kern_sysctl.c revision 1.73.2.1 1 /* $NetBSD: kern_sysctl.c,v 1.73.2.1 2000/07/14 18:10:51 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #define __SYSCTL_PRIVATE
72 #include <sys/sysctl.h>
73 #include <sys/lock.h>
74
75 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
76 #include <sys/ipc.h>
77 #endif
78 #ifdef SYSVMSG
79 #include <sys/msg.h>
80 #endif
81 #ifdef SYSVSEM
82 #include <sys/sem.h>
83 #endif
84 #ifdef SYSVSHM
85 #include <sys/shm.h>
86 #endif
87
88 #if defined(DDB)
89 #include <ddb/ddbvar.h>
90 #endif
91
92 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
93
94 static int sysctl_file __P((void *, size_t *));
95 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
96 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
97 #endif
98 static int sysctl_msgbuf __P((void *, size_t *));
99 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
100 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
101 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
102
103 /*
104 * The `sysctl_memlock' is intended to keep too many processes from
105 * locking down memory by doing sysctls at once. Whether or not this
106 * is really a good idea to worry about it probably a subject of some
107 * debate.
108 */
109 struct lock sysctl_memlock;
110
111 void
112 sysctl_init(void)
113 {
114
115 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
116 }
117
118 int
119 sys___sysctl(p, v, retval)
120 struct proc *p;
121 void *v;
122 register_t *retval;
123 {
124 struct sys___sysctl_args /* {
125 syscallarg(int *) name;
126 syscallarg(u_int) namelen;
127 syscallarg(void *) old;
128 syscallarg(size_t *) oldlenp;
129 syscallarg(void *) new;
130 syscallarg(size_t) newlen;
131 } */ *uap = v;
132 int error;
133 size_t savelen = 0, oldlen = 0;
134 sysctlfn *fn;
135 int name[CTL_MAXNAME];
136 size_t *oldlenp;
137
138 /*
139 * all top-level sysctl names are non-terminal
140 */
141 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
142 return (EINVAL);
143 error = copyin(SCARG(uap, name), &name,
144 SCARG(uap, namelen) * sizeof(int));
145 if (error)
146 return (error);
147
148 /*
149 * For all but CTL_PROC, must be root to change a value.
150 * For CTL_PROC, must be root, or owner of the proc (and not suid),
151 * this is checked in proc_sysctl() (once we know the targer proc).
152 */
153 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
154 (error = suser(p->p_ucred, &p->p_acflag)))
155 return error;
156
157 switch (name[0]) {
158 case CTL_KERN:
159 fn = kern_sysctl;
160 break;
161 case CTL_HW:
162 fn = hw_sysctl;
163 break;
164 case CTL_VM:
165 fn = uvm_sysctl;
166 break;
167 case CTL_NET:
168 fn = net_sysctl;
169 break;
170 case CTL_VFS:
171 fn = vfs_sysctl;
172 break;
173 case CTL_MACHDEP:
174 fn = cpu_sysctl;
175 break;
176 #ifdef DEBUG
177 case CTL_DEBUG:
178 fn = debug_sysctl;
179 break;
180 #endif
181 #ifdef DDB
182 case CTL_DDB:
183 fn = ddb_sysctl;
184 break;
185 #endif
186 case CTL_PROC:
187 fn = proc_sysctl;
188 break;
189 default:
190 return (EOPNOTSUPP);
191 }
192
193 /*
194 * XXX Hey, we wire `old', but what about `new'?
195 */
196
197 oldlenp = SCARG(uap, oldlenp);
198 if (oldlenp) {
199 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
200 return (error);
201 oldlenp = &oldlen;
202 }
203 if (SCARG(uap, old) != NULL) {
204 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
205 if (error)
206 return (error);
207 if (uvm_vslock(p, SCARG(uap, old), oldlen,
208 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
209 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
210 return (EFAULT);
211 }
212 savelen = oldlen;
213 }
214 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
215 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
216 if (SCARG(uap, old) != NULL) {
217 uvm_vsunlock(p, SCARG(uap, old), savelen);
218 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
219 }
220 if (error)
221 return (error);
222 if (SCARG(uap, oldlenp))
223 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
224 return (error);
225 }
226
227 /*
228 * Attributes stored in the kernel.
229 */
230 char hostname[MAXHOSTNAMELEN];
231 int hostnamelen;
232
233 char domainname[MAXHOSTNAMELEN];
234 int domainnamelen;
235
236 long hostid;
237
238 #ifdef INSECURE
239 int securelevel = -1;
240 #else
241 int securelevel = 0;
242 #endif
243
244 #ifndef DEFCORENAME
245 #define DEFCORENAME "%n.core"
246 #endif
247 char defcorename[MAXPATHLEN] = DEFCORENAME;
248 int defcorenamelen = sizeof(DEFCORENAME);
249
250 extern int kern_logsigexit;
251 extern fixpt_t ccpu;
252
253 /*
254 * kernel related system variables.
