kern_sysctl.c revision 1.79 1 /* $NetBSD: kern_sysctl.c,v 1.79 2000/09/11 18:45:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49 #include "pty.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/buf.h>
55 #include <sys/device.h>
56 #include <sys/disklabel.h>
57 #include <sys/dkstat.h>
58 #include <sys/exec.h>
59 #include <sys/file.h>
60 #include <sys/ioctl.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/msgbuf.h>
64 #include <sys/pool.h>
65 #include <sys/proc.h>
66 #include <sys/resource.h>
67 #include <sys/resourcevar.h>
68 #include <sys/syscallargs.h>
69 #include <sys/tty.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #define __SYSCTL_PRIVATE
73 #include <sys/sysctl.h>
74 #include <sys/lock.h>
75
76 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
77 #include <sys/ipc.h>
78 #endif
79 #ifdef SYSVMSG
80 #include <sys/msg.h>
81 #endif
82 #ifdef SYSVSEM
83 #include <sys/sem.h>
84 #endif
85 #ifdef SYSVSHM
86 #include <sys/shm.h>
87 #endif
88
89 #include <dev/cons.h>
90
91 #if defined(DDB)
92 #include <ddb/ddbvar.h>
93 #endif
94
95 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
96
97 static int sysctl_file __P((void *, size_t *));
98 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
99 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
100 #endif
101 static int sysctl_msgbuf __P((void *, size_t *));
102 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
103 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
104 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
105 static int sysctl_pty __P((void *, size_t *, void *, size_t));
106
107 /*
108 * The `sysctl_memlock' is intended to keep too many processes from
109 * locking down memory by doing sysctls at once. Whether or not this
110 * is really a good idea to worry about it probably a subject of some
111 * debate.
112 */
113 struct lock sysctl_memlock;
114
115 void
116 sysctl_init(void)
117 {
118
119 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
120 }
121
122 int
123 sys___sysctl(p, v, retval)
124 struct proc *p;
125 void *v;
126 register_t *retval;
127 {
128 struct sys___sysctl_args /* {
129 syscallarg(int *) name;
130 syscallarg(u_int) namelen;
131 syscallarg(void *) old;
132 syscallarg(size_t *) oldlenp;
133 syscallarg(void *) new;
134 syscallarg(size_t) newlen;
135 } */ *uap = v;
136 int error;
137 size_t savelen = 0, oldlen = 0;
138 sysctlfn *fn;
139 int name[CTL_MAXNAME];
140 size_t *oldlenp;
141
142 /*
143 * all top-level sysctl names are non-terminal
144 */
145 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
146 return (EINVAL);
147 error = copyin(SCARG(uap, name), &name,
148 SCARG(uap, namelen) * sizeof(int));
149 if (error)
150 return (error);
151
152 /*
153 * For all but CTL_PROC, must be root to change a value.
154 * For CTL_PROC, must be root, or owner of the proc (and not suid),
155 * this is checked in proc_sysctl() (once we know the targer proc).
156 */
157 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
158 (error = suser(p->p_ucred, &p->p_acflag)))
159 return error;
160
161 switch (name[0]) {
162 case CTL_KERN:
163 fn = kern_sysctl;
164 break;
165 case CTL_HW:
166 fn = hw_sysctl;
167 break;
168 case CTL_VM:
169 fn = uvm_sysctl;
170 break;
171 case CTL_NET:
172 fn = net_sysctl;
173 break;
174 case CTL_VFS:
175 fn = vfs_sysctl;
176 break;
177 case CTL_MACHDEP:
178 fn = cpu_sysctl;
179 break;
180 #ifdef DEBUG
181 case CTL_DEBUG:
182 fn = debug_sysctl;
183 break;
184 #endif
185 #ifdef DDB
186 case CTL_DDB:
187 fn = ddb_sysctl;
188 break;
189 #endif
190 case CTL_PROC:
191 fn = proc_sysctl;
192 break;
193 default:
194 return (EOPNOTSUPP);
195 }
196
197 /*
198 * XXX Hey, we wire `old', but what about `new'?
199 */
200
201 oldlenp = SCARG(uap, oldlenp);
202 if (oldlenp) {
203 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
204 return (error);
205 oldlenp = &oldlen;
206 }
207 if (SCARG(uap, old) != NULL) {
208 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
209 if (error)
210 return (error);
211 if (uvm_vslock(p, SCARG(uap, old), oldlen,
212 VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
213 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
214 return (EFAULT);
215 }
216 savelen = oldlen;
217 }
218 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
219 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
220 if (SCARG(uap, old) != NULL) {
221 uvm_vsunlock(p, SCARG(uap, old), savelen);
222 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
223 }
224 if (error)
225 return (error);
226 if (SCARG(uap, oldlenp))
227 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
228 return (error);
229 }
230
231 /*
232 * Attributes stored in the kernel.
233 */
234 char hostname[MAXHOSTNAMELEN];
235 int hostnamelen;
236
237 char domainname[MAXHOSTNAMELEN];
238 int domainnamelen;
239
240 long hostid;
241
242 #ifdef INSECURE
243 int securelevel = -1;
244 #else
245 int securelevel = 0;
246 #endif
247
248 #ifndef DEFCORENAME
249 #define DEFCORENAME "%n.core"
250 #endif
251 char defcorename[MAXPATHLEN] = DEFCORENAME;
252 int defcorenamelen = sizeof(DEFCORENAME);
253
254 extern int kern_logsigexit;
255 extern fixpt_t ccpu;
256
257 /*
258 * kernel related system variables.
