kern_sysctl.c revision 1.73.2.8 1 /* $NetBSD: kern_sysctl.c,v 1.73.2.8 2003/10/08 08:23:41 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/buf.h>
54 #include <sys/device.h>
55 #include <sys/disklabel.h>
56 #include <sys/dkstat.h>
57 #include <sys/exec.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/msgbuf.h>
63 #include <sys/pool.h>
64 #include <sys/proc.h>
65 #include <sys/resource.h>
66 #include <sys/resourcevar.h>
67 #include <sys/syscallargs.h>
68 #include <sys/tty.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #define __SYSCTL_PRIVATE
72 #include <sys/sysctl.h>
73 #include <sys/lock.h>
74
75 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
76 #include <sys/ipc.h>
77 #endif
78 #ifdef SYSVMSG
79 #include <sys/msg.h>
80 #endif
81 #ifdef SYSVSEM
82 #include <sys/sem.h>
83 #endif
84 #ifdef SYSVSHM
85 #include <sys/shm.h>
86 #endif
87
88 #include <dev/cons.h>
89
90 #if defined(DDB)
91 #include <ddb/ddbvar.h>
92 #endif
93
94 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
95
96 static int sysctl_file __P((void *, size_t *));
97 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
98 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
99 #endif
100 static int sysctl_msgbuf __P((void *, size_t *));
101 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
102 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
103 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
104
105 /*
106 * The `sysctl_memlock' is intended to keep too many processes from
107 * locking down memory by doing sysctls at once. Whether or not this
108 * is really a good idea to worry about it probably a subject of some
109 * debate.
110 */
111 struct lock sysctl_memlock;
112
113 void
114 sysctl_init(void)
115 {
116
117 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
118 }
119
120 int
121 sys___sysctl(p, v, retval)
122 struct proc *p;
123 void *v;
124 register_t *retval;
125 {
126 struct sys___sysctl_args /* {
127 syscallarg(int *) name;
128 syscallarg(u_int) namelen;
129 syscallarg(void *) old;
130 syscallarg(size_t *) oldlenp;
131 syscallarg(void *) new;
132 syscallarg(size_t) newlen;
133 } */ *uap = v;
134 int error;
135 size_t savelen = 0, oldlen = 0;
136 sysctlfn *fn;
137 int name[CTL_MAXNAME];
138
139 /*
140 * all top-level sysctl names are non-terminal
141 */
142 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
143 return (EINVAL);
144 error = copyin(SCARG(uap, name), &name,
145 SCARG(uap, namelen) * sizeof(int));
146 if (error)
147 return (error);
148
149 /*
150 * For all but CTL_PROC, must be root to change a value.
151 * For CTL_PROC, must be root, or owner of the proc (and not suid),
152 * this is checked in proc_sysctl() (once we know the targer proc).
153 */
154 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
155 (error = suser(p->p_ucred, &p->p_acflag)))
156 return error;
157
158 switch (name[0]) {
159 case CTL_KERN:
160 fn = kern_sysctl;
161 break;
162 case CTL_HW:
163 fn = hw_sysctl;
164 break;
165 case CTL_VM:
166 fn = uvm_sysctl;
167 break;
168 case CTL_NET:
169 fn = net_sysctl;
170 break;
171 case CTL_VFS:
172 fn = vfs_sysctl;
173 break;
174 case CTL_MACHDEP:
175 fn = cpu_sysctl;
176 break;
177 #ifdef DEBUG
178 case CTL_DEBUG:
179 fn = debug_sysctl;
180 break;
181 #endif
182 #ifdef DDB
183 case CTL_DDB:
184 fn = ddb_sysctl;
185 break;
186 #endif
187 case CTL_PROC:
188 fn = proc_sysctl;
189 break;
190 default:
191 return (EOPNOTSUPP);
192 }
193
194 /*
195 * XXX Hey, we wire `old', but what about `new'?
196 */
197
198 if (SCARG(uap, oldlenp)) {
199 if ((error = copyin(SCARG(uap, oldlenp), &oldlen,
200 sizeof(oldlen))))
201 return (error);
202 }
203 if (SCARG(uap, old) != NULL) {
204 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
205 if (error)
206 return (error);
207 if (uvm_vslock(p, SCARG(uap, old), oldlen,
208 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
209 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
210 return (EFAULT);
211 }
212 savelen = oldlen;
213 }
214 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
215 &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
216 if (SCARG(uap, old) != NULL) {
217 uvm_vsunlock(p, SCARG(uap, old), savelen);
218 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
219 }
220 if (error)
221 return (error);
222 if (SCARG(uap, oldlenp))
223 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
224 return (error);
225 }
226
227 /*
228 * Attributes stored in the kernel.
229 */
230 char hostname[MAXHOSTNAMELEN];
231 int hostnamelen;
232
233 char domainname[MAXHOSTNAMELEN];
234 int domainnamelen;
235
236 long hostid;
237
238 #ifdef INSECURE
239 int securelevel = -1;
240 #else
241 int securelevel = 0;
242 #endif
243
244 #ifndef DEFCORENAME
245 #define DEFCORENAME "%n.core"
246 #endif
247 char defcorename[MAXPATHLEN] = DEFCORENAME;
248 int defcorenamelen = sizeof(DEFCORENAME);
249
250 extern int kern_logsigexit;
251 extern fixpt_t ccpu;
252
253 /*
254 * kernel related system variables.
