kern_sysctl.c revision 1.135 1 /* $NetBSD: kern_sysctl.c,v 1.135 2003/06/28 14:21:55 darrenr Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.135 2003/06/28 14:21:55 darrenr Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_multiprocessor.h"
52 #include "opt_pipe.h"
53 #include "opt_sysv.h"
54 #include "pty.h"
55 #include "rnd.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/buf.h>
61 #include <sys/device.h>
62 #include <sys/disklabel.h>
63 #include <sys/dkstat.h>
64 #include <sys/exec.h>
65 #include <sys/file.h>
66 #include <sys/ioctl.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/msgbuf.h>
70 #include <sys/pool.h>
71 #include <sys/proc.h>
72 #include <sys/resource.h>
73 #include <sys/resourcevar.h>
74 #include <sys/sa.h>
75 #include <sys/syscallargs.h>
76 #include <sys/tty.h>
77 #include <sys/unistd.h>
78 #include <sys/vnode.h>
79 #include <sys/socketvar.h>
80 #define __SYSCTL_PRIVATE
81 #include <sys/sysctl.h>
82 #include <sys/lock.h>
83 #include <sys/namei.h>
84
85 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
86 #include <sys/ipc.h>
87 #endif
88 #ifdef SYSVMSG
89 #include <sys/msg.h>
90 #endif
91 #ifdef SYSVSEM
92 #include <sys/sem.h>
93 #endif
94 #ifdef SYSVSHM
95 #include <sys/shm.h>
96 #endif
97
98 #include <dev/cons.h>
99
100 #if defined(DDB)
101 #include <ddb/ddbvar.h>
102 #endif
103
104 #ifndef PIPE_SOCKETPAIR
105 #include <sys/pipe.h>
106 #endif
107
108 #if NRND > 0
109 #include <sys/rnd.h>
110 #endif
111
112 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
113
114 static int sysctl_file(void *, size_t *);
115 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
116 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
117 #endif
118 static int sysctl_msgbuf(void *, size_t *);
119 static int sysctl_doeproc(int *, u_int, void *, size_t *);
120 static int sysctl_dolwp(int *, u_int, void *, size_t *);
121 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
122 #ifdef MULTIPROCESSOR
123 static int sysctl_docptime(void *, size_t *, void *);
124 static int sysctl_ncpus(void);
125 #endif
126 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
127 static void fill_lwp(struct lwp *, struct kinfo_lwp *);
128 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
129 #if NPTY > 0
130 static int sysctl_pty(void *, size_t *, void *, size_t);
131 #endif
132
133 /*
134 * The `sysctl_memlock' is intended to keep too many processes from
135 * locking down memory by doing sysctls at once. Whether or not this
136 * is really a good idea to worry about it probably a subject of some
137 * debate.
138 */
139 struct lock sysctl_memlock;
140
141 void
142 sysctl_init(void)
143 {
144
145 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
146 }
147
148 int
149 sys___sysctl(struct lwp *l, void *v, register_t *retval)
150 {
151 struct sys___sysctl_args /* {
152 syscallarg(int *) name;
153 syscallarg(u_int) namelen;
154 syscallarg(void *) old;
155 syscallarg(size_t *) oldlenp;
156 syscallarg(void *) new;
157 syscallarg(size_t) newlen;
158 } */ *uap = v;
159 struct proc *p = l->l_proc;
160 int error;
161 size_t savelen = 0, oldlen = 0;
162 sysctlfn *fn;
163 int name[CTL_MAXNAME];
164 size_t *oldlenp;
165
166 /*
167 * all top-level sysctl names are non-terminal
168 */
169 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
170 return (EINVAL);
171 error = copyin(SCARG(uap, name), &name,
172 SCARG(uap, namelen) * sizeof(int));
173 if (error)
174 return (error);
175
176 /*
177 * For all but CTL_PROC, must be root to change a value.
178 * For CTL_PROC, must be root, or owner of the proc (and not suid),
179 * this is checked in proc_sysctl() (once we know the targer proc).
180 */
181 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
182 (error = suser(p->p_ucred, &p->p_acflag)))
183 return (error);
184
185 switch (name[0]) {
186 case CTL_KERN:
187 fn = kern_sysctl;
188 break;
189 case CTL_HW:
190 fn = hw_sysctl;
191 break;
192 case CTL_VM:
193 fn = uvm_sysctl;
194 break;
195 case CTL_NET:
196 fn = net_sysctl;
197 break;
198 case CTL_VFS:
199 fn = vfs_sysctl;
200 break;
201 case CTL_MACHDEP:
202 fn = cpu_sysctl;
203 break;
204 #ifdef DEBUG
205 case CTL_DEBUG:
206 fn = debug_sysctl;
207 break;
208 #endif
209 #ifdef DDB
210 case CTL_DDB:
211 fn = ddb_sysctl;
212 break;
213 #endif
214 case CTL_PROC:
215 fn = proc_sysctl;
216 break;
217
218 case CTL_EMUL:
219 fn = emul_sysctl;
220 break;
221 default:
222 return (EOPNOTSUPP);
223 }
224
225 /*
226 * XXX Hey, we wire `old', but what about `new'?
227 */
228
229 oldlenp = SCARG(uap, oldlenp);
230 if (oldlenp) {
231 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
232 return (error);
233 oldlenp = &oldlen;
234 }
235 if (SCARG(uap, old) != NULL) {
236 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
237 if (error)
238 return (error);
239 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
240 if (error) {
241 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
242 return (error);
243 }
244 savelen = oldlen;
245 }
246 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
247 oldlenp, SCARG(uap, new), SCARG(uap, newlen), l);
248 if (SCARG(uap, old) != NULL) {
249 uvm_vsunlock(p, SCARG(uap, old), savelen);
250 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
251 }
252 if (error)
253 return (error);
254 if (SCARG(uap, oldlenp))
255 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
256 return (error);
257 }
258
259 /*
260 * Attributes stored in the kernel.
261 */
262 char hostname[MAXHOSTNAMELEN];
263 int hostnamelen;
264
265 char domainname[MAXHOSTNAMELEN];
266 int domainnamelen;
267
268 long hostid;
269
270 #ifdef INSECURE
271 int securelevel = -1;
272 #else
273 int securelevel = 0;
274 #endif
275
276 #ifndef DEFCORENAME
277 #define DEFCORENAME "%n.core"
278 #endif
279 char defcorename[MAXPATHLEN] = DEFCORENAME;
280 int defcorenamelen = sizeof(DEFCORENAME);
281
282 extern int kern_logsigexit;
283 extern fixpt_t ccpu;
284 extern int forkfsleep;
285 extern int dumponpanic;
286
287 #ifndef MULTIPROCESSOR
288 #define sysctl_ncpus() 1
289 #endif
290
291 #ifdef MULTIPROCESSOR
292
293 #ifndef CPU_INFO_FOREACH
294 #define CPU_INFO_ITERATOR int
295 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
296 #endif
297
298 static int
299 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
300 {
301 u_int64_t cp_time[CPUSTATES];
302 int i;
303 struct cpu_info *ci;
304 CPU_INFO_ITERATOR cii;
305
306 for (i = 0; i < CPUSTATES; i++)
307 cp_time[i] = 0;
308
309 for (CPU_INFO_FOREACH(cii, ci)) {
310 for (i = 0; i < CPUSTATES; i++)
311 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
312 }
313 return (sysctl_rdstruct(oldp, oldlenp, newp,
314 cp_time, sizeof(cp_time)));
315 }
316
317 static int
318 sysctl_ncpus(void)
319 {
320 struct cpu_info *ci;
321 CPU_INFO_ITERATOR cii;
322
323 int ncpus = 0;
324 for (CPU_INFO_FOREACH(cii, ci))
325 ncpus++;
326 return (ncpus);
327 }
328
329 #endif
330
331 /*
332 * kernel related system variables.