259 */
260 int
261 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
262 int *name;
263 u_int namelen;
264 void *oldp;
265 size_t *oldlenp;
266 void *newp;
267 size_t newlen;
268 struct proc *p;
269 {
270 int error, level, inthostid;
271 int old_autonicetime;
272 int old_vnodes;
273 dev_t consdev;
274
275 /* All sysctl names at this level, except for a few, are terminal. */
276 switch (name[0]) {
277 case KERN_PROC:
278 case KERN_PROC2:
279 case KERN_PROF:
280 case KERN_MBUF:
281 case KERN_PROC_ARGS:
282 case KERN_SYSVIPC_INFO:
283 /* Not terminal. */
284 break;
285 default:
286 if (namelen != 1)
287 return (ENOTDIR); /* overloaded */
288 }
289
290 switch (name[0]) {
291 case KERN_OSTYPE:
292 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
293 case KERN_OSRELEASE:
294 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
295 case KERN_OSREV:
296 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
297 case KERN_VERSION:
298 return (sysctl_rdstring(oldp, oldlenp, newp, version));
299 case KERN_MAXVNODES:
300 old_vnodes = desiredvnodes;
301 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
302 if (old_vnodes > desiredvnodes) {
303 desiredvnodes = old_vnodes;
304 return (EINVAL);
305 }
306 return (error);
307 case KERN_MAXPROC:
308 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
309 case KERN_MAXFILES:
310 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
311 case KERN_ARGMAX:
312 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
313 case KERN_SECURELVL:
314 level = securelevel;
315 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
316 newp == NULL)
317 return (error);
318 if (level < securelevel && p->p_pid != 1)
319 return (EPERM);
320 securelevel = level;
321 return (0);
322 case KERN_HOSTNAME:
323 error = sysctl_string(oldp, oldlenp, newp, newlen,
324 hostname, sizeof(hostname));
325 if (newp && !error)
326 hostnamelen = newlen;
327 return (error);
328 case KERN_DOMAINNAME:
329 error = sysctl_string(oldp, oldlenp, newp, newlen,
330 domainname, sizeof(domainname));
331 if (newp && !error)
332 domainnamelen = newlen;
333 return (error);
334 case KERN_HOSTID:
335 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
336 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
337 hostid = inthostid;
338 return (error);
339 case KERN_CLOCKRATE:
340 return (sysctl_clockrate(oldp, oldlenp));
341 case KERN_BOOTTIME:
342 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
343 sizeof(struct timeval)));
344 case KERN_VNODE:
345 return (sysctl_vnode(oldp, oldlenp, p));
346 case KERN_PROC:
347 case KERN_PROC2:
348 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
349 case KERN_PROC_ARGS:
350 return (sysctl_procargs(name + 1, namelen - 1,
351 oldp, oldlenp, p));
352 case KERN_FILE:
353 return (sysctl_file(oldp, oldlenp));
354 #ifdef GPROF
355 case KERN_PROF:
356 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
357 newp, newlen));
358 #endif
359 case KERN_POSIX1:
360 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
361 case KERN_NGROUPS:
362 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
363 case KERN_JOB_CONTROL:
364 return (sysctl_rdint(oldp, oldlenp, newp, 1));
365 case KERN_SAVED_IDS:
366 #ifdef _POSIX_SAVED_IDS
367 return (sysctl_rdint(oldp, oldlenp, newp, 1));
368 #else
369 return (sysctl_rdint(oldp, oldlenp, newp, 0));
370 #endif
371 case KERN_MAXPARTITIONS:
372 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
373 case KERN_RAWPARTITION:
374 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
375 #ifdef NTP
376 case KERN_NTPTIME:
377 return (sysctl_ntptime(oldp, oldlenp));
378 #endif
379 case KERN_AUTONICETIME:
380 old_autonicetime = autonicetime;
381 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
382 if (autonicetime < 0)
383 autonicetime = old_autonicetime;
384 return (error);
385 case KERN_AUTONICEVAL:
386 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
387 if (autoniceval < PRIO_MIN)
388 autoniceval = PRIO_MIN;
389 if (autoniceval > PRIO_MAX)
390 autoniceval = PRIO_MAX;
391 return (error);
392 case KERN_RTC_OFFSET:
393 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
394 case KERN_ROOT_DEVICE:
395 return (sysctl_rdstring(oldp, oldlenp, newp,
396 root_device->dv_xname));
397 case KERN_MSGBUFSIZE:
398 /*
399 * deal with cases where the message buffer has
400 * become corrupted.
