kern_sysctl.c revision 1.73.2.5 1 /* $NetBSD: kern_sysctl.c,v 1.73.2.5 2003/08/27 03:18:10 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #define __SYSCTL_PRIVATE
72 #include <sys/sysctl.h>
73 #include <sys/lock.h>
74
75 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
76 #include <sys/ipc.h>
77 #endif
78 #ifdef SYSVMSG
79 #include <sys/msg.h>
80 #endif
81 #ifdef SYSVSEM
82 #include <sys/sem.h>
83 #endif
84 #ifdef SYSVSHM
85 #include <sys/shm.h>
86 #endif
87
88 #include <dev/cons.h>
89
90 #if defined(DDB)
91 #include <ddb/ddbvar.h>
92 #endif
93
94 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
95
96 static int sysctl_file __P((void *, size_t *));
97 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
98 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
99 #endif
100 static int sysctl_msgbuf __P((void *, size_t *));
101 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
102 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
103 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
104
105 /*
106 * The `sysctl_memlock' is intended to keep too many processes from
107 * locking down memory by doing sysctls at once. Whether or not this
108 * is really a good idea to worry about it probably a subject of some
109 * debate.
110 */
111 struct lock sysctl_memlock;
112
113 void
114 sysctl_init(void)
115 {
116
117 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
118 }
119
120 int
121 sys___sysctl(p, v, retval)
122 struct proc *p;
123 void *v;
124 register_t *retval;
125 {
126 struct sys___sysctl_args /* {
127 syscallarg(int *) name;
128 syscallarg(u_int) namelen;
129 syscallarg(void *) old;
130 syscallarg(size_t *) oldlenp;
131 syscallarg(void *) new;
132 syscallarg(size_t) newlen;
133 } */ *uap = v;
134 int error;
135 size_t savelen = 0, oldlen = 0;
136 sysctlfn *fn;
137 int name[CTL_MAXNAME];
138 size_t *oldlenp;
139
140 /*
141 * all top-level sysctl names are non-terminal
142 */
143 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
144 return (EINVAL);
145 error = copyin(SCARG(uap, name), &name,
146 SCARG(uap, namelen) * sizeof(int));
147 if (error)
148 return (error);
149
150 /*
151 * For all but CTL_PROC, must be root to change a value.
152 * For CTL_PROC, must be root, or owner of the proc (and not suid),
153 * this is checked in proc_sysctl() (once we know the targer proc).
154 */
155 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
156 (error = suser(p->p_ucred, &p->p_acflag)))
157 return error;
158
159 switch (name[0]) {
160 case CTL_KERN:
161 fn = kern_sysctl;
162 break;
163 case CTL_HW:
164 fn = hw_sysctl;
165 break;
166 case CTL_VM:
167 fn = uvm_sysctl;
168 break;
169 case CTL_NET:
170 fn = net_sysctl;
171 break;
172 case CTL_VFS:
173 fn = vfs_sysctl;
174 break;
175 case CTL_MACHDEP:
176 fn = cpu_sysctl;
177 break;
178 #ifdef DEBUG
179 case CTL_DEBUG:
180 fn = debug_sysctl;
181 break;
182 #endif
183 #ifdef DDB
184 case CTL_DDB:
185 fn = ddb_sysctl;
186 break;
187 #endif
188 case CTL_PROC:
189 fn = proc_sysctl;
190 break;
191 default:
192 return (EOPNOTSUPP);
193 }
194
195 /*
196 * XXX Hey, we wire `old', but what about `new'?
197 */
198
199 oldlenp = SCARG(uap, oldlenp);
200 if (oldlenp) {
201 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
202 return (error);
203 oldlenp = &oldlen;
204 }
205 if (SCARG(uap, old) != NULL) {
206 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
207 if (error)
208 return (error);
209 if (uvm_vslock(p, SCARG(uap, old), oldlen,
210 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
211 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
212 return (EFAULT);
213 }
214 savelen = oldlen;
215 }
216 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
217 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
218 if (SCARG(uap, old) != NULL) {
219 uvm_vsunlock(p, SCARG(uap, old), savelen);
220 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
221 }
222 if (error)
223 return (error);
224 if (SCARG(uap, oldlenp))
225 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
226 return (error);
227 }
228
229 /*
230 * Attributes stored in the kernel.
231 */
232 char hostname[MAXHOSTNAMELEN];
233 int hostnamelen;
234
235 char domainname[MAXHOSTNAMELEN];
236 int domainnamelen;
237
238 long hostid;
239
240 #ifdef INSECURE
241 int securelevel = -1;
242 #else
243 int securelevel = 0;
244 #endif
245
246 #ifndef DEFCORENAME
247 #define DEFCORENAME "%n.core"
248 #endif
249 char defcorename[MAXPATHLEN] = DEFCORENAME;
250 int defcorenamelen = sizeof(DEFCORENAME);
251
252 extern int kern_logsigexit;
253 extern fixpt_t ccpu;
254
255 /*
256 * kernel related system variables.
