kern_sysctl.c revision 1.127 1 /* $NetBSD: kern_sysctl.c,v 1.127 2003/02/27 01:39:56 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.127 2003/02/27 01:39:56 thorpej Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 #include "rnd.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/buf.h>
60 #include <sys/device.h>
61 #include <sys/disklabel.h>
62 #include <sys/dkstat.h>
63 #include <sys/exec.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/msgbuf.h>
69 #include <sys/pool.h>
70 #include <sys/proc.h>
71 #include <sys/resource.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sa.h>
74 #include <sys/syscallargs.h>
75 #include <sys/tty.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/socketvar.h>
79 #define __SYSCTL_PRIVATE
80 #include <sys/sysctl.h>
81 #include <sys/lock.h>
82 #include <sys/namei.h>
83
84 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
85 #include <sys/ipc.h>
86 #endif
87 #ifdef SYSVMSG
88 #include <sys/msg.h>
89 #endif
90 #ifdef SYSVSEM
91 #include <sys/sem.h>
92 #endif
93 #ifdef SYSVSHM
94 #include <sys/shm.h>
95 #endif
96
97 #include <dev/cons.h>
98
99 #if defined(DDB)
100 #include <ddb/ddbvar.h>
101 #endif
102
103 #ifndef PIPE_SOCKETPAIR
104 #include <sys/pipe.h>
105 #endif
106
107 #if NRND > 0
108 #include <sys/rnd.h>
109 #endif
110
111 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
112
113 static int sysctl_file(void *, size_t *);
114 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
115 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
116 #endif
117 static int sysctl_msgbuf(void *, size_t *);
118 static int sysctl_doeproc(int *, u_int, void *, size_t *);
119 static int sysctl_dolwp(int *, u_int, void *, size_t *);
120 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
121 #ifdef MULTIPROCESSOR
122 static int sysctl_docptime(void *, size_t *, void *);
123 static int sysctl_ncpus(void);
124 #endif
125 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
126 static void fill_lwp(struct lwp *, struct kinfo_lwp *);
127 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
128 #if NPTY > 0
129 static int sysctl_pty(void *, size_t *, void *, size_t);
130 #endif
131
132 /*
133 * The `sysctl_memlock' is intended to keep too many processes from
134 * locking down memory by doing sysctls at once. Whether or not this
135 * is really a good idea to worry about it probably a subject of some
136 * debate.
137 */
138 struct lock sysctl_memlock;
139
140 void
141 sysctl_init(void)
142 {
143
144 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
145 }
146
147 int
148 sys___sysctl(struct lwp *l, void *v, register_t *retval)
149 {
150 struct sys___sysctl_args /* {
151 syscallarg(int *) name;
152 syscallarg(u_int) namelen;
153 syscallarg(void *) old;
154 syscallarg(size_t *) oldlenp;
155 syscallarg(void *) new;
156 syscallarg(size_t) newlen;
157 } */ *uap = v;
158 struct proc *p = l->l_proc;
159 int error;
160 size_t savelen = 0, oldlen = 0;
161 sysctlfn *fn;
162 int name[CTL_MAXNAME];
163 size_t *oldlenp;
164
165 /*
166 * all top-level sysctl names are non-terminal
167 */
168 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
169 return (EINVAL);
170 error = copyin(SCARG(uap, name), &name,
171 SCARG(uap, namelen) * sizeof(int));
172 if (error)
173 return (error);
174
175 /*
176 * For all but CTL_PROC, must be root to change a value.
177 * For CTL_PROC, must be root, or owner of the proc (and not suid),
178 * this is checked in proc_sysctl() (once we know the targer proc).
179 */
180 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
181 (error = suser(p->p_ucred, &p->p_acflag)))
182 return error;
183
184 switch (name[0]) {
185 case CTL_KERN:
186 fn = kern_sysctl;
187 break;
188 case CTL_HW:
189 fn = hw_sysctl;
190 break;
191 case CTL_VM:
192 fn = uvm_sysctl;
193 break;
194 case CTL_NET:
195 fn = net_sysctl;
196 break;
197 case CTL_VFS:
198 fn = vfs_sysctl;
199 break;
200 case CTL_MACHDEP:
201 fn = cpu_sysctl;
202 break;
203 #ifdef DEBUG
204 case CTL_DEBUG:
205 fn = debug_sysctl;
206 break;
207 #endif
208 #ifdef DDB
209 case CTL_DDB:
210 fn = ddb_sysctl;
211 break;
212 #endif
213 case CTL_PROC:
214 fn = proc_sysctl;
215 break;
216
217 case CTL_EMUL:
218 fn = emul_sysctl;
219 break;
220 default:
221 return (EOPNOTSUPP);
222 }
223
224 /*
225 * XXX Hey, we wire `old', but what about `new'?
226 */
227
228 oldlenp = SCARG(uap, oldlenp);
229 if (oldlenp) {
230 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
231 return (error);
232 oldlenp = &oldlen;
233 }
234 if (SCARG(uap, old) != NULL) {
235 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
236 if (error)
237 return (error);
238 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
239 if (error) {
240 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
241 return error;
242 }
243 savelen = oldlen;
244 }
245 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
246 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
247 if (SCARG(uap, old) != NULL) {
248 uvm_vsunlock(p, SCARG(uap, old), savelen);
249 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
250 }
251 if (error)
252 return (error);
253 if (SCARG(uap, oldlenp))
254 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
255 return (error);
256 }
257
258 /*
259 * Attributes stored in the kernel.
260 */
261 char hostname[MAXHOSTNAMELEN];
262 int hostnamelen;
263
264 char domainname[MAXHOSTNAMELEN];
265 int domainnamelen;
266
267 long hostid;
268
269 #ifdef INSECURE
270 int securelevel = -1;
271 #else
272 int securelevel = 0;
273 #endif
274
275 #ifndef DEFCORENAME
276 #define DEFCORENAME "%n.core"
277 #endif
278 char defcorename[MAXPATHLEN] = DEFCORENAME;
279 int defcorenamelen = sizeof(DEFCORENAME);
280
281 extern int kern_logsigexit;
282 extern fixpt_t ccpu;
283 extern int forkfsleep;
284 extern int dumponpanic;
285
286 #ifndef MULTIPROCESSOR
287 #define sysctl_ncpus() 1
288 #endif
289
290 #ifdef MULTIPROCESSOR
291
292 #ifndef CPU_INFO_FOREACH
293 #define CPU_INFO_ITERATOR int
294 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
295 #endif
296
297 static int
298 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
299 {
300 u_int64_t cp_time[CPUSTATES];
301 int i;
302 struct cpu_info *ci;
303 CPU_INFO_ITERATOR cii;
304
305 for (i = 0; i < CPUSTATES; i++)
306 cp_time[i] = 0;
307
308 for (CPU_INFO_FOREACH(cii, ci)) {
309 for (i = 0; i < CPUSTATES; i++)
310 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
311 }
312 return (sysctl_rdstruct(oldp, oldlenp, newp,
313 cp_time, sizeof(cp_time)));
314 }
315
316 static int
317 sysctl_ncpus(void)
318 {
319 struct cpu_info *ci;
320 CPU_INFO_ITERATOR cii;
321
322 int ncpus = 0;
323 for (CPU_INFO_FOREACH(cii, ci))
324 ncpus++;
325 return ncpus;
326 }
327
328 #endif
329
330 /*
331 * kernel related system variables.