255 */
256 int
257 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
258 int *name;
259 u_int namelen;
260 void *oldp;
261 size_t *oldlenp;
262 void *newp;
263 size_t newlen;
264 struct proc *p;
265 {
266 int error, level, inthostid;
267 int old_autonicetime;
268 int old_vnodes;
269
270 /* All sysctl names at this level, except for a few, are terminal. */
271 switch (name[0]) {
272 case KERN_PROC:
273 case KERN_PROC2:
274 case KERN_PROF:
275 case KERN_MBUF:
276 case KERN_PROC_ARGS:
277 case KERN_SYSVIPC_INFO:
278 /* Not terminal. */
279 break;
280 default:
281 if (namelen != 1)
282 return (ENOTDIR); /* overloaded */
283 }
284
285 switch (name[0]) {
286 case KERN_OSTYPE:
287 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
288 case KERN_OSRELEASE:
289 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
290 case KERN_OSREV:
291 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
292 case KERN_VERSION:
293 return (sysctl_rdstring(oldp, oldlenp, newp, version));
294 case KERN_MAXVNODES:
295 old_vnodes = desiredvnodes;
296 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
297 if (old_vnodes > desiredvnodes) {
298 desiredvnodes = old_vnodes;
299 return (EINVAL);
300 }
301 return (error);
302 case KERN_MAXPROC:
303 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
304 case KERN_MAXFILES:
305 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
306 case KERN_ARGMAX:
307 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
308 case KERN_SECURELVL:
309 level = securelevel;
310 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
311 newp == NULL)
312 return (error);
313 if (level < securelevel && p->p_pid != 1)
314 return (EPERM);
315 securelevel = level;
316 return (0);
317 case KERN_HOSTNAME:
318 error = sysctl_string(oldp, oldlenp, newp, newlen,
319 hostname, sizeof(hostname));
320 if (newp && !error)
321 hostnamelen = newlen;
322 return (error);
323 case KERN_DOMAINNAME:
324 error = sysctl_string(oldp, oldlenp, newp, newlen,
325 domainname, sizeof(domainname));
326 if (newp && !error)
327 domainnamelen = newlen;
328 return (error);
329 case KERN_HOSTID:
330 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
331 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
332 hostid = inthostid;
333 return (error);
334 case KERN_CLOCKRATE:
335 return (sysctl_clockrate(oldp, oldlenp));
336 case KERN_BOOTTIME:
337 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
338 sizeof(struct timeval)));
339 case KERN_VNODE:
340 return (sysctl_vnode(oldp, oldlenp, p));
341 case KERN_PROC:
342 case KERN_PROC2:
343 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
344 case KERN_PROC_ARGS:
345 return (sysctl_procargs(name + 1, namelen - 1,
346 oldp, oldlenp, p));
347 case KERN_FILE:
348 return (sysctl_file(oldp, oldlenp));
349 #ifdef GPROF
350 case KERN_PROF:
351 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
352 newp, newlen));
353 #endif
354 case KERN_POSIX1:
355 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
356 case KERN_NGROUPS:
357 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
358 case KERN_JOB_CONTROL:
359 return (sysctl_rdint(oldp, oldlenp, newp, 1));
360 case KERN_SAVED_IDS:
361 #ifdef _POSIX_SAVED_IDS
362 return (sysctl_rdint(oldp, oldlenp, newp, 1));
363 #else
364 return (sysctl_rdint(oldp, oldlenp, newp, 0));
365 #endif
366 case KERN_MAXPARTITIONS:
367 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
368 case KERN_RAWPARTITION:
369 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
370 #ifdef NTP
371 case KERN_NTPTIME:
372 return (sysctl_ntptime(oldp, oldlenp));
373 #endif
374 case KERN_AUTONICETIME:
375 old_autonicetime = autonicetime;
376 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
377 if (autonicetime < 0)
378 autonicetime = old_autonicetime;
379 return (error);
380 case KERN_AUTONICEVAL:
381 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
382 if (autoniceval < PRIO_MIN)
383 autoniceval = PRIO_MIN;
384 if (autoniceval > PRIO_MAX)
385 autoniceval = PRIO_MAX;
386 return (error);
387 case KERN_RTC_OFFSET:
388 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
389 case KERN_ROOT_DEVICE:
390 return (sysctl_rdstring(oldp, oldlenp, newp,
391 root_device->dv_xname));
392 case KERN_MSGBUFSIZE:
393 /*
394 * deal with cases where the message buffer has
395 * become corrupted.
396 */
397 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
398 msgbufenabled = 0;
399 return (ENXIO);
400 }
401 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
402 case KERN_FSYNC:
403 return (sysctl_rdint(oldp, oldlenp, newp, 1));
404 case KERN_SYSVMSG:
405 #ifdef SYSVMSG
406 return (sysctl_rdint(oldp, oldlenp, newp, 1));
407 #else
408 return (sysctl_rdint(oldp, oldlenp, newp, 0));
409 #endif
410 case KERN_SYSVSEM:
411 #ifdef SYSVSEM
412 return (sysctl_rdint(oldp, oldlenp, newp, 1));
413 #else
414 return (sysctl_rdint(oldp, oldlenp, newp, 0));
415 #endif
416 case KERN_SYSVSHM:
417 #ifdef SYSVSHM
418 return (sysctl_rdint(oldp, oldlenp, newp, 1));
419 #else
420 return (sysctl_rdint(oldp, oldlenp, newp, 0));
421 #endif
422 case KERN_DEFCORENAME:
423 if (newp && newlen < 1)
424 return (EINVAL);
425 error = sysctl_string(oldp, oldlenp, newp, newlen,
426 defcorename, sizeof(defcorename));
427 if (newp && !error)
428 defcorenamelen = newlen;
429 return (error);
430 case KERN_SYNCHRONIZED_IO:
431 return (sysctl_rdint(oldp, oldlenp, newp, 1));
432 case KERN_IOV_MAX:
433 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
434 case KERN_MBUF:
435 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
436 newp, newlen));
437 case KERN_MAPPED_FILES:
438 return (sysctl_rdint(oldp, oldlenp, newp, 1));
439 case KERN_MEMLOCK:
440 return (sysctl_rdint(oldp, oldlenp, newp, 1));
441 case KERN_MEMLOCK_RANGE:
442 return (sysctl_rdint(oldp, oldlenp, newp, 1));
443 case KERN_MEMORY_PROTECTION:
444 return (sysctl_rdint(oldp, oldlenp, newp, 1));
445 case KERN_LOGIN_NAME_MAX:
446 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
447 case KERN_LOGSIGEXIT:
448 return (sysctl_int(oldp, oldlenp, newp, newlen,
449 &kern_logsigexit));
450 case KERN_FSCALE:
451 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
452 case KERN_CCPU:
453 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
454 case KERN_CP_TIME:
455 /* XXXSMP: WRONG! */
456 return (sysctl_rdstruct(oldp, oldlenp, newp,
457 curcpu()->ci_schedstate.spc_cp_time,
458 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
459 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
460 case KERN_SYSVIPC_INFO:
461 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
462 #endif
463 case KERN_MSGBUF:
464 return (sysctl_msgbuf(oldp, oldlenp));
465 default:
466 return (EOPNOTSUPP);
467 }
468 /* NOTREACHED */
469 }
470
471 /*
472 * hardware related system variables.