257 */
258 int
259 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
260 int *name;
261 u_int namelen;
262 void *oldp;
263 size_t *oldlenp;
264 void *newp;
265 size_t newlen;
266 struct proc *p;
267 {
268 int error, level, inthostid;
269 int old_autonicetime;
270 int old_vnodes;
271 dev_t consdev;
272
273 /* All sysctl names at this level, except for a few, are terminal. */
274 switch (name[0]) {
275 case KERN_PROC:
276 case KERN_PROC2:
277 case KERN_PROF:
278 case KERN_MBUF:
279 case KERN_PROC_ARGS:
280 case KERN_SYSVIPC_INFO:
281 /* Not terminal. */
282 break;
283 default:
284 if (namelen != 1)
285 return (ENOTDIR); /* overloaded */
286 }
287
288 switch (name[0]) {
289 case KERN_OSTYPE:
290 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
291 case KERN_OSRELEASE:
292 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
293 case KERN_OSREV:
294 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
295 case KERN_VERSION:
296 return (sysctl_rdstring(oldp, oldlenp, newp, version));
297 case KERN_MAXVNODES:
298 old_vnodes = desiredvnodes;
299 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
300 if (old_vnodes > desiredvnodes) {
301 desiredvnodes = old_vnodes;
302 return (EINVAL);
303 }
304 return (error);
305 case KERN_MAXPROC:
306 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
307 case KERN_MAXFILES:
308 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
309 case KERN_ARGMAX:
310 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
311 case KERN_SECURELVL:
312 level = securelevel;
313 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
314 newp == NULL)
315 return (error);
316 if (level < securelevel && p->p_pid != 1)
317 return (EPERM);
318 securelevel = level;
319 return (0);
320 case KERN_HOSTNAME:
321 error = sysctl_string(oldp, oldlenp, newp, newlen,
322 hostname, sizeof(hostname));
323 if (newp && !error)
324 hostnamelen = newlen;
325 return (error);
326 case KERN_DOMAINNAME:
327 error = sysctl_string(oldp, oldlenp, newp, newlen,
328 domainname, sizeof(domainname));
329 if (newp && !error)
330 domainnamelen = newlen;
331 return (error);
332 case KERN_HOSTID:
333 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
334 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
335 hostid = inthostid;
336 return (error);
337 case KERN_CLOCKRATE:
338 return (sysctl_clockrate(oldp, oldlenp));
339 case KERN_BOOTTIME:
340 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
341 sizeof(struct timeval)));
342 case KERN_VNODE:
343 return (sysctl_vnode(oldp, oldlenp, p));
344 case KERN_PROC:
345 case KERN_PROC2:
346 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
347 case KERN_PROC_ARGS:
348 return (sysctl_procargs(name + 1, namelen - 1,
349 oldp, oldlenp, p));
350 case KERN_FILE:
351 return (sysctl_file(oldp, oldlenp));
352 #ifdef GPROF
353 case KERN_PROF:
354 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
355 newp, newlen));
356 #endif
357 case KERN_POSIX1:
358 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
359 case KERN_NGROUPS:
360 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
361 case KERN_JOB_CONTROL:
362 return (sysctl_rdint(oldp, oldlenp, newp, 1));
363 case KERN_SAVED_IDS:
364 #ifdef _POSIX_SAVED_IDS
365 return (sysctl_rdint(oldp, oldlenp, newp, 1));
366 #else
367 return (sysctl_rdint(oldp, oldlenp, newp, 0));
368 #endif
369 case KERN_MAXPARTITIONS:
370 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
371 case KERN_RAWPARTITION:
372 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
373 #ifdef NTP
374 case KERN_NTPTIME:
375 return (sysctl_ntptime(oldp, oldlenp));
376 #endif
377 case KERN_AUTONICETIME:
378 old_autonicetime = autonicetime;
379 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
380 if (autonicetime < 0)
381 autonicetime = old_autonicetime;
382 return (error);
383 case KERN_AUTONICEVAL:
384 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
385 if (autoniceval < PRIO_MIN)
386 autoniceval = PRIO_MIN;
387 if (autoniceval > PRIO_MAX)
388 autoniceval = PRIO_MAX;
389 return (error);
390 case KERN_RTC_OFFSET:
391 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
392 case KERN_ROOT_DEVICE:
393 return (sysctl_rdstring(oldp, oldlenp, newp,
394 root_device->dv_xname));
395 case KERN_MSGBUFSIZE:
396 /*
397 * deal with cases where the message buffer has
398 * become corrupted.
399 */
400 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
401 msgbufenabled = 0;
402 return (ENXIO);
403 }
404 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
405 case KERN_FSYNC:
406 return (sysctl_rdint(oldp, oldlenp, newp, 1));
407 case KERN_SYSVMSG:
408 #ifdef SYSVMSG
409 return (sysctl_rdint(oldp, oldlenp, newp, 1));
410 #else
411 return (sysctl_rdint(oldp, oldlenp, newp, 0));
412 #endif
413 case KERN_SYSVSEM:
414 #ifdef SYSVSEM
415 return (sysctl_rdint(oldp, oldlenp, newp, 1));
416 #else
417 return (sysctl_rdint(oldp, oldlenp, newp, 0));
418 #endif
419 case KERN_SYSVSHM:
420 #ifdef SYSVSHM
421 return (sysctl_rdint(oldp, oldlenp, newp, 1));
422 #else
423 return (sysctl_rdint(oldp, oldlenp, newp, 0));
424 #endif
425 case KERN_DEFCORENAME:
426 if (newp && newlen < 1)
427 return (EINVAL);
428 error = sysctl_string(oldp, oldlenp, newp, newlen,
429 defcorename, sizeof(defcorename));
430 if (newp && !error)
431 defcorenamelen = newlen;
432 return (error);
433 case KERN_SYNCHRONIZED_IO:
434 return (sysctl_rdint(oldp, oldlenp, newp, 1));
435 case KERN_IOV_MAX:
436 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
437 case KERN_MBUF:
438 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
439 newp, newlen));
440 case KERN_MAPPED_FILES:
441 return (sysctl_rdint(oldp, oldlenp, newp, 1));
442 case KERN_MEMLOCK:
443 return (sysctl_rdint(oldp, oldlenp, newp, 1));
444 case KERN_MEMLOCK_RANGE:
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 case KERN_MEMORY_PROTECTION:
447 return (sysctl_rdint(oldp, oldlenp, newp, 1));
448 case KERN_LOGIN_NAME_MAX:
449 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
450 case KERN_LOGSIGEXIT:
451 return (sysctl_int(oldp, oldlenp, newp, newlen,
452 &kern_logsigexit));
453 case KERN_FSCALE:
454 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
455 case KERN_CCPU:
456 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
457 case KERN_CP_TIME:
458 /* XXXSMP: WRONG! */
459 return (sysctl_rdstruct(oldp, oldlenp, newp,
460 curcpu()->ci_schedstate.spc_cp_time,
461 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
462 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
463 case KERN_SYSVIPC_INFO:
464 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
465 #endif
466 case KERN_MSGBUF:
467 return (sysctl_msgbuf(oldp, oldlenp));
468 case KERN_CONSDEV:
469 if (cn_tab != NULL)
470 consdev = cn_tab->cn_dev;
471 else
472 consdev = NODEV;
473 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
474 sizeof consdev));
475 default:
476 return (EOPNOTSUPP);
477 }
478 /* NOTREACHED */
479 }
480
481 /*
482 * hardware related system variables.
