 char *start;
1316 int32_t nds;
1317 int i, error, ret;
1318
1319 if (namelen != 1)
1320 return (EINVAL);
1321
1322 start = where;
1323 buflen = *sizep;
1324
1325 switch (*name) {
1326 case KERN_SYSVIPC_MSG_INFO:
1327 #ifdef SYSVMSG
1328 infosize = sizeof(msgsi->msginfo);
1329 nds = msginfo.msgmni;
1330 dssize = sizeof(msgsi->msgids[0]);
1331 break;
1332 #else
1333 return (EINVAL);
1334 #endif
1335 case KERN_SYSVIPC_SEM_INFO:
1336 #ifdef SYSVSEM
1337 infosize = sizeof(semsi->seminfo);
1338 nds = seminfo.semmni;
1339 dssize = sizeof(semsi->semids[0]);
1340 break;
1341 #else
1342 return (EINVAL);
1343 #endif
1344 case KERN_SYSVIPC_SHM_INFO:
1345 #ifdef SYSVSHM
1346 infosize = sizeof(shmsi->shminfo);
1347 nds = shminfo.shmmni;
1348 dssize = sizeof(shmsi->shmids[0]);
1349 break;
1350 #else
1351 return (EINVAL);
1352 #endif
1353 default:
1354 return (EINVAL);
1355 }
1356 /*
1357 * Round infosize to 64 bit boundary if requesting more than just
1358 * the info structure or getting the total data size.
1359 */
1360 if (where == NULL || *sizep > infosize)
1361 infosize = ((infosize + 7) / 8) * 8;
1362 tsize = infosize + nds * dssize;
1363
1364 /* Return just the total size required. */
1365 if (where == NULL) {
1366 *sizep = tsize;
1367 return (0);
1368 }
1369
1370 /* Not enough room for even the info struct. */
1371 if (buflen < infosize) {
1372 *sizep = 0;
1373 return (ENOMEM);
1374 }
1375 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1376 memset(buf, 0, min(tsize, buflen));
1377
1378 switch (*name) {
1379 #ifdef SYSVMSG
1380 case KERN_SYSVIPC_MSG_INFO:
1381 msgsi = (struct msg_sysctl_info *)buf;
1382 msgsi->msginfo = msginfo;
1383 break;
1384 #endif
1385 #ifdef SYSVSEM
1386 case KERN_SYSVIPC_SEM_INFO:
1387 semsi = (struct sem_sysctl_info *)buf;
1388 semsi->seminfo = seminfo;
1389 break;
1390 #endif
1391 #ifdef SYSVSHM
1392 case KERN_SYSVIPC_SHM_INFO:
1393 shmsi = (struct shm_sysctl_info *)buf;
1394 shmsi->shminfo = shminfo;
1395 break;
1396 #endif
1397 }
1398 buflen -= infosize;
1399
1400 ret = 0;
1401 if (buflen > 0) {
1402 /* Fill in the IPC data structures. */
1403 for (i = 0; i < nds; i++) {
1404 if (buflen < dssize) {
1405 ret = ENOMEM;
1406 break;
1407 }
1408 switch (*name) {
1409 #ifdef SYSVMSG
1410 case KERN_SYSVIPC_MSG_INFO:
1411 FILL_MSG(msqids[i], msgsi->msgids[i]);
1412 break;
1413 #endif
1414 #ifdef SYSVSEM
1415 case KERN_SYSVIPC_SEM_INFO:
1416 FILL_SEM(sema[i], semsi->semids[i]);
1417 break;
1418 #endif
1419 #ifdef SYSVSHM
1420 case KERN_SYSVIPC_SHM_INFO:
1421 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1422 break;
1423 #endif
1424 }
1425 buflen -= dssize;
1426 }
1427 }
1428 *sizep -= buflen;
1429 error = copyout(buf, start, *sizep);
1430 /* If copyout succeeded, use return code set earlier. */
1431 if (error == 0)
1432 error = ret;
1433 if (buf)
1434 free(buf, M_TEMP);
1435 return (error);
1436 }
1437 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1438
1439 static int
1440 sysctl_msgbuf(void *vwhere, size_t *sizep)
1441 {
1442 char *where = vwhere;
1443 size_t len, maxlen = *sizep;
1444 long beg, end;
1445 int error;
1446
1447 /*
1448 * deal with cases where the message buffer has
1449 * become corrupted.