401 */
402 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
403 msgbufenabled = 0;
404 return (ENXIO);
405 }
406 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
407 case KERN_FSYNC:
408 return (sysctl_rdint(oldp, oldlenp, newp, 1));
409 case KERN_SYSVMSG:
410 #ifdef SYSVMSG
411 return (sysctl_rdint(oldp, oldlenp, newp, 1));
412 #else
413 return (sysctl_rdint(oldp, oldlenp, newp, 0));
414 #endif
415 case KERN_SYSVSEM:
416 #ifdef SYSVSEM
417 return (sysctl_rdint(oldp, oldlenp, newp, 1));
418 #else
419 return (sysctl_rdint(oldp, oldlenp, newp, 0));
420 #endif
421 case KERN_SYSVSHM:
422 #ifdef SYSVSHM
423 return (sysctl_rdint(oldp, oldlenp, newp, 1));
424 #else
425 return (sysctl_rdint(oldp, oldlenp, newp, 0));
426 #endif
427 case KERN_DEFCORENAME:
428 if (newp && newlen < 1)
429 return (EINVAL);
430 error = sysctl_string(oldp, oldlenp, newp, newlen,
431 defcorename, sizeof(defcorename));
432 if (newp && !error)
433 defcorenamelen = newlen;
434 return (error);
435 case KERN_SYNCHRONIZED_IO:
436 return (sysctl_rdint(oldp, oldlenp, newp, 1));
437 case KERN_IOV_MAX:
438 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
439 case KERN_MBUF:
440 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
441 newp, newlen));
442 case KERN_MAPPED_FILES:
443 return (sysctl_rdint(oldp, oldlenp, newp, 1));
444 case KERN_MEMLOCK:
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 case KERN_MEMLOCK_RANGE:
447 return (sysctl_rdint(oldp, oldlenp, newp, 1));
448 case KERN_MEMORY_PROTECTION:
449 return (sysctl_rdint(oldp, oldlenp, newp, 1));
450 case KERN_LOGIN_NAME_MAX:
451 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
452 case KERN_LOGSIGEXIT:
453 return (sysctl_int(oldp, oldlenp, newp, newlen,
454 &kern_logsigexit));
455 case KERN_FSCALE:
456 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
457 case KERN_CCPU:
458 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
459 case KERN_CP_TIME:
460 /* XXXSMP: WRONG! */
461 return (sysctl_rdstruct(oldp, oldlenp, newp,
462 curcpu()->ci_schedstate.spc_cp_time,
463 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
464 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
465 case KERN_SYSVIPC_INFO:
466 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
467 #endif
468 case KERN_MSGBUF:
469 return (sysctl_msgbuf(oldp, oldlenp));
470 case KERN_CONSDEV:
471 if (cn_tab != NULL)
472 consdev = cn_tab->cn_dev;
473 else
474 consdev = NODEV;
475 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
476 sizeof consdev));
477 #if NPTY > 0
478 case KERN_MAXPTYS:
479 return sysctl_pty(oldp, oldlenp, newp, newlen);
480 #endif
481 default:
482 return (EOPNOTSUPP);
483 }
484 /* NOTREACHED */
485 }
486
487 /*
488 * hardware related system variables.
489 */
490 int
491 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
492 int *name;
493 u_int namelen;
494 void *oldp;
495 size_t *oldlenp;
496 void *newp;
497 size_t newlen;
498 struct proc *p;
499 {
500
501 /* all sysctl names at this level are terminal */
502 if (namelen != 1)
503 return (ENOTDIR); /* overloaded */
504
505 switch (name[0]) {
506 case HW_MACHINE:
507 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
508 case HW_MACHINE_ARCH:
509 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
510 case HW_MODEL:
511 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
512 case HW_NCPU:
513 return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */
514 case HW_BYTEORDER:
515 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
516 case HW_PHYSMEM:
517 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
518 case HW_USERMEM:
519 return (sysctl_rdint(oldp, oldlenp, newp,
520 ctob(physmem - uvmexp.wired)));
521 case HW_PAGESIZE:
522 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
523 case HW_ALIGNBYTES:
524 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
525 default:
526 return (EOPNOTSUPP);
527 }
528 /* NOTREACHED */
529 }
530
531 #ifdef DEBUG
532 /*
533 * Debugging related system variables.
534 */
535 struct ctldebug debug0, debug1, debug2, debug3, debug4;
536 struct ctldebug debug5, debug6, debug7, debug8, debug9;
537 struct ctldebug debug10, debug11, debug12, debug13, debug14;
538 struct ctldebug debug15, debug16, debug17, debug18, debug19;
539 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
540 &debug0, &debug1, &debug2, &debug3, &debug4,
541 &debug5, &debug6, &debug7, &debug8, &debug9,
542 &debug10, &debug11, &debug12, &debug13, &debug14,
543 &debug15, &debug16, &debug17, &debug18, &debug19,
544 };
545 int
546 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
547 int *name;
548 u_int namelen;
549 void *oldp;
550 size_t *oldlenp;
551 void *newp;
552 size_t newlen;
553 struct proc *p;
554 {
555 struct ctldebug *cdp;
556
557 /* all sysctl names at this level are name and field */
558 if (namelen != 2)
559 return (ENOTDIR); /* overloaded */
560 cdp = debugvars[name[0]];
561 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
562 return (EOPNOTSUPP);
563 switch (name[1]) {
564 case CTL_DEBUG_NAME:
565 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
566 case CTL_DEBUG_VALUE:
567 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
568 default:
569 return (EOPNOTSUPP);
570 }
571 /* NOTREACHED */
572 }
573 #endif /* DEBUG */
574
575 int
576 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
577 int *name;
578 u_int namelen;
579 void *oldp;
580 size_t *oldlenp;
581 void *newp;
582 size_t newlen;
583 struct proc *p;
584 {
585 struct proc *ptmp = NULL;
586 const struct proclist_desc *pd;
587 int error = 0;
588 struct rlimit alim;
589 struct plimit *newplim;
590 char *tmps = NULL;
591 int i, curlen, len;
592
593 if (namelen < 2)
594 return EINVAL;
595
596 if (name[0] == PROC_CURPROC) {
597 ptmp = p;
598 } else {
599 proclist_lock_read();
600 for (pd = proclists; pd->pd_list != NULL; pd++) {
601 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
602 ptmp = LIST_NEXT(ptmp, p_list)) {
603 /* Skip embryonic processes. */
604 if (ptmp->p_stat == SIDL)
605 continue;
606 if (ptmp->p_pid == (pid_t)name[0])
607 break;
608 }
609 if (ptmp != NULL)
610 break;
611 }
612 proclist_unlock_read();
613 if (ptmp == NULL)
614 return(ESRCH);
615 if (p->p_ucred->cr_uid != 0) {
616 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
617 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
618 return EPERM;
619 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
620 return EPERM; /* sgid proc */
621 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
622 if (p->p_ucred->cr_groups[i] ==
623 ptmp->p_cred->p_rgid)
624 break;
625 }
626 if (i == p->p_ucred->cr_ngroups)
627 return EPERM;
628 }
629 }
630 if (name[1] == PROC_PID_CORENAME) {
631 if (namelen != 2)
632 return EINVAL;
633 /*
634 * Can't use sysctl_string() here because we may malloc a new
635 * area during the process, so we have to do it by hand.