483 */
484 int
485 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
486 int *name;
487 u_int namelen;
488 void *oldp;
489 size_t *oldlenp;
490 void *newp;
491 size_t newlen;
492 struct proc *p;
493 {
494
495 /* all sysctl names at this level are terminal */
496 if (namelen != 1)
497 return (ENOTDIR); /* overloaded */
498
499 switch (name[0]) {
500 case HW_MACHINE:
501 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
502 case HW_MACHINE_ARCH:
503 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
504 case HW_MODEL:
505 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
506 case HW_NCPU:
507 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
508 case HW_BYTEORDER:
509 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
510 case HW_PHYSMEM:
511 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
512 case HW_USERMEM:
513 return (sysctl_rdint(oldp, oldlenp, newp,
514 ctob(physmem - uvmexp.wired)));
515 case HW_PAGESIZE:
516 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
517 case HW_ALIGNBYTES:
518 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
519 default:
520 return (EOPNOTSUPP);
521 }
522 /* NOTREACHED */
523 }
524
525 #ifdef DEBUG
526 /*
527 * Debugging related system variables.
528 */
529 struct ctldebug debug0, debug1, debug2, debug3, debug4;
530 struct ctldebug debug5, debug6, debug7, debug8, debug9;
531 struct ctldebug debug10, debug11, debug12, debug13, debug14;
532 struct ctldebug debug15, debug16, debug17, debug18, debug19;
533 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
534 &debug0, &debug1, &debug2, &debug3, &debug4,
535 &debug5, &debug6, &debug7, &debug8, &debug9,
536 &debug10, &debug11, &debug12, &debug13, &debug14,
537 &debug15, &debug16, &debug17, &debug18, &debug19,
538 };
539 int
540 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
541 int *name;
542 u_int namelen;
543 void *oldp;
544 size_t *oldlenp;
545 void *newp;
546 size_t newlen;
547 struct proc *p;
548 {
549 struct ctldebug *cdp;
550
551 /* all sysctl names at this level are name and field */
552 if (namelen != 2)
553 return (ENOTDIR); /* overloaded */
554 cdp = debugvars[name[0]];
555 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
556 return (EOPNOTSUPP);
557 switch (name[1]) {
558 case CTL_DEBUG_NAME:
559 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
560 case CTL_DEBUG_VALUE:
561 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
562 default:
563 return (EOPNOTSUPP);
564 }
565 /* NOTREACHED */
566 }
567 #endif /* DEBUG */
568
569 int
570 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
571 int *name;
572 u_int namelen;
573 void *oldp;
574 size_t *oldlenp;
575 void *newp;
576 size_t newlen;
577 struct proc *p;
578 {
579 struct proc *ptmp = NULL;
580 int error = 0;
581 struct rlimit alim;
582 struct plimit *newplim;
583 char *tmps = NULL;
584 int i, curlen, len;
585
586 if (namelen < 2)
587 return EINVAL;
588
589 if (name[0] == PROC_CURPROC) {
590 ptmp = p;
591 } else if ((ptmp = pfind((pid_t)name[0])) == NULL) {
592 return (ESRCH);
593 } else {
594 if (p->p_ucred->cr_uid != 0) {
595 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
596 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
597 return EPERM;
598 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
599 return EPERM; /* sgid proc */
600 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
601 if (p->p_ucred->cr_groups[i] ==
602 ptmp->p_cred->p_rgid)
603 break;
604 }
605 if (i == p->p_ucred->cr_ngroups)
606 return EPERM;
607 }
608 }
609 if (name[1] == PROC_PID_CORENAME) {
610 if (namelen != 2)
611 return EINVAL;
612 /*
613 * Can't use sysctl_string() here because we may malloc a new
614 * area during the process, so we have to do it by hand.
615 */
616 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
617 if (oldlenp && *oldlenp < curlen) {
618 if (!oldp)
619 *oldlenp = curlen;
620 return (ENOMEM);
621 }
622 if (newp) {
623 if (securelevel > 2)
624 return EPERM;
625 if (newlen > MAXPATHLEN)
626 return ENAMETOOLONG;
627 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
628 if (tmps == NULL)
629 return ENOMEM;
630 error = copyin(newp, tmps, newlen + 1);
631 tmps[newlen] = '\0';
632 if (error)
633 goto cleanup;
634 /* Enforce to be either 'core' for end with '.core' */
635 if (newlen < 4) { /* c.o.r.e */
636 error = EINVAL;
637 goto cleanup;
638 }
639 len = newlen - 4;
640 if (len > 0) {
641 if (tmps[len - 1] != '.' &&
642 tmps[len - 1] != '/') {
643 error = EINVAL;
644 goto cleanup;
645 }
646 }
647 if (strcmp(&tmps[len], "core") != 0) {
648 error = EINVAL;
649 goto cleanup;
650 }
651 }
652 if (oldp && oldlenp) {
653 *oldlenp = curlen;
654 error = copyout(ptmp->p_limit->pl_corename, oldp,
655 curlen);
656 }
657 if (newp && error == 0) {
658 /* if the 2 strings are identical, don't limcopy() */
659 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
660 error = 0;
661 goto cleanup;
662 }
663 if (ptmp->p_limit->p_refcnt > 1 &&
664 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
665 newplim = limcopy(ptmp->p_limit);
666 limfree(ptmp->p_limit);
667 ptmp->p_limit = newplim;
668 }
669 if (ptmp->p_limit->pl_corename != defcorename) {
670 free(ptmp->p_limit->pl_corename, M_TEMP);
671 }
672 ptmp->p_limit->pl_corename = tmps;
673 return (0);
674 }
675 cleanup:
676 if (tmps)
677 free(tmps, M_TEMP);
678 return (error);
679 }
680 if (name[1] == PROC_PID_LIMIT) {
681 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
682 return EINVAL;
683 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
684 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
685 error = sysctl_quad(oldp, oldlenp, newp, newlen,
686 &alim.rlim_max);
687 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
688 error = sysctl_quad(oldp, oldlenp, newp, newlen,
689 &alim.rlim_cur);
690 else
691 error = EINVAL;
692
693 if (error)
694 return error;
695
696 if (newp)
697 error = dosetrlimit(ptmp, p->p_cred,
698 name[2] - 1, &alim);
699 return error;
700 }
701 return (EINVAL);
702 }
703
704 /*
705 * Convenience macros.