473 */
474 int
475 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
476 int *name;
477 u_int namelen;
478 void *oldp;
479 size_t *oldlenp;
480 void *newp;
481 size_t newlen;
482 struct proc *p;
483 {
484
485 /* all sysctl names at this level are terminal */
486 if (namelen != 1)
487 return (ENOTDIR); /* overloaded */
488
489 switch (name[0]) {
490 case HW_MACHINE:
491 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
492 case HW_MACHINE_ARCH:
493 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
494 case HW_MODEL:
495 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
496 case HW_NCPU:
497 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
498 case HW_BYTEORDER:
499 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
500 case HW_PHYSMEM:
501 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
502 case HW_USERMEM:
503 return (sysctl_rdint(oldp, oldlenp, newp,
504 ctob(physmem - uvmexp.wired)));
505 case HW_PAGESIZE:
506 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
507 case HW_ALIGNBYTES:
508 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
509 default:
510 return (EOPNOTSUPP);
511 }
512 /* NOTREACHED */
513 }
514
515 #ifdef DEBUG
516 /*
517 * Debugging related system variables.
518 */
519 struct ctldebug debug0, debug1, debug2, debug3, debug4;
520 struct ctldebug debug5, debug6, debug7, debug8, debug9;
521 struct ctldebug debug10, debug11, debug12, debug13, debug14;
522 struct ctldebug debug15, debug16, debug17, debug18, debug19;
523 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
524 &debug0, &debug1, &debug2, &debug3, &debug4,
525 &debug5, &debug6, &debug7, &debug8, &debug9,
526 &debug10, &debug11, &debug12, &debug13, &debug14,
527 &debug15, &debug16, &debug17, &debug18, &debug19,
528 };
529 int
530 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
531 int *name;
532 u_int namelen;
533 void *oldp;
534 size_t *oldlenp;
535 void *newp;
536 size_t newlen;
537 struct proc *p;
538 {
539 struct ctldebug *cdp;
540
541 /* all sysctl names at this level are name and field */
542 if (namelen != 2)
543 return (ENOTDIR); /* overloaded */
544 cdp = debugvars[name[0]];
545 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
546 return (EOPNOTSUPP);
547 switch (name[1]) {
548 case CTL_DEBUG_NAME:
549 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
550 case CTL_DEBUG_VALUE:
551 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
552 default:
553 return (EOPNOTSUPP);
554 }
555 /* NOTREACHED */
556 }
557 #endif /* DEBUG */
558
559 int
560 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
561 int *name;
562 u_int namelen;
563 void *oldp;
564 size_t *oldlenp;
565 void *newp;
566 size_t newlen;
567 struct proc *p;
568 {
569 struct proc *ptmp = NULL;
570 const struct proclist_desc *pd;
571 int error = 0;
572 struct rlimit alim;
573 struct plimit *newplim;
574 char *tmps = NULL;
575 int i, curlen, len;
576
577 if (namelen < 2)
578 return EINVAL;
579
580 if (name[0] == PROC_CURPROC) {
581 ptmp = p;
582 } else {
583 proclist_lock_read();
584 for (pd = proclists; pd->pd_list != NULL; pd++) {
585 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
586 ptmp = LIST_NEXT(ptmp, p_list)) {
587 /* Skip embryonic processes. */
588 if (ptmp->p_stat == SIDL)
589 continue;
590 if (ptmp->p_pid == (pid_t)name[0])
591 break;
592 }
593 if (ptmp != NULL)
594 break;
595 }
596 proclist_unlock_read();
597 if (ptmp == NULL)
598 return(ESRCH);
599 if (p->p_ucred->cr_uid != 0) {
600 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
601 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
602 return EPERM;
603 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
604 return EPERM; /* sgid proc */
605 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
606 if (p->p_ucred->cr_groups[i] ==
607 ptmp->p_cred->p_rgid)
608 break;
609 }
610 if (i == p->p_ucred->cr_ngroups)
611 return EPERM;
612 }
613 }
614 if (name[1] == PROC_PID_CORENAME) {
615 if (namelen != 2)
616 return EINVAL;
617 /*
618 * Can't use sysctl_string() here because we may malloc a new
619 * area during the process, so we have to do it by hand.
620 */
621 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
622 if (oldlenp && *oldlenp < curlen) {
623 if (!oldp)
624 *oldlenp = curlen;
625 return (ENOMEM);
626 }
627 if (newp) {
628 if (securelevel > 2)
629 return EPERM;
630 if (newlen > MAXPATHLEN)
631 return ENAMETOOLONG;
632 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
633 if (tmps == NULL)
634 return ENOMEM;
635 error = copyin(newp, tmps, newlen + 1);
636 tmps[newlen] = '\0';
637 if (error)
638 goto cleanup;
639 /* Enforce to be either 'core' for end with '.core' */
640 if (newlen < 4) { /* c.o.r.e */
641 error = EINVAL;
642 goto cleanup;
643 }
644 len = newlen - 4;
645 if (len > 0) {
646 if (tmps[len - 1] != '.' &&
647 tmps[len - 1] != '/') {
648 error = EINVAL;
649 goto cleanup;
650 }
651 }
652 if (strcmp(&tmps[len], "core") != 0) {
653 error = EINVAL;
654 goto cleanup;
655 }
656 }
657 if (oldp && oldlenp) {
658 *oldlenp = curlen;
659 error = copyout(ptmp->p_limit->pl_corename, oldp,
660 curlen);
661 }
662 if (newp && error == 0) {
663 /* if the 2 strings are identical, don't limcopy() */
664 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
665 error = 0;
666 goto cleanup;
667 }
668 if (ptmp->p_limit->p_refcnt > 1 &&
669 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
670 newplim = limcopy(ptmp->p_limit);
671 limfree(ptmp->p_limit);
672 ptmp->p_limit = newplim;
673 } else if (ptmp->p_limit->pl_corename != defcorename) {
674 free(ptmp->p_limit->pl_corename, M_TEMP);
675 }
676 ptmp->p_limit->pl_corename = tmps;
677 return (0);
678 }
679 cleanup:
680 if (tmps)
681 free(tmps, M_TEMP);
682 return (error);
683 }
684 if (name[1] == PROC_PID_LIMIT) {
685 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
686 return EINVAL;
687 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
688 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
689 error = sysctl_quad(oldp, oldlenp, newp, newlen,
690 &alim.rlim_max);
691 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
692 error = sysctl_quad(oldp, oldlenp, newp, newlen,
693 &alim.rlim_cur);
694 else
695 error = EINVAL;
696
697 if (error)
698 return error;
699
700 if (newp)
701 error = dosetrlimit(ptmp, p->p_cred,
702 name[2] - 1, &alim);
703 return error;
704 }
705 return (EINVAL);
706 }
707
708 /*
709 * Convenience macros.