255 */
256 int
257 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
258 int *name;
259 u_int namelen;
260 void *oldp;
261 size_t *oldlenp;
262 void *newp;
263 size_t newlen;
264 struct proc *p;
265 {
266 int error, level, inthostid;
267 int old_autonicetime;
268 int old_vnodes;
269 dev_t consdev;
270
271 /* All sysctl names at this level, except for a few, are terminal. */
272 switch (name[0]) {
273 case KERN_PROC:
274 case KERN_PROC2:
275 case KERN_PROF:
276 case KERN_MBUF:
277 case KERN_PROC_ARGS:
278 case KERN_SYSVIPC_INFO:
279 /* Not terminal. */
280 break;
281 default:
282 if (namelen != 1)
283 return (ENOTDIR); /* overloaded */
284 }
285
286 switch (name[0]) {
287 case KERN_OSTYPE:
288 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
289 case KERN_OSRELEASE:
290 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
291 case KERN_OSREV:
292 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
293 case KERN_VERSION:
294 return (sysctl_rdstring(oldp, oldlenp, newp, version));
295 case KERN_MAXVNODES:
296 old_vnodes = desiredvnodes;
297 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
298 if (old_vnodes > desiredvnodes) {
299 desiredvnodes = old_vnodes;
300 return (EINVAL);
301 }
302 return (error);
303 case KERN_MAXPROC:
304 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
305 case KERN_MAXFILES:
306 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
307 case KERN_ARGMAX:
308 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
309 case KERN_SECURELVL:
310 level = securelevel;
311 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
312 newp == NULL)
313 return (error);
314 if (level < securelevel && p->p_pid != 1)
315 return (EPERM);
316 securelevel = level;
317 return (0);
318 case KERN_HOSTNAME:
319 error = sysctl_string(oldp, oldlenp, newp, newlen,
320 hostname, sizeof(hostname));
321 if (newp && !error)
322 hostnamelen = newlen;
323 return (error);
324 case KERN_DOMAINNAME:
325 error = sysctl_string(oldp, oldlenp, newp, newlen,
326 domainname, sizeof(domainname));
327 if (newp && !error)
328 domainnamelen = newlen;
329 return (error);
330 case KERN_HOSTID:
331 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
332 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
333 hostid = inthostid;
334 return (error);
335 case KERN_CLOCKRATE:
336 return (sysctl_clockrate(oldp, oldlenp));
337 case KERN_BOOTTIME:
338 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
339 sizeof(struct timeval)));
340 case KERN_VNODE:
341 return (sysctl_vnode(oldp, oldlenp, p));
342 case KERN_PROC:
343 case KERN_PROC2:
344 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
345 case KERN_PROC_ARGS:
346 return (sysctl_procargs(name + 1, namelen - 1,
347 oldp, oldlenp, p));
348 case KERN_FILE:
349 return (sysctl_file(oldp, oldlenp));
350 #ifdef GPROF
351 case KERN_PROF:
352 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
353 newp, newlen));
354 #endif
355 case KERN_POSIX1:
356 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
357 case KERN_NGROUPS:
358 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
359 case KERN_JOB_CONTROL:
360 return (sysctl_rdint(oldp, oldlenp, newp, 1));
361 case KERN_SAVED_IDS:
362 #ifdef _POSIX_SAVED_IDS
363 return (sysctl_rdint(oldp, oldlenp, newp, 1));
364 #else
365 return (sysctl_rdint(oldp, oldlenp, newp, 0));
366 #endif
367 case KERN_MAXPARTITIONS:
368 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
369 case KERN_RAWPARTITION:
370 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
371 #ifdef NTP
372 case KERN_NTPTIME:
373 return (sysctl_ntptime(oldp, oldlenp));
374 #endif
375 case KERN_AUTONICETIME:
376 old_autonicetime = autonicetime;
377 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
378 if (autonicetime < 0)
379 autonicetime = old_autonicetime;
380 return (error);
381 case KERN_AUTONICEVAL:
382 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
383 if (autoniceval < PRIO_MIN)
384 autoniceval = PRIO_MIN;
385 if (autoniceval > PRIO_MAX)
386 autoniceval = PRIO_MAX;
387 return (error);
388 case KERN_RTC_OFFSET:
389 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
390 case KERN_ROOT_DEVICE:
391 return (sysctl_rdstring(oldp, oldlenp, newp,
392 root_device->dv_xname));
393 case KERN_MSGBUFSIZE:
394 /*
395 * deal with cases where the message buffer has
396 * become corrupted.
397 */
398 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
399 msgbufenabled = 0;
400 return (ENXIO);
401 }
402 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
403 case KERN_FSYNC:
404 return (sysctl_rdint(oldp, oldlenp, newp, 1));
405 case KERN_SYSVMSG:
406 #ifdef SYSVMSG
407 return (sysctl_rdint(oldp, oldlenp, newp, 1));
408 #else
409 return (sysctl_rdint(oldp, oldlenp, newp, 0));
410 #endif
411 case KERN_SYSVSEM:
412 #ifdef SYSVSEM
413 return (sysctl_rdint(oldp, oldlenp, newp, 1));
414 #else
415 return (sysctl_rdint(oldp, oldlenp, newp, 0));
416 #endif
417 case KERN_SYSVSHM:
418 #ifdef SYSVSHM
419 return (sysctl_rdint(oldp, oldlenp, newp, 1));
420 #else
421 return (sysctl_rdint(oldp, oldlenp, newp, 0));
422 #endif
423 case KERN_DEFCORENAME:
424 if (newp && newlen < 1)
425 return (EINVAL);
426 error = sysctl_string(oldp, oldlenp, newp, newlen,
427 defcorename, sizeof(defcorename));
428 if (newp && !error)
429 defcorenamelen = newlen;
430 return (error);
431 case KERN_SYNCHRONIZED_IO:
432 return (sysctl_rdint(oldp, oldlenp, newp, 1));
433 case KERN_IOV_MAX:
434 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
435 case KERN_MBUF:
436 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
437 newp, newlen));
438 case KERN_MAPPED_FILES:
439 return (sysctl_rdint(oldp, oldlenp, newp, 1));
440 case KERN_MEMLOCK:
441 return (sysctl_rdint(oldp, oldlenp, newp, 1));
442 case KERN_MEMLOCK_RANGE:
443 return (sysctl_rdint(oldp, oldlenp, newp, 1));
444 case KERN_MEMORY_PROTECTION:
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 case KERN_LOGIN_NAME_MAX:
447 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
448 case KERN_LOGSIGEXIT:
449 return (sysctl_int(oldp, oldlenp, newp, newlen,
450 &kern_logsigexit));
451 case KERN_FSCALE:
452 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
453 case KERN_CCPU:
454 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
455 case KERN_CP_TIME:
456 /* XXXSMP: WRONG! */
457 return (sysctl_rdstruct(oldp, oldlenp, newp,
458 curcpu()->ci_schedstate.spc_cp_time,
459 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
460 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
461 case KERN_SYSVIPC_INFO:
462 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
463 #endif
464 case KERN_MSGBUF:
465 return (sysctl_msgbuf(oldp, oldlenp));
466 case KERN_CONSDEV:
467 if (cn_tab != NULL)
468 consdev = cn_tab->cn_dev;
469 else
470 consdev = NODEV;
471 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
472 sizeof consdev));
473 default:
474 return (EOPNOTSUPP);
475 }
476 /* NOTREACHED */
477 }
478
479 /*
480 * hardware related system variables.
