kern_sysctl.c revision 1.73.2.7 1 /* $NetBSD: kern_sysctl.c,v 1.73.2.7 2003/08/27 08:41:14 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #define __SYSCTL_PRIVATE
72 #include <sys/sysctl.h>
73 #include <sys/lock.h>
74
75 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
76 #include <sys/ipc.h>
77 #endif
78 #ifdef SYSVMSG
79 #include <sys/msg.h>
80 #endif
81 #ifdef SYSVSEM
82 #include <sys/sem.h>
83 #endif
84 #ifdef SYSVSHM
85 #include <sys/shm.h>
86 #endif
87
88 #include <dev/cons.h>
89
90 #if defined(DDB)
91 #include <ddb/ddbvar.h>
92 #endif
93
94 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
95
96 static int sysctl_file __P((void *, size_t *));
97 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
98 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
99 #endif
100 static int sysctl_msgbuf __P((void *, size_t *));
101 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
102 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
103 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
104
105 /*
106 * The `sysctl_memlock' is intended to keep too many processes from
107 * locking down memory by doing sysctls at once. Whether or not this
108 * is really a good idea to worry about it probably a subject of some
109 * debate.
110 */
111 struct lock sysctl_memlock;
112
113 void
114 sysctl_init(void)
115 {
116
117 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
118 }
119
120 int
121 sys___sysctl(p, v, retval)
122 struct proc *p;
123 void *v;
124 register_t *retval;
125 {
126 struct sys___sysctl_args /* {
127 syscallarg(int *) name;
128 syscallarg(u_int) namelen;
129 syscallarg(void *) old;
130 syscallarg(size_t *) oldlenp;
131 syscallarg(void *) new;
132 syscallarg(size_t) newlen;
133 } */ *uap = v;
134 int error;
135 size_t savelen = 0, oldlen = 0;
136 sysctlfn *fn;
137 int name[CTL_MAXNAME];
138
139 /*
140 * all top-level sysctl names are non-terminal
141 */
142 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
143 return (EINVAL);
144 error = copyin(SCARG(uap, name), &name,
145 SCARG(uap, namelen) * sizeof(int));
146 if (error)
147 return (error);
148
149 /*
150 * For all but CTL_PROC, must be root to change a value.
151 * For CTL_PROC, must be root, or owner of the proc (and not suid),
152 * this is checked in proc_sysctl() (once we know the targer proc).
153 */
154 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
155 (error = suser(p->p_ucred, &p->p_acflag)))
156 return error;
157
158 switch (name[0]) {
159 case CTL_KERN:
160 fn = kern_sysctl;
161 break;
162 case CTL_HW:
163 fn = hw_sysctl;
164 break;
165 case CTL_VM:
166 fn = uvm_sysctl;
167 break;
168 case CTL_NET:
169 fn = net_sysctl;
170 break;
171 case CTL_VFS:
172 fn = vfs_sysctl;
173 break;
174 case CTL_MACHDEP:
175 fn = cpu_sysctl;
176 break;
177 #ifdef DEBUG
178 case CTL_DEBUG:
179 fn = debug_sysctl;
180 break;
181 #endif
182 #ifdef DDB
183 case CTL_DDB:
184 fn = ddb_sysctl;
185 break;
186 #endif
187 case CTL_PROC:
188 fn = proc_sysctl;
189 break;
190 default:
191 return (EOPNOTSUPP);
192 }
193
194 /*
195 * XXX Hey, we wire `old', but what about `new'?
196 */
197
198 if (SCARG(uap, oldlenp)) {
199 if ((error = copyin(SCARG(uap, oldlenp), &oldlen,
200 sizeof(oldlen))))
201 return (error);
202 }
203 if (SCARG(uap, old) != NULL) {
204 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
205 if (error)
206 return (error);
207 if (uvm_vslock(p, SCARG(uap, old), oldlen,
208 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
209 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
210 return (EFAULT);
211 }
212 savelen = oldlen;
213 }
214 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
215 &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
216 if (SCARG(uap, old) != NULL) {
217 uvm_vsunlock(p, SCARG(uap, old), savelen);
218 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
219 }
220 if (error)
221 return (error);
222 if (SCARG(uap, oldlenp))
223 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
224 return (error);
225 }
226
227 /*
228 * Attributes stored in the kernel.
229 */
230 char hostname[MAXHOSTNAMELEN];
231 int hostnamelen;
232
233 char domainname[MAXHOSTNAMELEN];
234 int domainnamelen;
235
236 long hostid;
237
238 #ifdef INSECURE
239 int securelevel = -1;
240 #else
241 int securelevel = 0;
242 #endif
243
244 #ifndef DEFCORENAME
245 #define DEFCORENAME "%n.core"
246 #endif
247 char defcorename[MAXPATHLEN] = DEFCORENAME;
248 int defcorenamelen = sizeof(DEFCORENAME);
249
250 extern int kern_logsigexit;
251 extern fixpt_t ccpu;
252
253 /*
254 * kernel related system variables.
