kern_sysctl.c revision 1.73.2.4 1 /* $NetBSD: kern_sysctl.c,v 1.73.2.4 2002/01/05 18:01:58 he Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #define __SYSCTL_PRIVATE
72 #include <sys/sysctl.h>
73 #include <sys/lock.h>
74
75 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
76 #include <sys/ipc.h>
77 #endif
78 #ifdef SYSVMSG
79 #include <sys/msg.h>
80 #endif
81 #ifdef SYSVSEM
82 #include <sys/sem.h>
83 #endif
84 #ifdef SYSVSHM
85 #include <sys/shm.h>
86 #endif
87
88 #include <dev/cons.h>
89
90 #if defined(DDB)
91 #include <ddb/ddbvar.h>
92 #endif
93
94 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
95
96 static int sysctl_file __P((void *, size_t *));
97 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
98 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
99 #endif
100 static int sysctl_msgbuf __P((void *, size_t *));
101 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
102 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
103 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
104
105 /*
106 * The `sysctl_memlock' is intended to keep too many processes from
107 * locking down memory by doing sysctls at once. Whether or not this
108 * is really a good idea to worry about it probably a subject of some
109 * debate.
110 */
111 struct lock sysctl_memlock;
112
113 void
114 sysctl_init(void)
115 {
116
117 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
118 }
119
120 int
121 sys___sysctl(p, v, retval)
122 struct proc *p;
123 void *v;
124 register_t *retval;
125 {
126 struct sys___sysctl_args /* {
127 syscallarg(int *) name;
128 syscallarg(u_int) namelen;
129 syscallarg(void *) old;
130 syscallarg(size_t *) oldlenp;
131 syscallarg(void *) new;
132 syscallarg(size_t) newlen;
133 } */ *uap = v;
134 int error;
135 size_t savelen = 0, oldlen = 0;
136 sysctlfn *fn;
137 int name[CTL_MAXNAME];
138 size_t *oldlenp;
139
140 /*
141 * all top-level sysctl names are non-terminal
142 */
143 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
144 return (EINVAL);
145 error = copyin(SCARG(uap, name), &name,
146 SCARG(uap, namelen) * sizeof(int));
147 if (error)
148 return (error);
149
150 /*
151 * For all but CTL_PROC, must be root to change a value.
152 * For CTL_PROC, must be root, or owner of the proc (and not suid),
153 * this is checked in proc_sysctl() (once we know the targer proc).
154 */
155 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
156 (error = suser(p->p_ucred, &p->p_acflag)))
157 return error;
158
159 switch (name[0]) {
160 case CTL_KERN:
161 fn = kern_sysctl;
162 break;
163 case CTL_HW:
164 fn = hw_sysctl;
165 break;
166 case CTL_VM:
167 fn = uvm_sysctl;
168 break;
169 case CTL_NET:
170 fn = net_sysctl;
171 break;
172 case CTL_VFS:
173 fn = vfs_sysctl;
174 break;
175 case CTL_MACHDEP:
176 fn = cpu_sysctl;
177 break;
178 #ifdef DEBUG
179 case CTL_DEBUG:
180 fn = debug_sysctl;
181 break;
182 #endif
183 #ifdef DDB
184 case CTL_DDB:
185 fn = ddb_sysctl;
186 break;
187 #endif
188 case CTL_PROC:
189 fn = proc_sysctl;
190 break;
191 default:
192 return (EOPNOTSUPP);
193 }
194
195 /*
196 * XXX Hey, we wire `old', but what about `new'?
197 */
198
199 oldlenp = SCARG(uap, oldlenp);
200 if (oldlenp) {
201 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
202 return (error);
203 oldlenp = &oldlen;
204 }
205 if (SCARG(uap, old) != NULL) {
206 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
207 if (error)
208 return (error);
209 if (uvm_vslock(p, SCARG(uap, old), oldlen,
210 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
211 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
212 return (EFAULT);
213 }
214 savelen = oldlen;
215 }
216 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
217 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
218 if (SCARG(uap, old) != NULL) {
219 uvm_vsunlock(p, SCARG(uap, old), savelen);
220 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
221 }
222 if (error)
223 return (error);
224 if (SCARG(uap, oldlenp))
225 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
226 return (error);
227 }
228
229 /*
230 * Attributes stored in the kernel.
231 */
232 char hostname[MAXHOSTNAMELEN];
233 int hostnamelen;
234
235 char domainname[MAXHOSTNAMELEN];
236 int domainnamelen;
237
238 long hostid;
239
240 #ifdef INSECURE
241 int securelevel = -1;
242 #else
243 int securelevel = 0;
244 #endif
245
246 #ifndef DEFCORENAME
247 #define DEFCORENAME "%n.core"
248 #endif
249 char defcorename[MAXPATHLEN] = DEFCORENAME;
250 int defcorenamelen = sizeof(DEFCORENAME);
251
252 extern int kern_logsigexit;
253 extern fixpt_t ccpu;
254
255 /*
256 * kernel related system variables.