481 */
482 int
483 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
484 int *name;
485 u_int namelen;
486 void *oldp;
487 size_t *oldlenp;
488 void *newp;
489 size_t newlen;
490 struct proc *p;
491 {
492
493 /* all sysctl names at this level are terminal */
494 if (namelen != 1)
495 return (ENOTDIR); /* overloaded */
496
497 switch (name[0]) {
498 case HW_MACHINE:
499 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
500 case HW_MACHINE_ARCH:
501 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
502 case HW_MODEL:
503 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
504 case HW_NCPU:
505 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
506 case HW_BYTEORDER:
507 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
508 case HW_PHYSMEM:
509 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
510 case HW_USERMEM:
511 return (sysctl_rdint(oldp, oldlenp, newp,
512 ctob(physmem - uvmexp.wired)));
513 case HW_PAGESIZE:
514 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
515 case HW_ALIGNBYTES:
516 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
517 default:
518 return (EOPNOTSUPP);
519 }
520 /* NOTREACHED */
521 }
522
523 #ifdef DEBUG
524 /*
525 * Debugging related system variables.
526 */
527 struct ctldebug debug0, debug1, debug2, debug3, debug4;
528 struct ctldebug debug5, debug6, debug7, debug8, debug9;
529 struct ctldebug debug10, debug11, debug12, debug13, debug14;
530 struct ctldebug debug15, debug16, debug17, debug18, debug19;
531 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
532 &debug0, &debug1, &debug2, &debug3, &debug4,
533 &debug5, &debug6, &debug7, &debug8, &debug9,
534 &debug10, &debug11, &debug12, &debug13, &debug14,
535 &debug15, &debug16, &debug17, &debug18, &debug19,
536 };
537 int
538 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
539 int *name;
540 u_int namelen;
541 void *oldp;
542 size_t *oldlenp;
543 void *newp;
544 size_t newlen;
545 struct proc *p;
546 {
547 struct ctldebug *cdp;
548
549 /* all sysctl names at this level are name and field */
550 if (namelen != 2)
551 return (ENOTDIR); /* overloaded */
552 if (name[0] < 0 || name[0] >= CTL_DEBUG_MAXID)
553 return (EOPNOTSUPP);
554 cdp = debugvars[name[0]];
555 if (cdp->debugname == 0)
556 return (EOPNOTSUPP);
557 switch (name[1]) {
558 case CTL_DEBUG_NAME:
559 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
560 case CTL_DEBUG_VALUE:
561 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
562 default:
563 return (EOPNOTSUPP);
564 }
565 /* NOTREACHED */
566 }
567 #endif /* DEBUG */
568
569 int
570 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
571 int *name;
572 u_int namelen;
573 void *oldp;
574 size_t *oldlenp;
575 void *newp;
576 size_t newlen;
577 struct proc *p;
578 {
579 struct proc *ptmp = NULL;
580 int error = 0;
581 struct rlimit alim;
582 struct plimit *newplim;
583 char *tmps = NULL;
584 int i, curlen, len;
585
586 if (namelen < 2)
587 return EINVAL;
588
589 if (name[0] == PROC_CURPROC) {
590 ptmp = p;
591 } else if ((ptmp = pfind((pid_t)name[0])) == NULL) {
592 return (ESRCH);
593 } else {
594 if (p->p_ucred->cr_uid != 0) {
595 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
596 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
597 return EPERM;
598 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
599 return EPERM; /* sgid proc */
600 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
601 if (p->p_ucred->cr_groups[i] ==
602 ptmp->p_cred->p_rgid)
603 break;
604 }
605 if (i == p->p_ucred->cr_ngroups)
606 return EPERM;
607 }
608 }
609 if (name[1] == PROC_PID_CORENAME) {
610 if (namelen != 2)
611 return EINVAL;
612 /*
613 * Can't use sysctl_string() here because we may malloc a new
614 * area during the process, so we have to do it by hand.
615 */
616 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
617 if (oldlenp && *oldlenp < curlen) {
618 if (!oldp)
619 *oldlenp = curlen;
620 return (ENOMEM);
621 }
622 if (newp) {
623 if (securelevel > 2)
624 return EPERM;
625 if (newlen > MAXPATHLEN)
626 return ENAMETOOLONG;
627 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
628 if (tmps == NULL)
629 return ENOMEM;
630 error = copyin(newp, tmps, newlen + 1);
631 tmps[newlen] = '\0';
632 if (error)
633 goto cleanup;
634 /* Enforce to be either 'core' for end with '.core' */
635 if (newlen < 4) { /* c.o.r.e */
636 error = EINVAL;
637 goto cleanup;
638 }
639 len = newlen - 4;
640 if (len > 0) {
641 if (tmps[len - 1] != '.' &&
642 tmps[len - 1] != '/') {
643 error = EINVAL;
644 goto cleanup;
645 }
646 }
647 if (strcmp(&tmps[len], "core") != 0) {
648 error = EINVAL;
649 goto cleanup;
650 }
651 }
652 if (oldp && oldlenp) {
653 *oldlenp = curlen;
654 error = copyout(ptmp->p_limit->pl_corename, oldp,
655 curlen);
656 }
657 if (newp && error == 0) {
658 /* if the 2 strings are identical, don't limcopy() */
659 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
660 error = 0;
661 goto cleanup;
662 }
663 if (ptmp->p_limit->p_refcnt > 1 &&
664 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
665 newplim = limcopy(ptmp->p_limit);
666 limfree(ptmp->p_limit);
667 ptmp->p_limit = newplim;
668 }
669 if (ptmp->p_limit->pl_corename != defcorename) {
670 free(ptmp->p_limit->pl_corename, M_TEMP);
671 }
672 ptmp->p_limit->pl_corename = tmps;
673 return (0);
674 }
675 cleanup:
676 if (tmps)
677 free(tmps, M_TEMP);
678 return (error);
679 }
680 if (name[1] == PROC_PID_LIMIT) {
681 if (namelen != 4 || name[2] < 1 ||
682 name[2] >= PROC_PID_LIMIT_MAXID)
683 return EINVAL;
684 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
685 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
686 error = sysctl_quad(oldp, oldlenp, newp, newlen,
687 &alim.rlim_max);
688 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
689 error = sysctl_quad(oldp, oldlenp, newp, newlen,
690 &alim.rlim_cur);
691 else
692 error = EINVAL;
693
694 if (error)
695 return error;
696
697 if (newp)
698 error = dosetrlimit(ptmp, p->p_cred,
699 name[2] - 1, &alim);
700 return error;
701 }
702 return (EINVAL);
703 }
704
705 /*
706 * Convenience macros.