332 */
333 int
334 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
335 void *newp, size_t newlen, struct proc *p)
336 {
337 int error, level, inthostid;
338 int old_autonicetime;
339 int old_vnodes;
340 dev_t consdev;
341 #if NRND > 0
342 int v;
343 #endif
344
345 /* All sysctl names at this level, except for a few, are terminal. */
346 switch (name[0]) {
347 case KERN_PROC:
348 case KERN_PROC2:
349 case KERN_LWP:
350 case KERN_PROF:
351 case KERN_MBUF:
352 case KERN_PROC_ARGS:
353 case KERN_SYSVIPC_INFO:
354 case KERN_PIPE:
355 case KERN_TKSTAT:
356 /* Not terminal. */
357 break;
358 default:
359 if (namelen != 1)
360 return (ENOTDIR); /* overloaded */
361 }
362
363 switch (name[0]) {
364 case KERN_OSTYPE:
365 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
366 case KERN_OSRELEASE:
367 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
368 case KERN_OSREV:
369 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
370 case KERN_VERSION:
371 return (sysctl_rdstring(oldp, oldlenp, newp, version));
372 case KERN_MAXVNODES:
373 old_vnodes = desiredvnodes;
374 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
375 if (newp && !error) {
376 if (old_vnodes > desiredvnodes) {
377 desiredvnodes = old_vnodes;
378 return (EINVAL);
379 }
380 vfs_reinit();
381 nchreinit();
382 }
383 return (error);
384 case KERN_MAXPROC:
385 {
386 int nmaxproc = maxproc;
387
388 error = (sysctl_int(oldp, oldlenp, newp, newlen, &nmaxproc));
389
390 if (!error && newp) {
391 if (nmaxproc < 0 || nmaxproc >= PID_MAX - PID_SKIP)
392 return (EINVAL);
393
394 #ifdef __HAVE_CPU_MAXPROC
395 if (nmaxproc > cpu_maxproc())
396 return (EINVAL);
397 #endif
398 maxproc = nmaxproc;
399 }
400
401 return (error);
402 }
403 case KERN_MAXFILES:
404 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
405 case KERN_ARGMAX:
406 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
407 case KERN_SECURELVL:
408 level = securelevel;
409 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
410 newp == NULL)
411 return (error);
412 if (level < securelevel && p->p_pid != 1)
413 return (EPERM);
414 securelevel = level;
415 return (0);
416 case KERN_HOSTNAME:
417 error = sysctl_string(oldp, oldlenp, newp, newlen,
418 hostname, sizeof(hostname));
419 if (newp && !error)
420 hostnamelen = newlen;
421 return (error);
422 case KERN_DOMAINNAME:
423 error = sysctl_string(oldp, oldlenp, newp, newlen,
424 domainname, sizeof(domainname));
425 if (newp && !error)
426 domainnamelen = newlen;
427 return (error);
428 case KERN_HOSTID:
429 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
430 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
431 if (newp && !error)
432 hostid = inthostid;
433 return (error);
434 case KERN_CLOCKRATE:
435 return (sysctl_clockrate(oldp, oldlenp));
436 case KERN_BOOTTIME:
437 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
438 sizeof(struct timeval)));
439 case KERN_VNODE:
440 return (sysctl_vnode(oldp, oldlenp, p));
441 case KERN_PROC:
442 case KERN_PROC2:
443 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
444 case KERN_LWP:
445 return (sysctl_dolwp(name, namelen, oldp, oldlenp));
446 case KERN_PROC_ARGS:
447 return (sysctl_procargs(name + 1, namelen - 1,
448 oldp, oldlenp, p));
449 case KERN_FILE:
450 return (sysctl_file(oldp, oldlenp));
451 #ifdef GPROF
452 case KERN_PROF:
453 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
454 newp, newlen));
455 #endif
456 case KERN_POSIX1:
457 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
458 case KERN_NGROUPS:
459 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
460 case KERN_JOB_CONTROL:
461 return (sysctl_rdint(oldp, oldlenp, newp, 1));
462 case KERN_SAVED_IDS:
463 #ifdef _POSIX_SAVED_IDS
464 return (sysctl_rdint(oldp, oldlenp, newp, 1));
465 #else
466 return (sysctl_rdint(oldp, oldlenp, newp, 0));
467 #endif
468 case KERN_MAXPARTITIONS:
469 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
470 case KERN_RAWPARTITION:
471 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
472 #ifdef NTP
473 case KERN_NTPTIME:
474 return (sysctl_ntptime(oldp, oldlenp));
475 #endif
476 case KERN_AUTONICETIME:
477 old_autonicetime = autonicetime;
478 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
479 if (autonicetime < 0)
480 autonicetime = old_autonicetime;
481 return (error);
482 case KERN_AUTONICEVAL:
483 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
484 if (autoniceval < PRIO_MIN)
485 autoniceval = PRIO_MIN;
486 if (autoniceval > PRIO_MAX)
487 autoniceval = PRIO_MAX;
488 return (error);
489 case KERN_RTC_OFFSET:
490 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
491 case KERN_ROOT_DEVICE:
492 return (sysctl_rdstring(oldp, oldlenp, newp,
493 root_device->dv_xname));
494 case KERN_MSGBUFSIZE:
495 /*
496 * deal with cases where the message buffer has
497 * become corrupted.
498 */
499 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
500 msgbufenabled = 0;
501 return (ENXIO);
502 }
503 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
504 case KERN_FSYNC:
505 return (sysctl_rdint(oldp, oldlenp, newp, 1));
506 case KERN_SYSVMSG:
507 #ifdef SYSVMSG
508 return (sysctl_rdint(oldp, oldlenp, newp, 1));
509 #else
510 return (sysctl_rdint(oldp, oldlenp, newp, 0));
511 #endif
512 case KERN_SYSVSEM:
513 #ifdef SYSVSEM
514 return (sysctl_rdint(oldp, oldlenp, newp, 1));
515 #else
516 return (sysctl_rdint(oldp, oldlenp, newp, 0));
517 #endif
518 case KERN_SYSVSHM:
519 #ifdef SYSVSHM
520 return (sysctl_rdint(oldp, oldlenp, newp, 1));
521 #else
522 return (sysctl_rdint(oldp, oldlenp, newp, 0));
523 #endif
524 case KERN_DEFCORENAME:
525 if (newp && newlen < 1)
526 return (EINVAL);
527 error = sysctl_string(oldp, oldlenp, newp, newlen,
528 defcorename, sizeof(defcorename));
529 if (newp && !error)
530 defcorenamelen = newlen;
531 return (error);
532 case KERN_SYNCHRONIZED_IO:
533 return (sysctl_rdint(oldp, oldlenp, newp, 1));
534 case KERN_IOV_MAX:
535 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
536 case KERN_MBUF:
537 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
538 newp, newlen));
539 case KERN_MAPPED_FILES:
540 return (sysctl_rdint(oldp, oldlenp, newp, 1));
541 case KERN_MEMLOCK:
542 return (sysctl_rdint(oldp, oldlenp, newp, 1));
543 case KERN_MEMLOCK_RANGE:
544 return (sysctl_rdint(oldp, oldlenp, newp, 1));
545 case KERN_MEMORY_PROTECTION:
546 return (sysctl_rdint(oldp, oldlenp, newp, 1));
547 case KERN_LOGIN_NAME_MAX:
548 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
549 case KERN_LOGSIGEXIT:
550 return (sysctl_int(oldp, oldlenp, newp, newlen,
551 &kern_logsigexit));
552 case KERN_FSCALE:
553 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
554 case KERN_CCPU:
555 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
556 case KERN_CP_TIME:
557 #ifndef MULTIPROCESSOR
558 return (sysctl_rdstruct(oldp, oldlenp, newp,
559 curcpu()->ci_schedstate.spc_cp_time,
560 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
561 #else
562 return (sysctl_docptime(oldp, oldlenp, newp));
563 #endif
564 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
565 case KERN_SYSVIPC_INFO:
566 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
567 #endif
568 case KERN_MSGBUF:
569 return (sysctl_msgbuf(oldp, oldlenp));
570 case KERN_CONSDEV:
571 if (cn_tab != NULL)
572 consdev = cn_tab->cn_dev;
573 else
574 consdev = NODEV;
575 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
576 sizeof consdev));
577 #if NPTY > 0
578 case KERN_MAXPTYS:
579 return sysctl_pty(oldp, oldlenp, newp, newlen);
580 #endif
581 #ifndef PIPE_SOCKETPAIR
582 case KERN_PIPE:
583 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
584 newp, newlen));
585 #endif
586 case KERN_MAXPHYS:
587 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