710 */
711
712 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
713 if (oldlenp) { \
714 if (!oldp) \
715 *oldlenp = len; \
716 else { \
717 if (*oldlenp < len) \
718 return(ENOMEM); \
719 *oldlenp = len; \
720 error = copyout((caddr_t)valp, oldp, len); \
721 } \
722 }
723
724 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
725 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
726
727 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
728 if (newp && newlen != len) \
729 return (EINVAL);
730
731 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
732 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
733
734 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
735 if (error == 0 && newp) \
736 error = copyin(newp, valp, len);
737
738 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
739 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
740
741 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
742 if (oldlenp) { \
743 len = strlen(str) + 1; \
744 if (!oldp) \
745 *oldlenp = len; \
746 else { \
747 if (*oldlenp < len) { \
748 err2 = ENOMEM; \
749 len = *oldlenp; \
750 } else \
751 *oldlenp = len; \
752 error = copyout(str, oldp, len);\
753 if (error == 0) \
754 error = err2; \
755 } \
756 }
757
758 /*
759 * Validate parameters and get old / set new parameters
760 * for an integer-valued sysctl function.
761 */
762 int
763 sysctl_int(oldp, oldlenp, newp, newlen, valp)
764 void *oldp;
765 size_t *oldlenp;
766 void *newp;
767 size_t newlen;
768 int *valp;
769 {
770 int error = 0;
771
772 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
773 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
774 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
775
776 return (error);
777 }
778
779
780 /*
781 * As above, but read-only.
782 */
783 int
784 sysctl_rdint(oldp, oldlenp, newp, val)
785 void *oldp;
786 size_t *oldlenp;
787 void *newp;
788 int val;
789 {
790 int error = 0;
791
792 if (newp)
793 return (EPERM);
794
795 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
796
797 return (error);
798 }
799
800 /*
801 * Validate parameters and get old / set new parameters
802 * for an quad-valued sysctl function.
803 */
804 int
805 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
806 void *oldp;
807 size_t *oldlenp;
808 void *newp;
809 size_t newlen;
810 quad_t *valp;
811 {
812 int error = 0;
813
814 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
815 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
816 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
817
818 return (error);
819 }
820
821 /*
822 * As above, but read-only.
823 */
824 int
825 sysctl_rdquad(oldp, oldlenp, newp, val)
826 void *oldp;
827 size_t *oldlenp;
828 void *newp;
829 quad_t val;
830 {
831 int error = 0;
832
833 if (newp)
834 return (EPERM);
835
836 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
837
838 return (error);
839 }
840
841 /*
842 * Validate parameters and get old / set new parameters
843 * for a string-valued sysctl function.
844 */
845 int
846 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
847 void *oldp;
848 size_t *oldlenp;
849 void *newp;
850 size_t newlen;
851 char *str;
852 int maxlen;
853 {
854 int len, error = 0, err2 = 0;
855
856 if (newp && newlen >= maxlen)
857 return (EINVAL);
858
859 SYSCTL_STRING_CORE(oldp, oldlenp, str);
860
861 if (error == 0 && newp) {
862 error = copyin(newp, str, newlen);
863 str[newlen] = 0;
864 }
865 return (error);
866 }
867
868 /*
869 * As above, but read-only.
870 */
871 int
872 sysctl_rdstring(oldp, oldlenp, newp, str)
873 void *oldp;
874 size_t *oldlenp;
875 void *newp;
876 const char *str;
877 {
878 int len, error = 0, err2 = 0;
879
880 if (newp)
881 return (EPERM);
882
883 SYSCTL_STRING_CORE(oldp, oldlenp, str);
884
885 return (error);
886 }
887
888 /*
889 * Validate parameters and get old / set new parameters
890 * for a structure oriented sysctl function.
891 */
892 int
893 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
894 void *oldp;
895 size_t *oldlenp;
896 void *newp;
897 size_t newlen;
898 void *sp;
899 int len;
900 {
901 int error = 0;
902
903 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
904 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
905 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
906
907 return (error);
908 }
909
910 /*
911 * Validate parameters and get old parameters
912 * for a structure oriented sysctl function.
913 */
914 int
915 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
916 void *oldp;
917 size_t *oldlenp;
918 void *newp;
919 const void *sp;
920 int len;
921 {
922 int error = 0;
923
924 if (newp)
925 return (EPERM);
926
927 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
928
929 return (error);
930 }
931
932 /*
933 * Get file structures.
