kern_sysctl.c revision 1.71 1 /* $NetBSD: kern_sysctl.c,v 1.71 2000/06/13 01:27:00 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/sysctl.h>
72
73 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
74 #include <sys/ipc.h>
75 #endif
76 #ifdef SYSVMSG
77 #include <sys/msg.h>
78 #endif
79 #ifdef SYSVSEM
80 #include <sys/sem.h>
81 #endif
82 #ifdef SYSVSHM
83 #include <sys/shm.h>
84 #endif
85
86 #if defined(DDB)
87 #include <ddb/ddbvar.h>
88 #endif
89
90 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
91
92 /*
93 * Locking and stats
94 */
95 static struct sysctl_lock {
96 int sl_lock;
97 int sl_want;
98 int sl_locked;
99 } memlock;
100
101 static int sysctl_file __P((void *, size_t *));
102 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
103 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
104 #endif
105 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
106 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
107 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
108
109 int
110 sys___sysctl(p, v, retval)
111 struct proc *p;
112 void *v;
113 register_t *retval;
114 {
115 struct sys___sysctl_args /* {
116 syscallarg(int *) name;
117 syscallarg(u_int) namelen;
118 syscallarg(void *) old;
119 syscallarg(size_t *) oldlenp;
120 syscallarg(void *) new;
121 syscallarg(size_t) newlen;
122 } */ *uap = v;
123 int error, dolock = 1;
124 size_t savelen = 0, oldlen = 0;
125 sysctlfn *fn;
126 int name[CTL_MAXNAME];
127 size_t *oldlenp;
128
129 /*
130 * all top-level sysctl names are non-terminal
131 */
132 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
133 return (EINVAL);
134 error = copyin(SCARG(uap, name), &name,
135 SCARG(uap, namelen) * sizeof(int));
136 if (error)
137 return (error);
138
139 /*
140 * For all but CTL_PROC, must be root to change a value.
141 * For CTL_PROC, must be root, or owner of the proc (and not suid),
142 * this is checked in proc_sysctl() (once we know the targer proc).
143 */
144 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
145 (error = suser(p->p_ucred, &p->p_acflag)))
146 return error;
147
148 switch (name[0]) {
149 case CTL_KERN:
150 fn = kern_sysctl;
151 if (name[2] != KERN_VNODE) /* XXX */
152 dolock = 0;
153 break;
154 case CTL_HW:
155 fn = hw_sysctl;
156 break;
157 case CTL_VM:
158 fn = uvm_sysctl;
159 break;
160 case CTL_NET:
161 fn = net_sysctl;
162 break;
163 case CTL_VFS:
164 fn = vfs_sysctl;
165 break;
166 case CTL_MACHDEP:
167 fn = cpu_sysctl;
168 break;
169 #ifdef DEBUG
170 case CTL_DEBUG:
171 fn = debug_sysctl;
172 break;
173 #endif
174 #ifdef DDB
175 case CTL_DDB:
176 fn = ddb_sysctl;
177 break;
178 #endif
179 case CTL_PROC:
180 fn = proc_sysctl;
181 break;
182 default:
183 return (EOPNOTSUPP);
184 }
185
186 oldlenp = SCARG(uap, oldlenp);
187 if (oldlenp) {
188 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
189 return (error);
190 oldlenp = &oldlen;
191 }
192 if (SCARG(uap, old) != NULL) {
193 if (!uvm_useracc(SCARG(uap, old), oldlen, B_WRITE))
194 return (EFAULT);
195 while (memlock.sl_lock) {
196 memlock.sl_want = 1;
197 (void) tsleep(&memlock, PRIBIO+1, "memlock", 0);
198 memlock.sl_locked++;
199 }
200 memlock.sl_lock = 1;
201 if (dolock) {
202 /*
203 * XXX Um, this is kind of evil. What should we
204 * XXX be passing here?
205 */
206 if (uvm_vslock(p, SCARG(uap, old), oldlen,
207 VM_PROT_NONE) != KERN_SUCCESS) {
208 memlock.sl_lock = 0;
209 if (memlock.sl_want) {
210 memlock.sl_want = 0;
211 wakeup((caddr_t)&memlock);
212 return (EFAULT);
213 }
214 }
215 }
216 savelen = oldlen;
217 }
218 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
219 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
220 if (SCARG(uap, old) != NULL) {
221 if (dolock)
222 uvm_vsunlock(p, SCARG(uap, old), savelen);
223 memlock.sl_lock = 0;
224 if (memlock.sl_want) {
225 memlock.sl_want = 0;
226 wakeup((caddr_t)&memlock);
227 }
228 }
229 if (error)
230 return (error);
231 if (SCARG(uap, oldlenp))
232 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
233 return (error);
234 }
235
236 /*
237 * Attributes stored in the kernel.
238 */
239 char hostname[MAXHOSTNAMELEN];
240 int hostnamelen;
241 char domainname[MAXHOSTNAMELEN];
242 int domainnamelen;
243 long hostid;
244 #ifdef INSECURE
245 int securelevel = -1;
246 #else
247 int securelevel = 0;
248 #endif
249 #ifdef DEFCORENAME
250 char defcorename[MAXPATHLEN] = DEFCORENAME;
251 int defcorenamelen = sizeof(DEFCORENAME);
252 #else
253 char defcorename[MAXPATHLEN] = "%n.core";
254 int defcorenamelen = sizeof("%n.core");
255 #endif
256 extern int kern_logsigexit;
257 extern fixpt_t ccpu;
258
259 /*
260 * kernel related system variables.