588 case KERN_SBMAX:
589 {
590 int new_sbmax = sb_max;
591
592 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
593 if (newp && !error) {
594 if (new_sbmax < (16 * 1024)) /* sanity */
595 return (EINVAL);
596 sb_max = new_sbmax;
597 }
598 return (error);
599 }
600 case KERN_TKSTAT:
601 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
602 newp));
603 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
604 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
605 case KERN_URND:
606 #if NRND > 0
607 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
608 sizeof(v))
609 return (sysctl_rdint(oldp, oldlenp, newp, v));
610 else
611 return (EIO); /*XXX*/
612 #else
613 return (EOPNOTSUPP);
614 #endif
615 case KERN_LABELSECTOR:
616 return (sysctl_rdint(oldp, oldlenp, newp, LABELSECTOR));
617 case KERN_LABELOFFSET:
618 return (sysctl_rdint(oldp, oldlenp, newp, LABELOFFSET));
619 case KERN_FORKFSLEEP:
620 {
621 /* userland sees value in ms, internally is in ticks */
622 int timo, lsleep = forkfsleep * 1000 / hz;
623
624 error = (sysctl_int(oldp, oldlenp, newp, newlen, &lsleep));
625 if (newp && !error) {
626 /* refuse negative values, and overly 'long time' */
627 if (lsleep < 0 || lsleep > MAXSLP * 1000)
628 return (EINVAL);
629
630 timo = mstohz(lsleep);
631
632 /* if the interval is >0 ms && <1 tick, use 1 tick */
633 if (lsleep != 0 && timo == 0)
634 forkfsleep = 1;
635 else
636 forkfsleep = timo;
637 }
638 return (error);
639 }
640 case KERN_POSIX_THREADS: /* XXX _POSIX_VERSION */
641 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
642 case KERN_POSIX_SEMAPHORES: /* XXX _POSIX_VERSION */
643 #ifdef P1003_1B_SEMAPHORE
644 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
645 #else
646 return (sysctl_rdint(oldp, oldlenp, newp, 0));
647 #endif
648 case KERN_POSIX_BARRIERS: /* XXX _POSIX_VERSION */
649 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
650 case KERN_POSIX_TIMERS: /* XXX _POSIX_VERSION */
651 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
652 case KERN_POSIX_SPIN_LOCKS: /* XXX _POSIX_VERSION */
653 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
654 case KERN_POSIX_READER_WRITER_LOCKS: /* XXX _POSIX_VERSION */
655 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
656 case KERN_DUMP_ON_PANIC:
657 return (sysctl_int(oldp, oldlenp, newp, newlen, &dumponpanic));
658
659 default:
660 return (EOPNOTSUPP);
661 }
662 /* NOTREACHED */
663 }
664
665 /*
666 * hardware related system variables.
667 */
668 int
669 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
670 void *newp, size_t newlen, struct proc *p)
671 {
672
673 /* All sysctl names at this level, except for a few, are terminal. */
674 switch (name[0]) {
675 case HW_DISKSTATS:
676 /* Not terminal. */
677 break;
678 default:
679 if (namelen != 1)
680 return (ENOTDIR); /* overloaded */
681 }
682
683 switch (name[0]) {
684 case HW_MACHINE:
685 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
686 case HW_MACHINE_ARCH:
687 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
688 case HW_MODEL:
689 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
690 case HW_NCPU:
691 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
692 case HW_BYTEORDER:
693 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
694 case HW_PHYSMEM:
695 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
696 case HW_PHYSPAGES:
697 return (sysctl_rdquad(oldp, oldlenp, newp, physmem));
698 case HW_USERMEM:
699 return (sysctl_rdint(oldp, oldlenp, newp,
700 ctob(physmem - uvmexp.wired)));
701 case HW_USERPAGES:
702 return (sysctl_rdquad(oldp, oldlenp, newp,
703 physmem - uvmexp.wired));
704 case HW_PAGESIZE:
705 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
706 case HW_ALIGNBYTES:
707 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
708 case HW_DISKNAMES:
709 return (sysctl_disknames(oldp, oldlenp));
710 case HW_DISKSTATS:
711 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
712 case HW_CNMAGIC: {
713 char magic[CNS_LEN];
714 int error;
715
716 if (oldp)
717 cn_get_magic(magic, CNS_LEN);
718 error = sysctl_string(oldp, oldlenp, newp, newlen,
719 magic, sizeof(magic));
720 if (newp && !error) {
721 error = cn_set_magic(magic);
722 }
723 return (error);
724 }
725 default:
726 return (EOPNOTSUPP);
727 }
728 /* NOTREACHED */
729 }
730
731 #ifdef DEBUG
732 /*
733 * Debugging related system variables.
734 */
735 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
736 struct ctldebug debug5, debug6, debug7, debug8, debug9;
737 struct ctldebug debug10, debug11, debug12, debug13, debug14;
738 struct ctldebug debug15, debug16, debug17, debug18, debug19;
739 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
740 &debug0, &debug1, &debug2, &debug3, &debug4,
741 &debug5, &debug6, &debug7, &debug8, &debug9,
742 &debug10, &debug11, &debug12, &debug13, &debug14,
743 &debug15, &debug16, &debug17, &debug18, &debug19,
744 };
745
746 int
747 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
748 void *newp, size_t newlen, struct proc *p)
749 {
750 struct ctldebug *cdp;
751
752 /* all sysctl names at this level are name and field */
753 if (namelen != 2)
754 return (ENOTDIR); /* overloaded */
755 if (name[0] >= CTL_DEBUG_MAXID)
756 return (EOPNOTSUPP);
757 cdp = debugvars[name[0]];
758 if (cdp->debugname == 0)
759 return (EOPNOTSUPP);
760 switch (name[1]) {
761 case CTL_DEBUG_NAME:
762 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
763 case CTL_DEBUG_VALUE:
764 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
765 default:
766 return (EOPNOTSUPP);
767 }
768 /* NOTREACHED */
769 }
770 #endif /* DEBUG */
771
772 int
773 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
774 void *newp, size_t newlen, struct proc *p)
775 {
776 struct proc *ptmp = NULL;
777 const struct proclist_desc *pd;
778 int error = 0;
779 struct rlimit alim;
780 struct plimit *newplim;
781 char *tmps = NULL;
782 size_t len, curlen;
783 u_int i;
784
785 if (namelen < 2)
786 return EINVAL;
787
788 if (name[0] == PROC_CURPROC) {
789 ptmp = p;
790 } else {
791 proclist_lock_read();
792 for (pd = proclists; pd->pd_list != NULL; pd++) {
793 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
794 ptmp = LIST_NEXT(ptmp, p_list)) {
795 /* Skip embryonic processes. */
796 if (ptmp->p_stat == SIDL)
797 continue;
798 if (ptmp->p_pid == (pid_t)name[0])
799 break;
800 }
801 if (ptmp != NULL)
802 break;
803 }
804 proclist_unlock_read();
805 if (ptmp == NULL)
806 return(ESRCH);
807 if (p->p_ucred->cr_uid != 0) {
808 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
809 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
810 return EPERM;
811 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
812 return EPERM; /* sgid proc */
813 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
814 if (p->p_ucred->cr_groups[i] ==
815 ptmp->p_cred->p_rgid)
816 break;
817 }
818 if (i == p->p_ucred->cr_ngroups)
819 return EPERM;
820 }
821 }
822 switch(name[1]) {
823 case PROC_PID_STOPFORK:
824 if (namelen != 2)
825 return EINVAL;
826 i = ((ptmp->p_flag & P_STOPFORK) != 0);
827 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
828 return error;
829 if (i != 0)
830 ptmp->p_flag |= P_STOPFORK;
831 else
832 ptmp->p_flag &= ~P_STOPFORK;
833 return 0;
834 break;
835
836 case PROC_PID_STOPEXEC:
837 if (namelen != 2)
838 return EINVAL;
839 i = ((ptmp->p_flag & P_STOPEXEC) != 0);
840 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
841 return error;
842 if (i != 0)
843 ptmp->p_flag |= P_STOPEXEC;
844 else
845 ptmp->p_flag &= ~P_STOPEXEC;
846 return 0;
847 break;
848
849 case PROC_PID_CORENAME:
850 if (namelen != 2)
851 return EINVAL;
852 /*
853 * Can't use sysctl_string() here because we may malloc a new
854 * area during the process, so we have to do it by hand.