257 */
258 int
259 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
260 int *name;
261 u_int namelen;
262 void *oldp;
263 size_t *oldlenp;
264 void *newp;
265 size_t newlen;
266 struct proc *p;
267 {
268 int error, level, inthostid;
269 int old_autonicetime;
270 int old_vnodes;
271 dev_t consdev;
272
273 /* All sysctl names at this level, except for a few, are terminal. */
274 switch (name[0]) {
275 case KERN_PROC:
276 case KERN_PROC2:
277 case KERN_PROF:
278 case KERN_MBUF:
279 case KERN_PROC_ARGS:
280 case KERN_SYSVIPC_INFO:
281 /* Not terminal. */
282 break;
283 default:
284 if (namelen != 1)
285 return (ENOTDIR); /* overloaded */
286 }
287
288 switch (name[0]) {
289 case KERN_OSTYPE:
290 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
291 case KERN_OSRELEASE:
292 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
293 case KERN_OSREV:
294 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
295 case KERN_VERSION:
296 return (sysctl_rdstring(oldp, oldlenp, newp, version));
297 case KERN_MAXVNODES:
298 old_vnodes = desiredvnodes;
299 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
300 if (old_vnodes > desiredvnodes) {
301 desiredvnodes = old_vnodes;
302 return (EINVAL);
303 }
304 return (error);
305 case KERN_MAXPROC:
306 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
307 case KERN_MAXFILES:
308 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
309 case KERN_ARGMAX:
310 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
311 case KERN_SECURELVL:
312 level = securelevel;
313 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
314 newp == NULL)
315 return (error);
316 if (level < securelevel && p->p_pid != 1)
317 return (EPERM);
318 securelevel = level;
319 return (0);
320 case KERN_HOSTNAME:
321 error = sysctl_string(oldp, oldlenp, newp, newlen,
322 hostname, sizeof(hostname));
323 if (newp && !error)
324 hostnamelen = newlen;
325 return (error);
326 case KERN_DOMAINNAME:
327 error = sysctl_string(oldp, oldlenp, newp, newlen,
328 domainname, sizeof(domainname));
329 if (newp && !error)
330 domainnamelen = newlen;
331 return (error);
332 case KERN_HOSTID:
333 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
334 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
335 hostid = inthostid;
336 return (error);
337 case KERN_CLOCKRATE:
338 return (sysctl_clockrate(oldp, oldlenp));
339 case KERN_BOOTTIME:
340 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
341 sizeof(struct timeval)));
342 case KERN_VNODE:
343 return (sysctl_vnode(oldp, oldlenp, p));
344 case KERN_PROC:
345 case KERN_PROC2:
346 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
347 case KERN_PROC_ARGS:
348 return (sysctl_procargs(name + 1, namelen - 1,
349 oldp, oldlenp, p));
350 case KERN_FILE:
351 return (sysctl_file(oldp, oldlenp));
352 #ifdef GPROF
353 case KERN_PROF:
354 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
355 newp, newlen));
356 #endif
357 case KERN_POSIX1:
358 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
359 case KERN_NGROUPS:
360 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
361 case KERN_JOB_CONTROL:
362 return (sysctl_rdint(oldp, oldlenp, newp, 1));
363 case KERN_SAVED_IDS:
364 #ifdef _POSIX_SAVED_IDS
365 return (sysctl_rdint(oldp, oldlenp, newp, 1));
366 #else
367 return (sysctl_rdint(oldp, oldlenp, newp, 0));
368 #endif
369 case KERN_MAXPARTITIONS:
370 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
371 case KERN_RAWPARTITION:
372 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
373 #ifdef NTP
374 case KERN_NTPTIME:
375 return (sysctl_ntptime(oldp, oldlenp));
376 #endif
377 case KERN_AUTONICETIME:
378 old_autonicetime = autonicetime;
379 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
380 if (autonicetime < 0)
381 autonicetime = old_autonicetime;
382 return (error);
383 case KERN_AUTONICEVAL:
384 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
385 if (autoniceval < PRIO_MIN)
386 autoniceval = PRIO_MIN;
387 if (autoniceval > PRIO_MAX)
388 autoniceval = PRIO_MAX;
389 return (error);
390 case KERN_RTC_OFFSET:
391 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
392 case KERN_ROOT_DEVICE:
393 return (sysctl_rdstring(oldp, oldlenp, newp,
394 root_device->dv_xname));
395 case KERN_MSGBUFSIZE:
396 /*
397 * deal with cases where the message buffer has
398 * become corrupted.
399 */
400 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
401 msgbufenabled = 0;
402 return (ENXIO);
403 }
404 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
405 case KERN_FSYNC:
406 return (sysctl_rdint(oldp, oldlenp, newp, 1));
407 case KERN_SYSVMSG:
408 #ifdef SYSVMSG
409 return (sysctl_rdint(oldp, oldlenp, newp, 1));
410 #else
411 return (sysctl_rdint(oldp, oldlenp, newp, 0));
412 #endif
413 case KERN_SYSVSEM:
414 #ifdef SYSVSEM
415 return (sysctl_rdint(oldp, oldlenp, newp, 1));
416 #else
417 return (sysctl_rdint(oldp, oldlenp, newp, 0));
418 #endif
419 case KERN_SYSVSHM:
420 #ifdef SYSVSHM
421 return (sysctl_rdint(oldp, oldlenp, newp, 1));
422 #else
423 return (sysctl_rdint(oldp, oldlenp, newp, 0));
424 #endif
425 case KERN_DEFCORENAME:
426 if (newp && newlen < 1)
427 return (EINVAL);
428 error = sysctl_string(oldp, oldlenp, newp, newlen,
429 defcorename, sizeof(defcorename));
430 if (newp && !error)
431 defcorenamelen = newlen;
432 return (error);
433 case KERN_SYNCHRONIZED_IO:
434 return (sysctl_rdint(oldp, oldlenp, newp, 1));
435 case KERN_IOV_MAX:
436 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
437 case KERN_MBUF:
438 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
439 newp, newlen));
440 case KERN_MAPPED_FILES:
441 return (sysctl_rdint(oldp, oldlenp, newp, 1));
442 case KERN_MEMLOCK:
443 return (sysctl_rdint(oldp, oldlenp, newp, 1));
444 case KERN_MEMLOCK_RANGE:
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 case KERN_MEMORY_PROTECTION:
447 return (sysctl_rdint(oldp, oldlenp, newp, 1));
448 case KERN_LOGIN_NAME_MAX:
449 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
450 case KERN_LOGSIGEXIT:
451 return (sysctl_int(oldp, oldlenp, newp, newlen,
452 &kern_logsigexit));
453 case KERN_FSCALE:
454 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
455 case KERN_CCPU:
456 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
457 case KERN_CP_TIME:
458 /* XXXSMP: WRONG! */
459 return (sysctl_rdstruct(oldp, oldlenp, newp,
460 curcpu()->ci_schedstate.spc_cp_time,
461 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
462 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
463 case KERN_SYSVIPC_INFO:
464 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
465 #endif
466 case KERN_MSGBUF:
467 return (sysctl_msgbuf(oldp, oldlenp));
468 case KERN_CONSDEV:
469 if (cn_tab != NULL)
470 consdev = cn_tab->cn_dev;
471 else
472 consdev = NODEV;
473 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
474 sizeof consdev));
475 default:
476 return (EOPNOTSUPP);
477 }
478 /* NOTREACHED */
479 }
480
481 /*
482 * hardware related system variables.