261 */
262 int
263 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
264 int *name;
265 u_int namelen;
266 void *oldp;
267 size_t *oldlenp;
268 void *newp;
269 size_t newlen;
270 struct proc *p;
271 {
272 int error, level, inthostid;
273 int old_autonicetime;
274 int old_vnodes;
275
276 /* All sysctl names at this level, except for a few, are terminal. */
277 switch (name[0]) {
278 case KERN_PROC:
279 case KERN_PROC2:
280 case KERN_PROF:
281 case KERN_MBUF:
282 case KERN_PROC_ARGS:
283 case KERN_SYSVIPC_INFO:
284 /* Not terminal. */
285 break;
286 default:
287 if (namelen != 1)
288 return (ENOTDIR); /* overloaded */
289 }
290
291 switch (name[0]) {
292 case KERN_OSTYPE:
293 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
294 case KERN_OSRELEASE:
295 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
296 case KERN_OSREV:
297 return (sysctl_rdint(oldp, oldlenp, newp, NetBSD));
298 case KERN_VERSION:
299 return (sysctl_rdstring(oldp, oldlenp, newp, version));
300 case KERN_MAXVNODES:
301 old_vnodes = desiredvnodes;
302 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
303 if (old_vnodes > desiredvnodes) {
304 desiredvnodes = old_vnodes;
305 return (EINVAL);
306 }
307 return (error);
308 case KERN_MAXPROC:
309 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
310 case KERN_MAXFILES:
311 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
312 case KERN_ARGMAX:
313 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
314 case KERN_SECURELVL:
315 level = securelevel;
316 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
317 newp == NULL)
318 return (error);
319 if (level < securelevel && p->p_pid != 1)
320 return (EPERM);
321 securelevel = level;
322 return (0);
323 case KERN_HOSTNAME:
324 error = sysctl_string(oldp, oldlenp, newp, newlen,
325 hostname, sizeof(hostname));
326 if (newp && !error)
327 hostnamelen = newlen;
328 return (error);
329 case KERN_DOMAINNAME:
330 error = sysctl_string(oldp, oldlenp, newp, newlen,
331 domainname, sizeof(domainname));
332 if (newp && !error)
333 domainnamelen = newlen;
334 return (error);
335 case KERN_HOSTID:
336 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
337 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
338 hostid = inthostid;
339 return (error);
340 case KERN_CLOCKRATE:
341 return (sysctl_clockrate(oldp, oldlenp));
342 case KERN_BOOTTIME:
343 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
344 sizeof(struct timeval)));
345 case KERN_VNODE:
346 return (sysctl_vnode(oldp, oldlenp, p));
347 case KERN_PROC:
348 case KERN_PROC2:
349 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
350 case KERN_PROC_ARGS:
351 return (sysctl_procargs(name + 1, namelen - 1,
352 oldp, oldlenp, p));
353 case KERN_FILE:
354 return (sysctl_file(oldp, oldlenp));
355 #ifdef GPROF
356 case KERN_PROF:
357 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
358 newp, newlen));
359 #endif
360 case KERN_POSIX1:
361 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
362 case KERN_NGROUPS:
363 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
364 case KERN_JOB_CONTROL:
365 return (sysctl_rdint(oldp, oldlenp, newp, 1));
366 case KERN_SAVED_IDS:
367 #ifdef _POSIX_SAVED_IDS
368 return (sysctl_rdint(oldp, oldlenp, newp, 1));
369 #else
370 return (sysctl_rdint(oldp, oldlenp, newp, 0));
371 #endif
372 case KERN_MAXPARTITIONS:
373 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
374 case KERN_RAWPARTITION:
375 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
376 #ifdef NTP
377 case KERN_NTPTIME:
378 return (sysctl_ntptime(oldp, oldlenp));
379 #endif
380 case KERN_AUTONICETIME:
381 old_autonicetime = autonicetime;
382 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
383 if (autonicetime < 0)
384 autonicetime = old_autonicetime;
385 return (error);
386 case KERN_AUTONICEVAL:
387 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
388 if (autoniceval < PRIO_MIN)
389 autoniceval = PRIO_MIN;
390 if (autoniceval > PRIO_MAX)
391 autoniceval = PRIO_MAX;
392 return (error);
393 case KERN_RTC_OFFSET:
394 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
395 case KERN_ROOT_DEVICE:
396 return (sysctl_rdstring(oldp, oldlenp, newp,
397 root_device->dv_xname));
398 case KERN_MSGBUFSIZE:
399 /*
400 * deal with cases where the message buffer has
401 * become corrupted.
402 */
403 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
404 msgbufenabled = 0;
405 return (ENXIO);
406 }
407 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
408 case KERN_FSYNC:
409 return (sysctl_rdint(oldp, oldlenp, newp, 1));
410 case KERN_SYSVMSG:
411 #ifdef SYSVMSG
412 return (sysctl_rdint(oldp, oldlenp, newp, 1));
413 #else
414 return (sysctl_rdint(oldp, oldlenp, newp, 0));
415 #endif
416 case KERN_SYSVSEM:
417 #ifdef SYSVSEM
418 return (sysctl_rdint(oldp, oldlenp, newp, 1));
419 #else
420 return (sysctl_rdint(oldp, oldlenp, newp, 0));
421 #endif
422 case KERN_SYSVSHM:
423 #ifdef SYSVSHM
424 return (sysctl_rdint(oldp, oldlenp, newp, 1));
425 #else
426 return (sysctl_rdint(oldp, oldlenp, newp, 0));
427 #endif
428 case KERN_DEFCORENAME:
429 if (newp && newlen < 1)
430 return (EINVAL);
431 error = sysctl_string(oldp, oldlenp, newp, newlen,
432 defcorename, sizeof(defcorename));
433 if (newp && !error)
434 defcorenamelen = newlen;
435 return (error);
436 case KERN_SYNCHRONIZED_IO:
437 return (sysctl_rdint(oldp, oldlenp, newp, 1));
438 case KERN_IOV_MAX:
439 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
440 case KERN_MBUF:
441 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
442 newp, newlen));
443 case KERN_MAPPED_FILES:
444 return (sysctl_rdint(oldp, oldlenp, newp, 1));
445 case KERN_MEMLOCK:
446 return (sysctl_rdint(oldp, oldlenp, newp, 1));
447 case KERN_MEMLOCK_RANGE:
448 return (sysctl_rdint(oldp, oldlenp, newp, 1));
449 case KERN_MEMORY_PROTECTION:
450 return (sysctl_rdint(oldp, oldlenp, newp, 1));
451 case KERN_LOGIN_NAME_MAX:
452 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
453 case KERN_LOGSIGEXIT:
454 return (sysctl_int(oldp, oldlenp, newp, newlen,
455 &kern_logsigexit));
456 case KERN_FSCALE:
457 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
458 case KERN_CCPU:
459 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
460 case KERN_CP_TIME:
461 /* XXXSMP: WRONG! */
462 return (sysctl_rdstruct(oldp, oldlenp, newp,
463 curcpu()->ci_schedstate.spc_cp_time,
464 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
465 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
466 case KERN_SYSVIPC_INFO:
467 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
468 #endif
469 default:
470 return (EOPNOTSUPP);
471 }
472 /* NOTREACHED */
473 }
474
475 /*
476 * hardware related system variables.