855 */
856 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
857 if (oldlenp && *oldlenp < curlen) {
858 if (!oldp)
859 *oldlenp = curlen;
860 return (ENOMEM);
861 }
862 if (newp) {
863 if (securelevel > 2)
864 return EPERM;
865 if (newlen > MAXPATHLEN)
866 return ENAMETOOLONG;
867 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
868 if (tmps == NULL)
869 return ENOMEM;
870 error = copyin(newp, tmps, newlen + 1);
871 tmps[newlen] = '\0';
872 if (error)
873 goto cleanup;
874 /* Enforce to be either 'core' for end with '.core' */
875 if (newlen < 4) { /* c.o.r.e */
876 error = EINVAL;
877 goto cleanup;
878 }
879 len = newlen - 4;
880 if (len > 0) {
881 if (tmps[len - 1] != '.' &&
882 tmps[len - 1] != '/') {
883 error = EINVAL;
884 goto cleanup;
885 }
886 }
887 if (strcmp(&tmps[len], "core") != 0) {
888 error = EINVAL;
889 goto cleanup;
890 }
891 }
892 if (oldp && oldlenp) {
893 *oldlenp = curlen;
894 error = copyout(ptmp->p_limit->pl_corename, oldp,
895 curlen);
896 }
897 if (newp && error == 0) {
898 /* if the 2 strings are identical, don't limcopy() */
899 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
900 error = 0;
901 goto cleanup;
902 }
903 if (ptmp->p_limit->p_refcnt > 1 &&
904 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
905 newplim = limcopy(ptmp->p_limit);
906 limfree(ptmp->p_limit);
907 ptmp->p_limit = newplim;
908 }
909 if (ptmp->p_limit->pl_corename != defcorename) {
910 free(ptmp->p_limit->pl_corename, M_TEMP);
911 }
912 ptmp->p_limit->pl_corename = tmps;
913 return (0);
914 }
915 cleanup:
916 if (tmps)
917 free(tmps, M_TEMP);
918 return (error);
919 break;
920
921 case PROC_PID_LIMIT:
922 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
923 return EINVAL;
924 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
925 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
926 error = sysctl_quad(oldp, oldlenp, newp, newlen,
927 &alim.rlim_max);
928 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
929 error = sysctl_quad(oldp, oldlenp, newp, newlen,
930 &alim.rlim_cur);
931 else
932 error = EINVAL;
933
934 if (error)
935 return error;
936
937 if (newp)
938 error = dosetrlimit(ptmp, p->p_cred,
939 name[2] - 1, &alim);
940 return error;
941 break;
942
943 default:
944 return (EINVAL);
945 break;
946 }
947 /* NOTREACHED */
948 return (EINVAL);
949 }
950
951 int
952 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
953 void *newp, size_t newlen, struct proc *p)
954 {
955 static struct {
956 const char *name;
957 int type;
958 } emulations[] = CTL_EMUL_NAMES;
959 const struct emul *e;
960 const char *ename;
961 #ifdef LKM
962 extern struct lock exec_lock; /* XXX */
963 int error;
964 #else
965 extern int nexecs_builtin;
966 extern const struct execsw execsw_builtin[];
967 int i;
968 #endif
969
970 /* all sysctl names at this level are name and field */
971 if (namelen < 2)
972 return (ENOTDIR); /* overloaded */
973
974 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
975 return (EOPNOTSUPP);
976
977 ename = emulations[name[0]].name;
978
979 #ifdef LKM
980 lockmgr(&exec_lock, LK_SHARED, NULL);
981 if ((e = emul_search(ename))) {
982 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
983 newp, newlen, p);
984 } else
985 error = EOPNOTSUPP;
986 lockmgr(&exec_lock, LK_RELEASE, NULL);
987
988 return (error);
989 #else
990 for (i = 0; i < nexecs_builtin; i++) {
991 e = execsw_builtin[i].es_emul;
992 /*
993 * In order to match e.g. e->e_name "irix o32" with ename "irix",
994 * we limit the comparison to the length of ename.
995 */
996 if (e == NULL || strncmp(ename, e->e_name, strlen(ename)) != 0 ||
997 e->e_sysctl == NULL)
998 continue;
999
1000 return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
1001 newp, newlen, p);
1002 }
1003
1004 return (EOPNOTSUPP);
1005 #endif
1006 }
1007 /*
1008 * Convenience macros.
1009 */
1010
1011 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
1012 if (oldlenp) { \
1013 if (!oldp) \
1014 *oldlenp = len; \
1015 else { \
1016 if (*oldlenp < len) \
1017 return(ENOMEM); \
1018 *oldlenp = len; \
1019 error = copyout((caddr_t)valp, oldp, len); \
1020 } \
1021 }
1022
1023 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
1024 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
1025
1026 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
1027 if (newp && newlen != len) \
1028 return (EINVAL);
1029
1030 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
1031 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
1032
1033 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
1034 if (error == 0 && newp) \
1035 error = copyin(newp, valp, len);
1036
1037 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
1038 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
1039
1040 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
1041 if (oldlenp) { \
1042 len = strlen(str) + 1; \
1043 if (!oldp) \
1044 *oldlenp = len; \
1045 else { \
1046 if (*oldlenp < len) { \
1047 err2 = ENOMEM; \
1048 len = *oldlenp; \
1049 } else \
1050 *oldlenp = len; \
1051 error = copyout(str, oldp, len);\
1052 if (error == 0) \
1053 error = err2; \
1054 } \
1055 }
1056
1057 /*
1058 * Validate parameters and get old / set new parameters
1059 * for an integer-valued sysctl function.
1060 */
1061 int
1062 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
1063 {
1064 int error = 0;
1065
1066 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1067 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
1068 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
1069
1070 return (error);
1071 }
1072
1073
1074 /*
1075 * As above, but read-only.
1076 */
1077 int
1078 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
1079 {
1080 int error = 0;
1081
1082 if (newp)
1083 return (EPERM);
1084
1085 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
1086
1087 return (error);
1088 }
1089
1090 /*
1091 * Validate parameters and get old / set new parameters
1092 * for an quad-valued sysctl function.
1093 */
1094 int
1095 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1096 quad_t *valp)
1097 {
1098 int error = 0;
1099
1100 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
1101 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
1102 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1103
1104 return (error);
1105 }
1106
1107 /*
1108 * As above, but read-only.
1109 */
1110 int
1111 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1112 {
1113 int error = 0;
1114
1115 if (newp)
1116 return (EPERM);
1117
1118 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1119
1120 return (error);
1121 }
1122
1123 /*
1124 * Validate parameters and get old / set new parameters
1125 * for a string-valued sysctl function.
1126 */
1127 int
1128 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1129 size_t maxlen)
1130 {
1131 int error = 0, err2 = 0;
1132 size_t len;
1133
1134 if (newp && newlen >= maxlen)
1135 return (EINVAL);
1136
1137 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1138
1139 if (error == 0 && newp) {
1140 error = copyin(newp, str, newlen);
1141 str[newlen] = 0;
1142 }
1143 return (error);
1144 }
1145
1146 /*
1147 * As above, but read-only.
1148 */
1149 int
1150 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1151 {
1152 int error = 0, err2 = 0;
1153 size_t len;
1154
1155 if (newp)
1156 return (EPERM);
1157
1158 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1159
1160 return (error);
1161 }
1162
1163 /*
1164 * Validate parameters and get old / set new parameters
1165 * for a structure oriented sysctl function.
1166 */
1167 int
1168 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1169 size_t len)
1170 {
1171 int error = 0;
1172
1173 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1174 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1175 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1176
1177 return (error);
1178 }
1179
1180 /*
1181 * Validate parameters and get old parameters
1182 * for a structure oriented sysctl function.
1183 */
1184 int
1185 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1186 size_t len)
1187 {
1188 int error = 0;
1189
1190 if (newp)
1191 return (EPERM);
1192
1193 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1194
1195 return (error);
1196 }
1197
1198 /*
1199 * As above, but can return a truncated result.
