kern_sysctl.c revision 1.52.2.2 1 /* $NetBSD: kern_sysctl.c,v 1.52.2.2 2000/11/22 16:05:23 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49 #include "pty.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/buf.h>
55 #include <sys/device.h>
56 #include <sys/disklabel.h>
57 #include <sys/dkstat.h>
58 #include <sys/exec.h>
59 #include <sys/file.h>
60 #include <sys/ioctl.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/msgbuf.h>
64 #include <sys/pool.h>
65 #include <sys/proc.h>
66 #include <sys/resource.h>
67 #include <sys/resourcevar.h>
68 #include <sys/syscallargs.h>
69 #include <sys/tty.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #define __SYSCTL_PRIVATE
73 #include <sys/sysctl.h>
74 #include <sys/lock.h>
75
76 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
77 #include <sys/ipc.h>
78 #endif
79 #ifdef SYSVMSG
80 #include <sys/msg.h>
81 #endif
82 #ifdef SYSVSEM
83 #include <sys/sem.h>
84 #endif
85 #ifdef SYSVSHM
86 #include <sys/shm.h>
87 #endif
88
89 #include <dev/cons.h>
90
91 #if defined(DDB)
92 #include <ddb/ddbvar.h>
93 #endif
94
95 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
96
97 static int sysctl_file __P((void *, size_t *));
98 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
99 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
100 #endif
101 static int sysctl_msgbuf __P((void *, size_t *));
102 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
103 #ifdef MULTIPROCESSOR
104 static int sysctl_docptime __P((void *, size_t *, void *));
105 static int sysctl_ncpus __P((void));
106 #endif
107 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
108 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
109 #if NPTY > 0
110 static int sysctl_pty __P((void *, size_t *, void *, size_t));
111 #endif
112
113 /*
114 * The `sysctl_memlock' is intended to keep too many processes from
115 * locking down memory by doing sysctls at once. Whether or not this
116 * is really a good idea to worry about it probably a subject of some
117 * debate.
118 */
119 struct lock sysctl_memlock;
120
121 void
122 sysctl_init(void)
123 {
124
125 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
126 }
127
128 int
129 sys___sysctl(p, v, retval)
130 struct proc *p;
131 void *v;
132 register_t *retval;
133 {
134 struct sys___sysctl_args /* {
135 syscallarg(int *) name;
136 syscallarg(u_int) namelen;
137 syscallarg(void *) old;
138 syscallarg(size_t *) oldlenp;
139 syscallarg(void *) new;
140 syscallarg(size_t) newlen;
141 } */ *uap = v;
142 int error;
143 size_t savelen = 0, oldlen = 0;
144 sysctlfn *fn;
145 int name[CTL_MAXNAME];
146 size_t *oldlenp;
147
148 /*
149 * all top-level sysctl names are non-terminal
150 */
151 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
152 return (EINVAL);
153 error = copyin(SCARG(uap, name), &name,
154 SCARG(uap, namelen) * sizeof(int));
155 if (error)
156 return (error);
157
158 /*
159 * For all but CTL_PROC, must be root to change a value.
160 * For CTL_PROC, must be root, or owner of the proc (and not suid),
161 * this is checked in proc_sysctl() (once we know the targer proc).
162 */
163 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
164 (error = suser(p->p_ucred, &p->p_acflag)))
165 return error;
166
167 switch (name[0]) {
168 case CTL_KERN:
169 fn = kern_sysctl;
170 break;
171 case CTL_HW:
172 fn = hw_sysctl;
173 break;
174 case CTL_VM:
175 fn = uvm_sysctl;
176 break;
177 case CTL_NET:
178 fn = net_sysctl;
179 break;
180 case CTL_VFS:
181 fn = vfs_sysctl;
182 break;
183 case CTL_MACHDEP:
184 fn = cpu_sysctl;
185 break;
186 #ifdef DEBUG
187 case CTL_DEBUG:
188 fn = debug_sysctl;
189 break;
190 #endif
191 #ifdef DDB
192 case CTL_DDB:
193 fn = ddb_sysctl;
194 break;
195 #endif
196 case CTL_PROC:
197 fn = proc_sysctl;
198 break;
199 default:
200 return (EOPNOTSUPP);
201 }
202
203 /*
204 * XXX Hey, we wire `old', but what about `new'?
205 */
206
207 oldlenp = SCARG(uap, oldlenp);
208 if (oldlenp) {
209 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
210 return (error);
211 oldlenp = &oldlen;
212 }
213 if (SCARG(uap, old) != NULL) {
214 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
215 if (error)
216 return (error);
217 if (uvm_vslock(p, SCARG(uap, old), oldlen,
218 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
219 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
220 return (EFAULT);
221 }
222 savelen = oldlen;
223 }
224 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
225 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
226 if (SCARG(uap, old) != NULL) {
227 uvm_vsunlock(p, SCARG(uap, old), savelen);
228 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
229 }
230 if (error)
231 return (error);
232 if (SCARG(uap, oldlenp))
233 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
234 return (error);
235 }
236
237 /*
238 * Attributes stored in the kernel.
239 */
240 char hostname[MAXHOSTNAMELEN];
241 int hostnamelen;
242
243 char domainname[MAXHOSTNAMELEN];
244 int domainnamelen;
245
246 long hostid;
247
248 #ifdef INSECURE
249 int securelevel = -1;
250 #else
251 int securelevel = 0;
252 #endif
253
254 #ifndef DEFCORENAME
255 #define DEFCORENAME "%n.core"
256 #endif
257 char defcorename[MAXPATHLEN] = DEFCORENAME;
258 int defcorenamelen = sizeof(DEFCORENAME);
259
260 extern int kern_logsigexit;
261 extern fixpt_t ccpu;
262
263 #ifndef MULTIPROCESSOR
264 #define sysctl_ncpus() 1
265 #endif
266
267 #ifdef MULTIPROCESSOR
268
269 #ifndef CPU_INFO_FOREACH
270 #define CPU_INFO_ITERATOR int
271 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
272 #endif
273
274 static int
275 sysctl_docptime(oldp, oldlenp, newp)
276 void *oldp;
277 size_t *oldlenp;
278 void *newp;
279 {
280 u_int64_t cp_time[CPUSTATES];
281 int i;
282 struct cpu_info *ci;
283 CPU_INFO_ITERATOR cii;
284
285 for (i=0; i<CPUSTATES; i++)
286 cp_time[i] = 0;
287
288 for (CPU_INFO_FOREACH(cii, ci)) {
289 for (i=0; i<CPUSTATES; i++)
290 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
291 }
292 return (sysctl_rdstruct(oldp, oldlenp, newp,
293 cp_time, sizeof(cp_time)));
294 }
295
296 static int
297 sysctl_ncpus(void)
298 {
299 struct cpu_info *ci;
300 CPU_INFO_ITERATOR cii;
301
302 int ncpus = 0;
303 for (CPU_INFO_FOREACH(cii, ci))
304 ncpus++;
305 return ncpus;
306 }
307
308 #endif
309
310 /*
311 * kernel related system variables.