934 */
935 static int
936 sysctl_file(vwhere, sizep)
937 void *vwhere;
938 size_t *sizep;
939 {
940 int buflen, error;
941 struct file *fp;
942 char *start, *where;
943
944 start = where = vwhere;
945 buflen = *sizep;
946 if (where == NULL) {
947 /*
948 * overestimate by 10 files
949 */
950 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
951 return (0);
952 }
953
954 /*
955 * first copyout filehead
956 */
957 if (buflen < sizeof(filehead)) {
958 *sizep = 0;
959 return (0);
960 }
961 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
962 if (error)
963 return (error);
964 buflen -= sizeof(filehead);
965 where += sizeof(filehead);
966
967 /*
968 * followed by an array of file structures
969 */
970 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
971 if (buflen < sizeof(struct file)) {
972 *sizep = where - start;
973 return (ENOMEM);
974 }
975 error = copyout((caddr_t)fp, where, sizeof(struct file));
976 if (error)
977 return (error);
978 buflen -= sizeof(struct file);
979 where += sizeof(struct file);
980 }
981 *sizep = where - start;
982 return (0);
983 }
984
985 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
986 #define FILL_PERM(src, dst) do { \
987 (dst)._key = (src)._key; \
988 (dst).uid = (src).uid; \
989 (dst).gid = (src).gid; \
990 (dst).cuid = (src).cuid; \
991 (dst).cgid = (src).cgid; \
992 (dst).mode = (src).mode; \
993 (dst)._seq = (src)._seq; \
994 } while (0);
995 #define FILL_MSG(src, dst) do { \
996 FILL_PERM((src).msg_perm, (dst).msg_perm); \
997 (dst).msg_qnum = (src).msg_qnum; \
998 (dst).msg_qbytes = (src).msg_qbytes; \
999 (dst)._msg_cbytes = (src)._msg_cbytes; \
1000 (dst).msg_lspid = (src).msg_lspid; \
1001 (dst).msg_lrpid = (src).msg_lrpid; \
1002 (dst).msg_stime = (src).msg_stime; \
1003 (dst).msg_rtime = (src).msg_rtime; \
1004 (dst).msg_ctime = (src).msg_ctime; \
1005 } while (0)
1006 #define FILL_SEM(src, dst) do { \
1007 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1008 (dst).sem_nsems = (src).sem_nsems; \
1009 (dst).sem_otime = (src).sem_otime; \
1010 (dst).sem_ctime = (src).sem_ctime; \
1011 } while (0)
1012 #define FILL_SHM(src, dst) do { \
1013 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1014 (dst).shm_segsz = (src).shm_segsz; \
1015 (dst).shm_lpid = (src).shm_lpid; \
1016 (dst).shm_cpid = (src).shm_cpid; \
1017 (dst).shm_atime = (src).shm_atime; \
1018 (dst).shm_dtime = (src).shm_dtime; \
1019 (dst).shm_ctime = (src).shm_ctime; \
1020 (dst).shm_nattch = (src).shm_nattch; \
1021 } while (0)
1022
1023 static int
1024 sysctl_sysvipc(name, namelen, where, sizep)
1025 int *name;
1026 u_int namelen;
1027 void *where;
1028 size_t *sizep;
1029 {
1030 #ifdef SYSVMSG
1031 struct msg_sysctl_info *msgsi;
1032 #endif
1033 #ifdef SYSVSEM
1034 struct sem_sysctl_info *semsi;
1035 #endif
1036 #ifdef SYSVSHM
1037 struct shm_sysctl_info *shmsi;
1038 #endif
1039 size_t infosize, dssize, tsize, buflen;
1040 void *buf = NULL, *buf2;
1041 char *start;
1042 int32_t nds;
1043 int i, error, ret;
1044
1045 if (namelen != 1)
1046 return (EINVAL);
1047
1048 start = where;
1049 buflen = *sizep;
1050
1051 switch (*name) {
1052 case KERN_SYSVIPC_MSG_INFO:
1053 #ifdef SYSVMSG
1054 infosize = sizeof(msgsi->msginfo);
1055 nds = msginfo.msgmni;
1056 dssize = sizeof(msgsi->msgids[0]);
1057 break;
1058 #else
1059 return (EINVAL);
1060 #endif
1061 case KERN_SYSVIPC_SEM_INFO:
1062 #ifdef SYSVSEM
1063 infosize = sizeof(semsi->seminfo);
1064 nds = seminfo.semmni;
1065 dssize = sizeof(semsi->semids[0]);
1066 break;
1067 #else
1068 return (EINVAL);
1069 #endif
1070 case KERN_SYSVIPC_SHM_INFO:
1071 #ifdef SYSVSHM
1072 infosize = sizeof(shmsi->shminfo);
1073 nds = shminfo.shmmni;
1074 dssize = sizeof(shmsi->shmids[0]);
1075 break;
1076 #else
1077 return (EINVAL);
1078 #endif
1079 default:
1080 return (EINVAL);
1081 }
1082 /*
1083 * Round infosize to 64 bit boundary if requesting more than just
1084 * the info structure or getting the total data size.
1085 */
1086 if (where == NULL || *sizep > infosize)
1087 infosize = ((infosize + 7) / 8) * 8;
1088 tsize = infosize + nds * dssize;
1089
1090 /* Return just the total size required. */
1091 if (where == NULL) {
1092 *sizep = tsize;
1093 return (0);
1094 }
1095
1096 /* Not enough room for even the info struct. */
1097 if (buflen < infosize) {
1098 *sizep = 0;
1099 return (ENOMEM);
1100 }
1101 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1102 memset(buf, 0, min(tsize, buflen));
1103
1104 switch (*name) {
1105 #ifdef SYSVMSG
1106 case KERN_SYSVIPC_MSG_INFO:
1107 msgsi = (struct msg_sysctl_info *)buf;
1108 buf2 = &msgsi->msgids[0];
1109 msgsi->msginfo = msginfo;
1110 break;
1111 #endif
1112 #ifdef SYSVSEM
1113 case KERN_SYSVIPC_SEM_INFO:
1114 semsi = (struct sem_sysctl_info *)buf;
1115 buf2 = &semsi->semids[0];
1116 semsi->seminfo = seminfo;
1117 break;
1118 #endif
1119 #ifdef SYSVSHM
1120 case KERN_SYSVIPC_SHM_INFO:
1121 shmsi = (struct shm_sysctl_info *)buf;
1122 buf2 = &shmsi->shmids[0];
1123 shmsi->shminfo = shminfo;
1124 break;
1125 #endif
1126 }
1127 buflen -= infosize;
1128
1129 ret = 0;
1130 if (buflen > 0) {
1131 /* Fill in the IPC data structures. */
1132 for (i = 0; i < nds; i++) {
1133 if (buflen < dssize) {
1134 ret = ENOMEM;
1135 break;
1136 }
1137 switch (*name) {
1138 #ifdef SYSVMSG
1139 case KERN_SYSVIPC_MSG_INFO:
1140 FILL_MSG(msqids[i], msgsi->msgids[i]);
1141 break;
1142 #endif
1143 #ifdef SYSVSEM
1144 case KERN_SYSVIPC_SEM_INFO:
1145 FILL_SEM(sema[i], semsi->semids[i]);
1146 break;
1147 #endif
1148 #ifdef SYSVSHM
1149 case KERN_SYSVIPC_SHM_INFO:
1150 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1151 break;
1152 #endif
1153 }
1154 buflen -= dssize;
1155 }
1156 }
1157 *sizep -= buflen;
1158 error = copyout(buf, start, *sizep);
1159 /* If copyout succeeded, use return code set earlier. */
1160 if (error == 0)
1161 error = ret;
1162 if (buf)
1163 free(buf, M_TEMP);
1164 return (error);
1165 }
1166 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1167
1168 static int
1169 sysctl_msgbuf(vwhere, sizep)
1170 void *vwhere;
1171 size_t *sizep;
1172 {
1173 char *where = vwhere;
1174 size_t len, maxlen = *sizep;
1175 long pos;
1176 int error;
1177
1178 /*
1179 * deal with cases where the message buffer has
1180 * become corrupted.