1450 */
1451 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1452 msgbufenabled = 0;
1453 return (ENXIO);
1454 }
1455
1456 if (where == NULL) {
1457 /* always return full buffer size */
1458 *sizep = msgbufp->msg_bufs;
1459 return (0);
1460 }
1461
1462 error = 0;
1463 maxlen = min(msgbufp->msg_bufs, maxlen);
1464
1465 /*
1466 * First, copy from the write pointer to the end of
1467 * message buffer.
1468 */
1469 beg = msgbufp->msg_bufx;
1470 end = msgbufp->msg_bufs;
1471 while (maxlen > 0) {
1472 len = min(end - beg, maxlen);
1473 if (len == 0)
1474 break;
1475 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1476 if (error)
1477 break;
1478 where += len;
1479 maxlen -= len;
1480
1481 /*
1482 * ... then, copy from the beginning of message buffer to
1483 * the write pointer.
1484 */
1485 beg = 0;
1486 end = msgbufp->msg_bufx;
1487 }
1488 return (error);
1489 }
1490
1491 /*
1492 * try over estimating by 5 procs
1493 */
1494 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1495
1496 static int
1497 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1498 {
1499 struct eproc eproc;
1500 struct kinfo_proc2 kproc2;
1501 struct kinfo_proc *dp;
1502 struct proc *p;
1503 const struct proclist_desc *pd;
1504 char *where, *dp2;
1505 int type, op, arg;
1506 u_int elem_size, elem_count;
1507 size_t buflen, needed;
1508 int error;
1509
1510 dp = vwhere;
1511 dp2 = where = vwhere;
1512 buflen = where != NULL ? *sizep : 0;
1513 error = 0;
1514 needed = 0;
1515 type = name[0];
1516
1517 if (type == KERN_PROC) {
1518 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1519 return (EINVAL);
1520 op = name[1];
1521 if (op != KERN_PROC_ALL)
1522 arg = name[2];
1523 else
1524 arg = 0; /* Quell compiler warning */
1525 elem_size = elem_count = 0; /* Ditto */
1526 } else {
1527 if (namelen != 5)
1528 return (EINVAL);
1529 op = name[1];
1530 arg = name[2];
1531 elem_size = name[3];
1532 elem_count = name[4];
1533 }
1534
1535 proclist_lock_read();
1536
1537 pd = proclists;
1538 again:
1539 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1540 /*
1541 * Skip embryonic processes.
1542 */
1543 if (p->p_stat == SIDL)
1544 continue;
1545 /*
1546 * TODO - make more efficient (see notes below).
1547 * do by session.