333 */
334 int
335 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
336 void *newp, size_t newlen, struct lwp *l)
337 {
338 int error, level, inthostid;
339 int old_autonicetime;
340 int old_vnodes;
341 dev_t consdev;
342 #if NRND > 0
343 int v;
344 #endif
345
346 /* All sysctl names at this level, except for a few, are terminal. */
347 switch (name[0]) {
348 case KERN_PROC:
349 case KERN_PROC2:
350 case KERN_LWP:
351 case KERN_PROF:
352 case KERN_MBUF:
353 case KERN_PROC_ARGS:
354 case KERN_SYSVIPC_INFO:
355 case KERN_PIPE:
356 case KERN_TKSTAT:
357 /* Not terminal. */
358 break;
359 default:
360 if (namelen != 1)
361 return (ENOTDIR); /* overloaded */
362 }
363
364 switch (name[0]) {
365 case KERN_OSTYPE:
366 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
367 case KERN_OSRELEASE:
368 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
369 case KERN_OSREV:
370 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
371 case KERN_VERSION:
372 return (sysctl_rdstring(oldp, oldlenp, newp, version));
373 case KERN_MAXVNODES:
374 old_vnodes = desiredvnodes;
375 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
376 if (newp && !error) {
377 if (old_vnodes > desiredvnodes) {
378 desiredvnodes = old_vnodes;
379 return (EINVAL);
380 }
381 vfs_reinit();
382 nchreinit();
383 }
384 return (error);
385 case KERN_MAXPROC:
386 {
387 int nmaxproc = maxproc;
388
389 error = sysctl_int(oldp, oldlenp, newp, newlen, &nmaxproc);
390
391 if (!error && newp) {
392 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
393 return (EINVAL);
394
395 #ifdef __HAVE_CPU_MAXPROC
396 if (nmaxproc > cpu_maxproc())
397 return (EINVAL);
398 #endif
399 maxproc = nmaxproc;
400 }
401
402 return (error);
403 }
404 case KERN_MAXFILES:
405 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
406 case KERN_ARGMAX:
407 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
408 case KERN_SECURELVL:
409 level = securelevel;
410 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
411 newp == NULL)
412 return (error);
413 if (level < securelevel && l->l_proc->p_pid != 1)
414 return (EPERM);
415 securelevel = level;
416 return (0);
417 case KERN_HOSTNAME:
418 error = sysctl_string(oldp, oldlenp, newp, newlen,
419 hostname, sizeof(hostname));
420 if (newp && !error)
421 hostnamelen = newlen;
422 return (error);
423 case KERN_DOMAINNAME:
424 error = sysctl_string(oldp, oldlenp, newp, newlen,
425 domainname, sizeof(domainname));
426 if (newp && !error)
427 domainnamelen = newlen;
428 return (error);
429 case KERN_HOSTID:
430 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
431 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
432 if (newp && !error)
433 hostid = inthostid;
434 return (error);
435 case KERN_CLOCKRATE:
436 return (sysctl_clockrate(oldp, oldlenp));
437 case KERN_BOOTTIME:
438 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
439 sizeof(struct timeval)));
440 case KERN_VNODE:
441 return (sysctl_vnode(oldp, oldlenp, l->l_proc));
442 case KERN_PROC:
443 case KERN_PROC2:
444 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
445 case KERN_LWP:
446 return (sysctl_dolwp(name, namelen, oldp, oldlenp));
447 case KERN_PROC_ARGS:
448 return (sysctl_procargs(name + 1, namelen - 1,
449 oldp, oldlenp, l->l_proc));
450 case KERN_FILE:
451 return (sysctl_file(oldp, oldlenp));
452 #ifdef GPROF
453 case KERN_PROF:
454 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
455 newp, newlen));
456 #endif
457 case KERN_POSIX1:
458 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
459 case KERN_NGROUPS:
460 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
461 case KERN_JOB_CONTROL:
462 return (sysctl_rdint(oldp, oldlenp, newp, 1));
463 case KERN_SAVED_IDS:
464 #ifdef _POSIX_SAVED_IDS
465 return (sysctl_rdint(oldp, oldlenp, newp, 1));
466 #else
467 return (sysctl_rdint(oldp, oldlenp, newp, 0));
468 #endif
469 case KERN_MAXPARTITIONS:
470 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
471 case KERN_RAWPARTITION:
472 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
473 #ifdef NTP
474 case KERN_NTPTIME:
475 return (sysctl_ntptime(oldp, oldlenp));
476 #endif
477 case KERN_AUTONICETIME:
478 old_autonicetime = autonicetime;
479 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
480 if (autonicetime < 0)
481 autonicetime = old_autonicetime;
482 return (error);
483 case KERN_AUTONICEVAL:
484 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
485 if (autoniceval < PRIO_MIN)
486 autoniceval = PRIO_MIN;
487 if (autoniceval > PRIO_MAX)
488 autoniceval = PRIO_MAX;
489 return (error);
490 case KERN_RTC_OFFSET:
491 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
492 case KERN_ROOT_DEVICE:
493 return (sysctl_rdstring(oldp, oldlenp, newp,
494 root_device->dv_xname));
495 case KERN_MSGBUFSIZE:
496 /*
497 * deal with cases where the message buffer has
498 * become corrupted.
499 */
500 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
501 msgbufenabled = 0;
502 return (ENXIO);
503 }
504 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
505 case KERN_FSYNC:
506 return (sysctl_rdint(oldp, oldlenp, newp, 1));
507 case KERN_SYSVMSG:
508 #ifdef SYSVMSG
509 return (sysctl_rdint(oldp, oldlenp, newp, 1));
510 #else
511 return (sysctl_rdint(oldp, oldlenp, newp, 0));
512 #endif
513 case KERN_SYSVSEM:
514 #ifdef SYSVSEM
515 return (sysctl_rdint(oldp, oldlenp, newp, 1));
516 #else
517 return (sysctl_rdint(oldp, oldlenp, newp, 0));
518 #endif
519 case KERN_SYSVSHM:
520 #ifdef SYSVSHM
521 return (sysctl_rdint(oldp, oldlenp, newp, 1));
522 #else
523 return (sysctl_rdint(oldp, oldlenp, newp, 0));
524 #endif
525 case KERN_DEFCORENAME:
526 if (newp && newlen < 1)
527 return (EINVAL);
528 error = sysctl_string(oldp, oldlenp, newp, newlen,
529 defcorename, sizeof(defcorename));
530 if (newp && !error)
531 defcorenamelen = newlen;
532 return (error);
533 case KERN_SYNCHRONIZED_IO:
534 return (sysctl_rdint(oldp, oldlenp, newp, 1));
535 case KERN_IOV_MAX:
536 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
537 case KERN_MBUF:
538 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
539 newp, newlen));
540 case KERN_MAPPED_FILES:
541 return (sysctl_rdint(oldp, oldlenp, newp, 1));
542 case KERN_MEMLOCK:
543 return (sysctl_rdint(oldp, oldlenp, newp, 1));
544 case KERN_MEMLOCK_RANGE:
545 return (sysctl_rdint(oldp, oldlenp, newp, 1));
546 case KERN_MEMORY_PROTECTION:
547 return (sysctl_rdint(oldp, oldlenp, newp, 1));
548 case KERN_LOGIN_NAME_MAX:
549 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
550 case KERN_LOGSIGEXIT:
551 return (sysctl_int(oldp, oldlenp, newp, newlen,
552 &kern_logsigexit));
553 case KERN_FSCALE:
554 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
555 case KERN_CCPU:
556 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
557 case KERN_CP_TIME:
558 #ifndef MULTIPROCESSOR
559 return (sysctl_rdstruct(oldp, oldlenp, newp,
560 curcpu()->ci_schedstate.spc_cp_time,
561 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
562 #else
563 return (sysctl_docptime(oldp, oldlenp, newp));
564 #endif
565 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
566 case KERN_SYSVIPC_INFO:
567 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
568 #endif
569 case KERN_MSGBUF:
570 return (sysctl_msgbuf(oldp, oldlenp));
571 case KERN_CONSDEV:
572 if (cn_tab != NULL)
573 consdev = cn_tab->cn_dev;
574 else
575 consdev = NODEV;
576 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
577 sizeof consdev));
578 #if NPTY > 0
579 case KERN_MAXPTYS:
580 return (sysctl_pty(oldp, oldlenp, newp, newlen));
581 #endif
582 #ifndef PIPE_SOCKETPAIR
583 case KERN_PIPE:
584 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
585 newp, newlen));
586 #endif
587 case KERN_MAXPHYS:
588 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
589 case KERN_SBMAX:
590 {
591 int new_sbmax = sb_max;
592
593 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
594 if (newp && !error) {
595 if (new_sbmax < (16 * 1024)) /* sanity */