255 */
256 int
257 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
258 int *name;
259 u_int namelen;
260 void *oldp;
261 size_t *oldlenp;
262 void *newp;
263 size_t newlen;
264 struct proc *p;
265 {
266 int error, level, inthostid;
267 int old_autonicetime;
268 int old_vnodes;
269 dev_t consdev;
270
271 /* All sysctl names at this level, except for a few, are terminal. */
272 switch (name[0]) {
273 case KERN_PROC:
274 case KERN_PROC2:
275 case KERN_PROF:
276 case KERN_MBUF:
277 case KERN_PROC_ARGS:
278 case KERN_SYSVIPC_INFO:
279 /* Not terminal. */
280 break;
281 default:
282 if (namelen != 1)
283 return (ENOTDIR); /* overloaded */
284 }
285
286 switch (name[0]) {
287 case KERN_OSTYPE:
288 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
289 case KERN_OSRELEASE:
290 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
291 case KERN_OSREV:
292 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
293 case KERN_VERSION:
294 return (sysctl_rdstring(oldp, oldlenp, newp, version));
295 case KERN_MAXVNODES:
296 old_vnodes = desiredvnodes;
297 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
298 if (old_vnodes > desiredvnodes) {
299 desiredvnodes = old_vnodes;
300 return (EINVAL);
301 }
302 return (error);
303 case KERN_MAXPROC:
304 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
305 case KERN_MAXFILES:
306 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
307 case KERN_ARGMAX:
308 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
309 case KERN_SECURELVL:
310 level = securelevel;
311 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
312 newp == NULL)
313 return (error);
314 if (level < securelevel && p->p_pid != 1)
315 return (EPERM);
316 securelevel = level;
317 return (0);
318 case KERN_HOSTNAME:
319 error = sysctl_string(oldp, oldlenp, newp, newlen,
320 hostname, sizeof(hostname));
321 if (newp && !error)
322 hostnamelen = newlen;
323 return (error);
324 case KERN_DOMAINNAME:
325 error = sysctl_string(oldp, oldlenp, newp, newlen,
326 domainname, sizeof(domainname));
327 if (newp && !error)
328 domainnamelen = newlen;
329 return (error);
330 case KERN_HOSTID:
331 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
332 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
333 hostid = inthostid;
334 return (error);
335 case KERN_CLOCKRATE:
336 return (sysctl_clockrate(oldp, oldlenp));
337 case KERN_BOOTTIME:
338 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
339 sizeof(struct timeval)));
340 case KERN_VNODE:
341 return (sysctl_vnode(oldp, oldlenp, p));
342 case KERN_PROC:
343 case KERN_PROC2:
344 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
345 case KERN_PROC_ARGS:
346 return (sysctl_procargs(name + 1, namelen - 1,
347 oldp, oldlenp, p));
348 case KERN_FILE:
349 return (sysctl_file(oldp, oldlenp));
350 #ifdef GPROF
351 case KERN_PROF:
352 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
353 newp, newlen));
354 #endif
355 case KERN_POSIX1:
356 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
357 case KERN_NGROUPS:
358 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
359 case KERN_JOB_CONTROL:
360 return (sysctl_rdint(oldp, oldlenp, newp, 1));
361 case KERN_SAVED_IDS:
362 #ifdef _POSIX_SAVED_IDS
363 return (sysctl_rdint(oldp, oldlenp, newp, 1));
364 #else
365 return (sysctl_rdint(oldp, oldlenp, newp, 0));
366 #endif
367 case KERN_MAXPARTITIONS:
368 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
369 case KERN_RAWPARTITION:
370 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
371 #ifdef NTP
372 case KERN_NTPTIME:
373 return (sysctl_ntptime(oldp, oldlenp));
374 #endif
375 case KERN_AUTONICETIME:
376 old_autonicetime = autonicetime;
377 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
378 if (autonicetime < 0)
379 autonicetime = old_autonicetime;
380 return (error);
381 case KERN_AUTONICEVAL:
382 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
383 if (autoniceval < PRIO_MIN)
384 autoniceval = PRIO_MIN;
385 if (autoniceval > PRIO_MAX)
386 autoniceval = PRIO_MAX;
387 return (error);
388 case KERN_RTC_OFFSET:
389 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
390 case KERN_ROOT_DEVICE:
391 return (sysctl_rdstring(oldp, oldlenp, newp,
392 root_device->dv_xname));
393 case KERN_MSGBUFSIZE:
394 /*
395 * deal with cases where the message buffer has
396 * become corrupted.
397 */
398 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
399 msgbufenabled = 0;
400 return (ENXIO);
401 }
402 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
403 case KERN_FSYNC:
404 return (sysctl_rdint(oldp, oldlenp, newp, 1));
405 case KERN_SYSVMSG:
406 #ifdef SYSVMSG
407 return (sysctl_rdint(oldp, oldlenp, newp, 1));
408 #else
409 return (sysctl_rdint(oldp, oldlenp, newp, 0));
410 #endif
411 case KERN_SYSVSEM:
412 #ifdef SYSVSEM
413 return (sysctl_rdint(oldp, oldlenp, newp, 1));
414 #else
415 return (sysctl_rdint(oldp, oldlenp, newp, 0));
416 #endif
417 case KERN_SYSVSHM:
418 #ifdef SYSVSHM
419 return (sysctl_rdint(oldp, oldlenp, newp, 1));
420 #else
421 return (sysctl_rdint(oldp, oldlenp, newp, 0));
422 #endif
423 case KERN_DEFCORENAME:
424 if (newp && newlen < 1)
425 return (EINVAL);
426 error = sysctl_string(oldp, oldlenp, newp, newlen,
427 defcorename, sizeof(defcorename));
428 if (newp && !error)
429 defcorenamelen = newlen;
430 return (error);
431 case KERN_SYNCHRONIZED_IO:
432 return (sysctl_rdint(oldp, oldlenp, newp, 1));
433 case KERN_IOV_MAX:
434 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
435 case KERN_MBUF:
436 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
437 newp, newlen));
438 case KERN_MAPPED_FILES:
439 return (sysctl_rdint(oldp, oldlenp, newp, 1));
440 case KERN_MEMLOCK:
441 return (sysctl_rdint(oldp, oldlenp, newp, 1));
442 case KERN_MEMLOCK_RANGE:
443 return (sysctl_rdint(oldp, oldlenp, newp, 1));
444 case KERN_MEMORY_PROTECTION:
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 case KERN_LOGIN_NAME_MAX:
447 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
448 case KERN_LOGSIGEXIT:
449 return (sysctl_int(oldp, oldlenp, newp, newlen,
450 &kern_logsigexit));
451 case KERN_FSCALE:
452 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
453 case KERN_CCPU:
454 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
455 case KERN_CP_TIME:
456 /* XXXSMP: WRONG! */
457 return (sysctl_rdstruct(oldp, oldlenp, newp,
458 curcpu()->ci_schedstate.spc_cp_time,
459 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
460 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
461 case KERN_SYSVIPC_INFO:
462 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
463 #endif
464 case KERN_MSGBUF:
465 return (sysctl_msgbuf(oldp, oldlenp));
466 case KERN_CONSDEV:
467 if (cn_tab != NULL)
468 consdev = cn_tab->cn_dev;
469 else
470 consdev = NODEV;
471 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
472 sizeof consdev));
473 default:
474 return (EOPNOTSUPP);
475 }
476 /* NOTREACHED */
477 }
478
479 /*
480 * hardware related system variables.