1548 */
1549 switch (op) {
1550
1551 case KERN_PROC_PID:
1552 /* could do this with just a lookup */
1553 if (p->p_pid != (pid_t)arg)
1554 continue;
1555 break;
1556
1557 case KERN_PROC_PGRP:
1558 /* could do this by traversing pgrp */
1559 if (p->p_pgrp->pg_id != (pid_t)arg)
1560 continue;
1561 break;
1562
1563 case KERN_PROC_SESSION:
1564 if (p->p_session->s_sid != (pid_t)arg)
1565 continue;
1566 break;
1567
1568 case KERN_PROC_TTY:
1569 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1570 if ((p->p_flag & P_CONTROLT) == 0 ||
1571 p->p_session->s_ttyp == NULL ||
1572 p->p_session->s_ttyvp != NULL)
1573 continue;
1574 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1575 p->p_session->s_ttyp == NULL) {
1576 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1577 continue;
1578 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1579 continue;
1580 break;
1581
1582 case KERN_PROC_UID:
1583 if (p->p_ucred->cr_uid != (uid_t)arg)
1584 continue;
1585 break;
1586
1587 case KERN_PROC_RUID:
1588 if (p->p_cred->p_ruid != (uid_t)arg)
1589 continue;
1590 break;
1591
1592 case KERN_PROC_GID:
1593 if (p->p_ucred->cr_gid != (uid_t)arg)
1594 continue;
1595 break;
1596
1597 case KERN_PROC_RGID:
1598 if (p->p_cred->p_rgid != (uid_t)arg)
1599 continue;
1600 break;
1601
1602 case KERN_PROC_ALL:
1603 /* allow everything */
1604 break;
1605
1606 default:
1607 error = EINVAL;
1608 goto cleanup;
1609 }
1610 if (type == KERN_PROC) {
1611 if (buflen >= sizeof(struct kinfo_proc)) {
1612 fill_eproc(p, &eproc);
1613 error = copyout((caddr_t)p, &dp->kp_proc,
1614 sizeof(struct proc));
1615 if (error)
1616 goto cleanup;
1617 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1618 sizeof(eproc));
1619 if (error)
1620 goto cleanup;
1621 dp++;
1622 buflen -= sizeof(struct kinfo_proc);
1623 }
1624 needed += sizeof(struct kinfo_proc);
1625 } else { /* KERN_PROC2 */
1626 if (buflen >= elem_size && elem_count > 0) {
1627 fill_kproc2(p, &kproc2);
1628 /*
1629 * Copy out elem_size, but not larger than
1630 * the size of a struct kinfo_proc2.
1631 */
1632 error = copyout(&kproc2, dp2,
1633 min(sizeof(kproc2), elem_size));
1634 if (error)
1635 goto cleanup;
1636 dp2 += elem_size;
1637 buflen -= elem_size;
1638 elem_count--;
1639 }
1640 needed += elem_size;
1641 }
1642 }
1643 pd++;
1644 if (pd->pd_list != NULL)
1645 goto again;
1646 proclist_unlock_read();
1647
1648 if (where != NULL) {
1649 if (type == KERN_PROC)
1650 *sizep = (caddr_t)dp - where;
1651 else
1652 *sizep = dp2 - where;
1653 if (needed > *sizep)
1654 return (ENOMEM);
1655 } else {
1656 needed += KERN_PROCSLOP;
1657 *sizep = needed;
1658 }
1659 return (0);
1660 cleanup:
1661 proclist_unlock_read();
1662 return (error);
1663 }
1664
1665
1666 /*
1667 * try over estimating by 5 LWPs
1668 */
1669 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
1670
1671 static int
1672 sysctl_dolwp(int *name, u_int namelen, void *vwhere, size_t *sizep)
1673 {
1674 struct kinfo_lwp klwp;
1675 struct proc *p;
1676 struct lwp *l;
1677 char *where, *dp;
1678 int type, pid, elem_size, elem_count;
1679 int buflen, needed, error;
1680
1681 dp = where = vwhere;
1682 buflen = where != NULL ? *sizep : 0;
1683 error = needed = 0;
1684 type = name[0];
1685
1686 if (namelen != 4)
1687 return (EINVAL);
1688 pid = name[1];
1689 elem_size = name[2];
1690 elem_count = name[3];
1691
1692 p = pfind(pid);
1693 if (p == NULL)
1694 return (ESRCH);
1695 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1696 if (buflen >= elem_size && elem_count > 0) {
1697 fill_lwp(l, &klwp);
1698 /*
1699 * Copy out elem_size, but not larger than
1700 * the size of a struct kinfo_proc2.
1701 */
1702 error = copyout(&klwp, dp,
1703 min(sizeof(klwp), elem_size));
1704 if (error)
1705 goto cleanup;
1706 dp += elem_size;
1707 buflen -= elem_size;
1708 elem_count--;
1709 }
1710 needed += elem_size;
1711 }
1712
1713 if (where != NULL) {
1714 *sizep = dp - where;
1715 if (needed > *sizep)
1716 return (ENOMEM);
1717 } else {
1718 needed += KERN_PROCSLOP;
1719 *sizep = needed;
1720 }
1721 return (0);
1722 cleanup:
1723 return (error);
1724 }
1725
1726 /*
1727 * Fill in an eproc structure for the specified process.