596 return (EINVAL);
597 sb_max = new_sbmax;
598 }
599 return (error);
600 }
601 case KERN_TKSTAT:
602 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
603 newp));
604 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
605 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
606 case KERN_URND:
607 #if NRND > 0
608 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
609 sizeof(v))
610 return (sysctl_rdint(oldp, oldlenp, newp, v));
611 else
612 return (EIO); /*XXX*/
613 #else
614 return (EOPNOTSUPP);
615 #endif
616 case KERN_LABELSECTOR:
617 return (sysctl_rdint(oldp, oldlenp, newp, LABELSECTOR));
618 case KERN_LABELOFFSET:
619 return (sysctl_rdint(oldp, oldlenp, newp, LABELOFFSET));
620 case KERN_FORKFSLEEP:
621 {
622 /* userland sees value in ms, internally is in ticks */
623 int timo, lsleep = forkfsleep * 1000 / hz;
624
625 error = sysctl_int(oldp, oldlenp, newp, newlen, &lsleep);
626 if (newp && !error) {
627 /* refuse negative values, and overly 'long time' */
628 if (lsleep < 0 || lsleep > MAXSLP * 1000)
629 return (EINVAL);
630
631 timo = mstohz(lsleep);
632
633 /* if the interval is >0 ms && <1 tick, use 1 tick */
634 if (lsleep != 0 && timo == 0)
635 forkfsleep = 1;
636 else
637 forkfsleep = timo;
638 }
639 return (error);
640 }
641 case KERN_POSIX_THREADS: /* XXX _POSIX_VERSION */
642 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
643 case KERN_POSIX_SEMAPHORES: /* XXX _POSIX_VERSION */
644 #ifdef P1003_1B_SEMAPHORE
645 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
646 #else
647 return (sysctl_rdint(oldp, oldlenp, newp, 0));
648 #endif
649 case KERN_POSIX_BARRIERS: /* XXX _POSIX_VERSION */
650 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
651 case KERN_POSIX_TIMERS: /* XXX _POSIX_VERSION */
652 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
653 case KERN_POSIX_SPIN_LOCKS: /* XXX _POSIX_VERSION */
654 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
655 case KERN_POSIX_READER_WRITER_LOCKS: /* XXX _POSIX_VERSION */
656 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
657 case KERN_DUMP_ON_PANIC:
658 return (sysctl_int(oldp, oldlenp, newp, newlen, &dumponpanic));
659
660 default:
661 return (EOPNOTSUPP);
662 }
663 /* NOTREACHED */
664 }
665
666 /*
667 * hardware related system variables.
668 */
669 int
670 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
671 void *newp, size_t newlen, struct lwp *l)
672 {
673
674 /* All sysctl names at this level, except for a few, are terminal. */
675 switch (name[0]) {
676 case HW_DISKSTATS:
677 /* Not terminal. */
678 break;
679 default:
680 if (namelen != 1)
681 return (ENOTDIR); /* overloaded */
682 }
683
684 switch (name[0]) {
685 case HW_MACHINE:
686 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
687 case HW_MACHINE_ARCH:
688 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
689 case HW_MODEL:
690 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
691 case HW_NCPU:
692 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
693 case HW_BYTEORDER:
694 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
695 case HW_PHYSMEM:
696 {
697 u_int rval;
698
699 if ((u_int)physmem > (UINT_MAX / PAGE_SIZE))
700 rval = UINT_MAX;
701 else
702 rval = physmem * PAGE_SIZE;
703 return (sysctl_rdint(oldp, oldlenp, newp, rval));
704 }
705 case HW_PHYSMEM64:
706 return (sysctl_rdquad(oldp, oldlenp, newp,
707 (u_quad_t)physmem * PAGE_SIZE));
708 case HW_USERMEM:
709 {
710 u_int rval;
711
712 if ((u_int)(physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
713 rval = UINT_MAX;
714 else
715 rval = (physmem - uvmexp.wired) * PAGE_SIZE;
716 return (sysctl_rdint(oldp, oldlenp, newp, rval));
717 }
718 case HW_USERMEM64:
719 return (sysctl_rdquad(oldp, oldlenp, newp,
720 (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE));
721 case HW_PAGESIZE:
722 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
723 case HW_ALIGNBYTES:
724 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
725 case HW_DISKNAMES:
726 return (sysctl_disknames(oldp, oldlenp));
727 case HW_DISKSTATS:
728 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
729 case HW_CNMAGIC: {
730 char magic[CNS_LEN];
731 int error;
732
733 if (oldp)
734 cn_get_magic(magic, CNS_LEN);
735 error = sysctl_string(oldp, oldlenp, newp, newlen,
736 magic, sizeof(magic));
737 if (newp && !error) {
738 error = cn_set_magic(magic);
739 }
740 return (error);
741 }
742 default:
743 return (EOPNOTSUPP);
744 }
745 /* NOTREACHED */
746 }
747
748 #ifdef DEBUG
749 /*
750 * Debugging related system variables.
751 */
752 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
753 struct ctldebug debug5, debug6, debug7, debug8, debug9;
754 struct ctldebug debug10, debug11, debug12, debug13, debug14;
755 struct ctldebug debug15, debug16, debug17, debug18, debug19;
756 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
757 &debug0, &debug1, &debug2, &debug3, &debug4,
758 &debug5, &debug6, &debug7, &debug8, &debug9,
759 &debug10, &debug11, &debug12, &debug13, &debug14,
760 &debug15, &debug16, &debug17, &debug18, &debug19,
761 };
762
763 int
764 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
765 void *newp, size_t newlen, struct lwp *l)
766 {
767 struct ctldebug *cdp;
768
769 /* all sysctl names at this level are name and field */
770 if (namelen != 2)
771 return (ENOTDIR); /* overloaded */
772 if (name[0] >= CTL_DEBUG_MAXID)
773 return (EOPNOTSUPP);
774 cdp = debugvars[name[0]];
775 if (cdp->debugname == 0)
776 return (EOPNOTSUPP);
777 switch (name[1]) {
778 case CTL_DEBUG_NAME:
779 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
780 case CTL_DEBUG_VALUE:
781 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
782 default:
783 return (EOPNOTSUPP);
784 }
785 /* NOTREACHED */
786 }
787 #endif /* DEBUG */
788
789 int
790 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
791 void *newp, size_t newlen, struct lwp *l)
792 {
793 struct proc *ptmp = NULL;
794 const struct proclist_desc *pd;
795 int error = 0;
796 struct rlimit alim;
797 struct plimit *newplim;
798 struct proc *p = l->l_proc;
799 char *tmps = NULL;
800 size_t len, curlen;
801 u_int i;
802
803 if (namelen < 2)
804 return (EINVAL);
805
806 if (name[0] == PROC_CURPROC) {
807 ptmp = p;
808 } else {
809 proclist_lock_read();
810 for (pd = proclists; pd->pd_list != NULL; pd++) {
811 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
812 ptmp = LIST_NEXT(ptmp, p_list)) {
813 /* Skip embryonic processes. */
814 if (ptmp->p_stat == SIDL)
815 continue;
816 if (ptmp->p_pid == (pid_t)name[0])
817 break;
818 }
819 if (ptmp != NULL)
820 break;
821 }
822 proclist_unlock_read();
823 if (ptmp == NULL)
824 return (ESRCH);
825 if (p->p_ucred->cr_uid != 0) {
826 if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
827 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
828 return (EPERM);
829 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
830 return (EPERM); /* sgid proc */
831 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
832 if (p->p_ucred->cr_groups[i] ==
833 ptmp->p_cred->p_rgid)
834 break;
835 }
836 if (i == p->p_ucred->cr_ngroups)
837 return (EPERM);
838 }
839 }
840 switch (name[1]) {
841 case PROC_PID_STOPFORK:
842 if (namelen != 2)
843 return (EINVAL);
844 i = ((ptmp->p_flag & P_STOPFORK) != 0);
845 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
846 return (error);
847 if (i != 0)
848 ptmp->p_flag |= P_STOPFORK;
849 else
850 ptmp->p_flag &= ~P_STOPFORK;
851 return (0);
852 break;
853
854 case PROC_PID_STOPEXEC:
855 if (namelen != 2)
856 return (EINVAL);
857 i = ((ptmp->p_flag & P_STOPEXEC) != 0);
858 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
859 return (error);
860 if (i != 0)
861 ptmp->p_flag |= P_STOPEXEC;
862 else
863 ptmp->p_flag &= ~P_STOPEXEC;
864 return (0);
865 break;
866
867 case PROC_PID_CORENAME:
868 if (namelen != 2)
869 return (EINVAL);
870 /*
871 * Can't use sysctl_string() here because we may malloc a new
872 * area during the process, so we have to do it by hand.