636 */
637 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
638 if (oldlenp && *oldlenp < curlen) {
639 if (!oldp)
640 *oldlenp = curlen;
641 return (ENOMEM);
642 }
643 if (newp) {
644 if (securelevel > 2)
645 return EPERM;
646 if (newlen > MAXPATHLEN)
647 return ENAMETOOLONG;
648 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
649 if (tmps == NULL)
650 return ENOMEM;
651 error = copyin(newp, tmps, newlen + 1);
652 tmps[newlen] = '\0';
653 if (error)
654 goto cleanup;
655 /* Enforce to be either 'core' for end with '.core' */
656 if (newlen < 4) { /* c.o.r.e */
657 error = EINVAL;
658 goto cleanup;
659 }
660 len = newlen - 4;
661 if (len > 0) {
662 if (tmps[len - 1] != '.' &&
663 tmps[len - 1] != '/') {
664 error = EINVAL;
665 goto cleanup;
666 }
667 }
668 if (strcmp(&tmps[len], "core") != 0) {
669 error = EINVAL;
670 goto cleanup;
671 }
672 }
673 if (oldp && oldlenp) {
674 *oldlenp = curlen;
675 error = copyout(ptmp->p_limit->pl_corename, oldp,
676 curlen);
677 }
678 if (newp && error == 0) {
679 /* if the 2 strings are identical, don't limcopy() */
680 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
681 error = 0;
682 goto cleanup;
683 }
684 if (ptmp->p_limit->p_refcnt > 1 &&
685 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
686 newplim = limcopy(ptmp->p_limit);
687 limfree(ptmp->p_limit);
688 ptmp->p_limit = newplim;
689 } else if (ptmp->p_limit->pl_corename != defcorename) {
690 free(ptmp->p_limit->pl_corename, M_TEMP);
691 }
692 ptmp->p_limit->pl_corename = tmps;
693 return (0);
694 }
695 cleanup:
696 if (tmps)
697 free(tmps, M_TEMP);
698 return (error);
699 }
700 if (name[1] == PROC_PID_LIMIT) {
701 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
702 return EINVAL;
703 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
704 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
705 error = sysctl_quad(oldp, oldlenp, newp, newlen,
706 &alim.rlim_max);
707 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
708 error = sysctl_quad(oldp, oldlenp, newp, newlen,
709 &alim.rlim_cur);
710 else
711 error = EINVAL;
712
713 if (error)
714 return error;
715
716 if (newp)
717 error = dosetrlimit(ptmp, p->p_cred,
718 name[2] - 1, &alim);
719 return error;
720 }
721 return (EINVAL);
722 }
723
724 /*
725 * Convenience macros.
726 */
727
728 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
729 if (oldlenp) { \
730 if (!oldp) \
731 *oldlenp = len; \
732 else { \
733 if (*oldlenp < len) \
734 return(ENOMEM); \
735 *oldlenp = len; \
736 error = copyout((caddr_t)valp, oldp, len); \
737 } \
738 }
739
740 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
741 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
742
743 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
744 if (newp && newlen != len) \
745 return (EINVAL);
746
747 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
748 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
749
750 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
751 if (error == 0 && newp) \
752 error = copyin(newp, valp, len);
753
754 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
755 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
756
757 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
758 if (oldlenp) { \
759 len = strlen(str) + 1; \
760 if (!oldp) \
761 *oldlenp = len; \
762 else { \
763 if (*oldlenp < len) { \
764 err2 = ENOMEM; \
765 len = *oldlenp; \
766 } else \
767 *oldlenp = len; \
768 error = copyout(str, oldp, len);\
769 if (error == 0) \
770 error = err2; \
771 } \
772 }
773
774 /*
775 * Validate parameters and get old / set new parameters
776 * for an integer-valued sysctl function.
777 */
778 int
779 sysctl_int(oldp, oldlenp, newp, newlen, valp)
780 void *oldp;
781 size_t *oldlenp;
782 void *newp;
783 size_t newlen;
784 int *valp;
785 {
786 int error = 0;
787
788 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
789 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
790 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
791
792 return (error);
793 }
794
795
796 /*
797 * As above, but read-only.