707 */
708
709 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
710 if (oldlenp) { \
711 if (!oldp) \
712 *oldlenp = len; \
713 else { \
714 if (*oldlenp < len) \
715 return(ENOMEM); \
716 *oldlenp = len; \
717 error = copyout((caddr_t)valp, oldp, len); \
718 } \
719 }
720
721 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
722 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
723
724 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
725 if (newp && newlen != len) \
726 return (EINVAL);
727
728 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
729 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
730
731 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
732 if (error == 0 && newp) \
733 error = copyin(newp, valp, len);
734
735 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
736 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
737
738 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
739 if (oldlenp) { \
740 len = strlen(str) + 1; \
741 if (!oldp) \
742 *oldlenp = len; \
743 else { \
744 if (*oldlenp < len) { \
745 err2 = ENOMEM; \
746 len = *oldlenp; \
747 } else \
748 *oldlenp = len; \
749 error = copyout(str, oldp, len);\
750 if (error == 0) \
751 error = err2; \
752 } \
753 }
754
755 /*
756 * Validate parameters and get old / set new parameters
757 * for an integer-valued sysctl function.
758 */
759 int
760 sysctl_int(oldp, oldlenp, newp, newlen, valp)
761 void *oldp;
762 size_t *oldlenp;
763 void *newp;
764 size_t newlen;
765 int *valp;
766 {
767 int error = 0;
768
769 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
770 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
771 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
772
773 return (error);
774 }
775
776
777 /*
778 * As above, but read-only.
779 */
780 int
781 sysctl_rdint(oldp, oldlenp, newp, val)
782 void *oldp;
783 size_t *oldlenp;
784 void *newp;
785 int val;
786 {
787 int error = 0;
788
789 if (newp)
790 return (EPERM);
791
792 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
793
794 return (error);
795 }
796
797 /*
798 * Validate parameters and get old / set new parameters
799 * for an quad-valued sysctl function.
800 */
801 int
802 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
803 void *oldp;
804 size_t *oldlenp;
805 void *newp;
806 size_t newlen;
807 quad_t *valp;
808 {
809 int error = 0;
810
811 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
812 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
813 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
814
815 return (error);
816 }
817
818 /*
819 * As above, but read-only.
820 */
821 int
822 sysctl_rdquad(oldp, oldlenp, newp, val)
823 void *oldp;
824 size_t *oldlenp;
825 void *newp;
826 quad_t val;
827 {
828 int error = 0;
829
830 if (newp)
831 return (EPERM);
832
833 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
834
835 return (error);
836 }
837
838 /*
839 * Validate parameters and get old / set new parameters
840 * for a string-valued sysctl function.
841 */
842 int
843 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
844 void *oldp;
845 size_t *oldlenp;
846 void *newp;
847 size_t newlen;
848 char *str;
849 int maxlen;
850 {
851 int len, error = 0, err2 = 0;
852
853 if (newp && newlen >= maxlen)
854 return (EINVAL);
855
856 SYSCTL_STRING_CORE(oldp, oldlenp, str);
857
858 if (error == 0 && newp) {
859 error = copyin(newp, str, newlen);
860 str[newlen] = 0;
861 }
862 return (error);
863 }
864
865 /*
866 * As above, but read-only.
867 */
868 int
869 sysctl_rdstring(oldp, oldlenp, newp, str)
870 void *oldp;
871 size_t *oldlenp;
872 void *newp;
873 const char *str;
874 {
875 int len, error = 0, err2 = 0;
876
877 if (newp)
878 return (EPERM);
879
880 SYSCTL_STRING_CORE(oldp, oldlenp, str);
881
882 return (error);
883 }
884
885 /*
886 * Validate parameters and get old / set new parameters
887 * for a structure oriented sysctl function.
888 */
889 int
890 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
891 void *oldp;
892 size_t *oldlenp;
893 void *newp;
894 size_t newlen;
895 void *sp;
896 int len;
897 {
898 int error = 0;
899
900 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
901 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
902 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
903
904 return (error);
905 }
906
907 /*
908 * Validate parameters and get old parameters
909 * for a structure oriented sysctl function.
910 */
911 int
912 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
913 void *oldp;
914 size_t *oldlenp;
915 void *newp;
916 const void *sp;
917 int len;
918 {
919 int error = 0;
920
921 if (newp)
922 return (EPERM);
923
924 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
925
926 return (error);
927 }
928
929 /*
930 * Get file structures.