873 */
874 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
875 if (oldlenp && *oldlenp < curlen) {
876 if (!oldp)
877 *oldlenp = curlen;
878 return (ENOMEM);
879 }
880 if (newp) {
881 if (securelevel > 2)
882 return (EPERM);
883 if (newlen > MAXPATHLEN)
884 return (ENAMETOOLONG);
885 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
886 if (tmps == NULL)
887 return (ENOMEM);
888 error = copyin(newp, tmps, newlen + 1);
889 tmps[newlen] = '\0';
890 if (error)
891 goto cleanup;
892 /* Enforce to be either 'core' for end with '.core' */
893 if (newlen < 4) { /* c.o.r.e */
894 error = EINVAL;
895 goto cleanup;
896 }
897 len = newlen - 4;
898 if (len > 0) {
899 if (tmps[len - 1] != '.' &&
900 tmps[len - 1] != '/') {
901 error = EINVAL;
902 goto cleanup;
903 }
904 }
905 if (strcmp(&tmps[len], "core") != 0) {
906 error = EINVAL;
907 goto cleanup;
908 }
909 }
910 if (oldp && oldlenp) {
911 *oldlenp = curlen;
912 error = copyout(ptmp->p_limit->pl_corename, oldp,
913 curlen);
914 }
915 if (newp && error == 0) {
916 /* if the 2 strings are identical, don't limcopy() */
917 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
918 error = 0;
919 goto cleanup;
920 }
921 if (ptmp->p_limit->p_refcnt > 1 &&
922 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
923 newplim = limcopy(ptmp->p_limit);
924 limfree(ptmp->p_limit);
925 ptmp->p_limit = newplim;
926 }
927 if (ptmp->p_limit->pl_corename != defcorename) {
928 free(ptmp->p_limit->pl_corename, M_TEMP);
929 }
930 ptmp->p_limit->pl_corename = tmps;
931 return (0);
932 }
933 cleanup:
934 if (tmps)
935 free(tmps, M_TEMP);
936 return (error);
937 break;
938
939 case PROC_PID_LIMIT:
940 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
941 return (EINVAL);
942 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
943 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
944 error = sysctl_quad(oldp, oldlenp, newp, newlen,
945 &alim.rlim_max);
946 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
947 error = sysctl_quad(oldp, oldlenp, newp, newlen,
948 &alim.rlim_cur);
949 else
950 error = (EINVAL);
951
952 if (error)
953 return (error);
954
955 if (newp)
956 error = dosetrlimit(ptmp, p->p_cred,
957 name[2] - 1, &alim);
958 return (error);
959 break;
960
961 default:
962 return (EINVAL);
963 break;
964 }
965 /* NOTREACHED */
966 return (EINVAL);
967 }
968
969 int
970 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
971 void *newp, size_t newlen, struct lwp *l)
972 {
973 static struct {
974 const char *name;
975 int type;
976 } emulations[] = CTL_EMUL_NAMES;
977 const struct emul *e;
978 const char *ename;
979 #ifdef LKM
980 extern struct lock exec_lock; /* XXX */
981 int error;
982 #else
983 extern int nexecs_builtin;
984 extern const struct execsw execsw_builtin[];
985 int i;
986 #endif
987
988 /* all sysctl names at this level are name and field */
989 if (namelen < 2)
990 return (ENOTDIR); /* overloaded */
991
992 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
993 return (EOPNOTSUPP);
994
995 ename = emulations[name[0]].name;
996
997 #ifdef LKM
998 lockmgr(&exec_lock, LK_SHARED, NULL);
999 if ((e = emul_search(ename))) {
1000 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
1001 newp, newlen, l);
1002 } else
1003 error = EOPNOTSUPP;
1004 lockmgr(&exec_lock, LK_RELEASE, NULL);
1005
1006 return (error);
1007 #else
1008 for (i = 0; i < nexecs_builtin; i++) {
1009 e = execsw_builtin[i].es_emul;
1010 /*
1011 * In order to match e.g. e->e_name "irix o32"
1012 * with ename "irix", we limit the comparison
1013 * to the length of ename.
1014 */
1015 if (e == NULL ||
1016 strncmp(ename, e->e_name, strlen(ename)) != 0 ||
1017 e->e_sysctl == NULL)
1018 continue;
1019
1020 return ((*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
1021 newp, newlen, p));
1022 }
1023
1024 return (EOPNOTSUPP);
1025 #endif
1026 }
1027 /*
1028 * Convenience macros.
1029 */
1030
1031 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
1032 if (oldlenp) { \
1033 if (!oldp) \
1034 *oldlenp = len; \
1035 else { \
1036 if (*oldlenp < len) \
1037 return (ENOMEM); \
1038 *oldlenp = len; \
1039 error = copyout((caddr_t)valp, oldp, len); \
1040 } \
1041 }
1042
1043 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
1044 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
1045
1046 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
1047 if (newp && newlen != len) \
1048 return (EINVAL);
1049
1050 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
1051 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
1052
1053 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
1054 if (error == 0 && newp) \
1055 error = copyin(newp, valp, len);
1056
1057 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
1058 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
1059
1060 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
1061 if (oldlenp) { \
1062 len = strlen(str) + 1; \
1063 if (!oldp) \
1064 *oldlenp = len; \
1065 else { \
1066 if (*oldlenp < len) { \
1067 err2 = ENOMEM; \
1068 len = *oldlenp; \
1069 } else \
1070 *oldlenp = len; \
1071 error = copyout(str, oldp, len);\
1072 if (error == 0) \
1073 error = err2; \
1074 } \
1075 }
1076
1077 /*
1078 * Validate parameters and get old / set new parameters
1079 * for an integer-valued sysctl function.
1080 */
1081 int
1082 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
1083 {
1084 int error = 0;
1085
1086 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1087 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
1088 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
1089
1090 return (error);
1091 }
1092
1093
1094 /*
1095 * As above, but read-only.
1096 */
1097 int
1098 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
1099 {
1100 int error = 0;
1101
1102 if (newp)
1103 return (EPERM);
1104
1105 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
1106
1107 return (error);
1108 }
1109
1110 /*
1111 * Validate parameters and get old / set new parameters
1112 * for an quad-valued sysctl function.
1113 */
1114 int
1115 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1116 quad_t *valp)
1117 {
1118 int error = 0;
1119
1120 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
1121 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
1122 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1123
1124 return (error);
1125 }
1126
1127 /*
1128 * As above, but read-only.
1129 */
1130 int
1131 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1132 {
1133 int error = 0;
1134
1135 if (newp)
1136 return (EPERM);
1137
1138 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1139
1140 return (error);
1141 }
1142
1143 /*
1144 * Validate parameters and get old / set new parameters
1145 * for a string-valued sysctl function.
1146 */
1147 int
1148 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1149 size_t maxlen)
1150 {
1151 int error = 0, err2 = 0;
1152 size_t len;
1153
1154 if (newp && newlen >= maxlen)
1155 return (EINVAL);
1156
1157 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1158
1159 if (error == 0 && newp) {
1160 error = copyin(newp, str, newlen);
1161 str[newlen] = 0;
1162 }
1163 return (error);
1164 }
1165
1166 /*
1167 * As above, but read-only.
1168 */
1169 int
1170 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1171 {
1172 int error = 0, err2 = 0;
1173 size_t len;
1174
1175 if (newp)
1176 return (EPERM);
1177
1178 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1179
1180 return (error);
1181 }
1182
1183 /*
1184 * Validate parameters and get old / set new parameters
1185 * for a structure oriented sysctl function.
1186 */
1187 int
1188 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1189 size_t len)
1190 {
1191 int error = 0;
1192
1193 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1194 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1195 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1196
1197 return (error);
1198 }
1199
1200 /*
1201 * Validate parameters and get old parameters
1202 * for a structure oriented sysctl function.