1200 */
1201 int
1202 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1203 size_t len)
1204 {
1205 int error = 0;
1206
1207 if (newp)
1208 return (EPERM);
1209
1210 len = min(*oldlenp, len);
1211 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1212
1213 return (error);
1214 }
1215
1216 /*
1217 * Get file structures.
1218 */
1219 static int
1220 sysctl_file(void *vwhere, size_t *sizep)
1221 {
1222 int error;
1223 size_t buflen;
1224 struct file *fp;
1225 char *start, *where;
1226
1227 start = where = vwhere;
1228 buflen = *sizep;
1229 if (where == NULL) {
1230 /*
1231 * overestimate by 10 files
1232 */
1233 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1234 return (0);
1235 }
1236
1237 /*
1238 * first copyout filehead
1239 */
1240 if (buflen < sizeof(filehead)) {
1241 *sizep = 0;
1242 return (0);
1243 }
1244 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1245 if (error)
1246 return (error);
1247 buflen -= sizeof(filehead);
1248 where += sizeof(filehead);
1249
1250 /*
1251 * followed by an array of file structures
1252 */
1253 LIST_FOREACH(fp, &filehead, f_list) {
1254 if (buflen < sizeof(struct file)) {
1255 *sizep = where - start;
1256 return (ENOMEM);
1257 }
1258 error = copyout((caddr_t)fp, where, sizeof(struct file));
1259 if (error)
1260 return (error);
1261 buflen -= sizeof(struct file);
1262 where += sizeof(struct file);
1263 }
1264 *sizep = where - start;
1265 return (0);
1266 }
1267
1268 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1269 #define FILL_PERM(src, dst) do { \
1270 (dst)._key = (src)._key; \
1271 (dst).uid = (src).uid; \
1272 (dst).gid = (src).gid; \
1273 (dst).cuid = (src).cuid; \
1274 (dst).cgid = (src).cgid; \
1275 (dst).mode = (src).mode; \
1276 (dst)._seq = (src)._seq; \
1277 } while (/*CONSTCOND*/ 0);
1278 #define FILL_MSG(src, dst) do { \
1279 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1280 (dst).msg_qnum = (src).msg_qnum; \
1281 (dst).msg_qbytes = (src).msg_qbytes; \
1282 (dst)._msg_cbytes = (src)._msg_cbytes; \
1283 (dst).msg_lspid = (src).msg_lspid; \
1284 (dst).msg_lrpid = (src).msg_lrpid; \
1285 (dst).msg_stime = (src).msg_stime; \
1286 (dst).msg_rtime = (src).msg_rtime; \
1287 (dst).msg_ctime = (src).msg_ctime; \
1288 } while (/*CONSTCOND*/ 0)
1289 #define FILL_SEM(src, dst) do { \
1290 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1291 (dst).sem_nsems = (src).sem_nsems; \
1292 (dst).sem_otime = (src).sem_otime; \
1293 (dst).sem_ctime = (src).sem_ctime; \
1294 } while (/*CONSTCOND*/ 0)
1295 #define FILL_SHM(src, dst) do { \
1296 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1297 (dst).shm_segsz = (src).shm_segsz; \
1298 (dst).shm_lpid = (src).shm_lpid; \
1299 (dst).shm_cpid = (src).shm_cpid; \
1300 (dst).shm_atime = (src).shm_atime; \
1301 (dst).shm_dtime = (src).shm_dtime; \
1302 (dst).shm_ctime = (src).shm_ctime; \
1303 (dst).shm_nattch = (src).shm_nattch; \
1304 } while (/*CONSTCOND*/ 0)
1305
1306 static int
1307 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1308 {
1309 #ifdef SYSVMSG
1310 struct msg_sysctl_info *msgsi = NULL;
1311 #endif
1312 #ifdef SYSVSEM
1313 struct sem_sysctl_info *semsi = NULL;
1314 #endif
1315 #ifdef SYSVSHM
1316 struct shm_sysctl_info *shmsi = NULL;
1317 #endif
1318 size_t infosize, dssize, tsize, buflen;
1319 void *buf = NULL;
1320 char *start;
1321 int32_t nds;
1322 int i, error, ret;
1323
1324 if (namelen != 1)
1325 return (EINVAL);
1326
1327 start = where;
1328 buflen = *sizep;
1329
1330 switch (*name) {
1331 case KERN_SYSVIPC_MSG_INFO:
1332 #ifdef SYSVMSG
1333 infosize = sizeof(msgsi->msginfo);
1334 nds = msginfo.msgmni;
1335 dssize = sizeof(msgsi->msgids[0]);
1336 break;
1337 #else
1338 return (EINVAL);
1339 #endif
1340 case KERN_SYSVIPC_SEM_INFO:
1341 #ifdef SYSVSEM
1342 infosize = sizeof(semsi->seminfo);
1343 nds = seminfo.semmni;
1344 dssize = sizeof(semsi->semids[0]);
1345 break;
1346 #else
1347 return (EINVAL);
1348 #endif
1349 case KERN_SYSVIPC_SHM_INFO:
1350 #ifdef SYSVSHM
1351 infosize = sizeof(shmsi->shminfo);
1352 nds = shminfo.shmmni;
1353 dssize = sizeof(shmsi->shmids[0]);
1354 break;
1355 #else
1356 return (EINVAL);
1357 #endif
1358 default:
1359 return (EINVAL);
1360 }
1361 /*
1362 * Round infosize to 64 bit boundary if requesting more than just
1363 * the info structure or getting the total data size.
1364 */
1365 if (where == NULL || *sizep > infosize)
1366 infosize = ((infosize + 7) / 8) * 8;
1367 tsize = infosize + nds * dssize;
1368
1369 /* Return just the total size required. */
1370 if (where == NULL) {
1371 *sizep = tsize;
1372 return (0);
1373 }
1374
1375 /* Not enough room for even the info struct. */
1376 if (buflen < infosize) {
1377 *sizep = 0;
1378 return (ENOMEM);
1379 }
1380 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1381 memset(buf, 0, min(tsize, buflen));
1382
1383 switch (*name) {
1384 #ifdef SYSVMSG
1385 case KERN_SYSVIPC_MSG_INFO:
1386 msgsi = (struct msg_sysctl_info *)buf;
1387 msgsi->msginfo = msginfo;
1388 break;
1389 #endif
1390 #ifdef SYSVSEM
1391 case KERN_SYSVIPC_SEM_INFO:
1392 semsi = (struct sem_sysctl_info *)buf;
1393 semsi->seminfo = seminfo;
1394 break;
1395 #endif
1396 #ifdef SYSVSHM
1397 case KERN_SYSVIPC_SHM_INFO:
1398 shmsi = (struct shm_sysctl_info *)buf;
1399 shmsi->shminfo = shminfo;
1400 break;
1401 #endif
1402 }
1403 buflen -= infosize;
1404
1405 ret = 0;
1406 if (buflen > 0) {
1407 /* Fill in the IPC data structures. */
1408 for (i = 0; i < nds; i++) {
1409 if (buflen < dssize) {
1410 ret = ENOMEM;
1411 break;
1412 }
1413 switch (*name) {
1414 #ifdef SYSVMSG
1415 case KERN_SYSVIPC_MSG_INFO:
1416 FILL_MSG(msqids[i], msgsi->msgids[i]);
1417 break;
1418 #endif
1419 #ifdef SYSVSEM
1420 case KERN_SYSVIPC_SEM_INFO:
1421 FILL_SEM(sema[i], semsi->semids[i]);
1422 break;
1423 #endif
1424 #ifdef SYSVSHM
1425 case KERN_SYSVIPC_SHM_INFO:
1426 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1427 break;
1428 #endif
1429 }
1430 buflen -= dssize;
1431 }
1432 }
1433 *sizep -= buflen;
1434 error = copyout(buf, start, *sizep);
1435 /* If copyout succeeded, use return code set earlier. */
1436 if (error == 0)
1437 error = ret;
1438 if (buf)
1439 free(buf, M_TEMP);
1440 return (error);
1441 }
1442 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1443
1444 static int
1445 sysctl_msgbuf(void *vwhere, size_t *sizep)
1446 {
1447 char *where = vwhere;
1448 size_t len, maxlen = *sizep;
1449 long beg, end;
1450 int error;
1451
1452 /*
1453 * deal with cases where the message buffer has
1454 * become corrupted.