1728 */
1729 void
1730 fill_eproc(struct proc *p, struct eproc *ep)
1731 {
1732 struct tty *tp;
1733 struct lwp *l;
1734
1735 ep->e_paddr = p;
1736 ep->e_sess = p->p_session;
1737 ep->e_pcred = *p->p_cred;
1738 ep->e_ucred = *p->p_ucred;
1739 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1740 ep->e_vm.vm_rssize = 0;
1741 ep->e_vm.vm_tsize = 0;
1742 ep->e_vm.vm_dsize = 0;
1743 ep->e_vm.vm_ssize = 0;
1744 /* ep->e_vm.vm_pmap = XXX; */
1745 } else {
1746 struct vmspace *vm = p->p_vmspace;
1747
1748 ep->e_vm.vm_rssize = vm_resident_count(vm);
1749 ep->e_vm.vm_tsize = vm->vm_tsize;
1750 ep->e_vm.vm_dsize = vm->vm_dsize;
1751 ep->e_vm.vm_ssize = vm->vm_ssize;
1752
1753 /* Pick a "representative" LWP */
1754 l = proc_representative_lwp(p);
1755
1756 if (l->l_wmesg)
1757 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
1758 }
1759 if (p->p_pptr)
1760 ep->e_ppid = p->p_pptr->p_pid;
1761 else
1762 ep->e_ppid = 0;
1763 ep->e_pgid = p->p_pgrp->pg_id;
1764 ep->e_sid = ep->e_sess->s_sid;
1765 ep->e_jobc = p->p_pgrp->pg_jobc;
1766 if ((p->p_flag & P_CONTROLT) &&
1767 (tp = ep->e_sess->s_ttyp)) {
1768 ep->e_tdev = tp->t_dev;
1769 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1770 ep->e_tsess = tp->t_session;
1771 } else
1772 ep->e_tdev = NODEV;
1773
1774 ep->e_xsize = ep->e_xrssize = 0;
1775 ep->e_xccount = ep->e_xswrss = 0;
1776 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1777 if (SESS_LEADER(p))
1778 ep->e_flag |= EPROC_SLEADER;
1779 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1780 }
1781
1782 /*
1783 * Fill in an eproc structure for the specified process.
1784 */
1785 static void
1786 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1787 {
1788 struct tty *tp;
1789 struct lwp *l;
1790 memset(ki, 0, sizeof(*ki));
1791
1792 ki->p_paddr = PTRTOINT64(p);
1793 ki->p_fd = PTRTOINT64(p->p_fd);
1794 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1795 ki->p_stats = PTRTOINT64(p->p_stats);
1796 ki->p_limit = PTRTOINT64(p->p_limit);
1797 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1798 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1799 ki->p_sess = PTRTOINT64(p->p_session);
1800 ki->p_tsess = 0; /* may be changed if controlling tty below */
1801 ki->p_ru = PTRTOINT64(p->p_ru);
1802
1803 ki->p_eflag = 0;
1804 ki->p_exitsig = p->p_exitsig;
1805 ki->p_flag = p->p_flag;
1806
1807 ki->p_pid = p->p_pid;
1808 if (p->p_pptr)
1809 ki->p_ppid = p->p_pptr->p_pid;
1810 else
1811 ki->p_ppid = 0;
1812 ki->p_sid = p->p_session->s_sid;
1813 ki->p__pgid = p->p_pgrp->pg_id;
1814
1815 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1816
1817 ki->p_uid = p->p_ucred->cr_uid;
1818 ki->p_ruid = p->p_cred->p_ruid;
1819 ki->p_gid = p->p_ucred->cr_gid;
1820 ki->p_rgid = p->p_cred->p_rgid;
1821
1822 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1823 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1824 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1825
1826 ki->p_jobc = p->p_pgrp->pg_jobc;
1827 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1828 ki->p_tdev = tp->t_dev;
1829 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1830 ki->p_tsess = PTRTOINT64(tp->t_session);
1831 } else {
1832 ki->p_tdev = NODEV;
1833 }
1834
1835 ki->p_estcpu = p->p_estcpu;
1836 ki->p_rtime_sec = p->p_rtime.tv_sec;
1837 ki->p_rtime_usec = p->p_rtime.tv_usec;
1838 ki->p_cpticks = p->p_cpticks;
1839 ki->p_pctcpu = p->p_pctcpu;
1840
1841 ki->p_uticks = p->p_uticks;
1842 ki->p_sticks = p->p_sticks;
1843 ki->p_iticks = p->p_iticks;
1844
1845 ki->p_tracep = PTRTOINT64(p->p_tracep);
1846 ki->p_traceflag = p->p_traceflag;
1847
1848