1203 */
1204 int
1205 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1206 size_t len)
1207 {
1208 int error = 0;
1209
1210 if (newp)
1211 return (EPERM);
1212
1213 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1214
1215 return (error);
1216 }
1217
1218 /*
1219 * As above, but can return a truncated result.
1220 */
1221 int
1222 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1223 size_t len)
1224 {
1225 int error = 0;
1226
1227 if (newp)
1228 return (EPERM);
1229
1230 len = min(*oldlenp, len);
1231 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1232
1233 return (error);
1234 }
1235
1236 /*
1237 * Get file structures.
1238 */
1239 static int
1240 sysctl_file(void *vwhere, size_t *sizep)
1241 {
1242 int error;
1243 size_t buflen;
1244 struct file *fp;
1245 char *start, *where;
1246
1247 start = where = vwhere;
1248 buflen = *sizep;
1249 if (where == NULL) {
1250 /*
1251 * overestimate by 10 files
1252 */
1253 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1254 return (0);
1255 }
1256
1257 /*
1258 * first copyout filehead
1259 */
1260 if (buflen < sizeof(filehead)) {
1261 *sizep = 0;
1262 return (0);
1263 }
1264 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1265 if (error)
1266 return (error);
1267 buflen -= sizeof(filehead);
1268 where += sizeof(filehead);
1269
1270 /*
1271 * followed by an array of file structures
1272 */
1273 LIST_FOREACH(fp, &filehead, f_list) {
1274 if (buflen < sizeof(struct file)) {
1275 *sizep = where - start;
1276 return (ENOMEM);
1277 }
1278 error = copyout((caddr_t)fp, where, sizeof(struct file));
1279 if (error)
1280 return (error);
1281 buflen -= sizeof(struct file);
1282 where += sizeof(struct file);
1283 }
1284 *sizep = where - start;
1285 return (0);
1286 }
1287
1288 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1289 #define FILL_PERM(src, dst) do { \
1290 (dst)._key = (src)._key; \
1291 (dst).uid = (src).uid; \
1292 (dst).gid = (src).gid; \
1293 (dst).cuid = (src).cuid; \
1294 (dst).cgid = (src).cgid; \
1295 (dst).mode = (src).mode; \
1296 (dst)._seq = (src)._seq; \
1297 } while (/*CONSTCOND*/ 0);
1298 #define FILL_MSG(src, dst) do { \
1299 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1300 (dst).msg_qnum = (src).msg_qnum; \
1301 (dst).msg_qbytes = (src).msg_qbytes; \
1302 (dst)._msg_cbytes = (src)._msg_cbytes; \
1303 (dst).msg_lspid = (src).msg_lspid; \
1304 (dst).msg_lrpid = (src).msg_lrpid; \
1305 (dst).msg_stime = (src).msg_stime; \
1306 (dst).msg_rtime = (src).msg_rtime; \
1307 (dst).msg_ctime = (src).msg_ctime; \
1308 } while (/*CONSTCOND*/ 0)
1309 #define FILL_SEM(src, dst) do { \
1310 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1311 (dst).sem_nsems = (src).sem_nsems; \
1312 (dst).sem_otime = (src).sem_otime; \
1313 (dst).sem_ctime = (src).sem_ctime; \
1314 } while (/*CONSTCOND*/ 0)
1315 #define FILL_SHM(src, dst) do { \
1316 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1317 (dst).shm_segsz = (src).shm_segsz; \
1318 (dst).shm_lpid = (src).shm_lpid; \
1319 (dst).shm_cpid = (src).shm_cpid; \
1320 (dst).shm_atime = (src).shm_atime; \
1321 (dst).shm_dtime = (src).shm_dtime; \
1322 (dst).shm_ctime = (src).shm_ctime; \
1323 (dst).shm_nattch = (src).shm_nattch; \
1324 } while (/*CONSTCOND*/ 0)
1325
1326 static int
1327 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1328 {
1329 #ifdef SYSVMSG
1330 struct msg_sysctl_info *msgsi = NULL;
1331 #endif
1332 #ifdef SYSVSEM
1333 struct sem_sysctl_info *semsi = NULL;
1334 #endif
1335 #ifdef SYSVSHM
1336 struct shm_sysctl_info *shmsi = NULL;
1337 #endif
1338 size_t infosize, dssize, tsize, buflen;
1339 void *buf = NULL;
1340 char *start;
1341 int32_t nds;
1342 int i, error, ret;
1343
1344 if (namelen != 1)
1345 return (EINVAL);
1346
1347 start = where;
1348 buflen = *sizep;
1349
1350 switch (*name) {
1351 case KERN_SYSVIPC_MSG_INFO:
1352 #ifdef SYSVMSG
1353 infosize = sizeof(msgsi->msginfo);
1354 nds = msginfo.msgmni;
1355 dssize = sizeof(msgsi->msgids[0]);
1356 break;
1357 #else
1358 return (EINVAL);
1359 #endif
1360 case KERN_SYSVIPC_SEM_INFO:
1361 #ifdef SYSVSEM
1362 infosize = sizeof(semsi->seminfo);
1363 nds = seminfo.semmni;
1364 dssize = sizeof(semsi->semids[0]);
1365 break;
1366 #else
1367 return (EINVAL);
1368 #endif
1369 case KERN_SYSVIPC_SHM_INFO:
1370 #ifdef SYSVSHM
1371 infosize = sizeof(shmsi->shminfo);
1372 nds = shminfo.shmmni;
1373 dssize = sizeof(shmsi->shmids[0]);
1374 break;
1375 #else
1376 return (EINVAL);
1377 #endif
1378 default:
1379 return (EINVAL);
1380 }
1381 /*
1382 * Round infosize to 64 bit boundary if requesting more than just
1383 * the info structure or getting the total data size.
1384 */
1385 if (where == NULL || *sizep > infosize)
1386 infosize = ((infosize + 7) / 8) * 8;
1387 tsize = infosize + nds * dssize;
1388
1389 /* Return just the total size required. */
1390 if (where == NULL) {
1391 *sizep = tsize;
1392 return (0);
1393 }
1394
1395 /* Not enough room for even the info struct. */
1396 if (buflen < infosize) {
1397 *sizep = 0;
1398 return (ENOMEM);
1399 }
1400 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1401 memset(buf, 0, min(tsize, buflen));
1402
1403 switch (*name) {
1404 #ifdef SYSVMSG
1405 case KERN_SYSVIPC_MSG_INFO:
1406 msgsi = (struct msg_sysctl_info *)buf;
1407 msgsi->msginfo = msginfo;
1408 break;
1409 #endif
1410 #ifdef SYSVSEM
1411 case KERN_SYSVIPC_SEM_INFO:
1412 semsi = (struct sem_sysctl_info *)buf;
1413 semsi->seminfo = seminfo;
1414 break;
1415 #endif
1416 #ifdef SYSVSHM
1417 case KERN_SYSVIPC_SHM_INFO:
1418 shmsi = (struct shm_sysctl_info *)buf;
1419 shmsi->shminfo = shminfo;
1420 break;
1421 #endif
1422 }
1423 buflen -= infosize;
1424
1425 ret = 0;
1426 if (buflen > 0) {
1427 /* Fill in the IPC data structures. */
1428 for (i = 0; i < nds; i++) {
1429 if (buflen < dssize) {
1430 ret = ENOMEM;
1431 break;
1432 }
1433 switch (*name) {
1434 #ifdef SYSVMSG
1435 case KERN_SYSVIPC_MSG_INFO:
1436 FILL_MSG(msqids[i], msgsi->msgids[i]);
1437 break;
1438 #endif
1439 #ifdef SYSVSEM
1440 case KERN_SYSVIPC_SEM_INFO:
1441 FILL_SEM(sema[i], semsi->semids[i]);
1442 break;
1443 #endif
1444 #ifdef SYSVSHM
1445 case KERN_SYSVIPC_SHM_INFO:
1446 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1447 break;
1448 #endif
1449 }
1450 buflen -= dssize;
1451 }
1452 }
1453 *sizep -= buflen;
1454 error = copyout(buf, start, *sizep);
1455 /* If copyout succeeded, use return code set earlier. */
1456 if (error == 0)
1457 error = ret;
1458 if (buf)
1459 free(buf, M_TEMP);
1460 return (error);
1461 }
1462 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1463
1464 static int
1465 sysctl_msgbuf(void *vwhere, size_t *sizep)
1466 {
1467 char *where = vwhere;
1468 size_t len, maxlen = *sizep;
1469 long beg, end;
1470 int error;
1471
1472 /*
1473 * deal with cases where the message buffer has
1474 * become corrupted.