483 */
484 int
485 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
486 int *name;
487 u_int namelen;
488 void *oldp;
489 size_t *oldlenp;
490 void *newp;
491 size_t newlen;
492 struct proc *p;
493 {
494
495 /* all sysctl names at this level are terminal */
496 if (namelen != 1)
497 return (ENOTDIR); /* overloaded */
498
499 switch (name[0]) {
500 case HW_MACHINE:
501 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
502 case HW_MACHINE_ARCH:
503 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
504 case HW_MODEL:
505 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
506 case HW_NCPU:
507 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
508 case HW_BYTEORDER:
509 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
510 case HW_PHYSMEM:
511 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
512 case HW_USERMEM:
513 return (sysctl_rdint(oldp, oldlenp, newp,
514 ctob(physmem - uvmexp.wired)));
515 case HW_PAGESIZE:
516 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
517 case HW_ALIGNBYTES:
518 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
519 default:
520 return (EOPNOTSUPP);
521 }
522 /* NOTREACHED */
523 }
524
525 #ifdef DEBUG
526 /*
527 * Debugging related system variables.
528 */
529 struct ctldebug debug0, debug1, debug2, debug3, debug4;
530 struct ctldebug debug5, debug6, debug7, debug8, debug9;
531 struct ctldebug debug10, debug11, debug12, debug13, debug14;
532 struct ctldebug debug15, debug16, debug17, debug18, debug19;
533 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
534 &debug0, &debug1, &debug2, &debug3, &debug4,
535 &debug5, &debug6, &debug7, &debug8, &debug9,
536 &debug10, &debug11, &debug12, &debug13, &debug14,
537 &debug15, &debug16, &debug17, &debug18, &debug19,
538 };
539 int
540 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
541 int *name;
542 u_int namelen;
543 void *oldp;
544 size_t *oldlenp;
545 void *newp;
546 size_t newlen;
547 struct proc *p;
548 {
549 struct ctldebug *cdp;
550
551 /* all sysctl names at this level are name and field */
552 if (namelen != 2)
553 return (ENOTDIR); /* overloaded */
554 cdp = debugvars[name[0]];
555 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
556 return (EOPNOTSUPP);
557 switch (name[1]) {
558 case CTL_DEBUG_NAME:
559 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
560 case CTL_DEBUG_VALUE:
561 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
562 default:
563 return (EOPNOTSUPP);
564 }
565 /* NOTREACHED */
566 }
567 #endif /* DEBUG */
568
569 int
570 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
571 int *name;
572 u_int namelen;
573 void *oldp;
574 size_t *oldlenp;
575 void *newp;
576 size_t newlen;
577 struct proc *p;
578 {
579 struct proc *ptmp = NULL;
580 const struct proclist_desc *pd;
581 int error = 0;
582 struct rlimit alim;
583 struct plimit *newplim;
584 char *tmps = NULL;
585 int i, curlen, len;
586
587 if (namelen < 2)
588 return EINVAL;
589
590 if (name[0] == PROC_CURPROC) {
591 ptmp = p;
592 } else {
593 proclist_lock_read();
594 for (pd = proclists; pd->pd_list != NULL; pd++) {
595 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
596 ptmp = LIST_NEXT(ptmp, p_list)) {
597 /* Skip embryonic processes. */
598 if (ptmp->p_stat == SIDL)
599 continue;
600 if (ptmp->p_pid == (pid_t)name[0])
601 break;
602 }
603 if (ptmp != NULL)
604 break;
605 }
606 proclist_unlock_read();
607 if (ptmp == NULL)
608 return(ESRCH);
609 if (p->p_ucred->cr_uid != 0) {
610 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
611 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
612 return EPERM;
613 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
614 return EPERM; /* sgid proc */
615 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
616 if (p->p_ucred->cr_groups[i] ==
617 ptmp->p_cred->p_rgid)
618 break;
619 }
620 if (i == p->p_ucred->cr_ngroups)
621 return EPERM;
622 }
623 }
624 if (name[1] == PROC_PID_CORENAME) {
625 if (namelen != 2)
626 return EINVAL;
627 /*
628 * Can't use sysctl_string() here because we may malloc a new
629 * area during the process, so we have to do it by hand.
630 */
631 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
632 if (oldlenp && *oldlenp < curlen) {
633 if (!oldp)
634 *oldlenp = curlen;
635 return (ENOMEM);
636 }
637 if (newp) {
638 if (securelevel > 2)
639 return EPERM;
640 if (newlen > MAXPATHLEN)
641 return ENAMETOOLONG;
642 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
643 if (tmps == NULL)
644 return ENOMEM;
645 error = copyin(newp, tmps, newlen + 1);
646 tmps[newlen] = '\0';
647 if (error)
648 goto cleanup;
649 /* Enforce to be either 'core' for end with '.core' */
650 if (newlen < 4) { /* c.o.r.e */
651 error = EINVAL;
652 goto cleanup;
653 }
654 len = newlen - 4;
655 if (len > 0) {
656 if (tmps[len - 1] != '.' &&
657 tmps[len - 1] != '/') {
658 error = EINVAL;
659 goto cleanup;
660 }
661 }
662 if (strcmp(&tmps[len], "core") != 0) {
663 error = EINVAL;
664 goto cleanup;
665 }
666 }
667 if (oldp && oldlenp) {
668 *oldlenp = curlen;
669 error = copyout(ptmp->p_limit->pl_corename, oldp,
670 curlen);
671 }
672 if (newp && error == 0) {
673 /* if the 2 strings are identical, don't limcopy() */
674 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
675 error = 0;
676 goto cleanup;
677 }
678 if (ptmp->p_limit->p_refcnt > 1 &&
679 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
680 newplim = limcopy(ptmp->p_limit);
681 limfree(ptmp->p_limit);
682 ptmp->p_limit = newplim;
683 }
684 if (ptmp->p_limit->pl_corename != defcorename) {
685 free(ptmp->p_limit->pl_corename, M_TEMP);
686 }
687 ptmp->p_limit->pl_corename = tmps;
688 return (0);
689 }
690 cleanup:
691 if (tmps)
692 free(tmps, M_TEMP);
693 return (error);
694 }
695 if (name[1] == PROC_PID_LIMIT) {
696 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
697 return EINVAL;
698 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
699 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
700 error = sysctl_quad(oldp, oldlenp, newp, newlen,
701 &alim.rlim_max);
702 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
703 error = sysctl_quad(oldp, oldlenp, newp, newlen,
704 &alim.rlim_cur);
705 else
706 error = EINVAL;
707
708 if (error)
709 return error;
710
711 if (newp)
712 error = dosetrlimit(ptmp, p->p_cred,
713 name[2] - 1, &alim);
714 return error;
715 }
716 return (EINVAL);
717 }
718
719 /*
720 * Convenience macros.