1181 */
1182 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1183 msgbufenabled = 0;
1184 return (ENXIO);
1185 }
1186
1187 if (where == NULL) {
1188 /* always return full buffer size */
1189 *sizep = msgbufp->msg_bufs;
1190 return (0);
1191 }
1192
1193 error = 0;
1194 maxlen = min(msgbufp->msg_bufs, maxlen);
1195 pos = msgbufp->msg_bufx;
1196 while (maxlen > 0) {
1197 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1198 len = min(len, maxlen);
1199 if (len == 0)
1200 break;
1201 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1202 if (error)
1203 break;
1204 where += len;
1205 maxlen -= len;
1206 pos = 0;
1207 }
1208 return (error);
1209 }
1210
1211 /*
1212 * try over estimating by 5 procs
1213 */
1214 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1215
1216 static int
1217 sysctl_doeproc(name, namelen, vwhere, sizep)
1218 int *name;
1219 u_int namelen;
1220 void *vwhere;
1221 size_t *sizep;
1222 {
1223 struct eproc eproc;
1224 struct kinfo_proc2 kproc2;
1225 struct kinfo_proc *dp;
1226 struct proc *p;
1227 const struct proclist_desc *pd;
1228 char *where, *dp2;
1229 int type, op, arg, elem_size, elem_count;
1230 int buflen, needed, error;
1231
1232 dp = vwhere;
1233 dp2 = where = vwhere;
1234 buflen = where != NULL ? *sizep : 0;
1235 error = needed = 0;
1236 type = name[0];
1237
1238 if (type == KERN_PROC) {
1239 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1240 return (EINVAL);
1241 op = name[1];
1242 if (op != KERN_PROC_ALL)
1243 arg = name[2];
1244 } else {
1245 if (namelen != 5)
1246 return (EINVAL);
1247 op = name[1];
1248 arg = name[2];
1249 elem_size = name[3];
1250 elem_count = name[4];
1251 }
1252
1253 proclist_lock_read();
1254
1255 pd = proclists;
1256 again:
1257 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1258 /*
1259 * Skip embryonic processes.
1260 */
1261 if (p->p_stat == SIDL)
1262 continue;
1263 /*
1264 * TODO - make more efficient (see notes below).
1265 * do by session.
1266 */
1267 switch (op) {
1268
1269 case KERN_PROC_PID:
1270 /* could do this with just a lookup */
1271 if (p->p_pid != (pid_t)arg)
1272 continue;
1273 break;
1274
1275 case KERN_PROC_PGRP:
1276 /* could do this by traversing pgrp */
1277 if (p->p_pgrp->pg_id != (pid_t)arg)
1278 continue;
1279 break;
1280
1281 case KERN_PROC_SESSION:
1282 if (p->p_session->s_sid != (pid_t)arg)
1283 continue;
1284 break;
1285
1286 case KERN_PROC_TTY:
1287 if (arg == KERN_PROC_TTY_REVOKE) {
1288 if ((p->p_flag & P_CONTROLT) == 0 ||
1289 p->p_session->s_ttyp == NULL ||
1290 p->p_session->s_ttyvp != NULL)
1291 continue;
1292 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1293 p->p_session->s_ttyp == NULL) {
1294 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1295 continue;
1296 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1297 continue;
1298 break;
1299
1300 case KERN_PROC_UID:
1301 if (p->p_ucred->cr_uid != (uid_t)arg)
1302 continue;
1303 break;
1304
1305 case KERN_PROC_RUID:
1306 if (p->p_cred->p_ruid != (uid_t)arg)
1307 continue;
1308 break;
1309
1310 case KERN_PROC_GID:
1311 if (p->p_ucred->cr_gid != (uid_t)arg)
1312 continue;
1313 break;
1314
1315 case KERN_PROC_RGID:
1316 if (p->p_cred->p_rgid != (uid_t)arg)
1317 continue;
1318 break;
1319
1320 case KERN_PROC_ALL:
1321 /* allow everything */
1322 break;
1323
1324 default:
1325 error = EINVAL;
1326 goto cleanup;
1327 }
1328 if (type == KERN_PROC) {
1329 if (buflen >= sizeof(struct kinfo_proc)) {
1330 fill_eproc(p, &eproc);
1331 error = copyout((caddr_t)p, &dp->kp_proc,
1332 sizeof(struct proc));
1333 if (error)
1334 goto cleanup;
1335 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1336 sizeof(eproc));
1337 if (error)
1338 goto cleanup;
1339 dp++;
1340 buflen -= sizeof(struct kinfo_proc);
1341 }
1342 needed += sizeof(struct kinfo_proc);
1343 } else { /* KERN_PROC2 */
1344 if (buflen >= elem_size && elem_count > 0) {
1345 fill_kproc2(p, &kproc2);
1346 /*
1347 * Copy out elem_size, but not larger than
1348 * the size of a struct kinfo_proc2.
1349 */
1350 error = copyout(&kproc2, dp2,
1351 min(sizeof(kproc2), elem_size));
1352 if (error)
1353 goto cleanup;
1354 dp2 += elem_size;
1355 buflen -= elem_size;
1356 elem_count--;
1357 }
1358 needed += elem_size;
1359 }
1360 }
1361 pd++;
1362 if (pd->pd_list != NULL)
1363 goto again;
1364 proclist_unlock_read();
1365
1366 if (where != NULL) {
1367 if (type == KERN_PROC)
1368 *sizep = (caddr_t)dp - where;
1369 else
1370 *sizep = dp2 - where;
1371 if (needed > *sizep)
1372 return (ENOMEM);
1373 } else {
1374 needed += KERN_PROCSLOP;
1375 *sizep = needed;
1376 }
1377 return (0);
1378 cleanup:
1379 proclist_unlock_read();
1380 return (error);
1381 }
1382
1383 /*
1384 * Fill in an eproc structure for the specified process.