1475 */
1476 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1477 msgbufenabled = 0;
1478 return (ENXIO);
1479 }
1480
1481 if (where == NULL) {
1482 /* always return full buffer size */
1483 *sizep = msgbufp->msg_bufs;
1484 return (0);
1485 }
1486
1487 error = 0;
1488 maxlen = min(msgbufp->msg_bufs, maxlen);
1489
1490 /*
1491 * First, copy from the write pointer to the end of
1492 * message buffer.
1493 */
1494 beg = msgbufp->msg_bufx;
1495 end = msgbufp->msg_bufs;
1496 while (maxlen > 0) {
1497 len = min(end - beg, maxlen);
1498 if (len == 0)
1499 break;
1500 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1501 if (error)
1502 break;
1503 where += len;
1504 maxlen -= len;
1505
1506 /*
1507 * ... then, copy from the beginning of message buffer to
1508 * the write pointer.
1509 */
1510 beg = 0;
1511 end = msgbufp->msg_bufx;
1512 }
1513 return (error);
1514 }
1515
1516 /*
1517 * try over estimating by 5 procs
1518 */
1519 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1520
1521 static int
1522 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1523 {
1524 struct eproc eproc;
1525 struct kinfo_proc2 kproc2;
1526 struct kinfo_proc *dp;
1527 struct proc *p;
1528 const struct proclist_desc *pd;
1529 char *where, *dp2;
1530 int type, op, arg;
1531 u_int elem_size, elem_count;
1532 size_t buflen, needed;
1533 int error;
1534
1535 dp = vwhere;
1536 dp2 = where = vwhere;
1537 buflen = where != NULL ? *sizep : 0;
1538 error = 0;
1539 needed = 0;
1540 type = name[0];
1541
1542 if (type == KERN_PROC) {
1543 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1544 return (EINVAL);
1545 op = name[1];
1546 if (op != KERN_PROC_ALL)
1547 arg = name[2];
1548 else
1549 arg = 0; /* Quell compiler warning */
1550 elem_size = elem_count = 0; /* Ditto */
1551 } else {
1552 if (namelen != 5)
1553 return (EINVAL);
1554 op = name[1];
1555 arg = name[2];
1556 elem_size = name[3];
1557 elem_count = name[4];
1558 }
1559
1560 proclist_lock_read();
1561
1562 pd = proclists;
1563 again:
1564 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1565 /*
1566 * Skip embryonic processes.
1567 */
1568 if (p->p_stat == SIDL)
1569 continue;
1570 /*
1571 * TODO - make more efficient (see notes below).
1572 * do by session.
1573 */
1574 switch (op) {
1575
1576 case KERN_PROC_PID:
1577 /* could do this with just a lookup */
1578 if (p->p_pid != (pid_t)arg)
1579 continue;
1580 break;
1581
1582 case KERN_PROC_PGRP:
1583 /* could do this by traversing pgrp */
1584 if (p->p_pgrp->pg_id != (pid_t)arg)
1585 continue;
1586 break;
1587
1588 case KERN_PROC_SESSION:
1589 if (p->p_session->s_sid != (pid_t)arg)
1590 continue;
1591 break;
1592
1593 case KERN_PROC_TTY:
1594 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1595 if ((p->p_flag & P_CONTROLT) == 0 ||
1596 p->p_session->s_ttyp == NULL ||
1597 p->p_session->s_ttyvp != NULL)
1598 continue;
1599 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1600 p->p_session->s_ttyp == NULL) {
1601 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1602 continue;
1603 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1604 continue;
1605 break;
1606
1607 case KERN_PROC_UID:
1608 if (p->p_ucred->cr_uid != (uid_t)arg)
1609 continue;
1610 break;
1611
1612 case KERN_PROC_RUID:
1613 if (p->p_cred->p_ruid != (uid_t)arg)
1614 continue;
1615 break;
1616
1617 case KERN_PROC_GID:
1618 if (p->p_ucred->cr_gid != (uid_t)arg)
1619 continue;
1620 break;
1621
1622 case KERN_PROC_RGID:
1623 if (p->p_cred->p_rgid != (uid_t)arg)
1624 continue;
1625 break;
1626
1627 case KERN_PROC_ALL:
1628 /* allow everything */
1629 break;
1630
1631 default:
1632 error = EINVAL;
1633 goto cleanup;
1634 }
1635 if (type == KERN_PROC) {
1636 if (buflen >= sizeof(struct kinfo_proc)) {
1637 fill_eproc(p, &eproc);
1638 error = copyout((caddr_t)p, &dp->kp_proc,
1639 sizeof(struct proc));
1640 if (error)
1641 goto cleanup;
1642 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1643 sizeof(eproc));
1644 if (error)
1645 goto cleanup;
1646 dp++;
1647 buflen -= sizeof(struct kinfo_proc);
1648 }
1649 needed += sizeof(struct kinfo_proc);
1650 } else { /* KERN_PROC2 */
1651 if (buflen >= elem_size && elem_count > 0) {
1652 fill_kproc2(p, &kproc2);
1653 /*
1654 * Copy out elem_size, but not larger than
1655 * the size of a struct kinfo_proc2.
1656 */
1657 error = copyout(&kproc2, dp2,
1658 min(sizeof(kproc2), elem_size));
1659 if (error)
1660 goto cleanup;
1661 dp2 += elem_size;
1662 buflen -= elem_size;
1663 elem_count--;
1664 }
1665 needed += elem_size;
1666 }
1667 }
1668 pd++;
1669 if (pd->pd_list != NULL)
1670 goto again;
1671 proclist_unlock_read();
1672
1673 if (where != NULL) {
1674 if (type == KERN_PROC)
1675 *sizep = (caddr_t)dp - where;
1676 else
1677 *sizep = dp2 - where;
1678 if (needed > *sizep)
1679 return (ENOMEM);
1680 } else {
1681 needed += KERN_PROCSLOP;
1682 *sizep = needed;
1683 }
1684 return (0);
1685 cleanup:
1686 proclist_unlock_read();
1687 return (error);
1688 }
1689
1690
1691 /*
1692 * try over estimating by 5 LWPs
1693 */
1694 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
1695
1696 static int
1697 sysctl_dolwp(int *name, u_int namelen, void *vwhere, size_t *sizep)
1698 {
1699 struct kinfo_lwp klwp;
1700 struct proc *p;
1701 struct lwp *l;
1702 char *where, *dp;
1703 int type, pid, elem_size, elem_count;
1704 int buflen, needed, error;
1705
1706 dp = where = vwhere;
1707 buflen = where != NULL ? *sizep : 0;
1708 error = needed = 0;
1709 type = name[0];
1710
1711 if (namelen != 4)
1712 return (EINVAL);
1713 pid = name[1];
1714 elem_size = name[2];
1715 elem_count = name[3];
1716
1717 p = pfind(pid);
1718 if (p == NULL)
1719 return (ESRCH);
1720 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1721 if (buflen >= elem_size && elem_count > 0) {
1722 fill_lwp(l, &klwp);
1723 /*
1724 * Copy out elem_size, but not larger than
1725 * the size of a struct kinfo_proc2.
1726 */
1727 error = copyout(&klwp, dp,
1728 min(sizeof(klwp), elem_size));
1729 if (error)
1730 goto cleanup;
1731 dp += elem_size;
1732 buflen -= elem_size;
1733 elem_count--;
1734 }
1735 needed += elem_size;
1736 }
1737
1738 if (where != NULL) {
1739 *sizep = dp - where;
1740 if (needed > *sizep)
1741 return (ENOMEM);
1742 } else {
1743 needed += KERN_PROCSLOP;
1744 *sizep = needed;
1745 }
1746 return (0);
1747 cleanup:
1748 return (error);
1749 }
1750
1751 /*
1752 * Fill in an eproc structure for the specified process.