721 */
722
723 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
724 if (oldlenp) { \
725 if (!oldp) \
726 *oldlenp = len; \
727 else { \
728 if (*oldlenp < len) \
729 return(ENOMEM); \
730 *oldlenp = len; \
731 error = copyout((caddr_t)valp, oldp, len); \
732 } \
733 }
734
735 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
736 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
737
738 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
739 if (newp && newlen != len) \
740 return (EINVAL);
741
742 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
743 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
744
745 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
746 if (error == 0 && newp) \
747 error = copyin(newp, valp, len);
748
749 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
750 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
751
752 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
753 if (oldlenp) { \
754 len = strlen(str) + 1; \
755 if (!oldp) \
756 *oldlenp = len; \
757 else { \
758 if (*oldlenp < len) { \
759 err2 = ENOMEM; \
760 len = *oldlenp; \
761 } else \
762 *oldlenp = len; \
763 error = copyout(str, oldp, len);\
764 if (error == 0) \
765 error = err2; \
766 } \
767 }
768
769 /*
770 * Validate parameters and get old / set new parameters
771 * for an integer-valued sysctl function.
772 */
773 int
774 sysctl_int(oldp, oldlenp, newp, newlen, valp)
775 void *oldp;
776 size_t *oldlenp;
777 void *newp;
778 size_t newlen;
779 int *valp;
780 {
781 int error = 0;
782
783 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
784 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
785 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
786
787 return (error);
788 }
789
790
791 /*
792 * As above, but read-only.
793 */
794 int
795 sysctl_rdint(oldp, oldlenp, newp, val)
796 void *oldp;
797 size_t *oldlenp;
798 void *newp;
799 int val;
800 {
801 int error = 0;
802
803 if (newp)
804 return (EPERM);
805
806 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
807
808 return (error);
809 }
810
811 /*
812 * Validate parameters and get old / set new parameters
813 * for an quad-valued sysctl function.
814 */
815 int
816 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
817 void *oldp;
818 size_t *oldlenp;
819 void *newp;
820 size_t newlen;
821 quad_t *valp;
822 {
823 int error = 0;
824
825 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
826 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
827 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
828
829 return (error);
830 }
831
832 /*
833 * As above, but read-only.
834 */
835 int
836 sysctl_rdquad(oldp, oldlenp, newp, val)
837 void *oldp;
838 size_t *oldlenp;
839 void *newp;
840 quad_t val;
841 {
842 int error = 0;
843
844 if (newp)
845 return (EPERM);
846
847 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
848
849 return (error);
850 }
851
852 /*
853 * Validate parameters and get old / set new parameters
854 * for a string-valued sysctl function.
855 */
856 int
857 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
858 void *oldp;
859 size_t *oldlenp;
860 void *newp;
861 size_t newlen;
862 char *str;
863 int maxlen;
864 {
865 int len, error = 0, err2 = 0;
866
867 if (newp && newlen >= maxlen)
868 return (EINVAL);
869
870 SYSCTL_STRING_CORE(oldp, oldlenp, str);
871
872 if (error == 0 && newp) {
873 error = copyin(newp, str, newlen);
874 str[newlen] = 0;
875 }
876 return (error);
877 }
878
879 /*
880 * As above, but read-only.
881 */
882 int
883 sysctl_rdstring(oldp, oldlenp, newp, str)
884 void *oldp;
885 size_t *oldlenp;
886 void *newp;
887 const char *str;
888 {
889 int len, error = 0, err2 = 0;
890
891 if (newp)
892 return (EPERM);
893
894 SYSCTL_STRING_CORE(oldp, oldlenp, str);
895
896 return (error);
897 }
898
899 /*
900 * Validate parameters and get old / set new parameters
901 * for a structure oriented sysctl function.
902 */
903 int
904 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
905 void *oldp;
906 size_t *oldlenp;
907 void *newp;
908 size_t newlen;
909 void *sp;
910 int len;
911 {
912 int error = 0;
913
914 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
915 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
916 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
917
918 return (error);
919 }
920
921 /*
922 * Validate parameters and get old parameters
923 * for a structure oriented sysctl function.
924 */
925 int
926 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
927 void *oldp;
928 size_t *oldlenp;
929 void *newp;
930 const void *sp;
931 int len;
932 {
933 int error = 0;
934
935 if (newp)
936 return (EPERM);
937
938 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
939
940 return (error);
941 }
942
943 /*
944 * Get file structures.