312 */
313 int
314 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
315 int *name;
316 u_int namelen;
317 void *oldp;
318 size_t *oldlenp;
319 void *newp;
320 size_t newlen;
321 struct proc *p;
322 {
323 int error, level, inthostid;
324 int old_autonicetime;
325 int old_vnodes;
326 dev_t consdev;
327
328 /* All sysctl names at this level, except for a few, are terminal. */
329 switch (name[0]) {
330 case KERN_PROC:
331 case KERN_PROC2:
332 case KERN_PROF:
333 case KERN_MBUF:
334 case KERN_PROC_ARGS:
335 case KERN_SYSVIPC_INFO:
336 /* Not terminal. */
337 break;
338 default:
339 if (namelen != 1)
340 return (ENOTDIR); /* overloaded */
341 }
342
343 switch (name[0]) {
344 case KERN_OSTYPE:
345 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
346 case KERN_OSRELEASE:
347 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
348 case KERN_OSREV:
349 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
350 case KERN_VERSION:
351 return (sysctl_rdstring(oldp, oldlenp, newp, version));
352 case KERN_MAXVNODES:
353 old_vnodes = desiredvnodes;
354 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
355 if (old_vnodes > desiredvnodes) {
356 desiredvnodes = old_vnodes;
357 return (EINVAL);
358 }
359 return (error);
360 case KERN_MAXPROC:
361 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
362 case KERN_MAXFILES:
363 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
364 case KERN_ARGMAX:
365 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
366 case KERN_SECURELVL:
367 level = securelevel;
368 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
369 newp == NULL)
370 return (error);
371 if (level < securelevel && p->p_pid != 1)
372 return (EPERM);
373 securelevel = level;
374 return (0);
375 case KERN_HOSTNAME:
376 error = sysctl_string(oldp, oldlenp, newp, newlen,
377 hostname, sizeof(hostname));
378 if (newp && !error)
379 hostnamelen = newlen;
380 return (error);
381 case KERN_DOMAINNAME:
382 error = sysctl_string(oldp, oldlenp, newp, newlen,
383 domainname, sizeof(domainname));
384 if (newp && !error)
385 domainnamelen = newlen;
386 return (error);
387 case KERN_HOSTID:
388 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
389 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
390 hostid = inthostid;
391 return (error);
392 case KERN_CLOCKRATE:
393 return (sysctl_clockrate(oldp, oldlenp));
394 case KERN_BOOTTIME:
395 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
396 sizeof(struct timeval)));
397 case KERN_VNODE:
398 return (sysctl_vnode(oldp, oldlenp, p));
399 case KERN_PROC:
400 case KERN_PROC2:
401 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
402 case KERN_PROC_ARGS:
403 return (sysctl_procargs(name + 1, namelen - 1,
404 oldp, oldlenp, p));
405 case KERN_FILE:
406 return (sysctl_file(oldp, oldlenp));
407 #ifdef GPROF
408 case KERN_PROF:
409 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
410 newp, newlen));
411 #endif
412 case KERN_POSIX1:
413 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
414 case KERN_NGROUPS:
415 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
416 case KERN_JOB_CONTROL:
417 return (sysctl_rdint(oldp, oldlenp, newp, 1));
418 case KERN_SAVED_IDS:
419 #ifdef _POSIX_SAVED_IDS
420 return (sysctl_rdint(oldp, oldlenp, newp, 1));
421 #else
422 return (sysctl_rdint(oldp, oldlenp, newp, 0));
423 #endif
424 case KERN_MAXPARTITIONS:
425 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
426 case KERN_RAWPARTITION:
427 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
428 #ifdef NTP
429 case KERN_NTPTIME:
430 return (sysctl_ntptime(oldp, oldlenp));
431 #endif
432 case KERN_AUTONICETIME:
433 old_autonicetime = autonicetime;
434 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
435 if (autonicetime < 0)
436 autonicetime = old_autonicetime;
437 return (error);
438 case KERN_AUTONICEVAL:
439 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
440 if (autoniceval < PRIO_MIN)
441 autoniceval = PRIO_MIN;
442 if (autoniceval > PRIO_MAX)
443 autoniceval = PRIO_MAX;
444 return (error);
445 case KERN_RTC_OFFSET:
446 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
447 case KERN_ROOT_DEVICE:
448 return (sysctl_rdstring(oldp, oldlenp, newp,
449 root_device->dv_xname));
450 case KERN_MSGBUFSIZE:
451 /*
452 * deal with cases where the message buffer has
453 * become corrupted.
454 */
455 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
456 msgbufenabled = 0;
457 return (ENXIO);
458 }
459 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
460 case KERN_FSYNC:
461 return (sysctl_rdint(oldp, oldlenp, newp, 1));
462 case KERN_SYSVMSG:
463 #ifdef SYSVMSG
464 return (sysctl_rdint(oldp, oldlenp, newp, 1));
465 #else
466 return (sysctl_rdint(oldp, oldlenp, newp, 0));
467 #endif
468 case KERN_SYSVSEM:
469 #ifdef SYSVSEM
470 return (sysctl_rdint(oldp, oldlenp, newp, 1));
471 #else
472 return (sysctl_rdint(oldp, oldlenp, newp, 0));
473 #endif
474 case KERN_SYSVSHM:
475 #ifdef SYSVSHM
476 return (sysctl_rdint(oldp, oldlenp, newp, 1));
477 #else
478 return (sysctl_rdint(oldp, oldlenp, newp, 0));
479 #endif
480 case KERN_DEFCORENAME:
481 if (newp && newlen < 1)
482 return (EINVAL);
483 error = sysctl_string(oldp, oldlenp, newp, newlen,
484 defcorename, sizeof(defcorename));
485 if (newp && !error)
486 defcorenamelen = newlen;
487 return (error);
488 case KERN_SYNCHRONIZED_IO:
489 return (sysctl_rdint(oldp, oldlenp, newp, 1));
490 case KERN_IOV_MAX:
491 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
492 case KERN_MBUF:
493 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
494 newp, newlen));
495 case KERN_MAPPED_FILES:
496 return (sysctl_rdint(oldp, oldlenp, newp, 1));
497 case KERN_MEMLOCK:
498 return (sysctl_rdint(oldp, oldlenp, newp, 1));
499 case KERN_MEMLOCK_RANGE:
500 return (sysctl_rdint(oldp, oldlenp, newp, 1));
501 case KERN_MEMORY_PROTECTION:
502 return (sysctl_rdint(oldp, oldlenp, newp, 1));
503 case KERN_LOGIN_NAME_MAX:
504 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
505 case KERN_LOGSIGEXIT:
506 return (sysctl_int(oldp, oldlenp, newp, newlen,
507 &kern_logsigexit));
508 case KERN_FSCALE:
509 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
510 case KERN_CCPU:
511 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
512 case KERN_CP_TIME:
513 #ifndef MULTIPROCESSOR
514 return (sysctl_rdstruct(oldp, oldlenp, newp,
515 curcpu()->ci_schedstate.spc_cp_time,
516 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
517 #else
518 return (sysctl_docptime(oldp, oldlenp, newp));
519 #endif
520 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
521 case KERN_SYSVIPC_INFO:
522 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
523 #endif
524 case KERN_MSGBUF:
525 return (sysctl_msgbuf(oldp, oldlenp));
526 case KERN_CONSDEV:
527 if (cn_tab != NULL)
528 consdev = cn_tab->cn_dev;
529 else
530 consdev = NODEV;
531 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
532 sizeof consdev));
533 #if NPTY > 0
534 case KERN_MAXPTYS:
535 return sysctl_pty(oldp, oldlenp, newp, newlen);
536 #endif
537 default:
538 return (EOPNOTSUPP);
539 }
540 /* NOTREACHED */
541 }
542
543 /*
544 * hardware related system variables.