706 */
707
708 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
709 if (oldlenp) { \
710 if (!oldp) \
711 *oldlenp = len; \
712 else { \
713 if (*oldlenp < len) \
714 return(ENOMEM); \
715 *oldlenp = len; \
716 error = copyout((caddr_t)valp, oldp, len); \
717 } \
718 }
719
720 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
721 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
722
723 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
724 if (newp && newlen != len) \
725 return (EINVAL);
726
727 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
728 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
729
730 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
731 if (error == 0 && newp) \
732 error = copyin(newp, valp, len);
733
734 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
735 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
736
737 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
738 if (oldlenp) { \
739 len = strlen(str) + 1; \
740 if (!oldp) \
741 *oldlenp = len; \
742 else { \
743 if (*oldlenp < len) { \
744 err2 = ENOMEM; \
745 len = *oldlenp; \
746 } else \
747 *oldlenp = len; \
748 error = copyout(str, oldp, len);\
749 if (error == 0) \
750 error = err2; \
751 } \
752 }
753
754 /*
755 * Validate parameters and get old / set new parameters
756 * for an integer-valued sysctl function.
757 */
758 int
759 sysctl_int(oldp, oldlenp, newp, newlen, valp)
760 void *oldp;
761 size_t *oldlenp;
762 void *newp;
763 size_t newlen;
764 int *valp;
765 {
766 int error = 0;
767
768 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
769 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
770 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
771
772 return (error);
773 }
774
775
776 /*
777 * As above, but read-only.
778 */
779 int
780 sysctl_rdint(oldp, oldlenp, newp, val)
781 void *oldp;
782 size_t *oldlenp;
783 void *newp;
784 int val;
785 {
786 int error = 0;
787
788 if (newp)
789 return (EPERM);
790
791 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
792
793 return (error);
794 }
795
796 /*
797 * Validate parameters and get old / set new parameters
798 * for an quad-valued sysctl function.
799 */
800 int
801 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
802 void *oldp;
803 size_t *oldlenp;
804 void *newp;
805 size_t newlen;
806 quad_t *valp;
807 {
808 int error = 0;
809
810 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
811 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
812 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
813
814 return (error);
815 }
816
817 /*
818 * As above, but read-only.
819 */
820 int
821 sysctl_rdquad(oldp, oldlenp, newp, val)
822 void *oldp;
823 size_t *oldlenp;
824 void *newp;
825 quad_t val;
826 {
827 int error = 0;
828
829 if (newp)
830 return (EPERM);
831
832 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
833
834 return (error);
835 }
836
837 /*
838 * Validate parameters and get old / set new parameters
839 * for a string-valued sysctl function.
840 */
841 int
842 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
843 void *oldp;
844 size_t *oldlenp;
845 void *newp;
846 size_t newlen;
847 char *str;
848 int maxlen;
849 {
850 int len, error = 0, err2 = 0;
851
852 if (newp && newlen >= maxlen)
853 return (EINVAL);
854
855 SYSCTL_STRING_CORE(oldp, oldlenp, str);
856
857 if (error == 0 && newp) {
858 error = copyin(newp, str, newlen);
859 str[newlen] = 0;
860 }
861 return (error);
862 }
863
864 /*
865 * As above, but read-only.
866 */
867 int
868 sysctl_rdstring(oldp, oldlenp, newp, str)
869 void *oldp;
870 size_t *oldlenp;
871 void *newp;
872 const char *str;
873 {
874 int len, error = 0, err2 = 0;
875
876 if (newp)
877 return (EPERM);
878
879 SYSCTL_STRING_CORE(oldp, oldlenp, str);
880
881 return (error);
882 }
883
884 /*
885 * Validate parameters and get old / set new parameters
886 * for a structure oriented sysctl function.
887 */
888 int
889 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
890 void *oldp;
891 size_t *oldlenp;
892 void *newp;
893 size_t newlen;
894 void *sp;
895 int len;
896 {
897 int error = 0;
898
899 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
900 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
901 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
902
903 return (error);
904 }
905
906 /*
907 * Validate parameters and get old parameters
908 * for a structure oriented sysctl function.
909 */
910 int
911 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
912 void *oldp;
913 size_t *oldlenp;
914 void *newp;
915 const void *sp;
916 int len;
917 {
918 int error = 0;
919
920 if (newp)
921 return (EPERM);
922
923 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
924
925 return (error);
926 }
927
928 /*
929 * Get file structures.