945 */
946 static int
947 sysctl_file(vwhere, sizep)
948 void *vwhere;
949 size_t *sizep;
950 {
951 int buflen, error;
952 struct file *fp;
953 char *start, *where;
954
955 start = where = vwhere;
956 buflen = *sizep;
957 if (where == NULL) {
958 /*
959 * overestimate by 10 files
960 */
961 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
962 return (0);
963 }
964
965 /*
966 * first copyout filehead
967 */
968 if (buflen < sizeof(filehead)) {
969 *sizep = 0;
970 return (0);
971 }
972 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
973 if (error)
974 return (error);
975 buflen -= sizeof(filehead);
976 where += sizeof(filehead);
977
978 /*
979 * followed by an array of file structures
980 */
981 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
982 if (buflen < sizeof(struct file)) {
983 *sizep = where - start;
984 return (ENOMEM);
985 }
986 error = copyout((caddr_t)fp, where, sizeof(struct file));
987 if (error)
988 return (error);
989 buflen -= sizeof(struct file);
990 where += sizeof(struct file);
991 }
992 *sizep = where - start;
993 return (0);
994 }
995
996 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
997 #define FILL_PERM(src, dst) do { \
998 (dst)._key = (src)._key; \
999 (dst).uid = (src).uid; \
1000 (dst).gid = (src).gid; \
1001 (dst).cuid = (src).cuid; \
1002 (dst).cgid = (src).cgid; \
1003 (dst).mode = (src).mode; \
1004 (dst)._seq = (src)._seq; \
1005 } while (0);
1006 #define FILL_MSG(src, dst) do { \
1007 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1008 (dst).msg_qnum = (src).msg_qnum; \
1009 (dst).msg_qbytes = (src).msg_qbytes; \
1010 (dst)._msg_cbytes = (src)._msg_cbytes; \
1011 (dst).msg_lspid = (src).msg_lspid; \
1012 (dst).msg_lrpid = (src).msg_lrpid; \
1013 (dst).msg_stime = (src).msg_stime; \
1014 (dst).msg_rtime = (src).msg_rtime; \
1015 (dst).msg_ctime = (src).msg_ctime; \
1016 } while (0)
1017 #define FILL_SEM(src, dst) do { \
1018 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1019 (dst).sem_nsems = (src).sem_nsems; \
1020 (dst).sem_otime = (src).sem_otime; \
1021 (dst).sem_ctime = (src).sem_ctime; \
1022 } while (0)
1023 #define FILL_SHM(src, dst) do { \
1024 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1025 (dst).shm_segsz = (src).shm_segsz; \
1026 (dst).shm_lpid = (src).shm_lpid; \
1027 (dst).shm_cpid = (src).shm_cpid; \
1028 (dst).shm_atime = (src).shm_atime; \
1029 (dst).shm_dtime = (src).shm_dtime; \
1030 (dst).shm_ctime = (src).shm_ctime; \
1031 (dst).shm_nattch = (src).shm_nattch; \
1032 } while (0)
1033
1034 static int
1035 sysctl_sysvipc(name, namelen, where, sizep)
1036 int *name;
1037 u_int namelen;
1038 void *where;
1039 size_t *sizep;
1040 {
1041 #ifdef SYSVMSG
1042 struct msg_sysctl_info *msgsi;
1043 #endif
1044 #ifdef SYSVSEM
1045 struct sem_sysctl_info *semsi;
1046 #endif
1047 #ifdef SYSVSHM
1048 struct shm_sysctl_info *shmsi;
1049 #endif
1050 size_t infosize, dssize, tsize, buflen;
1051 void *buf = NULL, *buf2;
1052 char *start;
1053 int32_t nds;
1054 int i, error, ret;
1055
1056 if (namelen != 1)
1057 return (EINVAL);
1058
1059 start = where;
1060 buflen = *sizep;
1061
1062 switch (*name) {
1063 case KERN_SYSVIPC_MSG_INFO:
1064 #ifdef SYSVMSG
1065 infosize = sizeof(msgsi->msginfo);
1066 nds = msginfo.msgmni;
1067 dssize = sizeof(msgsi->msgids[0]);
1068 break;
1069 #else
1070 return (EINVAL);
1071 #endif
1072 case KERN_SYSVIPC_SEM_INFO:
1073 #ifdef SYSVSEM
1074 infosize = sizeof(semsi->seminfo);
1075 nds = seminfo.semmni;
1076 dssize = sizeof(semsi->semids[0]);
1077 break;
1078 #else
1079 return (EINVAL);
1080 #endif
1081 case KERN_SYSVIPC_SHM_INFO:
1082 #ifdef SYSVSHM
1083 infosize = sizeof(shmsi->shminfo);
1084 nds = shminfo.shmmni;
1085 dssize = sizeof(shmsi->shmids[0]);
1086 break;
1087 #else
1088 return (EINVAL);
1089 #endif
1090 default:
1091 return (EINVAL);
1092 }
1093 /*
1094 * Round infosize to 64 bit boundary if requesting more than just
1095 * the info structure or getting the total data size.
1096 */
1097 if (where == NULL || *sizep > infosize)
1098 infosize = ((infosize + 7) / 8) * 8;
1099 tsize = infosize + nds * dssize;
1100
1101 /* Return just the total size required. */
1102 if (where == NULL) {
1103 *sizep = tsize;
1104 return (0);
1105 }
1106
1107 /* Not enough room for even the info struct. */
1108 if (buflen < infosize) {
1109 *sizep = 0;
1110 return (ENOMEM);
1111 }
1112 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1113 memset(buf, 0, min(tsize, buflen));
1114
1115 switch (*name) {
1116 #ifdef SYSVMSG
1117 case KERN_SYSVIPC_MSG_INFO:
1118 msgsi = (struct msg_sysctl_info *)buf;
1119 buf2 = &msgsi->msgids[0];
1120 msgsi->msginfo = msginfo;
1121 break;
1122 #endif
1123 #ifdef SYSVSEM
1124 case KERN_SYSVIPC_SEM_INFO:
1125 semsi = (struct sem_sysctl_info *)buf;
1126 buf2 = &semsi->semids[0];
1127 semsi->seminfo = seminfo;
1128 break;
1129 #endif
1130 #ifdef SYSVSHM
1131 case KERN_SYSVIPC_SHM_INFO:
1132 shmsi = (struct shm_sysctl_info *)buf;
1133 buf2 = &shmsi->shmids[0];
1134 shmsi->shminfo = shminfo;
1135 break;
1136 #endif
1137 }
1138 buflen -= infosize;
1139
1140 ret = 0;
1141 if (buflen > 0) {
1142 /* Fill in the IPC data structures. */
1143 for (i = 0; i < nds; i++) {
1144 if (buflen < dssize) {
1145 ret = ENOMEM;
1146 break;
1147 }
1148 switch (*name) {
1149 #ifdef SYSVMSG
1150 case KERN_SYSVIPC_MSG_INFO:
1151 FILL_MSG(msqids[i], msgsi->msgids[i]);
1152 break;
1153 #endif
1154 #ifdef SYSVSEM
1155 case KERN_SYSVIPC_SEM_INFO:
1156 FILL_SEM(sema[i], semsi->semids[i]);
1157 break;
1158 #endif
1159 #ifdef SYSVSHM
1160 case KERN_SYSVIPC_SHM_INFO:
1161 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1162 break;
1163 #endif
1164 }
1165 buflen -= dssize;
1166 }
1167 }
1168 *sizep -= buflen;
1169 error = copyout(buf, start, *sizep);
1170 /* If copyout succeeded, use return code set earlier. */
1171 if (error == 0)
1172 error = ret;
1173 if (buf)
1174 free(buf, M_TEMP);
1175 return (error);
1176 }
1177 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1178
1179 static int
1180 sysctl_msgbuf(vwhere, sizep)
1181 void *vwhere;
1182 size_t *sizep;
1183 {
1184 char *where = vwhere;
1185 size_t len, maxlen = *sizep;
1186 long pos;
1187 int error;
1188
1189 /*
1190 * deal with cases where the message buffer has
1191 * become corrupted.