1455 */
1456 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1457 msgbufenabled = 0;
1458 return (ENXIO);
1459 }
1460
1461 if (where == NULL) {
1462 /* always return full buffer size */
1463 *sizep = msgbufp->msg_bufs;
1464 return (0);
1465 }
1466
1467 error = 0;
1468 maxlen = min(msgbufp->msg_bufs, maxlen);
1469
1470 /*
1471 * First, copy from the write pointer to the end of
1472 * message buffer.
1473 */
1474 beg = msgbufp->msg_bufx;
1475 end = msgbufp->msg_bufs;
1476 while (maxlen > 0) {
1477 len = min(end - beg, maxlen);
1478 if (len == 0)
1479 break;
1480 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1481 if (error)
1482 break;
1483 where += len;
1484 maxlen -= len;
1485
1486 /*
1487 * ... then, copy from the beginning of message buffer to
1488 * the write pointer.
1489 */
1490 beg = 0;
1491 end = msgbufp->msg_bufx;
1492 }
1493 return (error);
1494 }
1495
1496 /*
1497 * try over estimating by 5 procs
1498 */
1499 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1500
1501 static int
1502 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1503 {
1504 struct eproc eproc;
1505 struct kinfo_proc2 kproc2;
1506 struct kinfo_proc *dp;
1507 struct proc *p;
1508 const struct proclist_desc *pd;
1509 char *where, *dp2;
1510 int type, op, arg;
1511 u_int elem_size, elem_count;
1512 size_t buflen, needed;
1513 int error;
1514
1515 dp = vwhere;
1516 dp2 = where = vwhere;
1517 buflen = where != NULL ? *sizep : 0;
1518 error = 0;
1519 needed = 0;
1520 type = name[0];
1521
1522 if (type == KERN_PROC) {
1523 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1524 return (EINVAL);
1525 op = name[1];
1526 if (op != KERN_PROC_ALL)
1527 arg = name[2];
1528 else
1529 arg = 0; /* Quell compiler warning */
1530 elem_size = elem_count = 0; /* Ditto */
1531 } else {
1532 if (namelen != 5)
1533 return (EINVAL);
1534 op = name[1];
1535 arg = name[2];
1536 elem_size = name[3];
1537 elem_count = name[4];
1538 }
1539
1540 proclist_lock_read();
1541
1542 pd = proclists;
1543 again:
1544 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1545 /*
1546 * Skip embryonic processes.
1547 */
1548 if (p->p_stat == SIDL)
1549 continue;
1550 /*
1551 * TODO - make more efficient (see notes below).
1552 * do by session.
1553 */
1554 switch (op) {
1555
1556 case KERN_PROC_PID:
1557 /* could do this with just a lookup */
1558 if (p->p_pid != (pid_t)arg)
1559 continue;
1560 break;
1561
1562 case KERN_PROC_PGRP:
1563 /* could do this by traversing pgrp */
1564 if (p->p_pgrp->pg_id != (pid_t)arg)
1565 continue;
1566 break;
1567
1568 case KERN_PROC_SESSION:
1569 if (p->p_session->s_sid != (pid_t)arg)
1570 continue;
1571 break;
1572
1573 case KERN_PROC_TTY:
1574 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1575 if ((p->p_flag & P_CONTROLT) == 0 ||
1576 p->p_session->s_ttyp == NULL ||
1577 p->p_session->s_ttyvp != NULL)
1578 continue;
1579 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1580 p->p_session->s_ttyp == NULL) {
1581 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1582 continue;
1583 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1584 continue;
1585 break;
1586
1587 case KERN_PROC_UID:
1588 if (p->p_ucred->cr_uid != (uid_t)arg)
1589 continue;
1590 break;
1591
1592 case KERN_PROC_RUID:
1593 if (p->p_cred->p_ruid != (uid_t)arg)
1594 continue;
1595 break;
1596
1597 case KERN_PROC_GID:
1598 if (p->p_ucred->cr_gid != (uid_t)arg)
1599 continue;
1600 break;
1601
1602 case KERN_PROC_RGID:
1603 if (p->p_cred->p_rgid != (uid_t)arg)
1604 continue;
1605 break;
1606
1607 case KERN_PROC_ALL:
1608 /* allow everything */
1609 break;
1610
1611 default:
1612 error = EINVAL;
1613 goto cleanup;
1614 }
1615 if (type == KERN_PROC) {
1616 if (buflen >= sizeof(struct kinfo_proc)) {
1617 fill_eproc(p, &eproc);
1618 error = copyout((caddr_t)p, &dp->kp_proc,
1619 sizeof(struct proc));
1620 if (error)
1621 goto cleanup;
1622 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1623 sizeof(eproc));
1624 if (error)
1625 goto cleanup;
1626 dp++;
1627 buflen -= sizeof(struct kinfo_proc);
1628 }
1629 needed += sizeof(struct kinfo_proc);
1630 } else { /* KERN_PROC2 */
1631 if (buflen >= elem_size && elem_count > 0) {
1632 fill_kproc2(p, &kproc2);
1633 /*
1634 * Copy out elem_size, but not larger than
1635 * the size of a struct kinfo_proc2.
1636 */
1637 error = copyout(&kproc2, dp2,
1638 min(sizeof(kproc2), elem_size));
1639 if (error)
1640 goto cleanup;
1641 dp2 += elem_size;
1642 buflen -= elem_size;
1643 elem_count--;
1644 }
1645 needed += elem_size;
1646 }
1647 }
1648 pd++;
1649 if (pd->pd_list != NULL)
1650 goto again;
1651 proclist_unlock_read();
1652
1653 if (where != NULL) {
1654 if (type == KERN_PROC)
1655 *sizep = (caddr_t)dp - where;
1656 else
1657 *sizep = dp2 - where;
1658 if (needed > *sizep)
1659 return (ENOMEM);
1660 } else {
1661 needed += KERN_PROCSLOP;
1662 *sizep = needed;
1663 }
1664 return (0);
1665 cleanup:
1666 proclist_unlock_read();
1667 return (error);
1668 }
1669
1670
1671 /*
1672 * try over estimating by 5 LWPs
1673 */
1674 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
1675
1676 static int
1677 sysctl_dolwp(int *name, u_int namelen, void *vwhere, size_t *sizep)
1678 {
1679 struct kinfo_lwp klwp;
1680 struct proc *p;
1681 struct lwp *l;
1682 char *where, *dp;
1683 int type, pid, elem_size, elem_count;
1684 int buflen, needed, error;
1685
1686 dp = where = vwhere;
1687 buflen = where != NULL ? *sizep : 0;
1688 error = needed = 0;
1689 type = name[0];
1690
1691 if (namelen != 4)
1692 return (EINVAL);
1693 pid = name[1];
1694 elem_size = name[2];
1695 elem_count = name[3];
1696
1697 p = pfind(pid);
1698 if (p == NULL)
1699 return (ESRCH);
1700 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1701 if (buflen >= elem_size && elem_count > 0) {
1702 fill_lwp(l, &klwp);
1703 /*
1704 * Copy out elem_size, but not larger than
1705 * the size of a struct kinfo_proc2.
1706 */
1707 error = copyout(&klwp, dp,
1708 min(sizeof(klwp), elem_size));
1709 if (error)
1710 goto cleanup;
1711 dp += elem_size;
1712 buflen -= elem_size;
1713 elem_count--;
1714 }
1715 needed += elem_size;
1716 }
1717
1718 if (where != NULL) {
1719 *sizep = dp - where;
1720 if (needed > *sizep)
1721 return (ENOMEM);
1722 } else {
1723 needed += KERN_PROCSLOP;
1724 *sizep = needed;
1725 }
1726 return (0);
1727 cleanup:
1728 return (error);
1729 }
1730
1731 /*
1732 * Fill in an eproc structure for the specified process.