930 */
931 static int
932 sysctl_file(vwhere, sizep)
933 void *vwhere;
934 size_t *sizep;
935 {
936 int buflen, error;
937 struct file *fp;
938 char *start, *where;
939
940 start = where = vwhere;
941 buflen = *sizep;
942 if (where == NULL) {
943 /*
944 * overestimate by 10 files
945 */
946 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
947 return (0);
948 }
949
950 /*
951 * first copyout filehead
952 */
953 if (buflen < sizeof(filehead)) {
954 *sizep = 0;
955 return (0);
956 }
957 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
958 if (error)
959 return (error);
960 buflen -= sizeof(filehead);
961 where += sizeof(filehead);
962
963 /*
964 * followed by an array of file structures
965 */
966 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
967 if (buflen < sizeof(struct file)) {
968 *sizep = where - start;
969 return (ENOMEM);
970 }
971 error = copyout((caddr_t)fp, where, sizeof(struct file));
972 if (error)
973 return (error);
974 buflen -= sizeof(struct file);
975 where += sizeof(struct file);
976 }
977 *sizep = where - start;
978 return (0);
979 }
980
981 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
982 #define FILL_PERM(src, dst) do { \
983 (dst)._key = (src)._key; \
984 (dst).uid = (src).uid; \
985 (dst).gid = (src).gid; \
986 (dst).cuid = (src).cuid; \
987 (dst).cgid = (src).cgid; \
988 (dst).mode = (src).mode; \
989 (dst)._seq = (src)._seq; \
990 } while (0);
991 #define FILL_MSG(src, dst) do { \
992 FILL_PERM((src).msg_perm, (dst).msg_perm); \
993 (dst).msg_qnum = (src).msg_qnum; \
994 (dst).msg_qbytes = (src).msg_qbytes; \
995 (dst)._msg_cbytes = (src)._msg_cbytes; \
996 (dst).msg_lspid = (src).msg_lspid; \
997 (dst).msg_lrpid = (src).msg_lrpid; \
998 (dst).msg_stime = (src).msg_stime; \
999 (dst).msg_rtime = (src).msg_rtime; \
1000 (dst).msg_ctime = (src).msg_ctime; \
1001 } while (0)
1002 #define FILL_SEM(src, dst) do { \
1003 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1004 (dst).sem_nsems = (src).sem_nsems; \
1005 (dst).sem_otime = (src).sem_otime; \
1006 (dst).sem_ctime = (src).sem_ctime; \
1007 } while (0)
1008 #define FILL_SHM(src, dst) do { \
1009 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1010 (dst).shm_segsz = (src).shm_segsz; \
1011 (dst).shm_lpid = (src).shm_lpid; \
1012 (dst).shm_cpid = (src).shm_cpid; \
1013 (dst).shm_atime = (src).shm_atime; \
1014 (dst).shm_dtime = (src).shm_dtime; \
1015 (dst).shm_ctime = (src).shm_ctime; \
1016 (dst).shm_nattch = (src).shm_nattch; \
1017 } while (0)
1018
1019 static int
1020 sysctl_sysvipc(name, namelen, where, sizep)
1021 int *name;
1022 u_int namelen;
1023 void *where;
1024 size_t *sizep;
1025 {
1026 #ifdef SYSVMSG
1027 struct msg_sysctl_info *msgsi;
1028 #endif
1029 #ifdef SYSVSEM
1030 struct sem_sysctl_info *semsi;
1031 #endif
1032 #ifdef SYSVSHM
1033 struct shm_sysctl_info *shmsi;
1034 #endif
1035 size_t infosize, dssize, tsize, buflen;
1036 void *buf = NULL, *buf2;
1037 char *start;
1038 int32_t nds;
1039 int i, error, ret;
1040
1041 if (namelen != 1)
1042 return (EINVAL);
1043
1044 start = where;
1045 buflen = *sizep;
1046
1047 switch (*name) {
1048 case KERN_SYSVIPC_MSG_INFO:
1049 #ifdef SYSVMSG
1050 infosize = sizeof(msgsi->msginfo);
1051 nds = msginfo.msgmni;
1052 dssize = sizeof(msgsi->msgids[0]);
1053 break;
1054 #else
1055 return (EINVAL);
1056 #endif
1057 case KERN_SYSVIPC_SEM_INFO:
1058 #ifdef SYSVSEM
1059 infosize = sizeof(semsi->seminfo);
1060 nds = seminfo.semmni;
1061 dssize = sizeof(semsi->semids[0]);
1062 break;
1063 #else
1064 return (EINVAL);
1065 #endif
1066 case KERN_SYSVIPC_SHM_INFO:
1067 #ifdef SYSVSHM
1068 infosize = sizeof(shmsi->shminfo);
1069 nds = shminfo.shmmni;
1070 dssize = sizeof(shmsi->shmids[0]);
1071 break;
1072 #else
1073 return (EINVAL);
1074 #endif
1075 default:
1076 return (EINVAL);
1077 }
1078 /*
1079 * Round infosize to 64 bit boundary if requesting more than just
1080 * the info structure or getting the total data size.
1081 */
1082 if (where == NULL || *sizep > infosize)
1083 infosize = ((infosize + 7) / 8) * 8;
1084 tsize = infosize + nds * dssize;
1085
1086 /* Return just the total size required. */
1087 if (where == NULL) {
1088 *sizep = tsize;
1089 return (0);
1090 }
1091
1092 /* Not enough room for even the info struct. */
1093 if (buflen < infosize) {
1094 *sizep = 0;
1095 return (ENOMEM);
1096 }
1097 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1098 memset(buf, 0, min(tsize, buflen));
1099
1100 switch (*name) {
1101 #ifdef SYSVMSG
1102 case KERN_SYSVIPC_MSG_INFO:
1103 msgsi = (struct msg_sysctl_info *)buf;
1104 buf2 = &msgsi->msgids[0];
1105 msgsi->msginfo = msginfo;
1106 break;
1107 #endif
1108 #ifdef SYSVSEM
1109 case KERN_SYSVIPC_SEM_INFO:
1110 semsi = (struct sem_sysctl_info *)buf;
1111 buf2 = &semsi->semids[0];
1112 semsi->seminfo = seminfo;
1113 break;
1114 #endif
1115 #ifdef SYSVSHM
1116 case KERN_SYSVIPC_SHM_INFO:
1117 shmsi = (struct shm_sysctl_info *)buf;
1118 buf2 = &shmsi->shmids[0];
1119 shmsi->shminfo = shminfo;
1120 break;
1121 #endif
1122 }
1123 buflen -= infosize;
1124
1125 ret = 0;
1126 if (buflen > 0) {
1127 /* Fill in the IPC data structures. */
1128 for (i = 0; i < nds; i++) {
1129 if (buflen < dssize) {
1130 ret = ENOMEM;
1131 break;
1132 }
1133 switch (*name) {
1134 #ifdef SYSVMSG
1135 case KERN_SYSVIPC_MSG_INFO:
1136 FILL_MSG(msqids[i], msgsi->msgids[i]);
1137 break;
1138 #endif
1139 #ifdef SYSVSEM
1140 case KERN_SYSVIPC_SEM_INFO:
1141 FILL_SEM(sema[i], semsi->semids[i]);
1142 break;
1143 #endif
1144 #ifdef SYSVSHM
1145 case KERN_SYSVIPC_SHM_INFO:
1146 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1147 break;
1148 #endif
1149 }
1150 buflen -= dssize;
1151 }
1152 }
1153 *sizep -= buflen;
1154 error = copyout(buf, start, *sizep);
1155 /* If copyout succeeded, use return code set earlier. */
1156 if (error == 0)
1157 error = ret;
1158 if (buf)
1159 free(buf, M_TEMP);
1160 return (error);
1161 }
1162 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1163
1164 static int
1165 sysctl_msgbuf(vwhere, sizep)
1166 void *vwhere;
1167 size_t *sizep;
1168 {
1169 char *where = vwhere;
1170 size_t len, maxlen = *sizep;
1171 long pos;
1172 int error;
1173
1174 /*
1175 * deal with cases where the message buffer has
1176 * become corrupted.