477 */
478 int
479 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
480 int *name;
481 u_int namelen;
482 void *oldp;
483 size_t *oldlenp;
484 void *newp;
485 size_t newlen;
486 struct proc *p;
487 {
488
489 /* all sysctl names at this level are terminal */
490 if (namelen != 1)
491 return (ENOTDIR); /* overloaded */
492
493 switch (name[0]) {
494 case HW_MACHINE:
495 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
496 case HW_MACHINE_ARCH:
497 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
498 case HW_MODEL:
499 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
500 case HW_NCPU:
501 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
502 case HW_BYTEORDER:
503 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
504 case HW_PHYSMEM:
505 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
506 case HW_USERMEM:
507 return (sysctl_rdint(oldp, oldlenp, newp,
508 ctob(physmem - uvmexp.wired)));
509 case HW_PAGESIZE:
510 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
511 case HW_ALIGNBYTES:
512 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
513 default:
514 return (EOPNOTSUPP);
515 }
516 /* NOTREACHED */
517 }
518
519 #ifdef DEBUG
520 /*
521 * Debugging related system variables.
522 */
523 struct ctldebug debug0, debug1, debug2, debug3, debug4;
524 struct ctldebug debug5, debug6, debug7, debug8, debug9;
525 struct ctldebug debug10, debug11, debug12, debug13, debug14;
526 struct ctldebug debug15, debug16, debug17, debug18, debug19;
527 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
528 &debug0, &debug1, &debug2, &debug3, &debug4,
529 &debug5, &debug6, &debug7, &debug8, &debug9,
530 &debug10, &debug11, &debug12, &debug13, &debug14,
531 &debug15, &debug16, &debug17, &debug18, &debug19,
532 };
533 int
534 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
535 int *name;
536 u_int namelen;
537 void *oldp;
538 size_t *oldlenp;
539 void *newp;
540 size_t newlen;
541 struct proc *p;
542 {
543 struct ctldebug *cdp;
544
545 /* all sysctl names at this level are name and field */
546 if (namelen != 2)
547 return (ENOTDIR); /* overloaded */
548 cdp = debugvars[name[0]];
549 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
550 return (EOPNOTSUPP);
551 switch (name[1]) {
552 case CTL_DEBUG_NAME:
553 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
554 case CTL_DEBUG_VALUE:
555 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
556 default:
557 return (EOPNOTSUPP);
558 }
559 /* NOTREACHED */
560 }
561 #endif /* DEBUG */
562
563 int
564 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
565 int *name;
566 u_int namelen;
567 void *oldp;
568 size_t *oldlenp;
569 void *newp;
570 size_t newlen;
571 struct proc *p;
572 {
573 struct proc *ptmp = NULL;
574 const struct proclist_desc *pd;
575 int error = 0;
576 struct rlimit alim;
577 struct plimit *newplim;
578 char *tmps = NULL;
579 int i, curlen, len;
580
581 if (namelen < 2)
582 return EINVAL;
583
584 if (name[0] == PROC_CURPROC) {
585 ptmp = p;
586 } else {
587 proclist_lock_read();
588 for (pd = proclists; pd->pd_list != NULL; pd++) {
589 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
590 ptmp = LIST_NEXT(ptmp, p_list)) {
591 /* Skip embryonic processes. */
592 if (ptmp->p_stat == SIDL)
593 continue;
594 if (ptmp->p_pid == (pid_t)name[0])
595 break;
596 }
597 if (ptmp != NULL)
598 break;
599 }
600 proclist_unlock_read();
601 if (ptmp == NULL)
602 return(ESRCH);
603 if (p->p_ucred->cr_uid != 0) {
604 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
605 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
606 return EPERM;
607 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
608 return EPERM; /* sgid proc */
609 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
610 if (p->p_ucred->cr_groups[i] ==
611 ptmp->p_cred->p_rgid)
612 break;
613 }
614 if (i == p->p_ucred->cr_ngroups)
615 return EPERM;
616 }
617 }
618 if (name[1] == PROC_PID_CORENAME) {
619 if (namelen != 2)
620 return EINVAL;
621 /*
622 * Can't use sysctl_string() here because we may malloc a new
623 * area during the process, so we have to do it by hand.
624 */
625 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
626 if (oldlenp && *oldlenp < curlen) {
627 if (!oldp)
628 *oldlenp = curlen;
629 return (ENOMEM);
630 }
631 if (newp) {
632 if (securelevel > 2)
633 return EPERM;
634 if (newlen > MAXPATHLEN)
635 return ENAMETOOLONG;
636 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
637 if (tmps == NULL)
638 return ENOMEM;
639 error = copyin(newp, tmps, newlen + 1);
640 tmps[newlen] = '\0';
641 if (error)
642 goto cleanup;
643 /* Enforce to be either 'core' for end with '.core' */
644 if (newlen < 4) { /* c.o.r.e */
645 error = EINVAL;
646 goto cleanup;
647 }
648 len = newlen - 4;
649 if (len > 0) {
650 if (tmps[len - 1] != '.' &&
651 tmps[len - 1] != '/') {
652 error = EINVAL;
653 goto cleanup;
654 }
655 }
656 if (strcmp(&tmps[len], "core") != 0) {
657 error = EINVAL;
658 goto cleanup;
659 }
660 }
661 if (oldp && oldlenp) {
662 *oldlenp = curlen;
663 error = copyout(ptmp->p_limit->pl_corename, oldp,
664 curlen);
665 }
666 if (newp && error == 0) {
667 /* if the 2 strings are identical, don't limcopy() */
668 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
669 error = 0;
670 goto cleanup;
671 }
672 if (ptmp->p_limit->p_refcnt > 1 &&
673 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
674 newplim = limcopy(ptmp->p_limit);
675 limfree(ptmp->p_limit);
676 ptmp->p_limit = newplim;
677 } else if (ptmp->p_limit->pl_corename != defcorename) {
678 free(ptmp->p_limit->pl_corename, M_TEMP);
679 }
680 ptmp->p_limit->pl_corename = tmps;
681 return (0);
682 }
683 cleanup:
684 if (tmps)
685 free(tmps, M_TEMP);
686 return (error);
687 }
688 if (name[1] == PROC_PID_LIMIT) {
689 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
690 return EINVAL;
691 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
692 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
693 error = sysctl_quad(oldp, oldlenp, newp, newlen,
694 &alim.rlim_max);
695 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
696 error = sysctl_quad(oldp, oldlenp, newp, newlen,
697 &alim.rlim_cur);
698 else
699 error = EINVAL;
700
701 if (error)
702 return error;
703
704 if (newp)
705 error = dosetrlimit(ptmp, p->p_cred,
706 name[2] - 1, &alim);
707 return error;
708 }
709 return (EINVAL);
710 }
711
712 /*
713 * Convenience macros.