798 */
799 int
800 sysctl_rdint(oldp, oldlenp, newp, val)
801 void *oldp;
802 size_t *oldlenp;
803 void *newp;
804 int val;
805 {
806 int error = 0;
807
808 if (newp)
809 return (EPERM);
810
811 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
812
813 return (error);
814 }
815
816 /*
817 * Validate parameters and get old / set new parameters
818 * for an quad-valued sysctl function.
819 */
820 int
821 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
822 void *oldp;
823 size_t *oldlenp;
824 void *newp;
825 size_t newlen;
826 quad_t *valp;
827 {
828 int error = 0;
829
830 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
831 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
832 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
833
834 return (error);
835 }
836
837 /*
838 * As above, but read-only.
839 */
840 int
841 sysctl_rdquad(oldp, oldlenp, newp, val)
842 void *oldp;
843 size_t *oldlenp;
844 void *newp;
845 quad_t val;
846 {
847 int error = 0;
848
849 if (newp)
850 return (EPERM);
851
852 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
853
854 return (error);
855 }
856
857 /*
858 * Validate parameters and get old / set new parameters
859 * for a string-valued sysctl function.
860 */
861 int
862 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
863 void *oldp;
864 size_t *oldlenp;
865 void *newp;
866 size_t newlen;
867 char *str;
868 int maxlen;
869 {
870 int len, error = 0, err2 = 0;
871
872 if (newp && newlen >= maxlen)
873 return (EINVAL);
874
875 SYSCTL_STRING_CORE(oldp, oldlenp, str);
876
877 if (error == 0 && newp) {
878 error = copyin(newp, str, newlen);
879 str[newlen] = 0;
880 }
881 return (error);
882 }
883
884 /*
885 * As above, but read-only.
886 */
887 int
888 sysctl_rdstring(oldp, oldlenp, newp, str)
889 void *oldp;
890 size_t *oldlenp;
891 void *newp;
892 const char *str;
893 {
894 int len, error = 0, err2 = 0;
895
896 if (newp)
897 return (EPERM);
898
899 SYSCTL_STRING_CORE(oldp, oldlenp, str);
900
901 return (error);
902 }
903
904 /*
905 * Validate parameters and get old / set new parameters
906 * for a structure oriented sysctl function.
907 */
908 int
909 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
910 void *oldp;
911 size_t *oldlenp;
912 void *newp;
913 size_t newlen;
914 void *sp;
915 int len;
916 {
917 int error = 0;
918
919 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
920 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
921 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
922
923 return (error);
924 }
925
926 /*
927 * Validate parameters and get old parameters
928 * for a structure oriented sysctl function.
929 */
930 int
931 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
932 void *oldp;
933 size_t *oldlenp;
934 void *newp;
935 const void *sp;
936 int len;
937 {
938 int error = 0;
939
940 if (newp)
941 return (EPERM);
942
943 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
944
945 return (error);
946 }
947
948 /*
949 * Get file structures.
950 */
951 static int
952 sysctl_file(vwhere, sizep)
953 void *vwhere;
954 size_t *sizep;
955 {
956 int buflen, error;
957 struct file *fp;
958 char *start, *where;
959
960 start = where = vwhere;
961 buflen = *sizep;
962 if (where == NULL) {
963 /*
964 * overestimate by 10 files
965 */
966 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
967 return (0);
968 }
969
970 /*
971 * first copyout filehead
972 */
973 if (buflen < sizeof(filehead)) {
974 *sizep = 0;
975 return (0);
976 }
977 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
978 if (error)
979 return (error);
980 buflen -= sizeof(filehead);
981 where += sizeof(filehead);
982
983 /*
984 * followed by an array of file structures
985 */
986 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
987 if (buflen < sizeof(struct file)) {
988 *sizep = where - start;
989 return (ENOMEM);
990 }
991 error = copyout((caddr_t)fp, where, sizeof(struct file));
992 if (error)
993 return (error);
994 buflen -= sizeof(struct file);
995 where += sizeof(struct file);
996 }
997 *sizep = where - start;
998 return (0);
999 }
1000
1001 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1002 #define FILL_PERM(src, dst) do { \
1003 (dst)._key = (src)._key; \
1004 (dst).uid = (src).uid; \
1005 (dst).gid = (src).gid; \
1006 (dst).cuid = (src).cuid; \
1007 (dst).cgid = (src).cgid; \
1008 (dst).mode = (src).mode; \
1009 (dst)._seq = (src)._seq; \
1010 } while (0);
1011 #define FILL_MSG(src, dst) do { \
1012 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1013 (dst).msg_qnum = (src).msg_qnum; \
1014 (dst).msg_qbytes = (src).msg_qbytes; \
1015 (dst)._msg_cbytes = (src)._msg_cbytes; \