481 */
482 int
483 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
484 int *name;
485 u_int namelen;
486 void *oldp;
487 size_t *oldlenp;
488 void *newp;
489 size_t newlen;
490 struct proc *p;
491 {
492
493 /* all sysctl names at this level are terminal */
494 if (namelen != 1)
495 return (ENOTDIR); /* overloaded */
496
497 switch (name[0]) {
498 case HW_MACHINE:
499 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
500 case HW_MACHINE_ARCH:
501 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
502 case HW_MODEL:
503 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
504 case HW_NCPU:
505 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
506 case HW_BYTEORDER:
507 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
508 case HW_PHYSMEM:
509 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
510 case HW_USERMEM:
511 return (sysctl_rdint(oldp, oldlenp, newp,
512 ctob(physmem - uvmexp.wired)));
513 case HW_PAGESIZE:
514 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
515 case HW_ALIGNBYTES:
516 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
517 default:
518 return (EOPNOTSUPP);
519 }
520 /* NOTREACHED */
521 }
522
523 #ifdef DEBUG
524 /*
525 * Debugging related system variables.
526 */
527 struct ctldebug debug0, debug1, debug2, debug3, debug4;
528 struct ctldebug debug5, debug6, debug7, debug8, debug9;
529 struct ctldebug debug10, debug11, debug12, debug13, debug14;
530 struct ctldebug debug15, debug16, debug17, debug18, debug19;
531 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
532 &debug0, &debug1, &debug2, &debug3, &debug4,
533 &debug5, &debug6, &debug7, &debug8, &debug9,
534 &debug10, &debug11, &debug12, &debug13, &debug14,
535 &debug15, &debug16, &debug17, &debug18, &debug19,
536 };
537 int
538 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
539 int *name;
540 u_int namelen;
541 void *oldp;
542 size_t *oldlenp;
543 void *newp;
544 size_t newlen;
545 struct proc *p;
546 {
547 struct ctldebug *cdp;
548
549 /* all sysctl names at this level are name and field */
550 if (namelen != 2)
551 return (ENOTDIR); /* overloaded */
552 cdp = debugvars[name[0]];
553 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
554 return (EOPNOTSUPP);
555 switch (name[1]) {
556 case CTL_DEBUG_NAME:
557 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
558 case CTL_DEBUG_VALUE:
559 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
560 default:
561 return (EOPNOTSUPP);
562 }
563 /* NOTREACHED */
564 }
565 #endif /* DEBUG */
566
567 int
568 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
569 int *name;
570 u_int namelen;
571 void *oldp;
572 size_t *oldlenp;
573 void *newp;
574 size_t newlen;
575 struct proc *p;
576 {
577 struct proc *ptmp = NULL;
578 int error = 0;
579 struct rlimit alim;
580 struct plimit *newplim;
581 char *tmps = NULL;
582 int i, curlen, len;
583
584 if (namelen < 2)
585 return EINVAL;
586
587 if (name[0] == PROC_CURPROC) {
588 ptmp = p;
589 } else if ((ptmp = pfind((pid_t)name[0])) == NULL) {
590 return (ESRCH);
591 } else {
592 if (p->p_ucred->cr_uid != 0) {
593 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
594 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
595 return EPERM;
596 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
597 return EPERM; /* sgid proc */
598 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
599 if (p->p_ucred->cr_groups[i] ==
600 ptmp->p_cred->p_rgid)
601 break;
602 }
603 if (i == p->p_ucred->cr_ngroups)
604 return EPERM;
605 }
606 }
607 if (name[1] == PROC_PID_CORENAME) {
608 if (namelen != 2)
609 return EINVAL;
610 /*
611 * Can't use sysctl_string() here because we may malloc a new
612 * area during the process, so we have to do it by hand.
613 */
614 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
615 if (oldlenp && *oldlenp < curlen) {
616 if (!oldp)
617 *oldlenp = curlen;
618 return (ENOMEM);
619 }
620 if (newp) {
621 if (securelevel > 2)
622 return EPERM;
623 if (newlen > MAXPATHLEN)
624 return ENAMETOOLONG;
625 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
626 if (tmps == NULL)
627 return ENOMEM;
628 error = copyin(newp, tmps, newlen + 1);
629 tmps[newlen] = '\0';
630 if (error)
631 goto cleanup;
632 /* Enforce to be either 'core' for end with '.core' */
633 if (newlen < 4) { /* c.o.r.e */
634 error = EINVAL;
635 goto cleanup;
636 }
637 len = newlen - 4;
638 if (len > 0) {
639 if (tmps[len - 1] != '.' &&
640 tmps[len - 1] != '/') {
641 error = EINVAL;
642 goto cleanup;
643 }
644 }
645 if (strcmp(&tmps[len], "core") != 0) {
646 error = EINVAL;
647 goto cleanup;
648 }
649 }
650 if (oldp && oldlenp) {
651 *oldlenp = curlen;
652 error = copyout(ptmp->p_limit->pl_corename, oldp,
653 curlen);
654 }
655 if (newp && error == 0) {
656 /* if the 2 strings are identical, don't limcopy() */
657 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
658 error = 0;
659 goto cleanup;
660 }
661 if (ptmp->p_limit->p_refcnt > 1 &&
662 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
663 newplim = limcopy(ptmp->p_limit);
664 limfree(ptmp->p_limit);
665 ptmp->p_limit = newplim;
666 }
667 if (ptmp->p_limit->pl_corename != defcorename) {
668 free(ptmp->p_limit->pl_corename, M_TEMP);
669 }
670 ptmp->p_limit->pl_corename = tmps;
671 return (0);
672 }
673 cleanup:
674 if (tmps)
675 free(tmps, M_TEMP);
676 return (error);
677 }
678 if (name[1] == PROC_PID_LIMIT) {
679 if (namelen != 4 || name[2] < 1 ||
680 name[2] >= PROC_PID_LIMIT_MAXID)
681 return EINVAL;
682 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
683 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
684 error = sysctl_quad(oldp, oldlenp, newp, newlen,
685 &alim.rlim_max);
686 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
687 error = sysctl_quad(oldp, oldlenp, newp, newlen,
688 &alim.rlim_cur);
689 else
690 error = EINVAL;
691
692 if (error)
693 return error;
694
695 if (newp)
696 error = dosetrlimit(ptmp, p->p_cred,
697 name[2] - 1, &alim);
698 return error;
699 }
700 return (EINVAL);
701 }
702
703 /*
704 * Convenience macros.