714 */
715
716 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
717 if (oldlenp) { \
718 if (!oldp) \
719 *oldlenp = len; \
720 else { \
721 if (*oldlenp < len) \
722 return(ENOMEM); \
723 *oldlenp = len; \
724 error = copyout((caddr_t)valp, oldp, len); \
725 } \
726 }
727
728 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
729 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
730
731 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
732 if (newp && newlen != len) \
733 return (EINVAL);
734
735 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
736 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
737
738 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
739 if (error == 0 && newp) \
740 error = copyin(newp, valp, len);
741
742 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
743 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
744
745 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
746 if (oldlenp) { \
747 len = strlen(str) + 1; \
748 if (!oldp) \
749 *oldlenp = len; \
750 else { \
751 if (*oldlenp < len) { \
752 err2 = ENOMEM; \
753 len = *oldlenp; \
754 } else \
755 *oldlenp = len; \
756 error = copyout(str, oldp, len);\
757 if (error == 0) \
758 error = err2; \
759 } \
760 }
761
762 /*
763 * Validate parameters and get old / set new parameters
764 * for an integer-valued sysctl function.
765 */
766 int
767 sysctl_int(oldp, oldlenp, newp, newlen, valp)
768 void *oldp;
769 size_t *oldlenp;
770 void *newp;
771 size_t newlen;
772 int *valp;
773 {
774 int error = 0;
775
776 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
777 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
778 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
779
780 return (error);
781 }
782
783
784 /*
785 * As above, but read-only.
786 */
787 int
788 sysctl_rdint(oldp, oldlenp, newp, val)
789 void *oldp;
790 size_t *oldlenp;
791 void *newp;
792 int val;
793 {
794 int error = 0;
795
796 if (newp)
797 return (EPERM);
798
799 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
800
801 return (error);
802 }
803
804 /*
805 * Validate parameters and get old / set new parameters
806 * for an quad-valued sysctl function.
807 */
808 int
809 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
810 void *oldp;
811 size_t *oldlenp;
812 void *newp;
813 size_t newlen;
814 quad_t *valp;
815 {
816 int error = 0;
817
818 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
819 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
820 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
821
822 return (error);
823 }
824
825 /*
826 * As above, but read-only.
827 */
828 int
829 sysctl_rdquad(oldp, oldlenp, newp, val)
830 void *oldp;
831 size_t *oldlenp;
832 void *newp;
833 quad_t val;
834 {
835 int error = 0;
836
837 if (newp)
838 return (EPERM);
839
840 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
841
842 return (error);
843 }
844
845 /*
846 * Validate parameters and get old / set new parameters
847 * for a string-valued sysctl function.
848 */
849 int
850 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
851 void *oldp;
852 size_t *oldlenp;
853 void *newp;
854 size_t newlen;
855 char *str;
856 int maxlen;
857 {
858 int len, error = 0, err2 = 0;
859
860 if (newp && newlen >= maxlen)
861 return (EINVAL);
862
863 SYSCTL_STRING_CORE(oldp, oldlenp, str);
864
865 if (error == 0 && newp) {
866 error = copyin(newp, str, newlen);
867 str[newlen] = 0;
868 }
869 return (error);
870 }
871
872 /*
873 * As above, but read-only.
874 */
875 int
876 sysctl_rdstring(oldp, oldlenp, newp, str)
877 void *oldp;
878 size_t *oldlenp;
879 void *newp;
880 char *str;
881 {
882 int len, error = 0, err2 = 0;
883
884 if (newp)
885 return (EPERM);
886
887 SYSCTL_STRING_CORE(oldp, oldlenp, str);
888
889 return (error);
890 }
891
892 /*
893 * Validate parameters and get old / set new parameters
894 * for a structure oriented sysctl function.
895 */
896 int
897 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
898 void *oldp;
899 size_t *oldlenp;
900 void *newp;
901 size_t newlen;
902 void *sp;
903 int len;
904 {
905 int error = 0;
906
907 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
908 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
909 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
910
911 return (error);
912 }
913
914 /*
915 * Validate parameters and get old parameters
916 * for a structure oriented sysctl function.
917 */
918 int
919 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
920 void *oldp;
921 size_t *oldlenp;
922 void *newp, *sp;
923 int len;
924 {
925 int error = 0;
926
927 if (newp)
928 return (EPERM);
929
930 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
931
932 return (error);
933 }
934
935 /*
936 * Get file structures.