931 */
932 static int
933 sysctl_file(vwhere, sizep)
934 void *vwhere;
935 size_t *sizep;
936 {
937 int buflen, error;
938 struct file *fp;
939 char *start, *where;
940
941 start = where = vwhere;
942 buflen = *sizep;
943 if (where == NULL) {
944 /*
945 * overestimate by 10 files
946 */
947 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
948 return (0);
949 }
950
951 /*
952 * first copyout filehead
953 */
954 if (buflen < sizeof(filehead)) {
955 *sizep = 0;
956 return (0);
957 }
958 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
959 if (error)
960 return (error);
961 buflen -= sizeof(filehead);
962 where += sizeof(filehead);
963
964 /*
965 * followed by an array of file structures
966 */
967 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
968 if (buflen < sizeof(struct file)) {
969 *sizep = where - start;
970 return (ENOMEM);
971 }
972 error = copyout((caddr_t)fp, where, sizeof(struct file));
973 if (error)
974 return (error);
975 buflen -= sizeof(struct file);
976 where += sizeof(struct file);
977 }
978 *sizep = where - start;
979 return (0);
980 }
981
982 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
983 #define FILL_PERM(src, dst) do { \
984 (dst)._key = (src)._key; \
985 (dst).uid = (src).uid; \
986 (dst).gid = (src).gid; \
987 (dst).cuid = (src).cuid; \
988 (dst).cgid = (src).cgid; \
989 (dst).mode = (src).mode; \
990 (dst)._seq = (src)._seq; \
991 } while (0);
992 #define FILL_MSG(src, dst) do { \
993 FILL_PERM((src).msg_perm, (dst).msg_perm); \
994 (dst).msg_qnum = (src).msg_qnum; \
995 (dst).msg_qbytes = (src).msg_qbytes; \
996 (dst)._msg_cbytes = (src)._msg_cbytes; \
997 (dst).msg_lspid = (src).msg_lspid; \
998 (dst).msg_lrpid = (src).msg_lrpid; \
999 (dst).msg_stime = (src).msg_stime; \
1000 (dst).msg_rtime = (src).msg_rtime; \
1001 (dst).msg_ctime = (src).msg_ctime; \
1002 } while (0)
1003 #define FILL_SEM(src, dst) do { \
1004 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1005 (dst).sem_nsems = (src).sem_nsems; \
1006 (dst).sem_otime = (src).sem_otime; \
1007 (dst).sem_ctime = (src).sem_ctime; \
1008 } while (0)
1009 #define FILL_SHM(src, dst) do { \
1010 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1011 (dst).shm_segsz = (src).shm_segsz; \
1012 (dst).shm_lpid = (src).shm_lpid; \
1013 (dst).shm_cpid = (src).shm_cpid; \
1014 (dst).shm_atime = (src).shm_atime; \
1015 (dst).shm_dtime = (src).shm_dtime; \
1016 (dst).shm_ctime = (src).shm_ctime; \
1017 (dst).shm_nattch = (src).shm_nattch; \
1018 } while (0)
1019
1020 static int
1021 sysctl_sysvipc(name, namelen, where, sizep)
1022 int *name;
1023 u_int namelen;
1024 void *where;
1025 size_t *sizep;
1026 {
1027 #ifdef SYSVMSG
1028 struct msg_sysctl_info *msgsi;
1029 #endif
1030 #ifdef SYSVSEM
1031 struct sem_sysctl_info *semsi;
1032 #endif
1033 #ifdef SYSVSHM
1034 struct shm_sysctl_info *shmsi;
1035 #endif
1036 size_t infosize, dssize, tsize, buflen;
1037 void *buf = NULL, *buf2;
1038 char *start;
1039 int32_t nds;
1040 int i, error, ret;
1041
1042 if (namelen != 1)
1043 return (EINVAL);
1044
1045 start = where;
1046 buflen = *sizep;
1047
1048 switch (*name) {
1049 case KERN_SYSVIPC_MSG_INFO:
1050 #ifdef SYSVMSG
1051 infosize = sizeof(msgsi->msginfo);
1052 nds = msginfo.msgmni;
1053 dssize = sizeof(msgsi->msgids[0]);
1054 break;
1055 #else
1056 return (EINVAL);
1057 #endif
1058 case KERN_SYSVIPC_SEM_INFO:
1059 #ifdef SYSVSEM
1060 infosize = sizeof(semsi->seminfo);
1061 nds = seminfo.semmni;
1062 dssize = sizeof(semsi->semids[0]);
1063 break;
1064 #else
1065 return (EINVAL);
1066 #endif
1067 case KERN_SYSVIPC_SHM_INFO:
1068 #ifdef SYSVSHM
1069 infosize = sizeof(shmsi->shminfo);
1070 nds = shminfo.shmmni;
1071 dssize = sizeof(shmsi->shmids[0]);
1072 break;
1073 #else
1074 return (EINVAL);
1075 #endif
1076 default:
1077 return (EINVAL);
1078 }
1079 /*
1080 * Round infosize to 64 bit boundary if requesting more than just
1081 * the info structure or getting the total data size.
1082 */
1083 if (where == NULL || *sizep > infosize)
1084 infosize = ((infosize + 7) / 8) * 8;
1085 tsize = infosize + nds * dssize;
1086
1087 /* Return just the total size required. */
1088 if (where == NULL) {
1089 *sizep = tsize;
1090 return (0);
1091 }
1092
1093 /* Not enough room for even the info struct. */
1094 if (buflen < infosize) {
1095 *sizep = 0;
1096 return (ENOMEM);
1097 }
1098 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1099 memset(buf, 0, min(tsize, buflen));
1100
1101 switch (*name) {
1102 #ifdef SYSVMSG
1103 case KERN_SYSVIPC_MSG_INFO:
1104 msgsi = (struct msg_sysctl_info *)buf;
1105 buf2 = &msgsi->msgids[0];
1106 msgsi->msginfo = msginfo;
1107 break;
1108 #endif
1109 #ifdef SYSVSEM
1110 case KERN_SYSVIPC_SEM_INFO:
1111 semsi = (struct sem_sysctl_info *)buf;
1112 buf2 = &semsi->semids[0];
1113 semsi->seminfo = seminfo;
1114 break;
1115 #endif
1116 #ifdef SYSVSHM
1117 case KERN_SYSVIPC_SHM_INFO:
1118 shmsi = (struct shm_sysctl_info *)buf;
1119 buf2 = &shmsi->shmids[0];
1120 shmsi->shminfo = shminfo;
1121 break;
1122 #endif
1123 }
1124 buflen -= infosize;
1125
1126 ret = 0;
1127 if (buflen > 0) {
1128 /* Fill in the IPC data structures. */
1129 for (i = 0; i < nds; i++) {
1130 if (buflen < dssize) {
1131 ret = ENOMEM;
1132 break;
1133 }
1134 switch (*name) {
1135 #ifdef SYSVMSG
1136 case KERN_SYSVIPC_MSG_INFO:
1137 FILL_MSG(msqids[i], msgsi->msgids[i]);
1138 break;
1139 #endif
1140 #ifdef SYSVSEM
1141 case KERN_SYSVIPC_SEM_INFO:
1142 FILL_SEM(sema[i], semsi->semids[i]);
1143 break;
1144 #endif
1145 #ifdef SYSVSHM
1146 case KERN_SYSVIPC_SHM_INFO:
1147 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1148 break;
1149 #endif
1150 }
1151 buflen -= dssize;
1152 }
1153 }
1154 *sizep -= buflen;
1155 error = copyout(buf, start, *sizep);
1156 /* If copyout succeeded, use return code set earlier. */
1157 if (error == 0)
1158 error = ret;
1159 if (buf)
1160 free(buf, M_TEMP);
1161 return (error);
1162 }
1163 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1164
1165 static int
1166 sysctl_msgbuf(vwhere, sizep)
1167 void *vwhere;
1168 size_t *sizep;
1169 {
1170 char *where = vwhere;
1171 size_t len, maxlen = *sizep;
1172 long pos;
1173 int error;
1174
1175 /*
1176 * deal with cases where the message buffer has
1177 * become corrupted.