1192 */
1193 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1194 msgbufenabled = 0;
1195 return (ENXIO);
1196 }
1197
1198 if (where == NULL) {
1199 /* always return full buffer size */
1200 *sizep = msgbufp->msg_bufs;
1201 return (0);
1202 }
1203
1204 error = 0;
1205 maxlen = min(msgbufp->msg_bufs, maxlen);
1206 pos = msgbufp->msg_bufx;
1207 while (maxlen > 0) {
1208 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1209 len = min(len, maxlen);
1210 if (len == 0)
1211 break;
1212 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1213 if (error)
1214 break;
1215 where += len;
1216 maxlen -= len;
1217 pos = 0;
1218 }
1219 return (error);
1220 }
1221
1222 /*
1223 * try over estimating by 5 procs
1224 */
1225 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1226
1227 static int
1228 sysctl_doeproc(name, namelen, vwhere, sizep)
1229 int *name;
1230 u_int namelen;
1231 void *vwhere;
1232 size_t *sizep;
1233 {
1234 struct eproc eproc;
1235 struct kinfo_proc2 kproc2;
1236 struct kinfo_proc *dp;
1237 struct proc *p;
1238 const struct proclist_desc *pd;
1239 char *where, *dp2;
1240 int type, op, arg, elem_size, elem_count;
1241 int buflen, needed, error;
1242
1243 dp = vwhere;
1244 dp2 = where = vwhere;
1245 buflen = where != NULL ? *sizep : 0;
1246 error = needed = 0;
1247 type = name[0];
1248
1249 if (type == KERN_PROC) {
1250 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1251 return (EINVAL);
1252 op = name[1];
1253 if (op != KERN_PROC_ALL)
1254 arg = name[2];
1255 } else {
1256 if (namelen != 5)
1257 return (EINVAL);
1258 op = name[1];
1259 arg = name[2];
1260 elem_size = name[3];
1261 elem_count = name[4];
1262 }
1263
1264 proclist_lock_read();
1265
1266 pd = proclists;
1267 again:
1268 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1269 /*
1270 * Skip embryonic processes.
1271 */
1272 if (p->p_stat == SIDL)
1273 continue;
1274 /*
1275 * TODO - make more efficient (see notes below).
1276 * do by session.
1277 */
1278 switch (op) {
1279
1280 case KERN_PROC_PID:
1281 /* could do this with just a lookup */
1282 if (p->p_pid != (pid_t)arg)
1283 continue;
1284 break;
1285
1286 case KERN_PROC_PGRP:
1287 /* could do this by traversing pgrp */
1288 if (p->p_pgrp->pg_id != (pid_t)arg)
1289 continue;
1290 break;
1291
1292 case KERN_PROC_SESSION:
1293 if (p->p_session->s_sid != (pid_t)arg)
1294 continue;
1295 break;
1296
1297 case KERN_PROC_TTY:
1298 if (arg == KERN_PROC_TTY_REVOKE) {
1299 if ((p->p_flag & P_CONTROLT) == 0 ||
1300 p->p_session->s_ttyp == NULL ||
1301 p->p_session->s_ttyvp != NULL)
1302 continue;
1303 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1304 p->p_session->s_ttyp == NULL) {
1305 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1306 continue;
1307 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1308 continue;
1309 break;
1310
1311 case KERN_PROC_UID:
1312 if (p->p_ucred->cr_uid != (uid_t)arg)
1313 continue;
1314 break;
1315
1316 case KERN_PROC_RUID:
1317 if (p->p_cred->p_ruid != (uid_t)arg)
1318 continue;
1319 break;
1320
1321 case KERN_PROC_GID:
1322 if (p->p_ucred->cr_gid != (uid_t)arg)
1323 continue;
1324 break;
1325
1326 case KERN_PROC_RGID:
1327 if (p->p_cred->p_rgid != (uid_t)arg)
1328 continue;
1329 break;
1330
1331 case KERN_PROC_ALL:
1332 /* allow everything */
1333 break;
1334
1335 default:
1336 error = EINVAL;
1337 goto cleanup;
1338 }
1339 if (type == KERN_PROC) {
1340 if (buflen >= sizeof(struct kinfo_proc)) {
1341 fill_eproc(p, &eproc);
1342 error = copyout((caddr_t)p, &dp->kp_proc,
1343 sizeof(struct proc));
1344 if (error)
1345 goto cleanup;
1346 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1347 sizeof(eproc));
1348 if (error)
1349 goto cleanup;
1350 dp++;
1351 buflen -= sizeof(struct kinfo_proc);
1352 }
1353 needed += sizeof(struct kinfo_proc);
1354 } else { /* KERN_PROC2 */
1355 if (buflen >= elem_size && elem_count > 0) {
1356 fill_kproc2(p, &kproc2);
1357 /*
1358 * Copy out elem_size, but not larger than
1359 * the size of a struct kinfo_proc2.
1360 */
1361 error = copyout(&kproc2, dp2,
1362 min(sizeof(kproc2), elem_size));
1363 if (error)
1364 goto cleanup;
1365 dp2 += elem_size;
1366 buflen -= elem_size;
1367 elem_count--;
1368 }
1369 needed += elem_size;
1370 }
1371 }
1372 pd++;
1373 if (pd->pd_list != NULL)
1374 goto again;
1375 proclist_unlock_read();
1376
1377 if (where != NULL) {
1378 if (type == KERN_PROC)
1379 *sizep = (caddr_t)dp - where;
1380 else
1381 *sizep = dp2 - where;
1382 if (needed > *sizep)
1383 return (ENOMEM);
1384 } else {
1385 needed += KERN_PROCSLOP;
1386 *sizep = needed;
1387 }
1388 return (0);
1389 cleanup:
1390 proclist_unlock_read();
1391 return (error);
1392 }
1393
1394 /*
1395 * Fill in an eproc structure for the specified process.