1177 */
1178 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1179 msgbufenabled = 0;
1180 return (ENXIO);
1181 }
1182
1183 if (where == NULL) {
1184 /* always return full buffer size */
1185 *sizep = msgbufp->msg_bufs;
1186 return (0);
1187 }
1188
1189 error = 0;
1190 maxlen = min(msgbufp->msg_bufs, maxlen);
1191 pos = msgbufp->msg_bufx;
1192 while (maxlen > 0) {
1193 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1194 len = min(len, maxlen);
1195 if (len == 0)
1196 break;
1197 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1198 if (error)
1199 break;
1200 where += len;
1201 maxlen -= len;
1202 pos = 0;
1203 }
1204 return (error);
1205 }
1206
1207 /*
1208 * try over estimating by 5 procs
1209 */
1210 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1211
1212 static int
1213 sysctl_doeproc(name, namelen, vwhere, sizep)
1214 int *name;
1215 u_int namelen;
1216 void *vwhere;
1217 size_t *sizep;
1218 {
1219 struct eproc eproc;
1220 struct kinfo_proc2 kproc2;
1221 struct kinfo_proc *dp;
1222 struct proc *p;
1223 const struct proclist_desc *pd;
1224 char *where, *dp2;
1225 int type, op, arg, elem_size, elem_count;
1226 int buflen, needed, error;
1227
1228 dp = vwhere;
1229 dp2 = where = vwhere;
1230 buflen = where != NULL ? *sizep : 0;
1231 error = needed = 0;
1232 type = name[0];
1233
1234 if (type == KERN_PROC) {
1235 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1236 return (EINVAL);
1237 op = name[1];
1238 if (op != KERN_PROC_ALL)
1239 arg = name[2];
1240 } else {
1241 if (namelen != 5)
1242 return (EINVAL);
1243 op = name[1];
1244 arg = name[2];
1245 elem_size = name[3];
1246 elem_count = name[4];
1247 }
1248
1249 proclist_lock_read();
1250
1251 pd = proclists;
1252 again:
1253 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1254 /*
1255 * Skip embryonic processes.
1256 */
1257 if (p->p_stat == SIDL)
1258 continue;
1259 /*
1260 * TODO - make more efficient (see notes below).
1261 * do by session.
1262 */
1263 switch (op) {
1264
1265 case KERN_PROC_PID:
1266 /* could do this with just a lookup */
1267 if (p->p_pid != (pid_t)arg)
1268 continue;
1269 break;
1270
1271 case KERN_PROC_PGRP:
1272 /* could do this by traversing pgrp */
1273 if (p->p_pgrp->pg_id != (pid_t)arg)
1274 continue;
1275 break;
1276
1277 case KERN_PROC_SESSION:
1278 if (p->p_session->s_sid != (pid_t)arg)
1279 continue;
1280 break;
1281
1282 case KERN_PROC_TTY:
1283 if (arg == KERN_PROC_TTY_REVOKE) {
1284 if ((p->p_flag & P_CONTROLT) == 0 ||
1285 p->p_session->s_ttyp == NULL ||
1286 p->p_session->s_ttyvp != NULL)
1287 continue;
1288 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1289 p->p_session->s_ttyp == NULL) {
1290 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1291 continue;
1292 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1293 continue;
1294 break;
1295
1296 case KERN_PROC_UID:
1297 if (p->p_ucred->cr_uid != (uid_t)arg)
1298 continue;
1299 break;
1300
1301 case KERN_PROC_RUID:
1302 if (p->p_cred->p_ruid != (uid_t)arg)
1303 continue;
1304 break;
1305
1306 case KERN_PROC_GID:
1307 if (p->p_ucred->cr_gid != (uid_t)arg)
1308 continue;
1309 break;
1310
1311 case KERN_PROC_RGID:
1312 if (p->p_cred->p_rgid != (uid_t)arg)
1313 continue;
1314 break;
1315
1316 case KERN_PROC_ALL:
1317 /* allow everything */
1318 break;
1319
1320 default:
1321 error = EINVAL;
1322 goto cleanup;
1323 }
1324 if (type == KERN_PROC) {
1325 if (buflen >= sizeof(struct kinfo_proc)) {
1326 fill_eproc(p, &eproc);
1327 error = copyout((caddr_t)p, &dp->kp_proc,
1328 sizeof(struct proc));
1329 if (error)
1330 goto cleanup;
1331 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1332 sizeof(eproc));
1333 if (error)
1334 goto cleanup;
1335 dp++;
1336 buflen -= sizeof(struct kinfo_proc);
1337 }
1338 needed += sizeof(struct kinfo_proc);
1339 } else { /* KERN_PROC2 */
1340 if (buflen >= elem_size && elem_count > 0) {
1341 fill_kproc2(p, &kproc2);
1342 /*
1343 * Copy out elem_size, but not larger than
1344 * the size of a struct kinfo_proc2.
1345 */
1346 error = copyout(&kproc2, dp2,
1347 min(sizeof(kproc2), elem_size));
1348 if (error)
1349 goto cleanup;
1350 dp2 += elem_size;
1351 buflen -= elem_size;
1352 elem_count--;
1353 }
1354 needed += elem_size;
1355 }
1356 }
1357 pd++;
1358 if (pd->pd_list != NULL)
1359 goto again;
1360 proclist_unlock_read();
1361
1362 if (where != NULL) {
1363 if (type == KERN_PROC)
1364 *sizep = (caddr_t)dp - where;
1365 else
1366 *sizep = dp2 - where;
1367 if (needed > *sizep)
1368 return (ENOMEM);
1369 } else {
1370 needed += KERN_PROCSLOP;
1371 *sizep = needed;
1372 }
1373 return (0);
1374 cleanup:
1375 proclist_unlock_read();
1376 return (error);
1377 }
1378
1379 /*
1380 * Fill in an eproc structure for the specified process.