1178 */
1179 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1180 msgbufenabled = 0;
1181 return (ENXIO);
1182 }
1183
1184 if (where == NULL) {
1185 /* always return full buffer size */
1186 *sizep = msgbufp->msg_bufs;
1187 return (0);
1188 }
1189
1190 error = 0;
1191 maxlen = min(msgbufp->msg_bufs, maxlen);
1192 pos = msgbufp->msg_bufx;
1193 while (maxlen > 0) {
1194 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1195 len = min(len, maxlen);
1196 if (len == 0)
1197 break;
1198 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1199 if (error)
1200 break;
1201 where += len;
1202 maxlen -= len;
1203 pos = 0;
1204 }
1205 return (error);
1206 }
1207
1208 /*
1209 * try over estimating by 5 procs
1210 */
1211 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1212
1213 static int
1214 sysctl_doeproc(name, namelen, vwhere, sizep)
1215 int *name;
1216 u_int namelen;
1217 void *vwhere;
1218 size_t *sizep;
1219 {
1220 struct eproc eproc;
1221 struct kinfo_proc2 kproc2;
1222 struct kinfo_proc *dp;
1223 struct proc *p;
1224 const struct proclist_desc *pd;
1225 char *where, *dp2;
1226 int type, op, arg, elem_size, elem_count;
1227 int buflen, needed, error;
1228
1229 dp = vwhere;
1230 dp2 = where = vwhere;
1231 buflen = where != NULL ? *sizep : 0;
1232 error = needed = 0;
1233 type = name[0];
1234
1235 if (type == KERN_PROC) {
1236 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1237 return (EINVAL);
1238 op = name[1];
1239 if (op != KERN_PROC_ALL)
1240 arg = name[2];
1241 } else {
1242 if (namelen != 5)
1243 return (EINVAL);
1244 op = name[1];
1245 arg = name[2];
1246 elem_size = name[3];
1247 elem_count = name[4];
1248 }
1249
1250 proclist_lock_read();
1251
1252 pd = proclists;
1253 again:
1254 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1255 /*
1256 * Skip embryonic processes.
1257 */
1258 if (p->p_stat == SIDL)
1259 continue;
1260 /*
1261 * TODO - make more efficient (see notes below).
1262 * do by session.
1263 */
1264 switch (op) {
1265
1266 case KERN_PROC_PID:
1267 /* could do this with just a lookup */
1268 if (p->p_pid != (pid_t)arg)
1269 continue;
1270 break;
1271
1272 case KERN_PROC_PGRP:
1273 /* could do this by traversing pgrp */
1274 if (p->p_pgrp->pg_id != (pid_t)arg)
1275 continue;
1276 break;
1277
1278 case KERN_PROC_SESSION:
1279 if (p->p_session->s_sid != (pid_t)arg)
1280 continue;
1281 break;
1282
1283 case KERN_PROC_TTY:
1284 if (arg == KERN_PROC_TTY_REVOKE) {
1285 if ((p->p_flag & P_CONTROLT) == 0 ||
1286 p->p_session->s_ttyp == NULL ||
1287 p->p_session->s_ttyvp != NULL)
1288 continue;
1289 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1290 p->p_session->s_ttyp == NULL) {
1291 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1292 continue;
1293 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1294 continue;
1295 break;
1296
1297 case KERN_PROC_UID:
1298 if (p->p_ucred->cr_uid != (uid_t)arg)
1299 continue;
1300 break;
1301
1302 case KERN_PROC_RUID:
1303 if (p->p_cred->p_ruid != (uid_t)arg)
1304 continue;
1305 break;
1306
1307 case KERN_PROC_GID:
1308 if (p->p_ucred->cr_gid != (uid_t)arg)
1309 continue;
1310 break;
1311
1312 case KERN_PROC_RGID:
1313 if (p->p_cred->p_rgid != (uid_t)arg)
1314 continue;
1315 break;
1316
1317 case KERN_PROC_ALL:
1318 /* allow everything */
1319 break;
1320
1321 default:
1322 error = EINVAL;
1323 goto cleanup;
1324 }
1325 if (type == KERN_PROC) {
1326 if (buflen >= sizeof(struct kinfo_proc)) {
1327 fill_eproc(p, &eproc);
1328 error = copyout((caddr_t)p, &dp->kp_proc,
1329 sizeof(struct proc));
1330 if (error)
1331 goto cleanup;
1332 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1333 sizeof(eproc));
1334 if (error)
1335 goto cleanup;
1336 dp++;
1337 buflen -= sizeof(struct kinfo_proc);
1338 }
1339 needed += sizeof(struct kinfo_proc);
1340 } else { /* KERN_PROC2 */
1341 if (buflen >= elem_size && elem_count > 0) {
1342 fill_kproc2(p, &kproc2);
1343 /*
1344 * Copy out elem_size, but not larger than
1345 * the size of a struct kinfo_proc2.
1346 */
1347 error = copyout(&kproc2, dp2,
1348 min(sizeof(kproc2), elem_size));
1349 if (error)
1350 goto cleanup;
1351 dp2 += elem_size;
1352 buflen -= elem_size;
1353 elem_count--;
1354 }
1355 needed += elem_size;
1356 }
1357 }
1358 pd++;
1359 if (pd->pd_list != NULL)
1360 goto again;
1361 proclist_unlock_read();
1362
1363 if (where != NULL) {
1364 if (type == KERN_PROC)
1365 *sizep = (caddr_t)dp - where;
1366 else
1367 *sizep = dp2 - where;
1368 if (needed > *sizep)
1369 return (ENOMEM);
1370 } else {
1371 needed += KERN_PROCSLOP;
1372 *sizep = needed;
1373 }
1374 return (0);
1375 cleanup:
1376 proclist_unlock_read();
1377 return (error);
1378 }
1379
1380 /*
1381 * Fill in an eproc structure for the specified process.