937 */
938 static int
939 sysctl_file(vwhere, sizep)
940 void *vwhere;
941 size_t *sizep;
942 {
943 int buflen, error;
944 struct file *fp;
945 char *start, *where;
946
947 start = where = vwhere;
948 buflen = *sizep;
949 if (where == NULL) {
950 /*
951 * overestimate by 10 files
952 */
953 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
954 return (0);
955 }
956
957 /*
958 * first copyout filehead
959 */
960 if (buflen < sizeof(filehead)) {
961 *sizep = 0;
962 return (0);
963 }
964 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
965 if (error)
966 return (error);
967 buflen -= sizeof(filehead);
968 where += sizeof(filehead);
969
970 /*
971 * followed by an array of file structures
972 */
973 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
974 if (buflen < sizeof(struct file)) {
975 *sizep = where - start;
976 return (ENOMEM);
977 }
978 error = copyout((caddr_t)fp, where, sizeof(struct file));
979 if (error)
980 return (error);
981 buflen -= sizeof(struct file);
982 where += sizeof(struct file);
983 }
984 *sizep = where - start;
985 return (0);
986 }
987
988 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
989 #define FILL_PERM(src, dst) do { \
990 (dst)._key = (src)._key; \
991 (dst).uid = (src).uid; \
992 (dst).gid = (src).gid; \
993 (dst).cuid = (src).cuid; \
994 (dst).cgid = (src).cgid; \
995 (dst).mode = (src).mode; \
996 (dst)._seq = (src)._seq; \
997 } while (0);
998 #define FILL_MSG(src, dst) do { \
999 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1000 (dst).msg_qnum = (src).msg_qnum; \
1001 (dst).msg_qbytes = (src).msg_qbytes; \
1002 (dst)._msg_cbytes = (src)._msg_cbytes; \
1003 (dst).msg_lspid = (src).msg_lspid; \
1004 (dst).msg_lrpid = (src).msg_lrpid; \
1005 (dst).msg_stime = (src).msg_stime; \
1006 (dst).msg_rtime = (src).msg_rtime; \
1007 (dst).msg_ctime = (src).msg_ctime; \
1008 } while (0)
1009 #define FILL_SEM(src, dst) do { \
1010 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1011 (dst).sem_nsems = (src).sem_nsems; \
1012 (dst).sem_otime = (src).sem_otime; \
1013 (dst).sem_ctime = (src).sem_ctime; \
1014 } while (0)
1015 #define FILL_SHM(src, dst) do { \
1016 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1017 (dst).shm_segsz = (src).shm_segsz; \
1018 (dst).shm_lpid = (src).shm_lpid; \
1019 (dst).shm_cpid = (src).shm_cpid; \
1020 (dst).shm_atime = (src).shm_atime; \
1021 (dst).shm_dtime = (src).shm_dtime; \
1022 (dst).shm_ctime = (src).shm_ctime; \
1023 (dst).shm_nattch = (src).shm_nattch; \
1024 } while (0)
1025
1026 static int
1027 sysctl_sysvipc(name, namelen, where, sizep)
1028 int *name;
1029 u_int namelen;
1030 void *where;
1031 size_t *sizep;
1032 {
1033 struct msg_sysctl_info *msgsi;
1034 struct sem_sysctl_info *semsi;
1035 struct shm_sysctl_info *shmsi;
1036 size_t infosize, dssize, tsize, buflen;
1037 void *buf = NULL, *buf2;
1038 char *start;
1039 int32_t nds;
1040 int i, error, ret;
1041
1042 if (namelen != 1)
1043 return (EINVAL);
1044
1045 start = where;
1046 buflen = *sizep;
1047
1048 switch (*name) {
1049 case KERN_SYSVIPC_MSG_INFO:
1050 #ifdef SYSVMSG
1051 infosize = sizeof(msgsi->msginfo);
1052 nds = msginfo.msgmni;
1053 dssize = sizeof(msgsi->msgids[0]);
1054 break;
1055 #else
1056 return (EINVAL);
1057 #endif
1058 case KERN_SYSVIPC_SEM_INFO:
1059 #ifdef SYSVSEM
1060 infosize = sizeof(semsi->seminfo);
1061 nds = seminfo.semmni;
1062 dssize = sizeof(semsi->semids[0]);
1063 break;
1064 #else
1065 return (EINVAL);
1066 #endif
1067 case KERN_SYSVIPC_SHM_INFO:
1068 #ifdef SYSVSHM
1069 infosize = sizeof(shmsi->shminfo);
1070 nds = shminfo.shmmni;
1071 dssize = sizeof(shmsi->shmids[0]);
1072 break;
1073 #else
1074 return (EINVAL);
1075 #endif
1076 default:
1077 return (EINVAL);
1078 }
1079 /*
1080 * Round infosize to 64 bit boundary if requesting more than just
1081 * the info structure or getting the total data size.