1849 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1850 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1851 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1852 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1853
1854 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
1855 ki->p_realstat = p->p_stat;
1856 ki->p_nice = p->p_nice;
1857
1858 ki->p_xstat = p->p_xstat;
1859 ki->p_acflag = p->p_acflag;
1860
1861 strncpy(ki->p_comm, p->p_comm,
1862 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1863
1864 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1865
1866 ki->p_nlwps = p->p_nlwps;
1867 ki->p_nrlwps = p->p_nrlwps;
1868 ki->p_realflag = p->p_flag;
1869
1870 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1871 ki->p_vm_rssize = 0;
1872 ki->p_vm_tsize = 0;
1873 ki->p_vm_dsize = 0;
1874 ki->p_vm_ssize = 0;
1875 l = NULL;
1876 } else {
1877 struct vmspace *vm = p->p_vmspace;
1878
1879 ki->p_vm_rssize = vm_resident_count(vm);
1880 ki->p_vm_tsize = vm->vm_tsize;
1881 ki->p_vm_dsize = vm->vm_dsize;
1882 ki->p_vm_ssize = vm->vm_ssize;
1883
1884 /* Pick a "representative" LWP */
1885 l = proc_representative_lwp(p);
1886 ki->p_forw = PTRTOINT64(l->l_forw);
1887 ki->p_back = PTRTOINT64(l->l_back);
1888 ki->p_addr = PTRTOINT64(l->l_addr);
1889 ki->p_stat = l->l_stat;
1890 ki->p_flag |= l->l_flag;
1891 ki->p_swtime = l->l_swtime;
1892 ki->p_slptime = l->l_slptime;
1893 if (l->l_stat == LSONPROC) {
1894 KDASSERT(l->l_cpu != NULL);
1895 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1896 } else
1897 ki->p_schedflags = 0;
1898 ki->p_holdcnt = l->l_holdcnt;
1899 ki->p_priority = l->l_priority;
1900 ki->p_usrpri = l->l_usrpri;
1901 if (l->l_wmesg)
1902 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
1903 ki->p_wchan = PTRTOINT64(l->l_wchan);
1904
1905 }
1906
1907 if (p->p_session->s_ttyvp)
1908 ki->p_eflag |= EPROC_CTTY;
1909 if (SESS_LEADER(p))
1910 ki->p_eflag |= EPROC_SLEADER;
1911
1912 /* XXX Is this double check necessary? */
1913 if (P_ZOMBIE(p)) {
1914 ki->p_uvalid = 0;
1915 } else {
1916 ki->p_uvalid = 1;
1917
1918 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1919 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1920
1921 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1922 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1923 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1924 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1925
1926 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1927 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1928 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1929 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1930 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1931 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1932 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1933 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1934 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1935 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1936 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1937 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1938 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1939 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1940
1941 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1942 p->p_stats->p_cru.ru_stime.tv_sec;
1943 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1944 p->p_stats->p_cru.ru_stime.tv_usec;
1945 }
1946 #ifdef MULTIPROCESSOR
1947 if (l && l->l_cpu != NULL)
1948 ki->p_cpuid = l->l_cpu->ci_cpuid;
1949 else
1950 #endif
1951 ki->p_cpuid = KI_NOCPU;
1952
1953 }
1954
1955 /*
1956 * Fill in a kinfo_lwp structure for the specified lwp.