545 */
546 int
547 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
548 int *name;
549 u_int namelen;
550 void *oldp;
551 size_t *oldlenp;
552 void *newp;
553 size_t newlen;
554 struct proc *p;
555 {
556
557 /* all sysctl names at this level are terminal */
558 if (namelen != 1)
559 return (ENOTDIR); /* overloaded */
560
561 switch (name[0]) {
562 case HW_MACHINE:
563 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
564 case HW_MACHINE_ARCH:
565 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
566 case HW_MODEL:
567 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
568 case HW_NCPU:
569 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
570 case HW_BYTEORDER:
571 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
572 case HW_PHYSMEM:
573 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
574 case HW_USERMEM:
575 return (sysctl_rdint(oldp, oldlenp, newp,
576 ctob(physmem - uvmexp.wired)));
577 case HW_PAGESIZE:
578 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
579 case HW_ALIGNBYTES:
580 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
581 case HW_CNMAGIC: {
582 char magic[CNS_LEN];
583 int error;
584
585 if (oldp)
586 cn_get_magic(magic, CNS_LEN);
587 error = sysctl_string(oldp, oldlenp, newp, newlen,
588 magic, sizeof(magic));
589 if (newp && !error) {
590 error = cn_set_magic(magic);
591 }
592 return (error);
593 }
594 default:
595 return (EOPNOTSUPP);
596 }
597 /* NOTREACHED */
598 }
599
600 #ifdef DEBUG
601 /*
602 * Debugging related system variables.
603 */
604 struct ctldebug debug0, debug1, debug2, debug3, debug4;
605 struct ctldebug debug5, debug6, debug7, debug8, debug9;
606 struct ctldebug debug10, debug11, debug12, debug13, debug14;
607 struct ctldebug debug15, debug16, debug17, debug18, debug19;
608 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
609 &debug0, &debug1, &debug2, &debug3, &debug4,
610 &debug5, &debug6, &debug7, &debug8, &debug9,
611 &debug10, &debug11, &debug12, &debug13, &debug14,
612 &debug15, &debug16, &debug17, &debug18, &debug19,
613 };
614 int
615 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
616 int *name;
617 u_int namelen;
618 void *oldp;
619 size_t *oldlenp;
620 void *newp;
621 size_t newlen;
622 struct proc *p;
623 {
624 struct ctldebug *cdp;
625
626 /* all sysctl names at this level are name and field */
627 if (namelen != 2)
628 return (ENOTDIR); /* overloaded */
629 cdp = debugvars[name[0]];
630 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
631 return (EOPNOTSUPP);
632 switch (name[1]) {
633 case CTL_DEBUG_NAME:
634 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
635 case CTL_DEBUG_VALUE:
636 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
637 default:
638 return (EOPNOTSUPP);
639 }
640 /* NOTREACHED */
641 }
642 #endif /* DEBUG */
643
644 int
645 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
646 int *name;
647 u_int namelen;
648 void *oldp;
649 size_t *oldlenp;
650 void *newp;
651 size_t newlen;
652 struct proc *p;
653 {
654 struct proc *ptmp = NULL;
655 const struct proclist_desc *pd;
656 int error = 0;
657 struct rlimit alim;
658 struct plimit *newplim;
659 char *tmps = NULL;
660 int i, curlen, len;
661
662 if (namelen < 2)
663 return EINVAL;
664
665 if (name[0] == PROC_CURPROC) {
666 ptmp = p;
667 } else {
668 proclist_lock_read();
669 for (pd = proclists; pd->pd_list != NULL; pd++) {
670 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
671 ptmp = LIST_NEXT(ptmp, p_list)) {
672 /* Skip embryonic processes. */
673 if (ptmp->p_stat == SIDL)
674 continue;
675 if (ptmp->p_pid == (pid_t)name[0])
676 break;
677 }
678 if (ptmp != NULL)
679 break;
680 }
681 proclist_unlock_read();
682 if (ptmp == NULL)
683 return(ESRCH);
684 if (p->p_ucred->cr_uid != 0) {
685 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
686 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
687 return EPERM;
688 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
689 return EPERM; /* sgid proc */
690 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
691 if (p->p_ucred->cr_groups[i] ==
692 ptmp->p_cred->p_rgid)
693 break;
694 }
695 if (i == p->p_ucred->cr_ngroups)
696 return EPERM;
697 }
698 }
699 if (name[1] == PROC_PID_CORENAME) {
700 if (namelen != 2)
701 return EINVAL;
702 /*
703 * Can't use sysctl_string() here because we may malloc a new
704 * area during the process, so we have to do it by hand.