1016 (dst).msg_lspid = (src).msg_lspid; \
1017 (dst).msg_lrpid = (src).msg_lrpid; \
1018 (dst).msg_stime = (src).msg_stime; \
1019 (dst).msg_rtime = (src).msg_rtime; \
1020 (dst).msg_ctime = (src).msg_ctime; \
1021 } while (0)
1022 #define FILL_SEM(src, dst) do { \
1023 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1024 (dst).sem_nsems = (src).sem_nsems; \
1025 (dst).sem_otime = (src).sem_otime; \
1026 (dst).sem_ctime = (src).sem_ctime; \
1027 } while (0)
1028 #define FILL_SHM(src, dst) do { \
1029 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1030 (dst).shm_segsz = (src).shm_segsz; \
1031 (dst).shm_lpid = (src).shm_lpid; \
1032 (dst).shm_cpid = (src).shm_cpid; \
1033 (dst).shm_atime = (src).shm_atime; \
1034 (dst).shm_dtime = (src).shm_dtime; \
1035 (dst).shm_ctime = (src).shm_ctime; \
1036 (dst).shm_nattch = (src).shm_nattch; \
1037 } while (0)
1038
1039 static int
1040 sysctl_sysvipc(name, namelen, where, sizep)
1041 int *name;
1042 u_int namelen;
1043 void *where;
1044 size_t *sizep;
1045 {
1046 #ifdef SYSVMSG
1047 struct msg_sysctl_info *msgsi;
1048 #endif
1049 #ifdef SYSVSEM
1050 struct sem_sysctl_info *semsi;
1051 #endif
1052 #ifdef SYSVSHM
1053 struct shm_sysctl_info *shmsi;
1054 #endif
1055 size_t infosize, dssize, tsize, buflen;
1056 void *buf = NULL, *buf2;
1057 char *start;
1058 int32_t nds;
1059 int i, error, ret;
1060
1061 if (namelen != 1)
1062 return (EINVAL);
1063
1064 start = where;
1065 buflen = *sizep;
1066
1067 switch (*name) {
1068 case KERN_SYSVIPC_MSG_INFO:
1069 #ifdef SYSVMSG
1070 infosize = sizeof(msgsi->msginfo);
1071 nds = msginfo.msgmni;
1072 dssize = sizeof(msgsi->msgids[0]);
1073 break;
1074 #else
1075 return (EINVAL);
1076 #endif
1077 case KERN_SYSVIPC_SEM_INFO:
1078 #ifdef SYSVSEM
1079 infosize = sizeof(semsi->seminfo);
1080 nds = seminfo.semmni;
1081 dssize = sizeof(semsi->semids[0]);
1082 break;
1083 #else
1084 return (EINVAL);
1085 #endif
1086 case KERN_SYSVIPC_SHM_INFO:
1087 #ifdef SYSVSHM
1088 infosize = sizeof(shmsi->shminfo);
1089 nds = shminfo.shmmni;
1090 dssize = sizeof(shmsi->shmids[0]);
1091 break;
1092 #else
1093 return (EINVAL);
1094 #endif
1095 default:
1096 return (EINVAL);
1097 }
1098 /*
1099 * Round infosize to 64 bit boundary if requesting more than just
1100 * the info structure or getting the total data size.
1101 */
1102 if (where == NULL || *sizep > infosize)
1103 infosize = ((infosize + 7) / 8) * 8;
1104 tsize = infosize + nds * dssize;
1105
1106 /* Return just the total size required. */
1107 if (where == NULL) {
1108 *sizep = tsize;
1109 return (0);
1110 }
1111
1112 /* Not enough room for even the info struct. */
1113 if (buflen < infosize) {
1114 *sizep = 0;
1115 return (ENOMEM);
1116 }
1117 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1118 memset(buf, 0, min(tsize, buflen));
1119
1120 switch (*name) {
1121 #ifdef SYSVMSG
1122 case KERN_SYSVIPC_MSG_INFO:
1123 msgsi = (struct msg_sysctl_info *)buf;
1124 buf2 = &msgsi->msgids[0];
1125 msgsi->msginfo = msginfo;
1126 break;
1127 #endif
1128 #ifdef SYSVSEM
1129 case KERN_SYSVIPC_SEM_INFO:
1130 semsi = (struct sem_sysctl_info *)buf;
1131 buf2 = &semsi->semids[0];
1132 semsi->seminfo = seminfo;
1133 break;
1134 #endif
1135 #ifdef SYSVSHM
1136 case KERN_SYSVIPC_SHM_INFO:
1137 shmsi = (struct shm_sysctl_info *)buf;
1138 buf2 = &shmsi->shmids[0];
1139 shmsi->shminfo = shminfo;
1140 break;
1141 #endif
1142 }
1143 buflen -= infosize;
1144
1145 ret = 0;
1146 if (buflen > 0) {
1147 /* Fill in the IPC data structures. */
1148 for (i = 0; i < nds; i++) {
1149 if (buflen < dssize) {
1150 ret = ENOMEM;
1151 break;
1152 }
1153 switch (*name) {
1154 #ifdef SYSVMSG
1155 case KERN_SYSVIPC_MSG_INFO:
1156 FILL_MSG(msqids[i], msgsi->msgids[i]);
1157 break;
1158 #endif
1159 #ifdef SYSVSEM
1160 case KERN_SYSVIPC_SEM_INFO:
1161 FILL_SEM(sema[i], semsi->semids[i]);
1162 break;
1163 #endif
1164 #ifdef SYSVSHM
1165 case KERN_SYSVIPC_SHM_INFO:
1166 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1167 break;
1168 #endif
1169 }
1170 buflen -= dssize;
1171 }
1172 }
1173 *sizep -= buflen;
1174 error = copyout(buf, start, *sizep);
1175 /* If copyout succeeded, use return code set earlier. */
1176 if (error == 0)
1177 error = ret;
1178 if (buf)
1179 free(buf, M_TEMP);
1180 return (error);
1181 }
1182 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1183
1184 static int
1185 sysctl_msgbuf(vwhere, sizep)
1186 void *vwhere;
1187 size_t *sizep;
1188 {
1189 char *where = vwhere;
1190 size_t len, maxlen = *sizep;
1191 long pos;
1192 int error;
1193
1194 /*
1195 * deal with cases where the message buffer has
1196 * become corrupted.