1957 */
1958 static void
1959 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
1960 {
1961 kl->l_forw = PTRTOINT64(l->l_forw);
1962 kl->l_back = PTRTOINT64(l->l_back);
1963 kl->l_laddr = PTRTOINT64(l);
1964 kl->l_addr = PTRTOINT64(l->l_addr);
1965 kl->l_stat = l->l_stat;
1966 kl->l_lid = l->l_lid;
1967 kl->l_flag = l->l_flag;
1968
1969 kl->l_swtime = l->l_swtime;
1970 kl->l_slptime = l->l_slptime;
1971 if (l->l_stat == LSONPROC) {
1972 KDASSERT(l->l_cpu != NULL);
1973 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1974 } else
1975 kl->l_schedflags = 0;
1976 kl->l_holdcnt = l->l_holdcnt;
1977 kl->l_priority = l->l_priority;
1978 kl->l_usrpri = l->l_usrpri;
1979 if (l->l_wmesg)
1980 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
1981 kl->l_wchan = PTRTOINT64(l->l_wchan);
1982 #ifdef MULTIPROCESSOR
1983 if (l->l_cpu != NULL)
1984 kl->l_cpuid = l->l_cpu->ci_cpuid;
1985 else
1986 #endif
1987 kl->l_cpuid = KI_NOCPU;
1988 }
1989
1990 int
1991 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1992 struct proc *up)
1993 {
1994 struct ps_strings pss;
1995 struct proc *p;
1996 size_t len, upper_bound, xlen, i;
1997 struct uio auio;
1998 struct iovec aiov;
1999 vaddr_t argv;
2000 pid_t pid;
2001 int nargv, type, error;
2002 char *arg;
2003 char *tmp;
2004
2005 if (namelen != 2)
2006 return (EINVAL);
2007 pid = name[0];
2008 type = name[1];
2009
2010 switch (type) {
2011 case KERN_PROC_ARGV:
2012 case KERN_PROC_NARGV:
2013 case KERN_PROC_ENV:
2014 case KERN_PROC_NENV:
2015 /* ok */
2016 break;
2017 default:
2018 return (EINVAL);
2019 }
2020
2021 /* check pid */
2022 if ((p = pfind(pid)) == NULL)
2023 return (EINVAL);
2024
2025 /* only root or same user change look at the environment */
2026 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2027 if (up->p_ucred->cr_uid != 0) {
2028 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
2029 up->p_cred->p_ruid != p->p_cred->p_svuid)
2030 return (EPERM);
2031 }
2032 }
2033
2034 if (sizep != NULL && where == NULL) {
2035 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2036 *sizep = sizeof (int);
2037 else
2038 *sizep = ARG_MAX; /* XXX XXX XXX */
2039 return (0);
2040 }
2041 if (where == NULL || sizep == NULL)
2042 return (EINVAL);
2043
2044 /*
2045 * Zombies don't have a stack, so we can't read their psstrings.
2046 * System processes also don't have a user stack.
2047 */
2048 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
2049 return (EINVAL);
2050
2051 /*
2052 * Lock the process down in memory.
2053 */
2054 /* XXXCDC: how should locking work here? */
2055 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
2056 return (EFAULT);
2057
2058 p->p_vmspace->vm_refcnt++; /* XXX */
2059
2060 /*
2061 * Allocate a temporary buffer to hold the arguments.
2062 */
2063 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2064
2065 /*
2066 * Read in the ps_strings structure.
2067 */
2068 aiov.iov_base = &pss;
2069 aiov.iov_len = sizeof(pss);
2070 auio.uio_iov = &aiov;
2071 auio.uio_iovcnt = 1;
2072 auio.uio_offset = (vaddr_t)p->p_psstr;
2073 auio.uio_resid = sizeof(pss);
2074 auio.uio_segflg = UIO_SYSSPACE;
2075 auio.uio_rw = UIO_READ;
2076 auio.uio_procp = NULL;
2077 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2078 if (error)
2079 goto done;
2080
2081 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2082 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
2083 else
2084 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
2085 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2086 error = copyout(&nargv, where, sizeof(nargv));
2087 *sizep = sizeof(nargv);
2088 goto done;
2089 }
2090 /*
2091 * Now read the address of the argument vector.