705 */
706 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
707 if (oldlenp && *oldlenp < curlen) {
708 if (!oldp)
709 *oldlenp = curlen;
710 return (ENOMEM);
711 }
712 if (newp) {
713 if (securelevel > 2)
714 return EPERM;
715 if (newlen > MAXPATHLEN)
716 return ENAMETOOLONG;
717 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
718 if (tmps == NULL)
719 return ENOMEM;
720 error = copyin(newp, tmps, newlen + 1);
721 tmps[newlen] = '\0';
722 if (error)
723 goto cleanup;
724 /* Enforce to be either 'core' for end with '.core' */
725 if (newlen < 4) { /* c.o.r.e */
726 error = EINVAL;
727 goto cleanup;
728 }
729 len = newlen - 4;
730 if (len > 0) {
731 if (tmps[len - 1] != '.' &&
732 tmps[len - 1] != '/') {
733 error = EINVAL;
734 goto cleanup;
735 }
736 }
737 if (strcmp(&tmps[len], "core") != 0) {
738 error = EINVAL;
739 goto cleanup;
740 }
741 }
742 if (oldp && oldlenp) {
743 *oldlenp = curlen;
744 error = copyout(ptmp->p_limit->pl_corename, oldp,
745 curlen);
746 }
747 if (newp && error == 0) {
748 /* if the 2 strings are identical, don't limcopy() */
749 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
750 error = 0;
751 goto cleanup;
752 }
753 if (ptmp->p_limit->p_refcnt > 1 &&
754 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
755 newplim = limcopy(ptmp->p_limit);
756 limfree(ptmp->p_limit);
757 ptmp->p_limit = newplim;
758 } else if (ptmp->p_limit->pl_corename != defcorename) {
759 free(ptmp->p_limit->pl_corename, M_TEMP);
760 }
761 ptmp->p_limit->pl_corename = tmps;
762 return (0);
763 }
764 cleanup:
765 if (tmps)
766 free(tmps, M_TEMP);
767 return (error);
768 }
769 if (name[1] == PROC_PID_LIMIT) {
770 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
771 return EINVAL;
772 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
773 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
774 error = sysctl_quad(oldp, oldlenp, newp, newlen,
775 &alim.rlim_max);
776 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
777 error = sysctl_quad(oldp, oldlenp, newp, newlen,
778 &alim.rlim_cur);
779 else
780 error = EINVAL;
781
782 if (error)
783 return error;
784
785 if (newp)
786 error = dosetrlimit(ptmp, p->p_cred,
787 name[2] - 1, &alim);
788 return error;
789 }
790 return (EINVAL);
791 }
792
793 /*
794 * Convenience macros.
795 */
796
797 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
798 if (oldlenp) { \
799 if (!oldp) \
800 *oldlenp = len; \
801 else { \
802 if (*oldlenp < len) \
803 return(ENOMEM); \
804 *oldlenp = len; \
805 error = copyout((caddr_t)valp, oldp, len); \
806 } \
807 }
808
809 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
810 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
811
812 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
813 if (newp && newlen != len) \
814 return (EINVAL);
815
816 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
817 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
818
819 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
820 if (error == 0 && newp) \
821 error = copyin(newp, valp, len);
822
823 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
824 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
825
826 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
827 if (oldlenp) { \
828 len = strlen(str) + 1; \
829 if (!oldp) \
830 *oldlenp = len; \
831 else { \
832 if (*oldlenp < len) { \
833 err2 = ENOMEM; \
834 len = *oldlenp; \
835 } else \
836 *oldlenp = len; \
837 error = copyout(str, oldp, len);\
838 if (error == 0) \
839 error = err2; \
840 } \
841 }
842
843 /*
844 * Validate parameters and get old / set new parameters
845 * for an integer-valued sysctl function.
846 */
847 int
848 sysctl_int(oldp, oldlenp, newp, newlen, valp)
849 void *oldp;
850 size_t *oldlenp;
851 void *newp;
852 size_t newlen;
853 int *valp;
854 {
855 int error = 0;
856
857 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
858 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
859 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
860
861 return (error);
862 }
863
864
865 /*
866 * As above, but read-only.
867 */
868 int
869 sysctl_rdint(oldp, oldlenp, newp, val)
870 void *oldp;
871 size_t *oldlenp;
872 void *newp;
873 int val;
874 {
875 int error = 0;
876
877 if (newp)
878 return (EPERM);
879
880 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
881
882 return (error);
883 }
884
885 /*
886 * Validate parameters and get old / set new parameters
887 * for an quad-valued sysctl function.
888 */
889 int
890 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
891 void *oldp;
892 size_t *oldlenp;
893 void *newp;
894 size_t newlen;
895 quad_t *valp;
896 {
897 int error = 0;
898
899 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
900 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
901 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
902
903 return (error);
904 }
905
906 /*
907 * As above, but read-only.
908 */
909 int
910 sysctl_rdquad(oldp, oldlenp, newp, val)
911 void *oldp;
912 size_t *oldlenp;
913 void *newp;
914 quad_t val;
915 {
916 int error = 0;
917
918 if (newp)
919 return (EPERM);
920
921 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
922
923 return (error);
924 }
925
926 /*
927 * Validate parameters and get old / set new parameters
928 * for a string-valued sysctl function.
929 */
930 int
931 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
932 void *oldp;
933 size_t *oldlenp;
934 void *newp;
935 size_t newlen;
936 char *str;
937 int maxlen;
938 {
939 int len, error = 0, err2 = 0;
940
941 if (newp && newlen >= maxlen)
942 return (EINVAL);
943
944 SYSCTL_STRING_CORE(oldp, oldlenp, str);
945
946 if (error == 0 && newp) {
947 error = copyin(newp, str, newlen);
948 str[newlen] = 0;
949 }
950 return (error);
951 }
952
953 /*
954 * As above, but read-only.
955 */
956 int
957 sysctl_rdstring(oldp, oldlenp, newp, str)
958 void *oldp;
959 size_t *oldlenp;
960 void *newp;
961 const char *str;
962 {
963 int len, error = 0, err2 = 0;
964
965 if (newp)
966 return (EPERM);
967
968 SYSCTL_STRING_CORE(oldp, oldlenp, str);
969
970 return (error);
971 }
972
973 /*
974 * Validate parameters and get old / set new parameters
975 * for a structure oriented sysctl function.
976 */
977 int
978 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
979 void *oldp;
980 size_t *oldlenp;
981 void *newp;
982 size_t newlen;
983 void *sp;
984 int len;
985 {
986 int error = 0;
987
988 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
989 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
990 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
991
992 return (error);
993 }
994
995 /*
996 * Validate parameters and get old parameters
997 * for a structure oriented sysctl function.
998 */
999 int
1000 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
1001 void *oldp;
1002 size_t *oldlenp;
1003 void *newp;
1004 const void *sp;
1005 int len;
1006 {
1007 int error = 0;
1008
1009 if (newp)
1010 return (EPERM);
1011
1012 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1013
1014 return (error);
1015 }
1016
1017 /*
1018 * As above, but can return a truncated result.
1019 */
1020 int
1021 sysctl_rdminstruct(oldp, oldlenp, newp, sp, len)
1022 void *oldp;
1023 size_t *oldlenp;
1024 void *newp;
1025 const void *sp;
1026 int len;
1027 {
1028 int error = 0;
1029
1030 if (newp)
1031 return (EPERM);
1032
1033 len = min(*oldlenp, len);
1034 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1035
1036 return (error);
1037 }
1038
1039 /*
1040 * Get file structures.