1381 */
1382 void
1383 fill_eproc(p, ep)
1384 struct proc *p;
1385 struct eproc *ep;
1386 {
1387 struct tty *tp;
1388
1389 ep->e_paddr = p;
1390 ep->e_sess = p->p_session;
1391 ep->e_pcred = *p->p_cred;
1392 ep->e_ucred = *p->p_ucred;
1393 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1394 ep->e_vm.vm_rssize = 0;
1395 ep->e_vm.vm_tsize = 0;
1396 ep->e_vm.vm_dsize = 0;
1397 ep->e_vm.vm_ssize = 0;
1398 /* ep->e_vm.vm_pmap = XXX; */
1399 } else {
1400 struct vmspace *vm = p->p_vmspace;
1401
1402 ep->e_vm.vm_rssize = vm_resident_count(vm);
1403 ep->e_vm.vm_tsize = vm->vm_tsize;
1404 ep->e_vm.vm_dsize = vm->vm_dsize;
1405 ep->e_vm.vm_ssize = vm->vm_ssize;
1406 }
1407 if (p->p_pptr)
1408 ep->e_ppid = p->p_pptr->p_pid;
1409 else
1410 ep->e_ppid = 0;
1411 ep->e_pgid = p->p_pgrp->pg_id;
1412 ep->e_sid = ep->e_sess->s_sid;
1413 ep->e_jobc = p->p_pgrp->pg_jobc;
1414 if ((p->p_flag & P_CONTROLT) &&
1415 (tp = ep->e_sess->s_ttyp)) {
1416 ep->e_tdev = tp->t_dev;
1417 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1418 ep->e_tsess = tp->t_session;
1419 } else
1420 ep->e_tdev = NODEV;
1421 if (p->p_wmesg)
1422 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1423 ep->e_xsize = ep->e_xrssize = 0;
1424 ep->e_xccount = ep->e_xswrss = 0;
1425 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1426 if (SESS_LEADER(p))
1427 ep->e_flag |= EPROC_SLEADER;
1428 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1429 }
1430
1431 /*
1432 * Fill in an eproc structure for the specified process.
1433 */
1434 static void
1435 fill_kproc2(p, ki)
1436 struct proc *p;
1437 struct kinfo_proc2 *ki;
1438 {
1439 struct tty *tp;
1440
1441 memset(ki, 0, sizeof(*ki));
1442
1443 ki->p_forw = PTRTOINT64(p->p_forw);
1444 ki->p_back = PTRTOINT64(p->p_back);
1445 ki->p_paddr = PTRTOINT64(p);
1446
1447 ki->p_addr = PTRTOINT64(p->p_addr);
1448 ki->p_fd = PTRTOINT64(p->p_fd);
1449 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1450 ki->p_stats = PTRTOINT64(p->p_stats);
1451 ki->p_limit = PTRTOINT64(p->p_limit);
1452 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1453 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1454 ki->p_sess = PTRTOINT64(p->p_session);
1455 ki->p_tsess = 0; /* may be changed if controlling tty below */
1456 ki->p_ru = PTRTOINT64(p->p_ru);
1457
1458 ki->p_eflag = 0;
1459 ki->p_exitsig = p->p_exitsig;
1460 ki->p_flag = p->p_flag;
1461
1462 ki->p_pid = p->p_pid;
1463 if (p->p_pptr)
1464 ki->p_ppid = p->p_pptr->p_pid;
1465 else
1466 ki->p_ppid = 0;
1467 ki->p_sid = p->p_session->s_sid;
1468 ki->p__pgid = p->p_pgrp->pg_id;
1469
1470 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1471
1472 ki->p_uid = p->p_ucred->cr_uid;
1473 ki->p_ruid = p->p_cred->p_ruid;
1474 ki->p_gid = p->p_ucred->cr_gid;
1475 ki->p_rgid = p->p_cred->p_rgid;
1476
1477 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1478 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1479 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1480
1481 ki->p_jobc = p->p_pgrp->pg_jobc;
1482 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1483 ki->p_tdev = tp->t_dev;
1484 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1485 ki->p_tsess = PTRTOINT64(tp->t_session);
1486 } else {
1487 ki->p_tdev = NODEV;
1488 }
1489
1490 ki->p_estcpu = p->p_estcpu;
1491 ki->p_rtime_sec = p->p_rtime.tv_sec;
1492 ki->p_rtime_usec = p->p_rtime.tv_usec;
1493 ki->p_cpticks = p->p_cpticks;
1494 ki->p_pctcpu = p->p_pctcpu;
1495 ki->p_swtime = p->p_swtime;
1496 ki->p_slptime = p->p_slptime;
1497 if (p->p_stat == SONPROC) {
1498 KDASSERT(p->p_cpu != NULL);
1499 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1500 } else
1501 ki->p_schedflags = 0;
1502
1503 ki->p_uticks = p->p_uticks;
1504 ki->p_sticks = p->p_sticks;
1505 ki->p_iticks = p->p_iticks;
1506
1507 ki->p_tracep = PTRTOINT64(p->p_tracep);
1508 ki->p_traceflag = p->p_traceflag;
1509
1510 ki->p_holdcnt = p->p_holdcnt;
1511
1512 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1513 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1514 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1515 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1516
1517 ki->p_stat = p->p_stat;
1518 ki->p_priority = p->p_priority;
1519 ki->p_usrpri = p->p_usrpri;
1520 ki->p_nice = p->p_nice;
1521
1522 ki->p_xstat = p->p_xstat;
1523 ki->p_acflag = p->p_acflag;
1524
1525 strncpy(ki->p_comm, p->p_comm,
1526 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1527
1528 if (p->p_wmesg)
1529 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1530 ki->p_wchan = PTRTOINT64(p->p_wchan);
1531
1532 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1533
1534 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1535 ki->p_vm_rssize = 0;
1536 ki->p_vm_tsize = 0;
1537 ki->p_vm_dsize = 0;
1538 ki->p_vm_ssize = 0;
1539 } else {
1540 struct vmspace *vm = p->p_vmspace;
1541
1542 ki->p_vm_rssize = vm_resident_count(vm);
1543 ki->p_vm_tsize = vm->vm_tsize;
1544 ki->p_vm_dsize = vm->vm_dsize;
1545 ki->p_vm_ssize = vm->vm_ssize;
1546 }
1547
1548 if (p->p_session->s_ttyvp)
1549 ki->p_eflag |= EPROC_CTTY;
1550 if (SESS_LEADER(p))
1551 ki->p_eflag |= EPROC_SLEADER;
1552
1553 /* XXX Is this double check necessary? */
1554 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1555 ki->p_uvalid = 0;
1556 } else {
1557 ki->p_uvalid = 1;
1558
1559 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1560 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1561
1562 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1563 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1564 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1565 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1566