1733 */
1734 void
1735 fill_eproc(struct proc *p, struct eproc *ep)
1736 {
1737 struct tty *tp;
1738 struct lwp *l;
1739
1740 ep->e_paddr = p;
1741 ep->e_sess = p->p_session;
1742 ep->e_pcred = *p->p_cred;
1743 ep->e_ucred = *p->p_ucred;
1744 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1745 ep->e_vm.vm_rssize = 0;
1746 ep->e_vm.vm_tsize = 0;
1747 ep->e_vm.vm_dsize = 0;
1748 ep->e_vm.vm_ssize = 0;
1749 /* ep->e_vm.vm_pmap = XXX; */
1750 } else {
1751 struct vmspace *vm = p->p_vmspace;
1752
1753 ep->e_vm.vm_rssize = vm_resident_count(vm);
1754 ep->e_vm.vm_tsize = vm->vm_tsize;
1755 ep->e_vm.vm_dsize = vm->vm_dsize;
1756 ep->e_vm.vm_ssize = vm->vm_ssize;
1757
1758 /* Pick a "representative" LWP */
1759 l = proc_representative_lwp(p);
1760
1761 if (l->l_wmesg)
1762 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
1763 }
1764 if (p->p_pptr)
1765 ep->e_ppid = p->p_pptr->p_pid;
1766 else
1767 ep->e_ppid = 0;
1768 ep->e_pgid = p->p_pgrp->pg_id;
1769 ep->e_sid = ep->e_sess->s_sid;
1770 ep->e_jobc = p->p_pgrp->pg_jobc;
1771 if ((p->p_flag & P_CONTROLT) &&
1772 (tp = ep->e_sess->s_ttyp)) {
1773 ep->e_tdev = tp->t_dev;
1774 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1775 ep->e_tsess = tp->t_session;
1776 } else
1777 ep->e_tdev = NODEV;
1778
1779 ep->e_xsize = ep->e_xrssize = 0;
1780 ep->e_xccount = ep->e_xswrss = 0;
1781 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1782 if (SESS_LEADER(p))
1783 ep->e_flag |= EPROC_SLEADER;
1784 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1785 }
1786
1787 /*
1788 * Fill in an eproc structure for the specified process.
1789 */
1790 static void
1791 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1792 {
1793 struct tty *tp;
1794 struct lwp *l;
1795 memset(ki, 0, sizeof(*ki));
1796
1797 ki->p_paddr = PTRTOINT64(p);
1798 ki->p_fd = PTRTOINT64(p->p_fd);
1799 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1800 ki->p_stats = PTRTOINT64(p->p_stats);
1801 ki->p_limit = PTRTOINT64(p->p_limit);
1802 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1803 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1804 ki->p_sess = PTRTOINT64(p->p_session);
1805 ki->p_tsess = 0; /* may be changed if controlling tty below */
1806 ki->p_ru = PTRTOINT64(p->p_ru);
1807
1808 ki->p_eflag = 0;
1809 ki->p_exitsig = p->p_exitsig;
1810 ki->p_flag = p->p_flag;
1811
1812 ki->p_pid = p->p_pid;
1813 if (p->p_pptr)
1814 ki->p_ppid = p->p_pptr->p_pid;
1815 else
1816 ki->p_ppid = 0;
1817 ki->p_sid = p->p_session->s_sid;
1818 ki->p__pgid = p->p_pgrp->pg_id;
1819
1820 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1821
1822 ki->p_uid = p->p_ucred->cr_uid;
1823 ki->p_ruid = p->p_cred->p_ruid;
1824 ki->p_gid = p->p_ucred->cr_gid;
1825 ki->p_rgid = p->p_cred->p_rgid;
1826
1827 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1828 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1829 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1830
1831 ki->p_jobc = p->p_pgrp->pg_jobc;
1832 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1833 ki->p_tdev = tp->t_dev;
1834 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1835 ki->p_tsess = PTRTOINT64(tp->t_session);
1836 } else {
1837 ki->p_tdev = NODEV;
1838 }
1839
1840 ki->p_estcpu = p->p_estcpu;
1841 ki->p_rtime_sec = p->p_rtime.tv_sec;
1842 ki->p_rtime_usec = p->p_rtime.tv_usec;
1843 ki->p_cpticks = p->p_cpticks;
1844 ki->p_pctcpu = p->p_pctcpu;
1845
1846 ki->p_uticks = p->p_uticks;
1847 ki->p_sticks = p->p_sticks;
1848 ki->p_iticks = p->p_iticks;
1849
1850 ki->p_tracep = PTRTOINT64(p->p_tracep);
1851 ki->p_traceflag = p->p_traceflag;
1852
1853
1854 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1855 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1856 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1857 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1858
1859 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
1860 ki->p_realstat = p->p_stat;
1861 ki->p_nice = p->p_nice;
1862
1863 ki->p_xstat = p->p_xstat;
1864 ki->p_acflag = p->p_acflag;
1865
1866 strncpy(ki->p_comm, p->p_comm,
1867 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1868
1869 strncpy(ki->p_login, p->p_session->s_login,
1870 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
1871
1872 ki->p_nlwps = p->p_nlwps;
1873 ki->p_nrlwps = p->p_nrlwps;
1874 ki->p_realflag = p->p_flag;
1875
1876 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1877 ki->p_vm_rssize = 0;
1878 ki->p_vm_tsize = 0;
1879 ki->p_vm_dsize = 0;
1880 ki->p_vm_ssize = 0;
1881 l = NULL;
1882 } else {
1883 struct vmspace *vm = p->p_vmspace;
1884
1885 ki->p_vm_rssize = vm_resident_count(vm);
1886 ki->p_vm_tsize = vm->vm_tsize;
1887 ki->p_vm_dsize = vm->vm_dsize;
1888 ki->p_vm_ssize = vm->vm_ssize;
1889
1890 /* Pick a "representative" LWP */
1891 l = proc_representative_lwp(p);
1892 ki->p_forw = PTRTOINT64(l->l_forw);
1893 ki->p_back = PTRTOINT64(l->l_back);
1894 ki->p_addr = PTRTOINT64(l->l_addr);
1895 ki->p_stat = l->l_stat;
1896 ki->p_flag |= l->l_flag;
1897 ki->p_swtime = l->l_swtime;
1898 ki->p_slptime = l->l_slptime;
1899 if (l->l_stat == LSONPROC) {
1900 KDASSERT(l->l_cpu != NULL);
1901 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1902 } else
1903 ki->p_schedflags = 0;
1904 ki->p_holdcnt = l->l_holdcnt;
1905 ki->p_priority = l->l_priority;
1906 ki->p_usrpri = l->l_usrpri;
1907 if (l->l_wmesg)
1908 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
1909 ki->p_wchan = PTRTOINT64(l->l_wchan);
1910
1911 }
1912
1913 if (p->p_session->s_ttyvp)
1914 ki->p_eflag |= EPROC_CTTY;
1915 if (SESS_LEADER(p))
1916 ki->p_eflag |= EPROC_SLEADER;
1917
1918 /* XXX Is this double check necessary? */
1919 if (P_ZOMBIE(p)) {
1920 ki->p_uvalid = 0;
1921 } else {
1922 ki->p_uvalid = 1;
1923
1924 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1925 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1926
1927 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1928 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1929 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1930 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1931
1932 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1933 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1934 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1935 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1936 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1937 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1938 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1939 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1940 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1941 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1942 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1943 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1944 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1945 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1946
1947 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1948 p->p_stats->p_cru.ru_stime.tv_sec;
1949 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1950 p->p_stats->p_cru.ru_stime.tv_usec;
1951 }
1952 #ifdef MULTIPROCESSOR
1953 if (l && l->l_cpu != NULL)
1954 ki->p_cpuid = l->l_cpu->ci_cpuid;
1955 else
1956 #endif
1957 ki->p_cpuid = KI_NOCPU;
1958
1959 }
1960
1961 /*
1962 * Fill in a kinfo_lwp structure for the specified lwp.