1041 */
1042 static int
1043 sysctl_file(vwhere, sizep)
1044 void *vwhere;
1045 size_t *sizep;
1046 {
1047 int buflen, error;
1048 struct file *fp;
1049 char *start, *where;
1050
1051 start = where = vwhere;
1052 buflen = *sizep;
1053 if (where == NULL) {
1054 /*
1055 * overestimate by 10 files
1056 */
1057 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1058 return (0);
1059 }
1060
1061 /*
1062 * first copyout filehead
1063 */
1064 if (buflen < sizeof(filehead)) {
1065 *sizep = 0;
1066 return (0);
1067 }
1068 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1069 if (error)
1070 return (error);
1071 buflen -= sizeof(filehead);
1072 where += sizeof(filehead);
1073
1074 /*
1075 * followed by an array of file structures
1076 */
1077 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1078 if (buflen < sizeof(struct file)) {
1079 *sizep = where - start;
1080 return (ENOMEM);
1081 }
1082 error = copyout((caddr_t)fp, where, sizeof(struct file));
1083 if (error)
1084 return (error);
1085 buflen -= sizeof(struct file);
1086 where += sizeof(struct file);
1087 }
1088 *sizep = where - start;
1089 return (0);
1090 }
1091
1092 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1093 #define FILL_PERM(src, dst) do { \
1094 (dst)._key = (src)._key; \
1095 (dst).uid = (src).uid; \
1096 (dst).gid = (src).gid; \
1097 (dst).cuid = (src).cuid; \
1098 (dst).cgid = (src).cgid; \
1099 (dst).mode = (src).mode; \
1100 (dst)._seq = (src)._seq; \
1101 } while (0);
1102 #define FILL_MSG(src, dst) do { \
1103 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1104 (dst).msg_qnum = (src).msg_qnum; \
1105 (dst).msg_qbytes = (src).msg_qbytes; \
1106 (dst)._msg_cbytes = (src)._msg_cbytes; \
1107 (dst).msg_lspid = (src).msg_lspid; \
1108 (dst).msg_lrpid = (src).msg_lrpid; \
1109 (dst).msg_stime = (src).msg_stime; \
1110 (dst).msg_rtime = (src).msg_rtime; \
1111 (dst).msg_ctime = (src).msg_ctime; \
1112 } while (0)
1113 #define FILL_SEM(src, dst) do { \
1114 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1115 (dst).sem_nsems = (src).sem_nsems; \
1116 (dst).sem_otime = (src).sem_otime; \
1117 (dst).sem_ctime = (src).sem_ctime; \
1118 } while (0)
1119 #define FILL_SHM(src, dst) do { \
1120 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1121 (dst).shm_segsz = (src).shm_segsz; \
1122 (dst).shm_lpid = (src).shm_lpid; \
1123 (dst).shm_cpid = (src).shm_cpid; \
1124 (dst).shm_atime = (src).shm_atime; \
1125 (dst).shm_dtime = (src).shm_dtime; \
1126 (dst).shm_ctime = (src).shm_ctime; \
1127 (dst).shm_nattch = (src).shm_nattch; \
1128 } while (0)
1129
1130 static int
1131 sysctl_sysvipc(name, namelen, where, sizep)
1132 int *name;
1133 u_int namelen;
1134 void *where;
1135 size_t *sizep;
1136 {
1137 #ifdef SYSVMSG
1138 struct msg_sysctl_info *msgsi;
1139 #endif
1140 #ifdef SYSVSEM
1141 struct sem_sysctl_info *semsi;
1142 #endif
1143 #ifdef SYSVSHM
1144 struct shm_sysctl_info *shmsi;
1145 #endif
1146 size_t infosize, dssize, tsize, buflen;
1147 void *buf = NULL, *buf2;
1148 char *start;
1149 int32_t nds;
1150 int i, error, ret;
1151
1152 if (namelen != 1)
1153 return (EINVAL);
1154
1155 start = where;
1156 buflen = *sizep;
1157
1158 switch (*name) {
1159 case KERN_SYSVIPC_MSG_INFO:
1160 #ifdef SYSVMSG
1161 infosize = sizeof(msgsi->msginfo);
1162 nds = msginfo.msgmni;
1163 dssize = sizeof(msgsi->msgids[0]);
1164 break;
1165 #else
1166 return (EINVAL);
1167 #endif
1168 case KERN_SYSVIPC_SEM_INFO:
1169 #ifdef SYSVSEM
1170 infosize = sizeof(semsi->seminfo);
1171 nds = seminfo.semmni;
1172 dssize = sizeof(semsi->semids[0]);
1173 break;
1174 #else
1175 return (EINVAL);
1176 #endif
1177 case KERN_SYSVIPC_SHM_INFO:
1178 #ifdef SYSVSHM
1179 infosize = sizeof(shmsi->shminfo);
1180 nds = shminfo.shmmni;
1181 dssize = sizeof(shmsi->shmids[0]);
1182 break;
1183 #else
1184 return (EINVAL);
1185 #endif
1186 default:
1187 return (EINVAL);
1188 }
1189 /*
1190 * Round infosize to 64 bit boundary if requesting more than just
1191 * the info structure or getting the total data size.
1192 */
1193 if (where == NULL || *sizep > infosize)
1194 infosize = ((infosize + 7) / 8) * 8;
1195 tsize = infosize + nds * dssize;
1196
1197 /* Return just the total size required. */
1198 if (where == NULL) {
1199 *sizep = tsize;
1200 return (0);
1201 }
1202
1203 /* Not enough room for even the info struct. */
1204 if (buflen < infosize) {
1205 *sizep = 0;
1206 return (ENOMEM);
1207 }
1208 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1209 memset(buf, 0, min(tsize, buflen));
1210
1211 switch (*name) {
1212 #ifdef SYSVMSG
1213 case KERN_SYSVIPC_MSG_INFO:
1214 msgsi = (struct msg_sysctl_info *)buf;
1215 buf2 = &msgsi->msgids[0];
1216 msgsi->msginfo = msginfo;
1217 break;
1218 #endif
1219 #ifdef SYSVSEM
1220 case KERN_SYSVIPC_SEM_INFO:
1221 semsi = (struct sem_sysctl_info *)buf;
1222 buf2 = &semsi->semids[0];
1223 semsi->seminfo = seminfo;
1224 break;
1225 #endif
1226 #ifdef SYSVSHM
1227 case KERN_SYSVIPC_SHM_INFO:
1228 shmsi = (struct shm_sysctl_info *)buf;
1229 buf2 = &shmsi->shmids[0];
1230 shmsi->shminfo = shminfo;
1231 break;
1232 #endif
1233 }
1234 buflen -= infosize;
1235
1236 ret = 0;
1237 if (buflen > 0) {
1238 /* Fill in the IPC data structures. */
1239 for (i = 0; i < nds; i++) {
1240 if (buflen < dssize) {
1241 ret = ENOMEM;
1242 break;
1243 }
1244 switch (*name) {
1245 #ifdef SYSVMSG
1246 case KERN_SYSVIPC_MSG_INFO:
1247 FILL_MSG(msqids[i], msgsi->msgids[i]);
1248 break;
1249 #endif
1250 #ifdef SYSVSEM
1251 case KERN_SYSVIPC_SEM_INFO:
1252 FILL_SEM(sema[i], semsi->semids[i]);
1253 break;
1254 #endif
1255 #ifdef SYSVSHM
1256 case KERN_SYSVIPC_SHM_INFO:
1257 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1258 break;
1259 #endif
1260 }
1261 buflen -= dssize;
1262 }
1263 }
1264 *sizep -= buflen;
1265 error = copyout(buf, start, *sizep);
1266 /* If copyout succeeded, use return code set earlier. */
1267 if (error == 0)
1268 error = ret;
1269 if (buf)
1270 free(buf, M_TEMP);
1271 return (error);
1272 }
1273 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1274
1275 static int
1276 sysctl_msgbuf(vwhere, sizep)
1277 void *vwhere;
1278 size_t *sizep;
1279 {
1280 char *where = vwhere;
1281 size_t len, maxlen = *sizep;
1282 long pos;
1283 int error;
1284
1285 /*
1286 * deal with cases where the message buffer has
1287 * become corrupted.