1753 */
1754 void
1755 fill_eproc(struct proc *p, struct eproc *ep)
1756 {
1757 struct tty *tp;
1758 struct lwp *l;
1759
1760 ep->e_paddr = p;
1761 ep->e_sess = p->p_session;
1762 ep->e_pcred = *p->p_cred;
1763 ep->e_ucred = *p->p_ucred;
1764 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1765 ep->e_vm.vm_rssize = 0;
1766 ep->e_vm.vm_tsize = 0;
1767 ep->e_vm.vm_dsize = 0;
1768 ep->e_vm.vm_ssize = 0;
1769 /* ep->e_vm.vm_pmap = XXX; */
1770 } else {
1771 struct vmspace *vm = p->p_vmspace;
1772
1773 ep->e_vm.vm_rssize = vm_resident_count(vm);
1774 ep->e_vm.vm_tsize = vm->vm_tsize;
1775 ep->e_vm.vm_dsize = vm->vm_dsize;
1776 ep->e_vm.vm_ssize = vm->vm_ssize;
1777
1778 /* Pick a "representative" LWP */
1779 l = proc_representative_lwp(p);
1780
1781 if (l->l_wmesg)
1782 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
1783 }
1784 if (p->p_pptr)
1785 ep->e_ppid = p->p_pptr->p_pid;
1786 else
1787 ep->e_ppid = 0;
1788 ep->e_pgid = p->p_pgrp->pg_id;
1789 ep->e_sid = ep->e_sess->s_sid;
1790 ep->e_jobc = p->p_pgrp->pg_jobc;
1791 if ((p->p_flag & P_CONTROLT) &&
1792 (tp = ep->e_sess->s_ttyp)) {
1793 ep->e_tdev = tp->t_dev;
1794 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
1795 ep->e_tsess = tp->t_session;
1796 } else
1797 ep->e_tdev = NODEV;
1798
1799 ep->e_xsize = ep->e_xrssize = 0;
1800 ep->e_xccount = ep->e_xswrss = 0;
1801 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1802 if (SESS_LEADER(p))
1803 ep->e_flag |= EPROC_SLEADER;
1804 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1805 }
1806
1807 /*
1808 * Fill in an eproc structure for the specified process.
1809 */
1810 static void
1811 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1812 {
1813 struct tty *tp;
1814 struct lwp *l;
1815 struct timeval ut, st;
1816
1817 memset(ki, 0, sizeof(*ki));
1818
1819 ki->p_paddr = PTRTOINT64(p);
1820 ki->p_fd = PTRTOINT64(p->p_fd);
1821 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1822 ki->p_stats = PTRTOINT64(p->p_stats);
1823 ki->p_limit = PTRTOINT64(p->p_limit);
1824 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1825 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1826 ki->p_sess = PTRTOINT64(p->p_session);
1827 ki->p_tsess = 0; /* may be changed if controlling tty below */
1828 ki->p_ru = PTRTOINT64(p->p_ru);
1829
1830 ki->p_eflag = 0;
1831 ki->p_exitsig = p->p_exitsig;
1832 ki->p_flag = p->p_flag;
1833
1834 ki->p_pid = p->p_pid;
1835 if (p->p_pptr)
1836 ki->p_ppid = p->p_pptr->p_pid;
1837 else
1838 ki->p_ppid = 0;
1839 ki->p_sid = p->p_session->s_sid;
1840 ki->p__pgid = p->p_pgrp->pg_id;
1841
1842 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
1843
1844 ki->p_uid = p->p_ucred->cr_uid;
1845 ki->p_ruid = p->p_cred->p_ruid;
1846 ki->p_gid = p->p_ucred->cr_gid;
1847 ki->p_rgid = p->p_cred->p_rgid;
1848 ki->p_svuid = p->p_cred->p_svuid;
1849 ki->p_svgid = p->p_cred->p_svgid;
1850
1851 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1852 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1853 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1854
1855 ki->p_jobc = p->p_pgrp->pg_jobc;
1856 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1857 ki->p_tdev = tp->t_dev;
1858 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
1859 ki->p_tsess = PTRTOINT64(tp->t_session);
1860 } else {
1861 ki->p_tdev = NODEV;
1862 }
1863
1864 ki->p_estcpu = p->p_estcpu;
1865 ki->p_rtime_sec = p->p_rtime.tv_sec;
1866 ki->p_rtime_usec = p->p_rtime.tv_usec;
1867 ki->p_cpticks = p->p_cpticks;
1868 ki->p_pctcpu = p->p_pctcpu;
1869
1870 ki->p_uticks = p->p_uticks;
1871 ki->p_sticks = p->p_sticks;
1872 ki->p_iticks = p->p_iticks;
1873
1874 ki->p_tracep = PTRTOINT64(p->p_tracep);
1875 ki->p_traceflag = p->p_traceflag;
1876
1877
1878 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1879 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1880 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1881 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1882
1883 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
1884 ki->p_realstat = p->p_stat;
1885 ki->p_nice = p->p_nice;
1886
1887 ki->p_xstat = p->p_xstat;
1888 ki->p_acflag = p->p_acflag;
1889
1890 strncpy(ki->p_comm, p->p_comm,
1891 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1892
1893 strncpy(ki->p_login, p->p_session->s_login,
1894 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
1895
1896 ki->p_nlwps = p->p_nlwps;
1897 ki->p_nrlwps = p->p_nrlwps;
1898 ki->p_realflag = p->p_flag;
1899
1900 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1901 ki->p_vm_rssize = 0;
1902 ki->p_vm_tsize = 0;
1903 ki->p_vm_dsize = 0;
1904 ki->p_vm_ssize = 0;
1905 l = NULL;
1906 } else {
1907 struct vmspace *vm = p->p_vmspace;
1908
1909 ki->p_vm_rssize = vm_resident_count(vm);
1910 ki->p_vm_tsize = vm->vm_tsize;
1911 ki->p_vm_dsize = vm->vm_dsize;
1912 ki->p_vm_ssize = vm->vm_ssize;
1913
1914 /* Pick a "representative" LWP */
1915 l = proc_representative_lwp(p);
1916 ki->p_forw = PTRTOINT64(l->l_forw);
1917 ki->p_back = PTRTOINT64(l->l_back);
1918 ki->p_addr = PTRTOINT64(l->l_addr);
1919 ki->p_stat = l->l_stat;
1920 ki->p_flag |= l->l_flag;
1921 ki->p_swtime = l->l_swtime;
1922 ki->p_slptime = l->l_slptime;
1923 if (l->l_stat == LSONPROC) {
1924 KDASSERT(l->l_cpu != NULL);
1925 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1926 } else
1927 ki->p_schedflags = 0;
1928 ki->p_holdcnt = l->l_holdcnt;
1929 ki->p_priority = l->l_priority;
1930 ki->p_usrpri = l->l_usrpri;
1931 if (l->l_wmesg)
1932 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
1933 ki->p_wchan = PTRTOINT64(l->l_wchan);
1934
1935 }
1936
1937 if (p->p_session->s_ttyvp)
1938 ki->p_eflag |= EPROC_CTTY;
1939 if (SESS_LEADER(p))
1940 ki->p_eflag |= EPROC_SLEADER;
1941
1942 /* XXX Is this double check necessary? */
1943 if (P_ZOMBIE(p)) {
1944 ki->p_uvalid = 0;
1945 } else {
1946 ki->p_uvalid = 1;
1947
1948 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1949 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1950
1951 calcru(p, &ut, &st, 0);
1952 ki->p_uutime_sec = ut.tv_sec;
1953 ki->p_uutime_usec = ut.tv_usec;
1954 ki->p_ustime_sec = st.tv_sec;
1955 ki->p_ustime_usec = st.tv_usec;
1956
1957 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1958 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1959 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1960 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1961 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1962 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1963 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1964 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1965 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1966 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1967 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1968 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1969 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1970 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1971
1972 timeradd(&p->p_stats->p_cru.ru_utime,
1973 &p->p_stats->p_cru.ru_stime, &ut);
1974 ki->p_uctime_sec = ut.tv_sec;
1975 ki->p_uctime_usec = ut.tv_usec;
1976 }
1977 #ifdef MULTIPROCESSOR
1978 if (l && l->l_cpu != NULL)
1979 ki->p_cpuid = l->l_cpu->ci_cpuid;
1980 else
1981 #endif
1982 ki->p_cpuid = KI_NOCPU;
1983
1984 }
1985
1986 /*
1987 * Fill in a kinfo_lwp structure for the specified lwp.