1082 */
1083 if (where == NULL || *sizep > infosize)
1084 infosize = ((infosize + 7) / 8) * 8;
1085 tsize = infosize + nds * dssize;
1086
1087 /* Return just the total size required. */
1088 if (where == NULL) {
1089 *sizep = tsize;
1090 return (0);
1091 }
1092
1093 /* Not enough room for even the info struct. */
1094 if (buflen < infosize) {
1095 *sizep = 0;
1096 return (ENOMEM);
1097 }
1098 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1099 memset(buf, 0, min(tsize, buflen));
1100
1101 switch (*name) {
1102 case KERN_SYSVIPC_MSG_INFO:
1103 msgsi = (struct msg_sysctl_info *)buf;
1104 buf2 = &msgsi->msgids[0];
1105 msgsi->msginfo = msginfo;
1106 break;
1107 case KERN_SYSVIPC_SEM_INFO:
1108 semsi = (struct sem_sysctl_info *)buf;
1109 buf2 = &semsi->semids[0];
1110 semsi->seminfo = seminfo;
1111 break;
1112 case KERN_SYSVIPC_SHM_INFO:
1113 shmsi = (struct shm_sysctl_info *)buf;
1114 buf2 = &shmsi->shmids[0];
1115 shmsi->shminfo = shminfo;
1116 break;
1117 }
1118 buflen -= infosize;
1119
1120 ret = 0;
1121 if (buflen > 0) {
1122 /* Fill in the IPC data structures. */
1123 for (i = 0; i < nds; i++) {
1124 if (buflen < dssize) {
1125 ret = ENOMEM;
1126 break;
1127 }
1128 switch (*name) {
1129 case KERN_SYSVIPC_MSG_INFO:
1130 FILL_MSG(msqids[i], msgsi->msgids[i]);
1131 break;
1132 case KERN_SYSVIPC_SEM_INFO:
1133 FILL_SEM(sema[i], semsi->semids[i]);
1134 break;
1135 case KERN_SYSVIPC_SHM_INFO:
1136 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1137 break;
1138 }
1139 buflen -= dssize;
1140 }
1141 }
1142 *sizep -= buflen;
1143 error = copyout(buf, start, *sizep);
1144 /* If copyout succeeded, use return code set earlier. */
1145 if (error == 0)
1146 error = ret;
1147 if (buf)
1148 free(buf, M_TEMP);
1149 return (error);
1150 }
1151 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1152
1153 /*
1154 * try over estimating by 5 procs
1155 */
1156 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1157
1158 static int
1159 sysctl_doeproc(name, namelen, vwhere, sizep)
1160 int *name;
1161 u_int namelen;
1162 void *vwhere;
1163 size_t *sizep;
1164 {
1165 struct eproc eproc;
1166 struct kinfo_proc2 kproc2;
1167 struct kinfo_proc *dp;
1168 struct proc *p;
1169 const struct proclist_desc *pd;
1170 char *where, *dp2;
1171 int type, op, arg, elem_size, elem_count;
1172 int buflen, needed, error;
1173
1174 dp = vwhere;
1175 dp2 = where = vwhere;
1176 buflen = where != NULL ? *sizep : 0;
1177 error = needed = 0;
1178 type = name[0];
1179
1180 if (type == KERN_PROC) {
1181 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1182 return (EINVAL);
1183 op = name[1];
1184 if (op != KERN_PROC_ALL)
1185 arg = name[2];
1186 } else {
1187 if (namelen != 5)
1188 return (EINVAL);
1189 op = name[1];
1190 arg = name[2];
1191 elem_size = name[3];
1192 elem_count = name[4];
1193 }
1194
1195 proclist_lock_read();
1196
1197 pd = proclists;
1198 again:
1199 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1200 /*
1201 * Skip embryonic processes.
1202 */
1203 if (p->p_stat == SIDL)
1204 continue;
1205 /*
1206 * TODO - make more efficient (see notes below).
1207 * do by session.
1208 */
1209 switch (op) {
1210
1211 case KERN_PROC_PID:
1212 /* could do this with just a lookup */
1213 if (p->p_pid != (pid_t)arg)
1214 continue;
1215 break;
1216
1217 case KERN_PROC_PGRP:
1218 /* could do this by traversing pgrp */
1219 if (p->p_pgrp->pg_id != (pid_t)arg)
1220 continue;
1221 break;
1222
1223 case KERN_PROC_SESSION:
1224 if (p->p_session->s_sid != (pid_t)arg)
1225 continue;
1226 break;
1227
1228 case KERN_PROC_TTY:
1229 if (arg == KERN_PROC_TTY_REVOKE) {
1230 if ((p->p_flag & P_CONTROLT) == 0 ||
1231 p->p_session->s_ttyp == NULL ||
1232 p->p_session->s_ttyvp != NULL)
1233 continue;
1234 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1235 p->p_session->s_ttyp == NULL) {
1236 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1237 continue;
1238 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1239 continue;
1240 break;
1241
1242 case KERN_PROC_UID:
1243 if (p->p_ucred->cr_uid != (uid_t)arg)
1244 continue;
1245 break;
1246
1247 case KERN_PROC_RUID:
1248 if (p->p_cred->p_ruid != (uid_t)arg)
1249 continue;
1250 break;
1251
1252 case KERN_PROC_GID:
1253 if (p->p_ucred->cr_gid != (uid_t)arg)
1254 continue;
1255 break;
1256
1257 case KERN_PROC_RGID:
1258 if (p->p_cred->p_rgid != (uid_t)arg)
1259 continue;
1260 break;
1261
1262 case KERN_PROC_ALL:
1263 /* allow everything */
1264 break;
1265
1266 default:
1267 error = EINVAL;
1268 goto cleanup;
1269 }
1270 if (type == KERN_PROC) {
1271 if (buflen >= sizeof(struct kinfo_proc)) {
1272 fill_eproc(p, &eproc);
1273 error = copyout((caddr_t)p, &dp->kp_proc,
1274 sizeof(struct proc));
1275 if (error)
1276 goto cleanup;
1277 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1278 sizeof(eproc));
1279 if (error)
1280 goto cleanup;
1281 dp++;
1282 buflen -= sizeof(struct kinfo_proc);
1283 }
1284 needed += sizeof(struct kinfo_proc);
1285 } else { /* KERN_PROC2 */
1286 if (buflen >= elem_size && elem_count > 0) {
1287 fill_kproc2(p, &kproc2);
1288 /*
1289 * Copy out elem_size, but not larger than
1290 * the size of a struct kinfo_proc2.
1291 */
1292 error = copyout(&kproc2, dp2,
1293 min(sizeof(kproc2), elem_size));
1294 if (error)
1295 goto cleanup;
1296 dp2 += elem_size;
1297 buflen -= elem_size;
1298 elem_count--;
1299 }
1300 needed += elem_size;
1301 }
1302 }
1303 pd++;
1304 if (pd->pd_list != NULL)
1305 goto again;
1306 proclist_unlock_read();
1307
1308 if (where != NULL) {
1309 if (type == KERN_PROC)
1310 *sizep = (caddr_t)dp - where;
1311 else
1312 *sizep = dp2 - where;
1313 if (needed > *sizep)
1314 return (ENOMEM);
1315 } else {
1316 needed += KERN_PROCSLOP;
1317 *sizep = needed;
1318 }
1319 return (0);
1320 cleanup:
1321 proclist_unlock_read();
1322 return (error);
1323 }
1324
1325 /*
1326 * Fill in an eproc structure for the specified process.