1288 */
1289 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1290 msgbufenabled = 0;
1291 return (ENXIO);
1292 }
1293
1294 if (where == NULL) {
1295 /* always return full buffer size */
1296 *sizep = msgbufp->msg_bufs;
1297 return (0);
1298 }
1299
1300 error = 0;
1301 maxlen = min(msgbufp->msg_bufs, maxlen);
1302 pos = msgbufp->msg_bufx;
1303 while (maxlen > 0) {
1304 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1305 len = min(len, maxlen);
1306 if (len == 0)
1307 break;
1308 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1309 if (error)
1310 break;
1311 where += len;
1312 maxlen -= len;
1313 pos = 0;
1314 }
1315 return (error);
1316 }
1317
1318 /*
1319 * try over estimating by 5 procs
1320 */
1321 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1322
1323 static int
1324 sysctl_doeproc(name, namelen, vwhere, sizep)
1325 int *name;
1326 u_int namelen;
1327 void *vwhere;
1328 size_t *sizep;
1329 {
1330 struct eproc eproc;
1331 struct kinfo_proc2 kproc2;
1332 struct kinfo_proc *dp;
1333 struct proc *p;
1334 const struct proclist_desc *pd;
1335 char *where, *dp2;
1336 int type, op, arg, elem_size, elem_count;
1337 int buflen, needed, error;
1338
1339 dp = vwhere;
1340 dp2 = where = vwhere;
1341 buflen = where != NULL ? *sizep : 0;
1342 error = needed = 0;
1343 type = name[0];
1344
1345 if (type == KERN_PROC) {
1346 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1347 return (EINVAL);
1348 op = name[1];
1349 if (op != KERN_PROC_ALL)
1350 arg = name[2];
1351 } else {
1352 if (namelen != 5)
1353 return (EINVAL);
1354 op = name[1];
1355 arg = name[2];
1356 elem_size = name[3];
1357 elem_count = name[4];
1358 }
1359
1360 proclist_lock_read();
1361
1362 pd = proclists;
1363 again:
1364 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1365 /*
1366 * Skip embryonic processes.
1367 */
1368 if (p->p_stat == SIDL)
1369 continue;
1370 /*
1371 * TODO - make more efficient (see notes below).
1372 * do by session.
1373 */
1374 switch (op) {
1375
1376 case KERN_PROC_PID:
1377 /* could do this with just a lookup */
1378 if (p->p_pid != (pid_t)arg)
1379 continue;
1380 break;
1381
1382 case KERN_PROC_PGRP:
1383 /* could do this by traversing pgrp */
1384 if (p->p_pgrp->pg_id != (pid_t)arg)
1385 continue;
1386 break;
1387
1388 case KERN_PROC_SESSION:
1389 if (p->p_session->s_sid != (pid_t)arg)
1390 continue;
1391 break;
1392
1393 case KERN_PROC_TTY:
1394 if (arg == KERN_PROC_TTY_REVOKE) {
1395 if ((p->p_flag & P_CONTROLT) == 0 ||
1396 p->p_session->s_ttyp == NULL ||
1397 p->p_session->s_ttyvp != NULL)
1398 continue;
1399 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1400 p->p_session->s_ttyp == NULL) {
1401 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1402 continue;
1403 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1404 continue;
1405 break;
1406
1407 case KERN_PROC_UID:
1408 if (p->p_ucred->cr_uid != (uid_t)arg)
1409 continue;
1410 break;
1411
1412 case KERN_PROC_RUID:
1413 if (p->p_cred->p_ruid != (uid_t)arg)
1414 continue;
1415 break;
1416
1417 case KERN_PROC_GID:
1418 if (p->p_ucred->cr_gid != (uid_t)arg)
1419 continue;
1420 break;
1421
1422 case KERN_PROC_RGID:
1423 if (p->p_cred->p_rgid != (uid_t)arg)
1424 continue;
1425 break;
1426
1427 case KERN_PROC_ALL:
1428 /* allow everything */
1429 break;
1430
1431 default:
1432 error = EINVAL;
1433 goto cleanup;
1434 }
1435 if (type == KERN_PROC) {
1436 if (buflen >= sizeof(struct kinfo_proc)) {
1437 fill_eproc(p, &eproc);
1438 error = copyout((caddr_t)p, &dp->kp_proc,
1439 sizeof(struct proc));
1440 if (error)
1441 goto cleanup;
1442 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1443 sizeof(eproc));
1444 if (error)
1445 goto cleanup;
1446 dp++;
1447 buflen -= sizeof(struct kinfo_proc);
1448 }
1449 needed += sizeof(struct kinfo_proc);
1450 } else { /* KERN_PROC2 */
1451 if (buflen >= elem_size && elem_count > 0) {
1452 fill_kproc2(p, &kproc2);
1453 /*
1454 * Copy out elem_size, but not larger than
1455 * the size of a struct kinfo_proc2.
1456 */
1457 error = copyout(&kproc2, dp2,
1458 min(sizeof(kproc2), elem_size));
1459 if (error)
1460 goto cleanup;
1461 dp2 += elem_size;
1462 buflen -= elem_size;
1463 elem_count--;
1464 }
1465 needed += elem_size;
1466 }
1467 }
1468 pd++;
1469 if (pd->pd_list != NULL)
1470 goto again;
1471 proclist_unlock_read();
1472
1473 if (where != NULL) {
1474 if (type == KERN_PROC)
1475 *sizep = (caddr_t)dp - where;
1476 else
1477 *sizep = dp2 - where;
1478 if (needed > *sizep)
1479 return (ENOMEM);
1480 } else {
1481 needed += KERN_PROCSLOP;
1482 *sizep = needed;
1483 }
1484 return (0);
1485 cleanup:
1486 proclist_unlock_read();
1487 return (error);
1488 }
1489
1490 /*
1491 * Fill in an eproc structure for the specified process.