705 */
706
707 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
708 if (oldlenp) { \
709 if (!oldp) \
710 *oldlenp = len; \
711 else { \
712 if (*oldlenp < len) \
713 return(ENOMEM); \
714 *oldlenp = len; \
715 error = copyout((caddr_t)valp, oldp, len); \
716 } \
717 }
718
719 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
720 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
721
722 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
723 if (newp && newlen != len) \
724 return (EINVAL);
725
726 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
727 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
728
729 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
730 if (error == 0 && newp) \
731 error = copyin(newp, valp, len);
732
733 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
734 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
735
736 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
737 if (oldlenp) { \
738 len = strlen(str) + 1; \
739 if (!oldp) \
740 *oldlenp = len; \
741 else { \
742 if (*oldlenp < len) { \
743 err2 = ENOMEM; \
744 len = *oldlenp; \
745 } else \
746 *oldlenp = len; \
747 error = copyout(str, oldp, len);\
748 if (error == 0) \
749 error = err2; \
750 } \
751 }
752
753 /*
754 * Validate parameters and get old / set new parameters
755 * for an integer-valued sysctl function.
756 */
757 int
758 sysctl_int(oldp, oldlenp, newp, newlen, valp)
759 void *oldp;
760 size_t *oldlenp;
761 void *newp;
762 size_t newlen;
763 int *valp;
764 {
765 int error = 0;
766
767 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
768 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
769 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
770
771 return (error);
772 }
773
774
775 /*
776 * As above, but read-only.
777 */
778 int
779 sysctl_rdint(oldp, oldlenp, newp, val)
780 void *oldp;
781 size_t *oldlenp;
782 void *newp;
783 int val;
784 {
785 int error = 0;
786
787 if (newp)
788 return (EPERM);
789
790 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
791
792 return (error);
793 }
794
795 /*
796 * Validate parameters and get old / set new parameters
797 * for an quad-valued sysctl function.
798 */
799 int
800 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
801 void *oldp;
802 size_t *oldlenp;
803 void *newp;
804 size_t newlen;
805 quad_t *valp;
806 {
807 int error = 0;
808
809 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
810 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
811 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
812
813 return (error);
814 }
815
816 /*
817 * As above, but read-only.
818 */
819 int
820 sysctl_rdquad(oldp, oldlenp, newp, val)
821 void *oldp;
822 size_t *oldlenp;
823 void *newp;
824 quad_t val;
825 {
826 int error = 0;
827
828 if (newp)
829 return (EPERM);
830
831 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
832
833 return (error);
834 }
835
836 /*
837 * Validate parameters and get old / set new parameters
838 * for a string-valued sysctl function.
839 */
840 int
841 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
842 void *oldp;
843 size_t *oldlenp;
844 void *newp;
845 size_t newlen;
846 char *str;
847 int maxlen;
848 {
849 int len, error = 0, err2 = 0;
850
851 if (newp && newlen >= maxlen)
852 return (EINVAL);
853
854 SYSCTL_STRING_CORE(oldp, oldlenp, str);
855
856 if (error == 0 && newp) {
857 error = copyin(newp, str, newlen);
858 str[newlen] = 0;
859 }
860 return (error);
861 }
862
863 /*
864 * As above, but read-only.
865 */
866 int
867 sysctl_rdstring(oldp, oldlenp, newp, str)
868 void *oldp;
869 size_t *oldlenp;
870 void *newp;
871 const char *str;
872 {
873 int len, error = 0, err2 = 0;
874
875 if (newp)
876 return (EPERM);
877
878 SYSCTL_STRING_CORE(oldp, oldlenp, str);
879
880 return (error);
881 }
882
883 /*
884 * Validate parameters and get old / set new parameters
885 * for a structure oriented sysctl function.
886 */
887 int
888 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
889 void *oldp;
890 size_t *oldlenp;
891 void *newp;
892 size_t newlen;
893 void *sp;
894 int len;
895 {
896 int error = 0;
897
898 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
899 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
900 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
901
902 return (error);
903 }
904
905 /*
906 * Validate parameters and get old parameters
907 * for a structure oriented sysctl function.
908 */
909 int
910 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
911 void *oldp;
912 size_t *oldlenp;
913 void *newp;
914 const void *sp;
915 int len;
916 {
917 int error = 0;
918
919 if (newp)
920 return (EPERM);
921
922 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
923
924 return (error);
925 }
926
927 /*
928 * Get file structures.