1382 */
1383 void
1384 fill_eproc(p, ep)
1385 struct proc *p;
1386 struct eproc *ep;
1387 {
1388 struct tty *tp;
1389
1390 ep->e_paddr = p;
1391 ep->e_sess = p->p_session;
1392 ep->e_pcred = *p->p_cred;
1393 ep->e_ucred = *p->p_ucred;
1394 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1395 ep->e_vm.vm_rssize = 0;
1396 ep->e_vm.vm_tsize = 0;
1397 ep->e_vm.vm_dsize = 0;
1398 ep->e_vm.vm_ssize = 0;
1399 /* ep->e_vm.vm_pmap = XXX; */
1400 } else {
1401 struct vmspace *vm = p->p_vmspace;
1402
1403 ep->e_vm.vm_rssize = vm_resident_count(vm);
1404 ep->e_vm.vm_tsize = vm->vm_tsize;
1405 ep->e_vm.vm_dsize = vm->vm_dsize;
1406 ep->e_vm.vm_ssize = vm->vm_ssize;
1407 }
1408 if (p->p_pptr)
1409 ep->e_ppid = p->p_pptr->p_pid;
1410 else
1411 ep->e_ppid = 0;
1412 ep->e_pgid = p->p_pgrp->pg_id;
1413 ep->e_sid = ep->e_sess->s_sid;
1414 ep->e_jobc = p->p_pgrp->pg_jobc;
1415 if ((p->p_flag & P_CONTROLT) &&
1416 (tp = ep->e_sess->s_ttyp)) {
1417 ep->e_tdev = tp->t_dev;
1418 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1419 ep->e_tsess = tp->t_session;
1420 } else
1421 ep->e_tdev = NODEV;
1422 if (p->p_wmesg)
1423 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1424 ep->e_xsize = ep->e_xrssize = 0;
1425 ep->e_xccount = ep->e_xswrss = 0;
1426 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1427 if (SESS_LEADER(p))
1428 ep->e_flag |= EPROC_SLEADER;
1429 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1430 }
1431
1432 /*
1433 * Fill in an eproc structure for the specified process.
1434 */
1435 static void
1436 fill_kproc2(p, ki)
1437 struct proc *p;
1438 struct kinfo_proc2 *ki;
1439 {
1440 struct tty *tp;
1441
1442 memset(ki, 0, sizeof(*ki));
1443
1444 ki->p_forw = PTRTOINT64(p->p_forw);
1445 ki->p_back = PTRTOINT64(p->p_back);
1446 ki->p_paddr = PTRTOINT64(p);
1447
1448 ki->p_addr = PTRTOINT64(p->p_addr);
1449 ki->p_fd = PTRTOINT64(p->p_fd);
1450 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1451 ki->p_stats = PTRTOINT64(p->p_stats);
1452 ki->p_limit = PTRTOINT64(p->p_limit);
1453 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1454 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1455 ki->p_sess = PTRTOINT64(p->p_session);
1456 ki->p_tsess = 0; /* may be changed if controlling tty below */
1457 ki->p_ru = PTRTOINT64(p->p_ru);
1458
1459 ki->p_eflag = 0;
1460 ki->p_exitsig = p->p_exitsig;
1461 ki->p_flag = p->p_flag;
1462
1463 ki->p_pid = p->p_pid;
1464 if (p->p_pptr)
1465 ki->p_ppid = p->p_pptr->p_pid;
1466 else
1467 ki->p_ppid = 0;
1468 ki->p_sid = p->p_session->s_sid;
1469 ki->p__pgid = p->p_pgrp->pg_id;
1470
1471 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1472
1473 ki->p_uid = p->p_ucred->cr_uid;
1474 ki->p_ruid = p->p_cred->p_ruid;
1475 ki->p_gid = p->p_ucred->cr_gid;
1476 ki->p_rgid = p->p_cred->p_rgid;
1477
1478 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1479 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1480 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1481
1482 ki->p_jobc = p->p_pgrp->pg_jobc;
1483 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1484 ki->p_tdev = tp->t_dev;
1485 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1486 ki->p_tsess = PTRTOINT64(tp->t_session);
1487 } else {
1488 ki->p_tdev = NODEV;
1489 }
1490
1491 ki->p_estcpu = p->p_estcpu;
1492 ki->p_rtime_sec = p->p_rtime.tv_sec;
1493 ki->p_rtime_usec = p->p_rtime.tv_usec;
1494 ki->p_cpticks = p->p_cpticks;
1495 ki->p_pctcpu = p->p_pctcpu;
1496 ki->p_swtime = p->p_swtime;
1497 ki->p_slptime = p->p_slptime;
1498 if (p->p_stat == SONPROC) {
1499 KDASSERT(p->p_cpu != NULL);
1500 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1501 } else
1502 ki->p_schedflags = 0;
1503
1504 ki->p_uticks = p->p_uticks;
1505 ki->p_sticks = p->p_sticks;
1506 ki->p_iticks = p->p_iticks;
1507
1508 ki->p_tracep = PTRTOINT64(p->p_tracep);
1509 ki->p_traceflag = p->p_traceflag;
1510
1511 ki->p_holdcnt = p->p_holdcnt;
1512
1513 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1514 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1515 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1516 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1517
1518 ki->p_stat = p->p_stat;
1519 ki->p_priority = p->p_priority;
1520 ki->p_usrpri = p->p_usrpri;
1521 ki->p_nice = p->p_nice;
1522
1523 ki->p_xstat = p->p_xstat;
1524 ki->p_acflag = p->p_acflag;
1525
1526 strncpy(ki->p_comm, p->p_comm,
1527 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1528
1529 if (p->p_wmesg)
1530 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1531 ki->p_wchan = PTRTOINT64(p->p_wchan);
1532
1533 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1534
1535 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1536 ki->p_vm_rssize = 0;
1537 ki->p_vm_tsize = 0;
1538 ki->p_vm_dsize = 0;
1539 ki->p_vm_ssize = 0;
1540 } else {
1541 struct vmspace *vm = p->p_vmspace;
1542
1543 ki->p_vm_rssize = vm_resident_count(vm);
1544 ki->p_vm_tsize = vm->vm_tsize;
1545 ki->p_vm_dsize = vm->vm_dsize;
1546 ki->p_vm_ssize = vm->vm_ssize;
1547 }
1548
1549 if (p->p_session->s_ttyvp)
1550 ki->p_eflag |= EPROC_CTTY;
1551 if (SESS_LEADER(p))
1552 ki->p_eflag |= EPROC_SLEADER;
1553
1554 /* XXX Is this double check necessary? */
1555 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1556 ki->p_uvalid = 0;
1557 } else {
1558 ki->p_uvalid = 1;
1559
1560 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1561 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1562
1563 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1564 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1565 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1566 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1567