1492 */
1493 void
1494 fill_eproc(p, ep)
1495 struct proc *p;
1496 struct eproc *ep;
1497 {
1498 struct tty *tp;
1499
1500 ep->e_paddr = p;
1501 ep->e_sess = p->p_session;
1502 ep->e_pcred = *p->p_cred;
1503 ep->e_ucred = *p->p_ucred;
1504 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1505 ep->e_vm.vm_rssize = 0;
1506 ep->e_vm.vm_tsize = 0;
1507 ep->e_vm.vm_dsize = 0;
1508 ep->e_vm.vm_ssize = 0;
1509 /* ep->e_vm.vm_pmap = XXX; */
1510 } else {
1511 struct vmspace *vm = p->p_vmspace;
1512
1513 ep->e_vm.vm_rssize = vm_resident_count(vm);
1514 ep->e_vm.vm_tsize = vm->vm_tsize;
1515 ep->e_vm.vm_dsize = vm->vm_dsize;
1516 ep->e_vm.vm_ssize = vm->vm_ssize;
1517 }
1518 if (p->p_pptr)
1519 ep->e_ppid = p->p_pptr->p_pid;
1520 else
1521 ep->e_ppid = 0;
1522 ep->e_pgid = p->p_pgrp->pg_id;
1523 ep->e_sid = ep->e_sess->s_sid;
1524 ep->e_jobc = p->p_pgrp->pg_jobc;
1525 if ((p->p_flag & P_CONTROLT) &&
1526 (tp = ep->e_sess->s_ttyp)) {
1527 ep->e_tdev = tp->t_dev;
1528 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1529 ep->e_tsess = tp->t_session;
1530 } else
1531 ep->e_tdev = NODEV;
1532 if (p->p_wmesg)
1533 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1534 ep->e_xsize = ep->e_xrssize = 0;
1535 ep->e_xccount = ep->e_xswrss = 0;
1536 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1537 if (SESS_LEADER(p))
1538 ep->e_flag |= EPROC_SLEADER;
1539 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1540 }
1541
1542 /*
1543 * Fill in an eproc structure for the specified process.
1544 */
1545 static void
1546 fill_kproc2(p, ki)
1547 struct proc *p;
1548 struct kinfo_proc2 *ki;
1549 {
1550 struct tty *tp;
1551
1552 memset(ki, 0, sizeof(*ki));
1553
1554 ki->p_forw = PTRTOINT64(p->p_forw);
1555 ki->p_back = PTRTOINT64(p->p_back);
1556 ki->p_paddr = PTRTOINT64(p);
1557
1558 ki->p_addr = PTRTOINT64(p->p_addr);
1559 ki->p_fd = PTRTOINT64(p->p_fd);
1560 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1561 ki->p_stats = PTRTOINT64(p->p_stats);
1562 ki->p_limit = PTRTOINT64(p->p_limit);
1563 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1564 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1565 ki->p_sess = PTRTOINT64(p->p_session);
1566 ki->p_tsess = 0; /* may be changed if controlling tty below */
1567 ki->p_ru = PTRTOINT64(p->p_ru);
1568
1569 ki->p_eflag = 0;
1570 ki->p_exitsig = p->p_exitsig;
1571 ki->p_flag = p->p_flag;
1572
1573 ki->p_pid = p->p_pid;
1574 if (p->p_pptr)
1575 ki->p_ppid = p->p_pptr->p_pid;
1576 else
1577 ki->p_ppid = 0;
1578 ki->p_sid = p->p_session->s_sid;
1579 ki->p__pgid = p->p_pgrp->pg_id;
1580
1581 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1582
1583 ki->p_uid = p->p_ucred->cr_uid;
1584 ki->p_ruid = p->p_cred->p_ruid;
1585 ki->p_gid = p->p_ucred->cr_gid;
1586 ki->p_rgid = p->p_cred->p_rgid;
1587
1588 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1589 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1590 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1591
1592 ki->p_jobc = p->p_pgrp->pg_jobc;
1593 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1594 ki->p_tdev = tp->t_dev;
1595 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1596 ki->p_tsess = PTRTOINT64(tp->t_session);
1597 } else {
1598 ki->p_tdev = NODEV;
1599 }
1600
1601 ki->p_estcpu = p->p_estcpu;
1602 ki->p_rtime_sec = p->p_rtime.tv_sec;
1603 ki->p_rtime_usec = p->p_rtime.tv_usec;
1604 ki->p_cpticks = p->p_cpticks;
1605 ki->p_pctcpu = p->p_pctcpu;
1606 ki->p_swtime = p->p_swtime;
1607 ki->p_slptime = p->p_slptime;
1608 if (p->p_stat == SONPROC) {
1609 KDASSERT(p->p_cpu != NULL);
1610 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1611 } else
1612 ki->p_schedflags = 0;
1613
1614 ki->p_uticks = p->p_uticks;
1615 ki->p_sticks = p->p_sticks;
1616 ki->p_iticks = p->p_iticks;
1617
1618 ki->p_tracep = PTRTOINT64(p->p_tracep);
1619 ki->p_traceflag = p->p_traceflag;
1620
1621 ki->p_holdcnt = p->p_holdcnt;
1622
1623 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1624 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1625 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1626 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1627
1628 ki->p_stat = p->p_stat;
1629 ki->p_priority = p->p_priority;
1630 ki->p_usrpri = p->p_usrpri;
1631 ki->p_nice = p->p_nice;
1632
1633 ki->p_xstat = p->p_xstat;
1634 ki->p_acflag = p->p_acflag;
1635
1636 strncpy(ki->p_comm, p->p_comm,
1637 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1638
1639 if (p->p_wmesg)
1640 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1641 ki->p_wchan = PTRTOINT64(p->p_wchan);
1642
1643 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1644
1645 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1646 ki->p_vm_rssize = 0;
1647 ki->p_vm_tsize = 0;
1648 ki->p_vm_dsize = 0;
1649 ki->p_vm_ssize = 0;
1650 } else {
1651 struct vmspace *vm = p->p_vmspace;
1652
1653 ki->p_vm_rssize = vm_resident_count(vm);
1654 ki->p_vm_tsize = vm->vm_tsize;
1655 ki->p_vm_dsize = vm->vm_dsize;
1656 ki->p_vm_ssize = vm->vm_ssize;
1657 }
1658
1659 if (p->p_session->s_ttyvp)
1660 ki->p_eflag |= EPROC_CTTY;
1661 if (SESS_LEADER(p))
1662 ki->p_eflag |= EPROC_SLEADER;
1663
1664 /* XXX Is this double check necessary? */
1665 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1666 ki->p_uvalid = 0;
1667 } else {
1668 ki->p_uvalid = 1;
1669
1670 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1671 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1672
1673 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1674 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1675 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1676 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1677
1678 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1679 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1680 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1681 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1682 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1683 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1684 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1685 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1686 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1687 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1688 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1689 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1690 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1691 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1692