1396 */
1397 void
1398 fill_eproc(p, ep)
1399 struct proc *p;
1400 struct eproc *ep;
1401 {
1402 struct tty *tp;
1403
1404 ep->e_paddr = p;
1405 ep->e_sess = p->p_session;
1406 ep->e_pcred = *p->p_cred;
1407 ep->e_ucred = *p->p_ucred;
1408 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1409 ep->e_vm.vm_rssize = 0;
1410 ep->e_vm.vm_tsize = 0;
1411 ep->e_vm.vm_dsize = 0;
1412 ep->e_vm.vm_ssize = 0;
1413 /* ep->e_vm.vm_pmap = XXX; */
1414 } else {
1415 struct vmspace *vm = p->p_vmspace;
1416
1417 ep->e_vm.vm_rssize = vm_resident_count(vm);
1418 ep->e_vm.vm_tsize = vm->vm_tsize;
1419 ep->e_vm.vm_dsize = vm->vm_dsize;
1420 ep->e_vm.vm_ssize = vm->vm_ssize;
1421 }
1422 if (p->p_pptr)
1423 ep->e_ppid = p->p_pptr->p_pid;
1424 else
1425 ep->e_ppid = 0;
1426 ep->e_pgid = p->p_pgrp->pg_id;
1427 ep->e_sid = ep->e_sess->s_sid;
1428 ep->e_jobc = p->p_pgrp->pg_jobc;
1429 if ((p->p_flag & P_CONTROLT) &&
1430 (tp = ep->e_sess->s_ttyp)) {
1431 ep->e_tdev = tp->t_dev;
1432 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1433 ep->e_tsess = tp->t_session;
1434 } else
1435 ep->e_tdev = NODEV;
1436 if (p->p_wmesg)
1437 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1438 ep->e_xsize = ep->e_xrssize = 0;
1439 ep->e_xccount = ep->e_xswrss = 0;
1440 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1441 if (SESS_LEADER(p))
1442 ep->e_flag |= EPROC_SLEADER;
1443 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1444 }
1445
1446 /*
1447 * Fill in an eproc structure for the specified process.
1448 */
1449 static void
1450 fill_kproc2(p, ki)
1451 struct proc *p;
1452 struct kinfo_proc2 *ki;
1453 {
1454 struct tty *tp;
1455
1456 memset(ki, 0, sizeof(*ki));
1457
1458 ki->p_forw = PTRTOINT64(p->p_forw);
1459 ki->p_back = PTRTOINT64(p->p_back);
1460 ki->p_paddr = PTRTOINT64(p);
1461
1462 ki->p_addr = PTRTOINT64(p->p_addr);
1463 ki->p_fd = PTRTOINT64(p->p_fd);
1464 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1465 ki->p_stats = PTRTOINT64(p->p_stats);
1466 ki->p_limit = PTRTOINT64(p->p_limit);
1467 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1468 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1469 ki->p_sess = PTRTOINT64(p->p_session);
1470 ki->p_tsess = 0; /* may be changed if controlling tty below */
1471 ki->p_ru = PTRTOINT64(p->p_ru);
1472
1473 ki->p_eflag = 0;
1474 ki->p_exitsig = p->p_exitsig;
1475 ki->p_flag = p->p_flag;
1476
1477 ki->p_pid = p->p_pid;
1478 if (p->p_pptr)
1479 ki->p_ppid = p->p_pptr->p_pid;
1480 else
1481 ki->p_ppid = 0;
1482 ki->p_sid = p->p_session->s_sid;
1483 ki->p__pgid = p->p_pgrp->pg_id;
1484
1485 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1486
1487 ki->p_uid = p->p_ucred->cr_uid;
1488 ki->p_ruid = p->p_cred->p_ruid;
1489 ki->p_gid = p->p_ucred->cr_gid;
1490 ki->p_rgid = p->p_cred->p_rgid;
1491
1492 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1493 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1494 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1495
1496 ki->p_jobc = p->p_pgrp->pg_jobc;
1497 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1498 ki->p_tdev = tp->t_dev;
1499 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1500 ki->p_tsess = PTRTOINT64(tp->t_session);
1501 } else {
1502 ki->p_tdev = NODEV;
1503 }
1504
1505 ki->p_estcpu = p->p_estcpu;
1506 ki->p_rtime_sec = p->p_rtime.tv_sec;
1507 ki->p_rtime_usec = p->p_rtime.tv_usec;
1508 ki->p_cpticks = p->p_cpticks;
1509 ki->p_pctcpu = p->p_pctcpu;
1510 ki->p_swtime = p->p_swtime;
1511 ki->p_slptime = p->p_slptime;
1512 if (p->p_stat == SONPROC) {
1513 KDASSERT(p->p_cpu != NULL);
1514 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1515 } else
1516 ki->p_schedflags = 0;
1517
1518 ki->p_uticks = p->p_uticks;
1519 ki->p_sticks = p->p_sticks;
1520 ki->p_iticks = p->p_iticks;
1521
1522 ki->p_tracep = PTRTOINT64(p->p_tracep);
1523 ki->p_traceflag = p->p_traceflag;
1524
1525 ki->p_holdcnt = p->p_holdcnt;
1526
1527 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1528 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1529 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1530 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1531
1532 ki->p_stat = p->p_stat;
1533 ki->p_priority = p->p_priority;
1534 ki->p_usrpri = p->p_usrpri;
1535 ki->p_nice = p->p_nice;
1536
1537 ki->p_xstat = p->p_xstat;
1538 ki->p_acflag = p->p_acflag;
1539
1540 strncpy(ki->p_comm, p->p_comm,
1541 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1542
1543 if (p->p_wmesg)
1544 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1545 ki->p_wchan = PTRTOINT64(p->p_wchan);
1546
1547 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1548
1549 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1550 ki->p_vm_rssize = 0;
1551 ki->p_vm_tsize = 0;
1552 ki->p_vm_dsize = 0;
1553 ki->p_vm_ssize = 0;
1554 } else {
1555 struct vmspace *vm = p->p_vmspace;
1556
1557 ki->p_vm_rssize = vm_resident_count(vm);
1558 ki->p_vm_tsize = vm->vm_tsize;
1559 ki->p_vm_dsize = vm->vm_dsize;
1560 ki->p_vm_ssize = vm->vm_ssize;
1561 }
1562
1563 if (p->p_session->s_ttyvp)
1564 ki->p_eflag |= EPROC_CTTY;
1565 if (SESS_LEADER(p))
1566 ki->p_eflag |= EPROC_SLEADER;
1567
1568 /* XXX Is this double check necessary? */
1569 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1570 ki->p_uvalid = 0;
1571 } else {
1572 ki->p_uvalid = 1;
1573
1574 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1575 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1576
1577 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1578 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1579 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1580 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1581