1963 */
1964 static void
1965 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
1966 {
1967 kl->l_forw = PTRTOINT64(l->l_forw);
1968 kl->l_back = PTRTOINT64(l->l_back);
1969 kl->l_laddr = PTRTOINT64(l);
1970 kl->l_addr = PTRTOINT64(l->l_addr);
1971 kl->l_stat = l->l_stat;
1972 kl->l_lid = l->l_lid;
1973 kl->l_flag = l->l_flag;
1974
1975 kl->l_swtime = l->l_swtime;
1976 kl->l_slptime = l->l_slptime;
1977 if (l->l_stat == LSONPROC) {
1978 KDASSERT(l->l_cpu != NULL);
1979 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1980 } else
1981 kl->l_schedflags = 0;
1982 kl->l_holdcnt = l->l_holdcnt;
1983 kl->l_priority = l->l_priority;
1984 kl->l_usrpri = l->l_usrpri;
1985 if (l->l_wmesg)
1986 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
1987 kl->l_wchan = PTRTOINT64(l->l_wchan);
1988 #ifdef MULTIPROCESSOR
1989 if (l->l_cpu != NULL)
1990 kl->l_cpuid = l->l_cpu->ci_cpuid;
1991 else
1992 #endif
1993 kl->l_cpuid = KI_NOCPU;
1994 }
1995
1996 int
1997 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1998 struct proc *up)
1999 {
2000 struct ps_strings pss;
2001 struct proc *p;
2002 size_t len, upper_bound, xlen, i;
2003 struct uio auio;
2004 struct iovec aiov;
2005 vaddr_t argv;
2006 pid_t pid;
2007 int nargv, type, error;
2008 char *arg;
2009 char *tmp;
2010
2011 if (namelen != 2)
2012 return (EINVAL);
2013 pid = name[0];
2014 type = name[1];
2015
2016 switch (type) {
2017 case KERN_PROC_ARGV:
2018 case KERN_PROC_NARGV:
2019 case KERN_PROC_ENV:
2020 case KERN_PROC_NENV:
2021 /* ok */
2022 break;
2023 default:
2024 return (EINVAL);
2025 }
2026
2027 /* check pid */
2028 if ((p = pfind(pid)) == NULL)
2029 return (EINVAL);
2030
2031 /* only root or same user change look at the environment */
2032 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2033 if (up->p_ucred->cr_uid != 0) {
2034 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
2035 up->p_cred->p_ruid != p->p_cred->p_svuid)
2036 return (EPERM);
2037 }
2038 }
2039
2040 if (sizep != NULL && where == NULL) {
2041 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2042 *sizep = sizeof (int);
2043 else
2044 *sizep = ARG_MAX; /* XXX XXX XXX */
2045 return (0);
2046 }
2047 if (where == NULL || sizep == NULL)
2048 return (EINVAL);
2049
2050 /*
2051 * Zombies don't have a stack, so we can't read their psstrings.
2052 * System processes also don't have a user stack.
2053 */
2054 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
2055 return (EINVAL);
2056
2057 /*
2058 * Lock the process down in memory.
2059 */
2060 /* XXXCDC: how should locking work here? */
2061 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
2062 return (EFAULT);
2063
2064 p->p_vmspace->vm_refcnt++; /* XXX */
2065
2066 /*
2067 * Allocate a temporary buffer to hold the arguments.
2068 */
2069 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2070
2071 /*
2072 * Read in the ps_strings structure.
2073 */
2074 aiov.iov_base = &pss;
2075 aiov.iov_len = sizeof(pss);
2076 auio.uio_iov = &aiov;
2077 auio.uio_iovcnt = 1;
2078 auio.uio_offset = (vaddr_t)p->p_psstr;
2079 auio.uio_resid = sizeof(pss);
2080 auio.uio_segflg = UIO_SYSSPACE;
2081 auio.uio_rw = UIO_READ;
2082 auio.uio_procp = NULL;
2083 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2084 if (error)
2085 goto done;
2086
2087 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2088 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
2089 else
2090 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
2091 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2092 error = copyout(&nargv, where, sizeof(nargv));
2093 *sizep = sizeof(nargv);
2094 goto done;
2095 }
2096 /*
2097 * Now read the address of the argument vector.
2098 */
2099 switch (type) {
2100 case KERN_PROC_ARGV:
2101 /* XXX compat32 stuff here */
2102 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
2103 break;
2104 case KERN_PROC_ENV:
2105 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
2106 break;
2107 default:
2108 return (EINVAL);
2109 }
2110 auio.uio_offset = (off_t)(long)tmp;
2111 aiov.iov_base = &argv;
2112 aiov.iov_len = sizeof(argv);
2113 auio.uio_iov = &aiov;
2114 auio.uio_iovcnt = 1;
2115 auio.uio_resid = sizeof(argv);
2116 auio.uio_segflg = UIO_SYSSPACE;
2117 auio.uio_rw = UIO_READ;
2118 auio.uio_procp = NULL;
2119 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2120 if (error)
2121 goto done;
2122
2123 /*
2124 * Now copy in the actual argument vector, one page at a time,
2125 * since we don't know how long the vector is (though, we do
2126 * know how many NUL-terminated strings are in the vector).
2127 */
2128 len = 0;
2129 upper_bound = *sizep;
2130 for (; nargv != 0 && len < upper_bound; len += xlen) {
2131 aiov.iov_base = arg;
2132 aiov.iov_len = PAGE_SIZE;
2133 auio.uio_iov = &aiov;
2134 auio.uio_iovcnt = 1;
2135 auio.uio_offset = argv + len;
2136 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2137 auio.uio_resid = xlen;
2138 auio.uio_segflg = UIO_SYSSPACE;
2139 auio.uio_rw = UIO_READ;
2140 auio.uio_procp = NULL;
2141 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2142 if (error)
2143 goto done;
2144
2145 for (i = 0; i < xlen && nargv != 0; i++) {
2146 if (arg[i] == '\0')
2147 nargv--; /* one full string */
2148 }
2149
2150 /*
2151 * Make sure we don't copyout past the end of the user's
2152 * buffer.
2153 */
2154 if (len + i > upper_bound)
2155 i = upper_bound - len;
2156
2157 error = copyout(arg, (char *)where + len, i);
2158 if (error)
2159 break;
2160
2161 if (nargv == 0) {
2162 len += i;
2163 break;
2164 }
2165 }
2166 *sizep = len;
2167
2168 done:
2169 uvmspace_free(p->p_vmspace);
2170
2171 free(arg, M_TEMP);
2172 return (error);
2173 }
2174
2175 #if NPTY > 0
2176 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
2177
2178 /*
2179 * Validate parameters and get old / set new parameters
2180 * for pty sysctl function.
2181 */
2182 static int
2183 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2184 {
2185 int error = 0;
2186 int oldmax = 0, newmax = 0;
2187
2188 /* get current value of maxptys */
2189 oldmax = pty_maxptys(0, 0);
2190
2191 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
2192
2193 if (!error && newp) {
2194 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
2195 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
2196
2197 if (newmax != pty_maxptys(newmax, (newp != NULL)))
2198 return (EINVAL);
2199
2200 }
2201
2202 return (error);
2203 }
2204 #endif /* NPTY > 0 */
2205
2206 static int
2207 sysctl_dotkstat(name, namelen, where, sizep, newp)
2208 int *name;
2209 u_int namelen;
2210 void *where;
2211 size_t *sizep;
2212 void *newp;
2213 {
2214 /* all sysctl names at this level are terminal */
2215 if (namelen != 1)
2216 return (ENOTDIR); /* overloaded */
2217
2218 switch (name[0]) {
2219 case KERN_TKSTAT_NIN:
2220 return (sysctl_rdquad(where, sizep, newp, tk_nin));
2221 case KERN_TKSTAT_NOUT:
2222 return (sysctl_rdquad(where, sizep, newp, tk_nout));
2223 case KERN_TKSTAT_CANCC:
2224 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
2225 case KERN_TKSTAT_RAWCC:
2226 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
2227 default:
2228 return (EOPNOTSUPP);
2229 }
2230 }
2231