1327 */
1328 void
1329 fill_eproc(p, ep)
1330 struct proc *p;
1331 struct eproc *ep;
1332 {
1333 struct tty *tp;
1334
1335 ep->e_paddr = p;
1336 ep->e_sess = p->p_session;
1337 ep->e_pcred = *p->p_cred;
1338 ep->e_ucred = *p->p_ucred;
1339 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1340 ep->e_vm.vm_rssize = 0;
1341 ep->e_vm.vm_tsize = 0;
1342 ep->e_vm.vm_dsize = 0;
1343 ep->e_vm.vm_ssize = 0;
1344 /* ep->e_vm.vm_pmap = XXX; */
1345 } else {
1346 struct vmspace *vm = p->p_vmspace;
1347
1348 ep->e_vm.vm_rssize = vm_resident_count(vm);
1349 ep->e_vm.vm_tsize = vm->vm_tsize;
1350 ep->e_vm.vm_dsize = vm->vm_dsize;
1351 ep->e_vm.vm_ssize = vm->vm_ssize;
1352 }
1353 if (p->p_pptr)
1354 ep->e_ppid = p->p_pptr->p_pid;
1355 else
1356 ep->e_ppid = 0;
1357 ep->e_pgid = p->p_pgrp->pg_id;
1358 ep->e_sid = ep->e_sess->s_sid;
1359 ep->e_jobc = p->p_pgrp->pg_jobc;
1360 if ((p->p_flag & P_CONTROLT) &&
1361 (tp = ep->e_sess->s_ttyp)) {
1362 ep->e_tdev = tp->t_dev;
1363 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1364 ep->e_tsess = tp->t_session;
1365 } else
1366 ep->e_tdev = NODEV;
1367 if (p->p_wmesg)
1368 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1369 ep->e_xsize = ep->e_xrssize = 0;
1370 ep->e_xccount = ep->e_xswrss = 0;
1371 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1372 if (SESS_LEADER(p))
1373 ep->e_flag |= EPROC_SLEADER;
1374 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1375 }
1376
1377 /*
1378 * Fill in an eproc structure for the specified process.
1379 */
1380 static void
1381 fill_kproc2(p, ki)
1382 struct proc *p;
1383 struct kinfo_proc2 *ki;
1384 {
1385 struct tty *tp;
1386
1387 memset(ki, 0, sizeof(*ki));
1388
1389 ki->p_forw = PTRTOINT64(p->p_forw);
1390 ki->p_back = PTRTOINT64(p->p_back);
1391 ki->p_paddr = PTRTOINT64(p);
1392
1393 ki->p_addr = PTRTOINT64(p->p_addr);
1394 ki->p_fd = PTRTOINT64(p->p_fd);
1395 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1396 ki->p_stats = PTRTOINT64(p->p_stats);
1397 ki->p_limit = PTRTOINT64(p->p_limit);
1398 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1399 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1400 ki->p_sess = PTRTOINT64(p->p_session);
1401 ki->p_tsess = 0; /* may be changed if controlling tty below */
1402 ki->p_ru = PTRTOINT64(p->p_ru);
1403
1404 ki->p_eflag = 0;
1405 ki->p_exitsig = p->p_exitsig;
1406 ki->p_flag = p->p_flag;
1407
1408 ki->p_pid = p->p_pid;
1409 if (p->p_pptr)
1410 ki->p_ppid = p->p_pptr->p_pid;
1411 else
1412 ki->p_ppid = 0;
1413 ki->p_sid = p->p_session->s_sid;
1414 ki->p__pgid = p->p_pgrp->pg_id;
1415
1416 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1417
1418 ki->p_uid = p->p_ucred->cr_uid;
1419 ki->p_ruid = p->p_cred->p_ruid;
1420 ki->p_gid = p->p_ucred->cr_gid;
1421 ki->p_rgid = p->p_cred->p_rgid;
1422
1423 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1424 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1425 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1426
1427 ki->p_jobc = p->p_pgrp->pg_jobc;
1428 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1429 ki->p_tdev = tp->t_dev;
1430 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1431 ki->p_tsess = PTRTOINT64(tp->t_session);
1432 } else {
1433 ki->p_tdev = NODEV;
1434 }
1435
1436 ki->p_estcpu = p->p_estcpu;
1437 ki->p_rtime_sec = p->p_rtime.tv_sec;
1438 ki->p_rtime_usec = p->p_rtime.tv_usec;
1439 ki->p_cpticks = p->p_cpticks;
1440 ki->p_pctcpu = p->p_pctcpu;
1441 ki->p_swtime = p->p_swtime;
1442 ki->p_slptime = p->p_slptime;
1443 if (p->p_stat == SONPROC) {
1444 KDASSERT(p->p_cpu != NULL);
1445 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1446 } else
1447 ki->p_schedflags = 0;
1448
1449 ki->p_uticks = p->p_uticks;
1450 ki->p_sticks = p->p_sticks;
1451 ki->p_iticks = p->p_iticks;
1452
1453 ki->p_tracep = PTRTOINT64(p->p_tracep);
1454 ki->p_traceflag = p->p_traceflag;
1455
1456 ki->p_holdcnt = p->p_holdcnt;
1457
1458 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1459 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1460 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1461 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1462
1463 ki->p_stat = p->p_stat;
1464 ki->p_priority = p->p_priority;
1465 ki->p_usrpri = p->p_usrpri;
1466 ki->p_nice = p->p_nice;
1467
1468 ki->p_xstat = p->p_xstat;
1469 ki->p_acflag = p->p_acflag;
1470
1471 strncpy(ki->p_comm, p->p_comm,
1472 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1473
1474 if (p->p_wmesg)
1475 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1476 ki->p_wchan = PTRTOINT64(p->p_wchan);
1477
1478 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1479
1480 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1481 ki->p_vm_rssize = 0;
1482 ki->p_vm_tsize = 0;
1483 ki->p_vm_dsize = 0;
1484 ki->p_vm_ssize = 0;
1485 } else {
1486 struct vmspace *vm = p->p_vmspace;
1487
1488 ki->p_vm_rssize = vm_resident_count(vm);
1489 ki->p_vm_tsize = vm->vm_tsize;
1490 ki->p_vm_dsize = vm->vm_dsize;
1491 ki->p_vm_ssize = vm->vm_ssize;
1492 }
1493
1494 if (p->p_session->s_ttyvp)
1495 ki->p_eflag |= EPROC_CTTY;
1496 if (SESS_LEADER(p))
1497 ki->p_eflag |= EPROC_SLEADER;
1498
1499 /* XXX Is this double check necessary? */
1500 if (P_ZOMBIE(p) || p->p_addr == NULL) {
1501 ki->p_uvalid = 0;
1502 } else {
1503 ki->p_uvalid = 1;
1504
1505 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1506 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1507
1508 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1509 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1510 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1511 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1512