1385 */
1386 void
1387 fill_eproc(p, ep)
1388 struct proc *p;
1389 struct eproc *ep;
1390 {
1391 struct tty *tp;
1392
1393 ep->e_paddr = p;
1394 ep->e_sess = p->p_session;
1395 ep->e_pcred = *p->p_cred;
1396 ep->e_ucred = *p->p_ucred;
1397 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1398 ep->e_vm.vm_rssize = 0;
1399 ep->e_vm.vm_tsize = 0;
1400 ep->e_vm.vm_dsize = 0;
1401 ep->e_vm.vm_ssize = 0;
1402 /* ep->e_vm.vm_pmap = XXX; */
1403 } else {
1404 struct vmspace *vm = p->p_vmspace;
1405
1406 ep->e_vm.vm_rssize = vm_resident_count(vm);
1407 ep->e_vm.vm_tsize = vm->vm_tsize;
1408 ep->e_vm.vm_dsize = vm->vm_dsize;
1409 ep->e_vm.vm_ssize = vm->vm_ssize;
1410 }
1411 if (p->p_pptr)
1412 ep->e_ppid = p->p_pptr->p_pid;
1413 else
1414 ep->e_ppid = 0;
1415 ep->e_pgid = p->p_pgrp->pg_id;
1416 ep->e_sid = ep->e_sess->s_sid;
1417 ep->e_jobc = p->p_pgrp->pg_jobc;
1418 if ((p->p_flag & P_CONTROLT) &&
1419 (tp = ep->e_sess->s_ttyp)) {
1420 ep->e_tdev = tp->t_dev;
1421 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1422 ep->e_tsess = tp->t_session;
1423 } else
1424 ep->e_tdev = NODEV;
1425 if (p->p_wmesg)
1426 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1427 ep->e_xsize = ep->e_xrssize = 0;
1428 ep->e_xccount = ep->e_xswrss = 0;
1429 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1430 if (SESS_LEADER(p))
1431 ep->e_flag |= EPROC_SLEADER;
1432 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1433 }
1434
1435 /*
1436 * Fill in an eproc structure for the specified process.
1437 */
1438 static void
1439 fill_kproc2(p, ki)
1440 struct proc *p;
1441 struct kinfo_proc2 *ki;
1442 {
1443 struct tty *tp;
1444
1445 memset(ki, 0, sizeof(*ki));
1446
1447 ki->p_forw = PTRTOINT64(p->p_forw);
1448 ki->p_back = PTRTOINT64(p->p_back);
1449 ki->p_paddr = PTRTOINT64(p);
1450
1451 ki->p_addr = PTRTOINT64(p->p_addr);
1452 ki->p_fd = PTRTOINT64(p->p_fd);
1453 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1454 ki->p_stats = PTRTOINT64(p->p_stats);
1455 ki->p_limit = PTRTOINT64(p->p_limit);
1456 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1457 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1458 ki->p_sess = PTRTOINT64(p->p_session);
1459 ki->p_tsess = 0; /* may be changed if controlling tty below */
1460 ki->p_ru = PTRTOINT64(p->p_ru);
1461
1462 ki->p_eflag = 0;
1463 ki->p_exitsig = p->p_exitsig;
1464 ki->p_flag = p->p_flag;
1465
1466 ki->p_pid = p->p_pid;
1467 if (p->p_pptr)
1468 ki->p_ppid = p->p_pptr->p_pid;
1469 else
1470 ki->p_ppid = 0;
1471 ki->p_sid = p->p_session->s_sid;
1472 ki->p__pgid = p->p_pgrp->pg_id;
1473
1474 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1475
1476 ki->p_uid = p->p_ucred->cr_uid;
1477 ki->p_ruid = p->p_cred->p_ruid;
1478 ki->p_gid = p->p_ucred->cr_gid;
1479 ki->p_rgid = p->p_cred->p_rgid;
1480
1481 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1482 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1483 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1484
1485 ki->p_jobc = p->p_pgrp->pg_jobc;
1486 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1487 ki->p_tdev = tp->t_dev;
1488 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1489 ki->p_tsess = PTRTOINT64(tp->t_session);
1490 } else {
1491 ki->p_tdev = NODEV;
1492 }
1493
1494 ki->p_estcpu = p->p_estcpu;
1495 ki->p_rtime_sec = p->p_rtime.tv_sec;
1496 ki->p_rtime_usec = p->p_rtime.tv_usec;
1497 ki->p_cpticks = p->p_cpticks;
1498 ki->p_pctcpu = p->p_pctcpu;
1499 ki->p_swtime = p->p_swtime;
1500 ki->p_slptime = p->p_slptime;
1501 if (p->p_stat == SONPROC) {
1502 KDASSERT(p->p_cpu != NULL);
1503 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1504 } else
1505 ki->p_schedflags = 0;
1506
1507 ki->p_uticks = p->p_uticks;
1508 ki->p_sticks = p->p_sticks;
1509 ki->p_iticks = p->p_iticks;
1510
1511 ki->p_tracep = PTRTOINT64(p->p_tracep);
1512 ki->p_traceflag = p->p_traceflag;
1513
1514 ki->p_holdcnt = p->p_holdcnt;
1515
1516 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1517 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1518 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1519 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1520
1521 ki->p_stat = p->p_stat;
1522 ki->p_priority = p->p_priority;
1523 ki->p_usrpri = p->p_usrpri;
1524 ki->p_nice = p->p_nice;
1525
1526 ki->p_xstat = p->p_xstat;
1527 ki->p_acflag = p->p_acflag;
1528
1529 strncpy(ki->p_comm, p->p_comm,
1530 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1531
1532 if (p->p_wmesg)
1533 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1534 ki->p_wchan = PTRTOINT64(p->p_wchan);
1535
1536 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1537
1538 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1539 ki->p_vm_rssize = 0;
1540 ki->p_vm_tsize = 0;
1541 ki->p_vm_dsize = 0;
1542 ki->p_vm_ssize = 0;
1543 } else {
1544 struct vmspace *vm = p->p_vmspace;
1545
1546 ki->p_vm_rssize = vm_resident_count(vm);
1547 ki->p_vm_tsize = vm->vm_tsize;
1548 ki->p_vm_dsize = vm->vm_dsize;
1549 ki->p_vm_ssize = vm->vm_ssize;
1550 }
1551
1552 if (p->p_session->s_ttyvp)
1553 ki->p_eflag |= EPROC_CTTY;
1554 if (SESS_LEADER(p))
1555 ki->p_eflag |= EPROC_SLEADER;
1556
1557 /* XXX Is this double check necessary? */
1558 if (P_ZOMBIE(p) || p->p_addr == NULL) {
1559 ki->p_uvalid = 0;
1560 } else {
1561 ki->p_uvalid = 1;
1562
1563 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1564 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1565
1566 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1567 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1568 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1569 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1570