929 */
930 static int
931 sysctl_file(vwhere, sizep)
932 void *vwhere;
933 size_t *sizep;
934 {
935 int buflen, error;
936 struct file *fp;
937 char *start, *where;
938
939 start = where = vwhere;
940 buflen = *sizep;
941 if (where == NULL) {
942 /*
943 * overestimate by 10 files
944 */
945 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
946 return (0);
947 }
948
949 /*
950 * first copyout filehead
951 */
952 if (buflen < sizeof(filehead)) {
953 *sizep = 0;
954 return (0);
955 }
956 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
957 if (error)
958 return (error);
959 buflen -= sizeof(filehead);
960 where += sizeof(filehead);
961
962 /*
963 * followed by an array of file structures
964 */
965 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
966 if (buflen < sizeof(struct file)) {
967 *sizep = where - start;
968 return (ENOMEM);
969 }
970 error = copyout((caddr_t)fp, where, sizeof(struct file));
971 if (error)
972 return (error);
973 buflen -= sizeof(struct file);
974 where += sizeof(struct file);
975 }
976 *sizep = where - start;
977 return (0);
978 }
979
980 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
981 #define FILL_PERM(src, dst) do { \
982 (dst)._key = (src)._key; \
983 (dst).uid = (src).uid; \
984 (dst).gid = (src).gid; \
985 (dst).cuid = (src).cuid; \
986 (dst).cgid = (src).cgid; \
987 (dst).mode = (src).mode; \
988 (dst)._seq = (src)._seq; \
989 } while (0);
990 #define FILL_MSG(src, dst) do { \
991 FILL_PERM((src).msg_perm, (dst).msg_perm); \
992 (dst).msg_qnum = (src).msg_qnum; \
993 (dst).msg_qbytes = (src).msg_qbytes; \
994 (dst)._msg_cbytes = (src)._msg_cbytes; \
995 (dst).msg_lspid = (src).msg_lspid; \
996 (dst).msg_lrpid = (src).msg_lrpid; \
997 (dst).msg_stime = (src).msg_stime; \
998 (dst).msg_rtime = (src).msg_rtime; \
999 (dst).msg_ctime = (src).msg_ctime; \
1000 } while (0)
1001 #define FILL_SEM(src, dst) do { \
1002 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1003 (dst).sem_nsems = (src).sem_nsems; \
1004 (dst).sem_otime = (src).sem_otime; \
1005 (dst).sem_ctime = (src).sem_ctime; \
1006 } while (0)
1007 #define FILL_SHM(src, dst) do { \
1008 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1009 (dst).shm_segsz = (src).shm_segsz; \
1010 (dst).shm_lpid = (src).shm_lpid; \
1011 (dst).shm_cpid = (src).shm_cpid; \
1012 (dst).shm_atime = (src).shm_atime; \
1013 (dst).shm_dtime = (src).shm_dtime; \
1014 (dst).shm_ctime = (src).shm_ctime; \
1015 (dst).shm_nattch = (src).shm_nattch; \
1016 } while (0)
1017
1018 static int
1019 sysctl_sysvipc(name, namelen, where, sizep)
1020 int *name;
1021 u_int namelen;
1022 void *where;
1023 size_t *sizep;
1024 {
1025 #ifdef SYSVMSG
1026 struct msg_sysctl_info *msgsi;
1027 #endif
1028 #ifdef SYSVSEM
1029 struct sem_sysctl_info *semsi;
1030 #endif
1031 #ifdef SYSVSHM
1032 struct shm_sysctl_info *shmsi;
1033 #endif
1034 size_t infosize, dssize, tsize, buflen;
1035 void *buf = NULL, *buf2;
1036 char *start;
1037 int32_t nds;
1038 int i, error, ret;
1039
1040 if (namelen != 1)
1041 return (EINVAL);
1042
1043 start = where;
1044 buflen = *sizep;
1045
1046 switch (*name) {
1047 case KERN_SYSVIPC_MSG_INFO:
1048 #ifdef SYSVMSG
1049 infosize = sizeof(msgsi->msginfo);
1050 nds = msginfo.msgmni;
1051 dssize = sizeof(msgsi->msgids[0]);
1052 break;
1053 #else
1054 return (EINVAL);
1055 #endif
1056 case KERN_SYSVIPC_SEM_INFO:
1057 #ifdef SYSVSEM
1058 infosize = sizeof(semsi->seminfo);
1059 nds = seminfo.semmni;
1060 dssize = sizeof(semsi->semids[0]);
1061 break;
1062 #else
1063 return (EINVAL);
1064 #endif
1065 case KERN_SYSVIPC_SHM_INFO:
1066 #ifdef SYSVSHM
1067 infosize = sizeof(shmsi->shminfo);
1068 nds = shminfo.shmmni;
1069 dssize = sizeof(shmsi->shmids[0]);
1070 break;
1071 #else
1072 return (EINVAL);
1073 #endif
1074 default:
1075 return (EINVAL);
1076 }
1077 /*
1078 * Round infosize to 64 bit boundary if requesting more than just
1079 * the info structure or getting the total data size.
1080 */
1081 if (where == NULL || *sizep > infosize)
1082 infosize = ((infosize + 7) / 8) * 8;
1083 tsize = infosize + nds * dssize;
1084
1085 /* Return just the total size required. */
1086 if (where == NULL) {
1087 *sizep = tsize;
1088 return (0);
1089 }
1090
1091 /* Not enough room for even the info struct. */
1092 if (buflen < infosize) {
1093 *sizep = 0;
1094 return (ENOMEM);
1095 }
1096 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1097 memset(buf, 0, min(tsize, buflen));
1098
1099 switch (*name) {
1100 #ifdef SYSVMSG
1101 case KERN_SYSVIPC_MSG_INFO:
1102 msgsi = (struct msg_sysctl_info *)buf;
1103 buf2 = &msgsi->msgids[0];
1104 msgsi->msginfo = msginfo;
1105 break;
1106 #endif
1107 #ifdef SYSVSEM
1108 case KERN_SYSVIPC_SEM_INFO:
1109 semsi = (struct sem_sysctl_info *)buf;
1110 buf2 = &semsi->semids[0];
1111 semsi->seminfo = seminfo;
1112 break;
1113 #endif
1114 #ifdef SYSVSHM
1115 case KERN_SYSVIPC_SHM_INFO:
1116 shmsi = (struct shm_sysctl_info *)buf;
1117 buf2 = &shmsi->shmids[0];
1118 shmsi->shminfo = shminfo;
1119 break;
1120 #endif
1121 }
1122 buflen -= infosize;
1123
1124 ret = 0;
1125 if (buflen > 0) {
1126 /* Fill in the IPC data structures. */
1127 for (i = 0; i < nds; i++) {
1128 if (buflen < dssize) {
1129 ret = ENOMEM;
1130 break;
1131 }
1132 switch (*name) {
1133 #ifdef SYSVMSG
1134 case KERN_SYSVIPC_MSG_INFO:
1135 FILL_MSG(msqids[i], msgsi->msgids[i]);
1136 break;
1137 #endif
1138 #ifdef SYSVSEM
1139 case KERN_SYSVIPC_SEM_INFO:
1140 FILL_SEM(sema[i], semsi->semids[i]);
1141 break;
1142 #endif
1143 #ifdef SYSVSHM
1144 case KERN_SYSVIPC_SHM_INFO:
1145 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1146 break;
1147 #endif
1148 }
1149 buflen -= dssize;
1150 }
1151 }
1152 *sizep -= buflen;
1153 error = copyout(buf, start, *sizep);
1154 /* If copyout succeeded, use return code set earlier. */
1155 if (error == 0)
1156 error = ret;
1157 if (buf)
1158 free(buf, M_TEMP);
1159 return (error);
1160 }
1161 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1162
1163 static int
1164 sysctl_msgbuf(vwhere, sizep)
1165 void *vwhere;
1166 size_t *sizep;
1167 {
1168 char *where = vwhere;
1169 size_t len, maxlen = *sizep;
1170 long pos;
1171 int error;
1172
1173 /*
1174 * deal with cases where the message buffer has
1175 * become corrupted.