1513 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1514 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1515 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1516 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1517 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1518 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1519 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1520 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1521 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1522 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1523 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1524 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1525 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1526 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1527
1528 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1529 p->p_stats->p_cru.ru_stime.tv_sec;
1530 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1531 p->p_stats->p_cru.ru_stime.tv_usec;
1532 }
1533 }
1534
1535 int
1536 sysctl_procargs(name, namelen, where, sizep, up)
1537 int *name;
1538 u_int namelen;
1539 void *where;
1540 size_t *sizep;
1541 struct proc *up;
1542 {
1543 struct ps_strings pss;
1544 struct proc *p;
1545 size_t len, upper_bound, xlen;
1546 struct uio auio;
1547 struct iovec aiov;
1548 vaddr_t argv;
1549 pid_t pid;
1550 int nargv, type, error, i;
1551 char *arg;
1552 char *tmp;
1553
1554 if (namelen != 2)
1555 return (EINVAL);
1556 pid = name[0];
1557 type = name[1];
1558
1559 switch (type) {
1560 case KERN_PROC_ARGV:
1561 case KERN_PROC_NARGV:
1562 case KERN_PROC_ENV:
1563 case KERN_PROC_NENV:
1564 /* ok */
1565 break;
1566 default:
1567 return (EINVAL);
1568 }
1569
1570 /* check pid */
1571 if ((p = pfind(pid)) == NULL)
1572 return (EINVAL);
1573
1574 /* only root or same user change look at the environment */
1575 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1576 if (up->p_ucred->cr_uid != 0) {
1577 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1578 up->p_cred->p_ruid != p->p_cred->p_svuid)
1579 return (EPERM);
1580 }
1581 }
1582
1583 if (sizep != NULL && where == NULL) {
1584 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1585 *sizep = sizeof (int);
1586 else
1587 *sizep = ARG_MAX; /* XXX XXX XXX */
1588 return (0);
1589 }
1590 if (where == NULL || sizep == NULL)
1591 return (EINVAL);
1592
1593 /*
1594 * Zombies don't have a stack, so we can't read their psstrings.
1595 * System processes also don't have a user stack.
1596 */
1597 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1598 return (EINVAL);
1599
1600 /*
1601 * Lock the process down in memory.
1602 */
1603 /* XXXCDC: how should locking work here? */
1604 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1605 return (EFAULT);
1606 PHOLD(p);
1607 p->p_vmspace->vm_refcnt++; /* XXX */
1608
1609 /*
1610 * Allocate a temporary buffer to hold the arguments.
1611 */
1612 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1613
1614 /*
1615 * Read in the ps_strings structure.
1616 */
1617 aiov.iov_base = &pss;
1618 aiov.iov_len = sizeof(pss);
1619 auio.uio_iov = &aiov;
1620 auio.uio_iovcnt = 1;
1621 auio.uio_offset = (vaddr_t)p->p_psstr;
1622 auio.uio_resid = sizeof(pss);
1623 auio.uio_segflg = UIO_SYSSPACE;
1624 auio.uio_rw = UIO_READ;
1625 auio.uio_procp = NULL;
1626 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1627 if (error)
1628 goto done;
1629
1630 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1631 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1632 else
1633 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1634 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1635 error = copyout(&nargv, where, sizeof(nargv));
1636 *sizep = sizeof(nargv);
1637 goto done;
1638 }
1639 /*
1640 * Now read the address of the argument vector.
1641 */
1642 switch (type) {
1643 case KERN_PROC_ARGV:
1644 /* XXX compat32 stuff here */
1645 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1646 break;
1647 case KERN_PROC_ENV:
1648 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1649 break;
1650 default:
1651 return (EINVAL);
1652 }
1653 auio.uio_offset = (off_t)(long)tmp;
1654 aiov.iov_base = &argv;
1655 aiov.iov_len = sizeof(argv);
1656 auio.uio_iov = &aiov;
1657 auio.uio_iovcnt = 1;
1658 auio.uio_resid = sizeof(argv);
1659 auio.uio_segflg = UIO_SYSSPACE;
1660 auio.uio_rw = UIO_READ;
1661 auio.uio_procp = NULL;
1662 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1663 if (error)
1664 goto done;
1665
1666 /*
1667 * Now copy in the actual argument vector, one page at a time,
1668 * since we don't know how long the vector is (though, we do
1669 * know how many NUL-terminated strings are in the vector).
1670 */
1671 len = 0;
1672 upper_bound = *sizep;
1673 for (; nargv != 0 && len < upper_bound; len += xlen) {
1674 aiov.iov_base = arg;
1675 aiov.iov_len = PAGE_SIZE;
1676 auio.uio_iov = &aiov;
1677 auio.uio_iovcnt = 1;
1678 auio.uio_offset = argv + len;
1679 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1680 auio.uio_resid = xlen;
1681 auio.uio_segflg = UIO_SYSSPACE;
1682 auio.uio_rw = UIO_READ;
1683 auio.uio_procp = NULL;
1684 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1685 if (error)
1686 goto done;
1687
1688 for (i = 0; i < xlen && nargv != 0; i++) {
1689 if (arg[i] == '\0')
1690 nargv--; /* one full string */
1691 }
1692
1693 /* make sure we don't copyout past the end of the user's buffer */
1694 if (len + i > upper_bound)
1695 i = upper_bound - len;
1696
1697 error = copyout(arg, (char *)where + len, i);
1698 if (error)
1699 break;
1700
1701 if (nargv == 0) {
1702 len += i;
1703 break;
1704 }
1705 }
1706 *sizep = len;
1707
1708 done:
1709 PRELE(p);
1710 uvmspace_free(p->p_vmspace);
1711
1712 free(arg, M_TEMP);
1713 return (error);
1714 }
1715