2092 */
2093 switch (type) {
2094 case KERN_PROC_ARGV:
2095 /* XXX compat32 stuff here */
2096 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
2097 break;
2098 case KERN_PROC_ENV:
2099 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
2100 break;
2101 default:
2102 return (EINVAL);
2103 }
2104 auio.uio_offset = (off_t)(long)tmp;
2105 aiov.iov_base = &argv;
2106 aiov.iov_len = sizeof(argv);
2107 auio.uio_iov = &aiov;
2108 auio.uio_iovcnt = 1;
2109 auio.uio_resid = sizeof(argv);
2110 auio.uio_segflg = UIO_SYSSPACE;
2111 auio.uio_rw = UIO_READ;
2112 auio.uio_procp = NULL;
2113 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2114 if (error)
2115 goto done;
2116
2117 /*
2118 * Now copy in the actual argument vector, one page at a time,
2119 * since we don't know how long the vector is (though, we do
2120 * know how many NUL-terminated strings are in the vector).
2121 */
2122 len = 0;
2123 upper_bound = *sizep;
2124 for (; nargv != 0 && len < upper_bound; len += xlen) {
2125 aiov.iov_base = arg;
2126 aiov.iov_len = PAGE_SIZE;
2127 auio.uio_iov = &aiov;
2128 auio.uio_iovcnt = 1;
2129 auio.uio_offset = argv + len;
2130 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2131 auio.uio_resid = xlen;
2132 auio.uio_segflg = UIO_SYSSPACE;
2133 auio.uio_rw = UIO_READ;
2134 auio.uio_procp = NULL;
2135 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2136 if (error)
2137 goto done;
2138
2139 for (i = 0; i < xlen && nargv != 0; i++) {
2140 if (arg[i] == '\0')
2141 nargv--; /* one full string */
2142 }
2143
2144 /*
2145 * Make sure we don't copyout past the end of the user's
2146 * buffer.
2147 */
2148 if (len + i > upper_bound)
2149 i = upper_bound - len;
2150
2151 error = copyout(arg, (char *)where + len, i);
2152 if (error)
2153 break;
2154
2155 if (nargv == 0) {
2156 len += i;
2157 break;
2158 }
2159 }
2160 *sizep = len;
2161
2162 done:
2163 uvmspace_free(p->p_vmspace);
2164
2165 free(arg, M_TEMP);
2166 return (error);
2167 }
2168
2169 #if NPTY > 0
2170 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
2171
2172 /*
2173 * Validate parameters and get old / set new parameters
2174 * for pty sysctl function.
2175 */
2176 static int
2177 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2178 {
2179 int error = 0;
2180 int oldmax = 0, newmax = 0;
2181
2182 /* get current value of maxptys */
2183 oldmax = pty_maxptys(0, 0);
2184
2185 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
2186
2187 if (!error && newp) {
2188 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
2189 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
2190
2191 if (newmax != pty_maxptys(newmax, (newp != NULL)))
2192 return (EINVAL);
2193
2194 }
2195
2196 return (error);
2197 }
2198 #endif /* NPTY > 0 */
2199
2200 static int
2201 sysctl_dotkstat(name, namelen, where, sizep, newp)
2202 int *name;
2203 u_int namelen;
2204 void *where;
2205 size_t *sizep;
2206 void *newp;
2207 {
2208 /* all sysctl names at this level are terminal */
2209 if (namelen != 1)
2210 return (ENOTDIR); /* overloaded */
2211
2212 switch (name[0]) {
2213 case KERN_TKSTAT_NIN:
2214 return (sysctl_rdquad(where, sizep, newp, tk_nin));
2215 case KERN_TKSTAT_NOUT:
2216 return (sysctl_rdquad(where, sizep, newp, tk_nout));
2217 case KERN_TKSTAT_CANCC:
2218 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
2219 case KERN_TKSTAT_RAWCC:
2220 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
2221 default:
2222 return (EOPNOTSUPP);
2223 }
2224 }
2225