1176 */
1177 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1178 msgbufenabled = 0;
1179 return (ENXIO);
1180 }
1181
1182 if (where == NULL) {
1183 /* always return full buffer size */
1184 *sizep = msgbufp->msg_bufs;
1185 return (0);
1186 }
1187
1188 error = 0;
1189 maxlen = min(msgbufp->msg_bufs, maxlen);
1190 pos = msgbufp->msg_bufx;
1191 while (maxlen > 0) {
1192 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1193 len = min(len, maxlen);
1194 if (len == 0)
1195 break;
1196 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1197 if (error)
1198 break;
1199 where += len;
1200 maxlen -= len;
1201 pos = 0;
1202 }
1203 return (error);
1204 }
1205
1206 /*
1207 * try over estimating by 5 procs
1208 */
1209 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1210
1211 static int
1212 sysctl_doeproc(name, namelen, vwhere, sizep)
1213 int *name;
1214 u_int namelen;
1215 void *vwhere;
1216 size_t *sizep;
1217 {
1218 struct eproc eproc;
1219 struct kinfo_proc2 kproc2;
1220 struct kinfo_proc *dp;
1221 struct proc *p;
1222 const struct proclist_desc *pd;
1223 char *where, *dp2;
1224 int type, op, arg, elem_size, elem_count;
1225 int buflen, needed, error;
1226
1227 dp = vwhere;
1228 dp2 = where = vwhere;
1229 buflen = where != NULL ? *sizep : 0;
1230 error = needed = 0;
1231 type = name[0];
1232
1233 if (type == KERN_PROC) {
1234 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1235 return (EINVAL);
1236 op = name[1];
1237 if (op != KERN_PROC_ALL)
1238 arg = name[2];
1239 } else {
1240 if (namelen != 5)
1241 return (EINVAL);
1242 op = name[1];
1243 arg = name[2];
1244 elem_size = name[3];
1245 elem_count = name[4];
1246 }
1247
1248 proclist_lock_read();
1249
1250 pd = proclists;
1251 again:
1252 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1253 /*
1254 * Skip embryonic processes.
1255 */
1256 if (p->p_stat == SIDL)
1257 continue;
1258 /*
1259 * TODO - make more efficient (see notes below).
1260 * do by session.
1261 */
1262 switch (op) {
1263
1264 case KERN_PROC_PID:
1265 /* could do this with just a lookup */
1266 if (p->p_pid != (pid_t)arg)
1267 continue;
1268 break;
1269
1270 case KERN_PROC_PGRP:
1271 /* could do this by traversing pgrp */
1272 if (p->p_pgrp->pg_id != (pid_t)arg)
1273 continue;
1274 break;
1275
1276 case KERN_PROC_SESSION:
1277 if (p->p_session->s_sid != (pid_t)arg)
1278 continue;
1279 break;
1280
1281 case KERN_PROC_TTY:
1282 if (arg == KERN_PROC_TTY_REVOKE) {
1283 if ((p->p_flag & P_CONTROLT) == 0 ||
1284 p->p_session->s_ttyp == NULL ||
1285 p->p_session->s_ttyvp != NULL)
1286 continue;
1287 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1288 p->p_session->s_ttyp == NULL) {
1289 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1290 continue;
1291 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1292 continue;
1293 break;
1294
1295 case KERN_PROC_UID:
1296 if (p->p_ucred->cr_uid != (uid_t)arg)
1297 continue;
1298 break;
1299
1300 case KERN_PROC_RUID:
1301 if (p->p_cred->p_ruid != (uid_t)arg)
1302 continue;
1303 break;
1304
1305 case KERN_PROC_GID:
1306 if (p->p_ucred->cr_gid != (uid_t)arg)
1307 continue;
1308 break;
1309
1310 case KERN_PROC_RGID:
1311 if (p->p_cred->p_rgid != (uid_t)arg)
1312 continue;
1313 break;
1314
1315 case KERN_PROC_ALL:
1316 /* allow everything */
1317 break;
1318
1319 default:
1320 error = EINVAL;
1321 goto cleanup;
1322 }
1323 if (type == KERN_PROC) {
1324 if (buflen >= sizeof(struct kinfo_proc)) {
1325 fill_eproc(p, &eproc);
1326 error = copyout((caddr_t)p, &dp->kp_proc,
1327 sizeof(struct proc));
1328 if (error)
1329 goto cleanup;
1330 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1331 sizeof(eproc));
1332 if (error)
1333 goto cleanup;
1334 dp++;
1335 buflen -= sizeof(struct kinfo_proc);
1336 }
1337 needed += sizeof(struct kinfo_proc);
1338 } else { /* KERN_PROC2 */
1339 if (buflen >= elem_size && elem_count > 0) {
1340 fill_kproc2(p, &kproc2);
1341 /*
1342 * Copy out elem_size, but not larger than
1343 * the size of a struct kinfo_proc2.
1344 */
1345 error = copyout(&kproc2, dp2,
1346 min(sizeof(kproc2), elem_size));
1347 if (error)
1348 goto cleanup;
1349 dp2 += elem_size;
1350 buflen -= elem_size;
1351 elem_count--;
1352 }
1353 needed += elem_size;
1354 }
1355 }
1356 pd++;
1357 if (pd->pd_list != NULL)
1358 goto again;
1359 proclist_unlock_read();
1360
1361 if (where != NULL) {
1362 if (type == KERN_PROC)
1363 *sizep = (caddr_t)dp - where;
1364 else
1365 *sizep = dp2 - where;
1366 if (needed > *sizep)
1367 return (ENOMEM);
1368 } else {
1369 needed += KERN_PROCSLOP;
1370 *sizep = needed;
1371 }
1372 return (0);
1373 cleanup:
1374 proclist_unlock_read();
1375 return (error);
1376 }
1377
1378 /*
1379 * Fill in an eproc structure for the specified process.