1197 */
1198 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1199 msgbufenabled = 0;
1200 return (ENXIO);
1201 }
1202
1203 if (where == NULL) {
1204 /* always return full buffer size */
1205 *sizep = msgbufp->msg_bufs;
1206 return (0);
1207 }
1208
1209 error = 0;
1210 maxlen = min(msgbufp->msg_bufs, maxlen);
1211 pos = msgbufp->msg_bufx;
1212 while (maxlen > 0) {
1213 len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
1214 len = min(len, maxlen);
1215 if (len == 0)
1216 break;
1217 error = copyout(&msgbufp->msg_bufc[pos], where, len);
1218 if (error)
1219 break;
1220 where += len;
1221 maxlen -= len;
1222 pos = 0;
1223 }
1224 return (error);
1225 }
1226
1227 /*
1228 * try over estimating by 5 procs
1229 */
1230 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1231
1232 static int
1233 sysctl_doeproc(name, namelen, vwhere, sizep)
1234 int *name;
1235 u_int namelen;
1236 void *vwhere;
1237 size_t *sizep;
1238 {
1239 struct eproc eproc;
1240 struct kinfo_proc2 kproc2;
1241 struct kinfo_proc *dp;
1242 struct proc *p;
1243 const struct proclist_desc *pd;
1244 char *where, *dp2;
1245 int type, op, arg, elem_size, elem_count;
1246 int buflen, needed, error;
1247
1248 dp = vwhere;
1249 dp2 = where = vwhere;
1250 buflen = where != NULL ? *sizep : 0;
1251 error = needed = 0;
1252 type = name[0];
1253
1254 if (type == KERN_PROC) {
1255 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1256 return (EINVAL);
1257 op = name[1];
1258 if (op != KERN_PROC_ALL)
1259 arg = name[2];
1260 } else {
1261 if (namelen != 5)
1262 return (EINVAL);
1263 op = name[1];
1264 arg = name[2];
1265 elem_size = name[3];
1266 elem_count = name[4];
1267 }
1268
1269 proclist_lock_read();
1270
1271 pd = proclists;
1272 again:
1273 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1274 /*
1275 * Skip embryonic processes.
1276 */
1277 if (p->p_stat == SIDL)
1278 continue;
1279 /*
1280 * TODO - make more efficient (see notes below).
1281 * do by session.
1282 */
1283 switch (op) {
1284
1285 case KERN_PROC_PID:
1286 /* could do this with just a lookup */
1287 if (p->p_pid != (pid_t)arg)
1288 continue;
1289 break;
1290
1291 case KERN_PROC_PGRP:
1292 /* could do this by traversing pgrp */
1293 if (p->p_pgrp->pg_id != (pid_t)arg)
1294 continue;
1295 break;
1296
1297 case KERN_PROC_SESSION:
1298 if (p->p_session->s_sid != (pid_t)arg)
1299 continue;
1300 break;
1301
1302 case KERN_PROC_TTY:
1303 if (arg == KERN_PROC_TTY_REVOKE) {
1304 if ((p->p_flag & P_CONTROLT) == 0 ||
1305 p->p_session->s_ttyp == NULL ||
1306 p->p_session->s_ttyvp != NULL)
1307 continue;
1308 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1309 p->p_session->s_ttyp == NULL) {
1310 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1311 continue;
1312 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1313 continue;
1314 break;
1315
1316 case KERN_PROC_UID:
1317 if (p->p_ucred->cr_uid != (uid_t)arg)
1318 continue;
1319 break;
1320
1321 case KERN_PROC_RUID:
1322 if (p->p_cred->p_ruid != (uid_t)arg)
1323 continue;
1324 break;
1325
1326 case KERN_PROC_GID:
1327 if (p->p_ucred->cr_gid != (uid_t)arg)
1328 continue;
1329 break;
1330
1331 case KERN_PROC_RGID:
1332 if (p->p_cred->p_rgid != (uid_t)arg)
1333 continue;
1334 break;
1335
1336 case KERN_PROC_ALL:
1337 /* allow everything */
1338 break;
1339
1340 default:
1341 error = EINVAL;
1342 goto cleanup;
1343 }
1344 if (type == KERN_PROC) {
1345 if (buflen >= sizeof(struct kinfo_proc)) {
1346 fill_eproc(p, &eproc);
1347 error = copyout((caddr_t)p, &dp->kp_proc,
1348 sizeof(struct proc));
1349 if (error)
1350 goto cleanup;
1351 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1352 sizeof(eproc));
1353 if (error)
1354 goto cleanup;
1355 dp++;
1356 buflen -= sizeof(struct kinfo_proc);
1357 }
1358 needed += sizeof(struct kinfo_proc);
1359 } else { /* KERN_PROC2 */
1360 if (buflen >= elem_size && elem_count > 0) {
1361 fill_kproc2(p, &kproc2);
1362 /*
1363 * Copy out elem_size, but not larger than
1364 * the size of a struct kinfo_proc2.