1567 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1568 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1569 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1570 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1571 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1572 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1573 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1574 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1575 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1576 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1577 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1578 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1579 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1580 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1581
1582 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1583 p->p_stats->p_cru.ru_stime.tv_sec;
1584 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1585 p->p_stats->p_cru.ru_stime.tv_usec;
1586 }
1587 }
1588
1589 int
1590 sysctl_procargs(name, namelen, where, sizep, up)
1591 int *name;
1592 u_int namelen;
1593 void *where;
1594 size_t *sizep;
1595 struct proc *up;
1596 {
1597 struct ps_strings pss;
1598 struct proc *p;
1599 size_t len, upper_bound, xlen;
1600 struct uio auio;
1601 struct iovec aiov;
1602 vaddr_t argv;
1603 pid_t pid;
1604 int nargv, type, error, i;
1605 char *arg;
1606 char *tmp;
1607
1608 if (namelen != 2)
1609 return (EINVAL);
1610 pid = name[0];
1611 type = name[1];
1612
1613 switch (type) {
1614 case KERN_PROC_ARGV:
1615 case KERN_PROC_NARGV:
1616 case KERN_PROC_ENV:
1617 case KERN_PROC_NENV:
1618 /* ok */
1619 break;
1620 default:
1621 return (EINVAL);
1622 }
1623
1624 /* check pid */
1625 if ((p = pfind(pid)) == NULL)
1626 return (EINVAL);
1627
1628 /* only root or same user change look at the environment */
1629 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1630 if (up->p_ucred->cr_uid != 0) {
1631 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1632 up->p_cred->p_ruid != p->p_cred->p_svuid)
1633 return (EPERM);
1634 }
1635 }
1636
1637 if (sizep != NULL && where == NULL) {
1638 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1639 *sizep = sizeof (int);
1640 else
1641 *sizep = ARG_MAX; /* XXX XXX XXX */
1642 return (0);
1643 }
1644 if (where == NULL || sizep == NULL)
1645 return (EINVAL);
1646
1647 /*
1648 * Zombies don't have a stack, so we can't read their psstrings.
1649 * System processes also don't have a user stack.
1650 */
1651 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1652 return (EINVAL);
1653
1654 /*
1655 * Lock the process down in memory.
1656 */
1657 /* XXXCDC: how should locking work here? */
1658 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1659 return (EFAULT);
1660 PHOLD(p);
1661 p->p_vmspace->vm_refcnt++; /* XXX */
1662
1663 /*
1664 * Allocate a temporary buffer to hold the arguments.
1665 */
1666 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1667
1668 /*
1669 * Read in the ps_strings structure.
1670 */
1671 aiov.iov_base = &pss;
1672 aiov.iov_len = sizeof(pss);
1673 auio.uio_iov = &aiov;
1674 auio.uio_iovcnt = 1;
1675 auio.uio_offset = (vaddr_t)p->p_psstr;
1676 auio.uio_resid = sizeof(pss);
1677 auio.uio_segflg = UIO_SYSSPACE;
1678 auio.uio_rw = UIO_READ;
1679 auio.uio_procp = NULL;
1680 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1681 if (error)
1682 goto done;
1683
1684 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1685 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1686 else
1687 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1688 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1689 error = copyout(&nargv, where, sizeof(nargv));
1690 *sizep = sizeof(nargv);
1691 goto done;
1692 }
1693 /*
1694 * Now read the address of the argument vector.
1695 */
1696 switch (type) {
1697 case KERN_PROC_ARGV:
1698 /* XXX compat32 stuff here */
1699 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1700 break;
1701 case KERN_PROC_ENV:
1702 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1703 break;
1704 default:
1705 return (EINVAL);
1706 }
1707 auio.uio_offset = (off_t)(long)tmp;
1708 aiov.iov_base = &argv;
1709 aiov.iov_len = sizeof(argv);
1710 auio.uio_iov = &aiov;
1711 auio.uio_iovcnt = 1;
1712 auio.uio_resid = sizeof(argv);
1713 auio.uio_segflg = UIO_SYSSPACE;
1714 auio.uio_rw = UIO_READ;
1715 auio.uio_procp = NULL;
1716 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1717 if (error)
1718 goto done;
1719
1720 /*
1721 * Now copy in the actual argument vector, one page at a time,
1722 * since we don't know how long the vector is (though, we do
1723 * know how many NUL-terminated strings are in the vector).
1724 */
1725 len = 0;
1726 upper_bound = *sizep;
1727 for (; nargv != 0 && len < upper_bound; len += xlen) {
1728 aiov.iov_base = arg;
1729 aiov.iov_len = PAGE_SIZE;
1730 auio.uio_iov = &aiov;
1731 auio.uio_iovcnt = 1;
1732 auio.uio_offset = argv + len;
1733 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1734 auio.uio_resid = xlen;
1735 auio.uio_segflg = UIO_SYSSPACE;
1736 auio.uio_rw = UIO_READ;
1737 auio.uio_procp = NULL;
1738 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1739 if (error)
1740 goto done;
1741
1742 for (i = 0; i < xlen && nargv != 0; i++) {
1743 if (arg[i] == '\0')
1744 nargv--; /* one full string */
1745 }
1746
1747 /* make sure we don't copyout past the end of the user's buffer */
1748 if (len + i > upper_bound)
1749 i = upper_bound - len;
1750
1751 error = copyout(arg, (char *)where + len, i);
1752 if (error)
1753 break;
1754
1755 if (nargv == 0) {
1756 len += i;
1757 break;
1758 }
1759 }
1760 *sizep = len;
1761
1762 done:
1763 PRELE(p);
1764 uvmspace_free(p->p_vmspace);
1765
1766 free(arg, M_TEMP);
1767 return (error);
1768 }
1769