1380 */
1381 void
1382 fill_eproc(p, ep)
1383 struct proc *p;
1384 struct eproc *ep;
1385 {
1386 struct tty *tp;
1387
1388 ep->e_paddr = p;
1389 ep->e_sess = p->p_session;
1390 ep->e_pcred = *p->p_cred;
1391 ep->e_ucred = *p->p_ucred;
1392 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1393 ep->e_vm.vm_rssize = 0;
1394 ep->e_vm.vm_tsize = 0;
1395 ep->e_vm.vm_dsize = 0;
1396 ep->e_vm.vm_ssize = 0;
1397 /* ep->e_vm.vm_pmap = XXX; */
1398 } else {
1399 struct vmspace *vm = p->p_vmspace;
1400
1401 ep->e_vm.vm_rssize = vm_resident_count(vm);
1402 ep->e_vm.vm_tsize = vm->vm_tsize;
1403 ep->e_vm.vm_dsize = vm->vm_dsize;
1404 ep->e_vm.vm_ssize = vm->vm_ssize;
1405 }
1406 if (p->p_pptr)
1407 ep->e_ppid = p->p_pptr->p_pid;
1408 else
1409 ep->e_ppid = 0;
1410 ep->e_pgid = p->p_pgrp->pg_id;
1411 ep->e_sid = ep->e_sess->s_sid;
1412 ep->e_jobc = p->p_pgrp->pg_jobc;
1413 if ((p->p_flag & P_CONTROLT) &&
1414 (tp = ep->e_sess->s_ttyp)) {
1415 ep->e_tdev = tp->t_dev;
1416 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1417 ep->e_tsess = tp->t_session;
1418 } else
1419 ep->e_tdev = NODEV;
1420 if (p->p_wmesg)
1421 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1422 ep->e_xsize = ep->e_xrssize = 0;
1423 ep->e_xccount = ep->e_xswrss = 0;
1424 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1425 if (SESS_LEADER(p))
1426 ep->e_flag |= EPROC_SLEADER;
1427 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1428 }
1429
1430 /*
1431 * Fill in an eproc structure for the specified process.
1432 */
1433 static void
1434 fill_kproc2(p, ki)
1435 struct proc *p;
1436 struct kinfo_proc2 *ki;
1437 {
1438 struct tty *tp;
1439
1440 memset(ki, 0, sizeof(*ki));
1441
1442 ki->p_forw = PTRTOINT64(p->p_forw);
1443 ki->p_back = PTRTOINT64(p->p_back);
1444 ki->p_paddr = PTRTOINT64(p);
1445
1446 ki->p_addr = PTRTOINT64(p->p_addr);
1447 ki->p_fd = PTRTOINT64(p->p_fd);
1448 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1449 ki->p_stats = PTRTOINT64(p->p_stats);
1450 ki->p_limit = PTRTOINT64(p->p_limit);
1451 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1452 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1453 ki->p_sess = PTRTOINT64(p->p_session);
1454 ki->p_tsess = 0; /* may be changed if controlling tty below */
1455 ki->p_ru = PTRTOINT64(p->p_ru);
1456
1457 ki->p_eflag = 0;
1458 ki->p_exitsig = p->p_exitsig;
1459 ki->p_flag = p->p_flag;
1460
1461 ki->p_pid = p->p_pid;
1462 if (p->p_pptr)
1463 ki->p_ppid = p->p_pptr->p_pid;
1464 else
1465 ki->p_ppid = 0;
1466 ki->p_sid = p->p_session->s_sid;
1467 ki->p__pgid = p->p_pgrp->pg_id;
1468
1469 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1470
1471 ki->p_uid = p->p_ucred->cr_uid;
1472 ki->p_ruid = p->p_cred->p_ruid;
1473 ki->p_gid = p->p_ucred->cr_gid;
1474 ki->p_rgid = p->p_cred->p_rgid;
1475
1476 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1477 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1478 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1479
1480 ki->p_jobc = p->p_pgrp->pg_jobc;
1481 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1482 ki->p_tdev = tp->t_dev;
1483 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1484 ki->p_tsess = PTRTOINT64(tp->t_session);
1485 } else {
1486 ki->p_tdev = NODEV;
1487 }
1488
1489 ki->p_estcpu = p->p_estcpu;
1490 ki->p_rtime_sec = p->p_rtime.tv_sec;
1491 ki->p_rtime_usec = p->p_rtime.tv_usec;
1492 ki->p_cpticks = p->p_cpticks;
1493 ki->p_pctcpu = p->p_pctcpu;
1494 ki->p_swtime = p->p_swtime;
1495 ki->p_slptime = p->p_slptime;
1496 if (p->p_stat == SONPROC) {
1497 KDASSERT(p->p_cpu != NULL);
1498 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1499 } else
1500 ki->p_schedflags = 0;
1501
1502 ki->p_uticks = p->p_uticks;
1503 ki->p_sticks = p->p_sticks;
1504 ki->p_iticks = p->p_iticks;
1505
1506 ki->p_tracep = PTRTOINT64(p->p_tracep);
1507 ki->p_traceflag = p->p_traceflag;
1508
1509 ki->p_holdcnt = p->p_holdcnt;
1510
1511 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1512 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1513 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1514 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1515
1516 ki->p_stat = p->p_stat;
1517 ki->p_priority = p->p_priority;
1518 ki->p_usrpri = p->p_usrpri;
1519 ki->p_nice = p->p_nice;
1520
1521 ki->p_xstat = p->p_xstat;
1522 ki->p_acflag = p->p_acflag;
1523
1524 strncpy(ki->p_comm, p->p_comm,
1525 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1526
1527 if (p->p_wmesg)
1528 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1529 ki->p_wchan = PTRTOINT64(p->p_wchan);
1530
1531 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1532
1533 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1534 ki->p_vm_rssize = 0;
1535 ki->p_vm_tsize = 0;
1536 ki->p_vm_dsize = 0;
1537 ki->p_vm_ssize = 0;
1538 } else {
1539 struct vmspace *vm = p->p_vmspace;
1540
1541 ki->p_vm_rssize = vm_resident_count(vm);
1542 ki->p_vm_tsize = vm->vm_tsize;
1543 ki->p_vm_dsize = vm->vm_dsize;
1544 ki->p_vm_ssize = vm->vm_ssize;
1545 }
1546
1547 if (p->p_session->s_ttyvp)
1548 ki->p_eflag |= EPROC_CTTY;
1549 if (SESS_LEADER(p))
1550 ki->p_eflag |= EPROC_SLEADER;
1551
1552 /* XXX Is this double check necessary? */
1553 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1554 ki->p_uvalid = 0;
1555 } else {
1556 ki->p_uvalid = 1;
1557
1558 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1559 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1560
1561 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1562 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1563 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1564 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1565