1988 */
1989 static void
1990 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
1991 {
1992
1993 kl->l_forw = PTRTOINT64(l->l_forw);
1994 kl->l_back = PTRTOINT64(l->l_back);
1995 kl->l_laddr = PTRTOINT64(l);
1996 kl->l_addr = PTRTOINT64(l->l_addr);
1997 kl->l_stat = l->l_stat;
1998 kl->l_lid = l->l_lid;
1999 kl->l_flag = l->l_flag;
2000
2001 kl->l_swtime = l->l_swtime;
2002 kl->l_slptime = l->l_slptime;
2003 if (l->l_stat == LSONPROC) {
2004 KDASSERT(l->l_cpu != NULL);
2005 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2006 } else
2007 kl->l_schedflags = 0;
2008 kl->l_holdcnt = l->l_holdcnt;
2009 kl->l_priority = l->l_priority;
2010 kl->l_usrpri = l->l_usrpri;
2011 if (l->l_wmesg)
2012 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2013 kl->l_wchan = PTRTOINT64(l->l_wchan);
2014 #ifdef MULTIPROCESSOR
2015 if (l->l_cpu != NULL)
2016 kl->l_cpuid = l->l_cpu->ci_cpuid;
2017 else
2018 #endif
2019 kl->l_cpuid = KI_NOCPU;
2020 }
2021
2022 int
2023 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
2024 struct proc *up)
2025 {
2026 struct ps_strings pss;
2027 struct proc *p;
2028 size_t len, upper_bound, xlen, i;
2029 struct uio auio;
2030 struct iovec aiov;
2031 vaddr_t argv;
2032 pid_t pid;
2033 int nargv, type, error;
2034 char *arg;
2035 char *tmp;
2036
2037 if (namelen != 2)
2038 return (EINVAL);
2039 pid = name[0];
2040 type = name[1];
2041
2042 switch (type) {
2043 case KERN_PROC_ARGV:
2044 case KERN_PROC_NARGV:
2045 case KERN_PROC_ENV:
2046 case KERN_PROC_NENV:
2047 /* ok */
2048 break;
2049 default:
2050 return (EINVAL);
2051 }
2052
2053 /* check pid */
2054 if ((p = pfind(pid)) == NULL)
2055 return (EINVAL);
2056
2057 /* only root or same user change look at the environment */
2058 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2059 if (up->p_ucred->cr_uid != 0) {
2060 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
2061 up->p_cred->p_ruid != p->p_cred->p_svuid)
2062 return (EPERM);
2063 }
2064 }
2065
2066 if (sizep != NULL && where == NULL) {
2067 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2068 *sizep = sizeof (int);
2069 else
2070 *sizep = ARG_MAX; /* XXX XXX XXX */
2071 return (0);
2072 }
2073 if (where == NULL || sizep == NULL)
2074 return (EINVAL);
2075
2076 /*
2077 * Zombies don't have a stack, so we can't read their psstrings.
2078 * System processes also don't have a user stack.
2079 */
2080 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
2081 return (EINVAL);
2082
2083 /*
2084 * Lock the process down in memory.
2085 */
2086 /* XXXCDC: how should locking work here? */
2087 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
2088 return (EFAULT);
2089
2090 p->p_vmspace->vm_refcnt++; /* XXX */
2091
2092 /*
2093 * Allocate a temporary buffer to hold the arguments.
2094 */
2095 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2096
2097 /*
2098 * Read in the ps_strings structure.
2099 */
2100 aiov.iov_base = &pss;
2101 aiov.iov_len = sizeof(pss);
2102 auio.uio_iov = &aiov;
2103 auio.uio_iovcnt = 1;
2104 auio.uio_offset = (vaddr_t)p->p_psstr;
2105 auio.uio_resid = sizeof(pss);
2106 auio.uio_segflg = UIO_SYSSPACE;
2107 auio.uio_rw = UIO_READ;
2108 auio.uio_lwp = NULL;
2109 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2110 if (error)
2111 goto done;
2112
2113 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2114 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
2115 else
2116 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
2117 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2118 error = copyout(&nargv, where, sizeof(nargv));
2119 *sizep = sizeof(nargv);
2120 goto done;
2121 }
2122 /*
2123 * Now read the address of the argument vector.
2124 */
2125 switch (type) {
2126 case KERN_PROC_ARGV:
2127 /* XXX compat32 stuff here */
2128 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
2129 break;
2130 case KERN_PROC_ENV:
2131 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
2132 break;
2133 default:
2134 return (EINVAL);
2135 }
2136 auio.uio_offset = (off_t)(long)tmp;
2137 aiov.iov_base = &argv;
2138 aiov.iov_len = sizeof(argv);
2139 auio.uio_iov = &aiov;
2140 auio.uio_iovcnt = 1;
2141 auio.uio_resid = sizeof(argv);
2142 auio.uio_segflg = UIO_SYSSPACE;
2143 auio.uio_rw = UIO_READ;
2144 auio.uio_lwp = NULL;
2145 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2146 if (error)
2147 goto done;
2148
2149 /*
2150 * Now copy in the actual argument vector, one page at a time,
2151 * since we don't know how long the vector is (though, we do
2152 * know how many NUL-terminated strings are in the vector).
2153 */
2154 len = 0;
2155 upper_bound = *sizep;
2156 for (; nargv != 0 && len < upper_bound; len += xlen) {
2157 aiov.iov_base = arg;
2158 aiov.iov_len = PAGE_SIZE;
2159 auio.uio_iov = &aiov;
2160 auio.uio_iovcnt = 1;
2161 auio.uio_offset = argv + len;
2162 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2163 auio.uio_resid = xlen;
2164 auio.uio_segflg = UIO_SYSSPACE;
2165 auio.uio_rw = UIO_READ;
2166 auio.uio_lwp = NULL;
2167 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2168 if (error)
2169 goto done;
2170
2171 for (i = 0; i < xlen && nargv != 0; i++) {
2172 if (arg[i] == '\0')
2173 nargv--; /* one full string */
2174 }
2175
2176 /*
2177 * Make sure we don't copyout past the end of the user's
2178 * buffer.
2179 */
2180 if (len + i > upper_bound)
2181 i = upper_bound - len;
2182
2183 error = copyout(arg, (char *)where + len, i);
2184 if (error)
2185 break;
2186
2187 if (nargv == 0) {
2188 len += i;
2189 break;
2190 }
2191 }
2192 *sizep = len;
2193
2194 done:
2195 uvmspace_free(p->p_vmspace);
2196
2197 free(arg, M_TEMP);
2198 return (error);
2199 }
2200
2201 #if NPTY > 0
2202 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
2203
2204 /*
2205 * Validate parameters and get old / set new parameters
2206 * for pty sysctl function.
2207 */
2208 static int
2209 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2210 {
2211 int error = 0;
2212 int oldmax = 0, newmax = 0;
2213
2214 /* get current value of maxptys */
2215 oldmax = pty_maxptys(0, 0);
2216
2217 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
2218
2219 if (!error && newp) {
2220 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
2221 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
2222
2223 if (newmax != pty_maxptys(newmax, (newp != NULL)))
2224 return (EINVAL);
2225
2226 }
2227
2228 return (error);
2229 }
2230 #endif /* NPTY > 0 */
2231
2232 static int
2233 sysctl_dotkstat(int *name, u_int namelen, void *where, size_t *sizep,
2234 void *newp)
2235 {
2236
2237 /* all sysctl names at this level are terminal */
2238 if (namelen != 1)
2239 return (ENOTDIR); /* overloaded */
2240
2241 switch (name[0]) {
2242 case KERN_TKSTAT_NIN:
2243 return (sysctl_rdquad(where, sizep, newp, tk_nin));
2244 case KERN_TKSTAT_NOUT:
2245 return (sysctl_rdquad(where, sizep, newp, tk_nout));
2246 case KERN_TKSTAT_CANCC:
2247 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
2248 case KERN_TKSTAT_RAWCC:
2249 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
2250 default:
2251 return (EOPNOTSUPP);
2252 }
2253 }
2254