1693 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1694 p->p_stats->p_cru.ru_stime.tv_sec;
1695 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1696 p->p_stats->p_cru.ru_stime.tv_usec;
1697 }
1698 #ifdef MULTIPROCESSOR
1699 if (p->p_cpu != NULL)
1700 ki->p_cpuid = p->p_cpu->ci_cpuid;
1701 else
1702 #endif
1703 ki->p_cpuid = KI_NOCPU;
1704 }
1705
1706 int
1707 sysctl_procargs(name, namelen, where, sizep, up)
1708 int *name;
1709 u_int namelen;
1710 void *where;
1711 size_t *sizep;
1712 struct proc *up;
1713 {
1714 struct ps_strings pss;
1715 struct proc *p;
1716 size_t len, upper_bound, xlen;
1717 struct uio auio;
1718 struct iovec aiov;
1719 vaddr_t argv;
1720 pid_t pid;
1721 int nargv, type, error, i;
1722 char *arg;
1723 char *tmp;
1724
1725 if (namelen != 2)
1726 return (EINVAL);
1727 pid = name[0];
1728 type = name[1];
1729
1730 switch (type) {
1731 case KERN_PROC_ARGV:
1732 case KERN_PROC_NARGV:
1733 case KERN_PROC_ENV:
1734 case KERN_PROC_NENV:
1735 /* ok */
1736 break;
1737 default:
1738 return (EINVAL);
1739 }
1740
1741 /* check pid */
1742 if ((p = pfind(pid)) == NULL)
1743 return (EINVAL);
1744
1745 /* only root or same user change look at the environment */
1746 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1747 if (up->p_ucred->cr_uid != 0) {
1748 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1749 up->p_cred->p_ruid != p->p_cred->p_svuid)
1750 return (EPERM);
1751 }
1752 }
1753
1754 if (sizep != NULL && where == NULL) {
1755 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1756 *sizep = sizeof (int);
1757 else
1758 *sizep = ARG_MAX; /* XXX XXX XXX */
1759 return (0);
1760 }
1761 if (where == NULL || sizep == NULL)
1762 return (EINVAL);
1763
1764 /*
1765 * Zombies don't have a stack, so we can't read their psstrings.
1766 * System processes also don't have a user stack.
1767 */
1768 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1769 return (EINVAL);
1770
1771 /*
1772 * Lock the process down in memory.
1773 */
1774 /* XXXCDC: how should locking work here? */
1775 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1776 return (EFAULT);
1777 p->p_vmspace->vm_refcnt++; /* XXX */
1778
1779 /*
1780 * Allocate a temporary buffer to hold the arguments.
1781 */
1782 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1783
1784 /*
1785 * Read in the ps_strings structure.
1786 */
1787 aiov.iov_base = &pss;
1788 aiov.iov_len = sizeof(pss);
1789 auio.uio_iov = &aiov;
1790 auio.uio_iovcnt = 1;
1791 auio.uio_offset = (vaddr_t)p->p_psstr;
1792 auio.uio_resid = sizeof(pss);
1793 auio.uio_segflg = UIO_SYSSPACE;
1794 auio.uio_rw = UIO_READ;
1795 auio.uio_procp = NULL;
1796 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1797 if (error)
1798 goto done;
1799
1800 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1801 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1802 else
1803 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1804 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1805 error = copyout(&nargv, where, sizeof(nargv));
1806 *sizep = sizeof(nargv);
1807 goto done;
1808 }
1809 /*
1810 * Now read the address of the argument vector.
1811 */
1812 switch (type) {
1813 case KERN_PROC_ARGV:
1814 /* XXX compat32 stuff here */
1815 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1816 break;
1817 case KERN_PROC_ENV:
1818 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1819 break;
1820 default:
1821 return (EINVAL);
1822 }
1823 auio.uio_offset = (off_t)(long)tmp;
1824 aiov.iov_base = &argv;
1825 aiov.iov_len = sizeof(argv);
1826 auio.uio_iov = &aiov;
1827 auio.uio_iovcnt = 1;
1828 auio.uio_resid = sizeof(argv);
1829 auio.uio_segflg = UIO_SYSSPACE;
1830 auio.uio_rw = UIO_READ;
1831 auio.uio_procp = NULL;
1832 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1833 if (error)
1834 goto done;
1835
1836 /*
1837 * Now copy in the actual argument vector, one page at a time,
1838 * since we don't know how long the vector is (though, we do
1839 * know how many NUL-terminated strings are in the vector).
1840 */
1841 len = 0;
1842 upper_bound = *sizep;
1843 for (; nargv != 0 && len < upper_bound; len += xlen) {
1844 aiov.iov_base = arg;
1845 aiov.iov_len = PAGE_SIZE;
1846 auio.uio_iov = &aiov;
1847 auio.uio_iovcnt = 1;
1848 auio.uio_offset = argv + len;
1849 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1850 auio.uio_resid = xlen;
1851 auio.uio_segflg = UIO_SYSSPACE;
1852 auio.uio_rw = UIO_READ;
1853 auio.uio_procp = NULL;
1854 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1855 if (error)
1856 goto done;
1857
1858 for (i = 0; i < xlen && nargv != 0; i++) {
1859 if (arg[i] == '\0')
1860 nargv--; /* one full string */
1861 }
1862
1863 /* make sure we don't copyout past the end of the user's buffer */
1864 if (len + i > upper_bound)
1865 i = upper_bound - len;
1866
1867 error = copyout(arg, (char *)where + len, i);
1868 if (error)
1869 break;
1870
1871 if (nargv == 0) {
1872 len += i;
1873 break;
1874 }
1875 }
1876 *sizep = len;
1877
1878 done:
1879 uvmspace_free(p->p_vmspace);
1880
1881 free(arg, M_TEMP);
1882 return (error);
1883 }
1884
1885 #if NPTY > 0
1886 int pty_maxptys __P((int, int)); /* defined in kern/tty_pty.c */
1887
1888 /*
1889 * Validate parameters and get old / set new parameters
1890 * for pty sysctl function.
1891 */
1892 static int
1893 sysctl_pty(oldp, oldlenp, newp, newlen)
1894 void *oldp;
1895 size_t *oldlenp;
1896 void *newp;
1897 size_t newlen;
1898 {
1899 int error = 0;
1900 int oldmax = 0, newmax = 0;
1901
1902 /* get current value of maxptys */
1903 oldmax = pty_maxptys(0, 0);
1904
1905 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1906
1907 if (!error && newp) {
1908 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1909 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1910
1911 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1912 return (EINVAL);
1913
1914 }
1915
1916 return (error);
1917 }
1918 #endif /* NPTY > 0 */
1919