1566 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1567 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1568 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1569 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1570 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1571 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1572 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1573 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1574 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1575 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1576 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1577 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1578 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1579 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1580
1581 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1582 p->p_stats->p_cru.ru_stime.tv_sec;
1583 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1584 p->p_stats->p_cru.ru_stime.tv_usec;
1585 }
1586 }
1587
1588 int
1589 sysctl_procargs(name, namelen, where, sizep, up)
1590 int *name;
1591 u_int namelen;
1592 void *where;
1593 size_t *sizep;
1594 struct proc *up;
1595 {
1596 struct ps_strings pss;
1597 struct proc *p;
1598 size_t len, upper_bound, xlen;
1599 struct uio auio;
1600 struct iovec aiov;
1601 vaddr_t argv;
1602 pid_t pid;
1603 int nargv, type, error, i;
1604 char *arg;
1605 char *tmp;
1606
1607 if (namelen != 2)
1608 return (EINVAL);
1609 pid = name[0];
1610 type = name[1];
1611
1612 switch (type) {
1613 case KERN_PROC_ARGV:
1614 case KERN_PROC_NARGV:
1615 case KERN_PROC_ENV:
1616 case KERN_PROC_NENV:
1617 /* ok */
1618 break;
1619 default:
1620 return (EINVAL);
1621 }
1622
1623 /* check pid */
1624 if ((p = pfind(pid)) == NULL)
1625 return (EINVAL);
1626
1627 /* only root or same user change look at the environment */
1628 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1629 if (up->p_ucred->cr_uid != 0) {
1630 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1631 up->p_cred->p_ruid != p->p_cred->p_svuid)
1632 return (EPERM);
1633 }
1634 }
1635
1636 if (sizep != NULL && where == NULL) {
1637 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1638 *sizep = sizeof (int);
1639 else
1640 *sizep = ARG_MAX; /* XXX XXX XXX */
1641 return (0);
1642 }
1643 if (where == NULL || sizep == NULL)
1644 return (EINVAL);
1645
1646 /*
1647 * Zombies don't have a stack, so we can't read their psstrings.
1648 * System processes also don't have a user stack.
1649 */
1650 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1651 return (EINVAL);
1652
1653 /*
1654 * Lock the process down in memory.
1655 */
1656 /* XXXCDC: how should locking work here? */
1657 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1658 return (EFAULT);
1659 PHOLD(p);
1660 p->p_vmspace->vm_refcnt++; /* XXX */
1661
1662 /*
1663 * Allocate a temporary buffer to hold the arguments.
1664 */
1665 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1666
1667 /*
1668 * Read in the ps_strings structure.
1669 */
1670 aiov.iov_base = &pss;
1671 aiov.iov_len = sizeof(pss);
1672 auio.uio_iov = &aiov;
1673 auio.uio_iovcnt = 1;
1674 auio.uio_offset = (vaddr_t)p->p_psstr;
1675 auio.uio_resid = sizeof(pss);
1676 auio.uio_segflg = UIO_SYSSPACE;
1677 auio.uio_rw = UIO_READ;
1678 auio.uio_procp = NULL;
1679 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1680 if (error)
1681 goto done;
1682
1683 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1684 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1685 else
1686 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1687 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1688 error = copyout(&nargv, where, sizeof(nargv));
1689 *sizep = sizeof(nargv);
1690 goto done;
1691 }
1692 /*
1693 * Now read the address of the argument vector.
1694 */
1695 switch (type) {
1696 case KERN_PROC_ARGV:
1697 /* XXX compat32 stuff here */
1698 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1699 break;
1700 case KERN_PROC_ENV:
1701 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1702 break;
1703 default:
1704 return (EINVAL);
1705 }
1706 auio.uio_offset = (off_t)(long)tmp;
1707 aiov.iov_base = &argv;
1708 aiov.iov_len = sizeof(argv);
1709 auio.uio_iov = &aiov;
1710 auio.uio_iovcnt = 1;
1711 auio.uio_resid = sizeof(argv);
1712 auio.uio_segflg = UIO_SYSSPACE;
1713 auio.uio_rw = UIO_READ;
1714 auio.uio_procp = NULL;
1715 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1716 if (error)
1717 goto done;
1718
1719 /*
1720 * Now copy in the actual argument vector, one page at a time,
1721 * since we don't know how long the vector is (though, we do
1722 * know how many NUL-terminated strings are in the vector).
1723 */
1724 len = 0;
1725 upper_bound = *sizep;
1726 for (; nargv != 0 && len < upper_bound; len += xlen) {
1727 aiov.iov_base = arg;
1728 aiov.iov_len = PAGE_SIZE;
1729 auio.uio_iov = &aiov;
1730 auio.uio_iovcnt = 1;
1731 auio.uio_offset = argv + len;
1732 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1733 auio.uio_resid = xlen;
1734 auio.uio_segflg = UIO_SYSSPACE;
1735 auio.uio_rw = UIO_READ;
1736 auio.uio_procp = NULL;
1737 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1738 if (error)
1739 goto done;
1740
1741 for (i = 0; i < xlen && nargv != 0; i++) {
1742 if (arg[i] == '\0')
1743 nargv--; /* one full string */
1744 }
1745
1746 /* make sure we don't copyout past the end of the user's buffer */
1747 if (len + i > upper_bound)
1748 i = upper_bound - len;
1749
1750 error = copyout(arg, (char *)where + len, i);
1751 if (error)
1752 break;
1753
1754 if (nargv == 0) {
1755 len += i;
1756 break;
1757 }
1758 }
1759 *sizep = len;
1760
1761 done:
1762 PRELE(p);
1763 uvmspace_free(p->p_vmspace);
1764
1765 free(arg, M_TEMP);
1766 return (error);
1767 }
1768