1582 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1583 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1584 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1585 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1586 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1587 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1588 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1589 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1590 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1591 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1592 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1593 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1594 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1595 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1596
1597 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1598 p->p_stats->p_cru.ru_stime.tv_sec;
1599 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1600 p->p_stats->p_cru.ru_stime.tv_usec;
1601 }
1602 }
1603
1604 int
1605 sysctl_procargs(name, namelen, where, sizep, up)
1606 int *name;
1607 u_int namelen;
1608 void *where;
1609 size_t *sizep;
1610 struct proc *up;
1611 {
1612 struct ps_strings pss;
1613 struct proc *p;
1614 size_t len, upper_bound, xlen;
1615 struct uio auio;
1616 struct iovec aiov;
1617 vaddr_t argv;
1618 pid_t pid;
1619 int nargv, type, error, i;
1620 char *arg;
1621 char *tmp;
1622
1623 if (namelen != 2)
1624 return (EINVAL);
1625 pid = name[0];
1626 type = name[1];
1627
1628 switch (type) {
1629 case KERN_PROC_ARGV:
1630 case KERN_PROC_NARGV:
1631 case KERN_PROC_ENV:
1632 case KERN_PROC_NENV:
1633 /* ok */
1634 break;
1635 default:
1636 return (EINVAL);
1637 }
1638
1639 /* check pid */
1640 if ((p = pfind(pid)) == NULL)
1641 return (EINVAL);
1642
1643 /* only root or same user change look at the environment */
1644 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1645 if (up->p_ucred->cr_uid != 0) {
1646 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1647 up->p_cred->p_ruid != p->p_cred->p_svuid)
1648 return (EPERM);
1649 }
1650 }
1651
1652 if (sizep != NULL && where == NULL) {
1653 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1654 *sizep = sizeof (int);
1655 else
1656 *sizep = ARG_MAX; /* XXX XXX XXX */
1657 return (0);
1658 }
1659 if (where == NULL || sizep == NULL)
1660 return (EINVAL);
1661
1662 /*
1663 * Zombies don't have a stack, so we can't read their psstrings.
1664 * System processes also don't have a user stack.
1665 */
1666 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1667 return (EINVAL);
1668
1669 /*
1670 * Lock the process down in memory.
1671 */
1672 /* XXXCDC: how should locking work here? */
1673 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1674 return (EFAULT);
1675 PHOLD(p);
1676 p->p_vmspace->vm_refcnt++; /* XXX */
1677
1678 /*
1679 * Allocate a temporary buffer to hold the arguments.
1680 */
1681 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1682
1683 /*
1684 * Read in the ps_strings structure.
1685 */
1686 aiov.iov_base = &pss;
1687 aiov.iov_len = sizeof(pss);
1688 auio.uio_iov = &aiov;
1689 auio.uio_iovcnt = 1;
1690 auio.uio_offset = (vaddr_t)p->p_psstr;
1691 auio.uio_resid = sizeof(pss);
1692 auio.uio_segflg = UIO_SYSSPACE;
1693 auio.uio_rw = UIO_READ;
1694 auio.uio_procp = NULL;
1695 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1696 if (error)
1697 goto done;
1698
1699 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1700 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1701 else
1702 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1703 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1704 error = copyout(&nargv, where, sizeof(nargv));
1705 *sizep = sizeof(nargv);
1706 goto done;
1707 }
1708 /*
1709 * Now read the address of the argument vector.
1710 */
1711 switch (type) {
1712 case KERN_PROC_ARGV:
1713 /* XXX compat32 stuff here */
1714 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1715 break;
1716 case KERN_PROC_ENV:
1717 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1718 break;
1719 default:
1720 return (EINVAL);
1721 }
1722 auio.uio_offset = (off_t)(long)tmp;
1723 aiov.iov_base = &argv;
1724 aiov.iov_len = sizeof(argv);
1725 auio.uio_iov = &aiov;
1726 auio.uio_iovcnt = 1;
1727 auio.uio_resid = sizeof(argv);
1728 auio.uio_segflg = UIO_SYSSPACE;
1729 auio.uio_rw = UIO_READ;
1730 auio.uio_procp = NULL;
1731 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1732 if (error)
1733 goto done;
1734
1735 /*
1736 * Now copy in the actual argument vector, one page at a time,
1737 * since we don't know how long the vector is (though, we do
1738 * know how many NUL-terminated strings are in the vector).
1739 */
1740 len = 0;
1741 upper_bound = *sizep;
1742 for (; nargv != 0 && len < upper_bound; len += xlen) {
1743 aiov.iov_base = arg;
1744 aiov.iov_len = PAGE_SIZE;
1745 auio.uio_iov = &aiov;
1746 auio.uio_iovcnt = 1;
1747 auio.uio_offset = argv + len;
1748 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1749 auio.uio_resid = xlen;
1750 auio.uio_segflg = UIO_SYSSPACE;
1751 auio.uio_rw = UIO_READ;
1752 auio.uio_procp = NULL;
1753 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1754 if (error)
1755 goto done;
1756
1757 for (i = 0; i < xlen && nargv != 0; i++) {
1758 if (arg[i] == '\0')
1759 nargv--; /* one full string */
1760 }
1761
1762 /* make sure we don't copyout past the end of the user's buffer */
1763 if (len + i > upper_bound)
1764 i = upper_bound - len;
1765
1766 error = copyout(arg, (char *)where + len, i);
1767 if (error)
1768 break;
1769
1770 if (nargv == 0) {
1771 len += i;
1772 break;
1773 }
1774 }
1775 *sizep = len;
1776
1777 done:
1778 PRELE(p);
1779 uvmspace_free(p->p_vmspace);
1780
1781 free(arg, M_TEMP);
1782 return (error);
1783 }
1784