1568 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1569 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1570 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1571 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1572 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1573 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1574 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1575 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1576 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1577 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1578 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1579 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1580 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1581 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1582
1583 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1584 p->p_stats->p_cru.ru_stime.tv_sec;
1585 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1586 p->p_stats->p_cru.ru_stime.tv_usec;
1587 }
1588 }
1589
1590 int
1591 sysctl_procargs(name, namelen, where, sizep, up)
1592 int *name;
1593 u_int namelen;
1594 void *where;
1595 size_t *sizep;
1596 struct proc *up;
1597 {
1598 struct ps_strings pss;
1599 struct proc *p;
1600 size_t len, upper_bound, xlen;
1601 struct uio auio;
1602 struct iovec aiov;
1603 vaddr_t argv;
1604 pid_t pid;
1605 int nargv, type, error, i;
1606 char *arg;
1607 char *tmp;
1608
1609 if (namelen != 2)
1610 return (EINVAL);
1611 pid = name[0];
1612 type = name[1];
1613
1614 switch (type) {
1615 case KERN_PROC_ARGV:
1616 case KERN_PROC_NARGV:
1617 case KERN_PROC_ENV:
1618 case KERN_PROC_NENV:
1619 /* ok */
1620 break;
1621 default:
1622 return (EINVAL);
1623 }
1624
1625 /* check pid */
1626 if ((p = pfind(pid)) == NULL)
1627 return (EINVAL);
1628
1629 /* only root or same user change look at the environment */
1630 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1631 if (up->p_ucred->cr_uid != 0) {
1632 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1633 up->p_cred->p_ruid != p->p_cred->p_svuid)
1634 return (EPERM);
1635 }
1636 }
1637
1638 if (sizep != NULL && where == NULL) {
1639 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1640 *sizep = sizeof (int);
1641 else
1642 *sizep = ARG_MAX; /* XXX XXX XXX */
1643 return (0);
1644 }
1645 if (where == NULL || sizep == NULL)
1646 return (EINVAL);
1647
1648 /*
1649 * Zombies don't have a stack, so we can't read their psstrings.
1650 * System processes also don't have a user stack.
1651 */
1652 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1653 return (EINVAL);
1654
1655 /*
1656 * Lock the process down in memory.
1657 */
1658 /* XXXCDC: how should locking work here? */
1659 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1660 return (EFAULT);
1661 PHOLD(p);
1662 p->p_vmspace->vm_refcnt++; /* XXX */
1663
1664 /*
1665 * Allocate a temporary buffer to hold the arguments.
1666 */
1667 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1668
1669 /*
1670 * Read in the ps_strings structure.
1671 */
1672 aiov.iov_base = &pss;
1673 aiov.iov_len = sizeof(pss);
1674 auio.uio_iov = &aiov;
1675 auio.uio_iovcnt = 1;
1676 auio.uio_offset = (vaddr_t)p->p_psstr;
1677 auio.uio_resid = sizeof(pss);
1678 auio.uio_segflg = UIO_SYSSPACE;
1679 auio.uio_rw = UIO_READ;
1680 auio.uio_procp = NULL;
1681 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1682 if (error)
1683 goto done;
1684
1685 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1686 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1687 else
1688 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1689 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1690 error = copyout(&nargv, where, sizeof(nargv));
1691 *sizep = sizeof(nargv);
1692 goto done;
1693 }
1694 /*
1695 * Now read the address of the argument vector.
1696 */
1697 switch (type) {
1698 case KERN_PROC_ARGV:
1699 /* XXX compat32 stuff here */
1700 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1701 break;
1702 case KERN_PROC_ENV:
1703 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1704 break;
1705 default:
1706 return (EINVAL);
1707 }
1708 auio.uio_offset = (off_t)(long)tmp;
1709 aiov.iov_base = &argv;
1710 aiov.iov_len = sizeof(argv);
1711 auio.uio_iov = &aiov;
1712 auio.uio_iovcnt = 1;
1713 auio.uio_resid = sizeof(argv);
1714 auio.uio_segflg = UIO_SYSSPACE;
1715 auio.uio_rw = UIO_READ;
1716 auio.uio_procp = NULL;
1717 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1718 if (error)
1719 goto done;
1720
1721 /*
1722 * Now copy in the actual argument vector, one page at a time,
1723 * since we don't know how long the vector is (though, we do
1724 * know how many NUL-terminated strings are in the vector).
1725 */
1726 len = 0;
1727 upper_bound = *sizep;
1728 for (; nargv != 0 && len < upper_bound; len += xlen) {
1729 aiov.iov_base = arg;
1730 aiov.iov_len = PAGE_SIZE;
1731 auio.uio_iov = &aiov;
1732 auio.uio_iovcnt = 1;
1733 auio.uio_offset = argv + len;
1734 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1735 auio.uio_resid = xlen;
1736 auio.uio_segflg = UIO_SYSSPACE;
1737 auio.uio_rw = UIO_READ;
1738 auio.uio_procp = NULL;
1739 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1740 if (error)
1741 goto done;
1742
1743 for (i = 0; i < xlen && nargv != 0; i++) {
1744 if (arg[i] == '\0')
1745 nargv--; /* one full string */
1746 }
1747
1748 /* make sure we don't copyout past the end of the user's buffer */
1749 if (len + i > upper_bound)
1750 i = upper_bound - len;
1751
1752 error = copyout(arg, (char *)where + len, i);
1753 if (error)
1754 break;
1755
1756 if (nargv == 0) {
1757 len += i;
1758 break;
1759 }
1760 }
1761 *sizep = len;
1762
1763 done:
1764 PRELE(p);
1765 uvmspace_free(p->p_vmspace);
1766
1767 free(arg, M_TEMP);
1768 return (error);
1769 }
1770