1571 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1572 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1573 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1574 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1575 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1576 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1577 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1578 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1579 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1580 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1581 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1582 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1583 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1584 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1585
1586 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1587 p->p_stats->p_cru.ru_stime.tv_sec;
1588 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1589 p->p_stats->p_cru.ru_stime.tv_usec;
1590 }
1591 }
1592
1593 int
1594 sysctl_procargs(name, namelen, where, sizep, up)
1595 int *name;
1596 u_int namelen;
1597 void *where;
1598 size_t *sizep;
1599 struct proc *up;
1600 {
1601 struct ps_strings pss;
1602 struct proc *p;
1603 size_t len, upper_bound, xlen;
1604 struct uio auio;
1605 struct iovec aiov;
1606 vaddr_t argv;
1607 pid_t pid;
1608 int nargv, type, error, i;
1609 char *arg;
1610 char *tmp;
1611
1612 if (namelen != 2)
1613 return (EINVAL);
1614 pid = name[0];
1615 type = name[1];
1616
1617 switch (type) {
1618 case KERN_PROC_ARGV:
1619 case KERN_PROC_NARGV:
1620 case KERN_PROC_ENV:
1621 case KERN_PROC_NENV:
1622 /* ok */
1623 break;
1624 default:
1625 return (EINVAL);
1626 }
1627
1628 /* check pid */
1629 if ((p = pfind(pid)) == NULL)
1630 return (EINVAL);
1631
1632 /* only root or same user change look at the environment */
1633 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1634 if (up->p_ucred->cr_uid != 0) {
1635 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1636 up->p_cred->p_ruid != p->p_cred->p_svuid)
1637 return (EPERM);
1638 }
1639 }
1640
1641 if (sizep != NULL && where == NULL) {
1642 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1643 *sizep = sizeof (int);
1644 else
1645 *sizep = ARG_MAX; /* XXX XXX XXX */
1646 return (0);
1647 }
1648 if (where == NULL || sizep == NULL)
1649 return (EINVAL);
1650
1651 /*
1652 * Zombies don't have a stack, so we can't read their psstrings.
1653 * System processes also don't have a user stack.
1654 */
1655 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1656 return (EINVAL);
1657
1658 /*
1659 * Lock the process down in memory.
1660 */
1661 /* XXXCDC: how should locking work here? */
1662 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1663 return (EFAULT);
1664 PHOLD(p);
1665 p->p_vmspace->vm_refcnt++; /* XXX */
1666
1667 /*
1668 * Allocate a temporary buffer to hold the arguments.
1669 */
1670 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1671
1672 /*
1673 * Read in the ps_strings structure.
1674 */
1675 aiov.iov_base = &pss;
1676 aiov.iov_len = sizeof(pss);
1677 auio.uio_iov = &aiov;
1678 auio.uio_iovcnt = 1;
1679 auio.uio_offset = (vaddr_t)p->p_psstr;
1680 auio.uio_resid = sizeof(pss);
1681 auio.uio_segflg = UIO_SYSSPACE;
1682 auio.uio_rw = UIO_READ;
1683 auio.uio_procp = NULL;
1684 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1685 if (error)
1686 goto done;
1687
1688 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1689 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1690 else
1691 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1692 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1693 error = copyout(&nargv, where, sizeof(nargv));
1694 *sizep = sizeof(nargv);
1695 goto done;
1696 }
1697 /*
1698 * Now read the address of the argument vector.
1699 */
1700 switch (type) {
1701 case KERN_PROC_ARGV:
1702 /* XXX compat32 stuff here */
1703 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1704 break;
1705 case KERN_PROC_ENV:
1706 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1707 break;
1708 default:
1709 return (EINVAL);
1710 }
1711 auio.uio_offset = (off_t)(long)tmp;
1712 aiov.iov_base = &argv;
1713 aiov.iov_len = sizeof(argv);
1714 auio.uio_iov = &aiov;
1715 auio.uio_iovcnt = 1;
1716 auio.uio_resid = sizeof(argv);
1717 auio.uio_segflg = UIO_SYSSPACE;
1718 auio.uio_rw = UIO_READ;
1719 auio.uio_procp = NULL;
1720 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1721 if (error)
1722 goto done;
1723
1724 /*
1725 * Now copy in the actual argument vector, one page at a time,
1726 * since we don't know how long the vector is (though, we do
1727 * know how many NUL-terminated strings are in the vector).
1728 */
1729 len = 0;
1730 upper_bound = *sizep;
1731 for (; nargv != 0 && len < upper_bound; len += xlen) {
1732 aiov.iov_base = arg;
1733 aiov.iov_len = PAGE_SIZE;
1734 auio.uio_iov = &aiov;
1735 auio.uio_iovcnt = 1;
1736 auio.uio_offset = argv + len;
1737 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1738 auio.uio_resid = xlen;
1739 auio.uio_segflg = UIO_SYSSPACE;
1740 auio.uio_rw = UIO_READ;
1741 auio.uio_procp = NULL;
1742 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1743 if (error)
1744 goto done;
1745
1746 for (i = 0; i < xlen && nargv != 0; i++) {
1747 if (arg[i] == '\0')
1748 nargv--; /* one full string */
1749 }
1750
1751 /* make sure we don't copyout past the end of the user's buffer */
1752 if (len + i > upper_bound)
1753 i = upper_bound - len;
1754
1755 error = copyout(arg, (char *)where + len, i);
1756 if (error)
1757 break;
1758
1759 if (nargv == 0) {
1760 len += i;
1761 break;
1762 }
1763 }
1764 *sizep = len;
1765
1766 done:
1767 PRELE(p);
1768 uvmspace_free(p->p_vmspace);
1769
1770 free(arg, M_TEMP);
1771 return (error);
1772 }
1773