1365 */
1366 error = copyout(&kproc2, dp2,
1367 min(sizeof(kproc2), elem_size));
1368 if (error)
1369 goto cleanup;
1370 dp2 += elem_size;
1371 buflen -= elem_size;
1372 elem_count--;
1373 }
1374 needed += elem_size;
1375 }
1376 }
1377 pd++;
1378 if (pd->pd_list != NULL)
1379 goto again;
1380 proclist_unlock_read();
1381
1382 if (where != NULL) {
1383 if (type == KERN_PROC)
1384 *sizep = (caddr_t)dp - where;
1385 else
1386 *sizep = dp2 - where;
1387 if (needed > *sizep)
1388 return (ENOMEM);
1389 } else {
1390 needed += KERN_PROCSLOP;
1391 *sizep = needed;
1392 }
1393 return (0);
1394 cleanup:
1395 proclist_unlock_read();
1396 return (error);
1397 }
1398
1399 /*
1400 * Fill in an eproc structure for the specified process.
1401 */
1402 void
1403 fill_eproc(p, ep)
1404 struct proc *p;
1405 struct eproc *ep;
1406 {
1407 struct tty *tp;
1408
1409 ep->e_paddr = p;
1410 ep->e_sess = p->p_session;
1411 ep->e_pcred = *p->p_cred;
1412 ep->e_ucred = *p->p_ucred;
1413 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1414 ep->e_vm.vm_rssize = 0;
1415 ep->e_vm.vm_tsize = 0;
1416 ep->e_vm.vm_dsize = 0;
1417 ep->e_vm.vm_ssize = 0;
1418 /* ep->e_vm.vm_pmap = XXX; */
1419 } else {
1420 struct vmspace *vm = p->p_vmspace;
1421
1422 ep->e_vm.vm_rssize = vm_resident_count(vm);
1423 ep->e_vm.vm_tsize = vm->vm_tsize;
1424 ep->e_vm.vm_dsize = vm->vm_dsize;
1425 ep->e_vm.vm_ssize = vm->vm_ssize;
1426 }
1427 if (p->p_pptr)
1428 ep->e_ppid = p->p_pptr->p_pid;
1429 else
1430 ep->e_ppid = 0;
1431 ep->e_pgid = p->p_pgrp->pg_id;
1432 ep->e_sid = ep->e_sess->s_sid;
1433 ep->e_jobc = p->p_pgrp->pg_jobc;
1434 if ((p->p_flag & P_CONTROLT) &&
1435 (tp = ep->e_sess->s_ttyp)) {
1436 ep->e_tdev = tp->t_dev;
1437 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1438 ep->e_tsess = tp->t_session;
1439 } else
1440 ep->e_tdev = NODEV;
1441 if (p->p_wmesg)
1442 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1443 ep->e_xsize = ep->e_xrssize = 0;
1444 ep->e_xccount = ep->e_xswrss = 0;
1445 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1446 if (SESS_LEADER(p))
1447 ep->e_flag |= EPROC_SLEADER;
1448 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1449 }
1450
1451 /*
1452 * Fill in an eproc structure for the specified process.
1453 */
1454 static void
1455 fill_kproc2(p, ki)
1456 struct proc *p;
1457 struct kinfo_proc2 *ki;
1458 {
1459 struct tty *tp;
1460
1461 memset(ki, 0, sizeof(*ki));
1462
1463 ki->p_forw = PTRTOINT64(p->p_forw);
1464 ki->p_back = PTRTOINT64(p->p_back);
1465 ki->p_paddr = PTRTOINT64(p);
1466
1467 ki->p_addr = PTRTOINT64(p->p_addr);
1468 ki->p_fd = PTRTOINT64(p->p_fd);
1469 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1470 ki->p_stats = PTRTOINT64(p->p_stats);
1471 ki->p_limit = PTRTOINT64(p->p_limit);
1472 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1473 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1474 ki->p_sess = PTRTOINT64(p->p_session);
1475 ki->p_tsess = 0; /* may be changed if controlling tty below */
1476 ki->p_ru = PTRTOINT64(p->p_ru);
1477
1478 ki->p_eflag = 0;
1479 ki->p_exitsig = p->p_exitsig;
1480 ki->p_flag = p->p_flag;
1481
1482 ki->p_pid = p->p_pid;
1483 if (p->p_pptr)
1484 ki->p_ppid = p->p_pptr->p_pid;
1485 else
1486 ki->p_ppid = 0;
1487 ki->p_sid = p->p_session->s_sid;
1488 ki->p__pgid = p->p_pgrp->pg_id;
1489
1490 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1491
1492 ki->p_uid = p->p_ucred->cr_uid;
1493 ki->p_ruid = p->p_cred->p_ruid;
1494 ki->p_gid = p->p_ucred->cr_gid;
1495 ki->p_rgid = p->p_cred->p_rgid;
1496
1497 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1498 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1499 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1500
1501 ki->p_jobc = p->p_pgrp->pg_jobc;
1502 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1503 ki->p_tdev = tp->t_dev;
1504 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1505 ki->p_tsess = PTRTOINT64(tp->t_session);
1506 } else {
1507 ki->p_tdev = NODEV;
1508 }
1509
1510 ki->p_estcpu = p->p_estcpu;
1511 ki->p_rtime_sec = p->p_rtime.tv_sec;
1512 ki->p_rtime_usec = p->p_rtime.tv_usec;
1513 ki->p_cpticks = p->p_cpticks;
1514 ki->p_pctcpu = p->p_pctcpu;
1515 ki->p_swtime = p->p_swtime;
1516 ki->p_slptime = p->p_slptime;
1517 if (p->p_stat == SONPROC) {
1518 KDASSERT(p->p_cpu != NULL);
1519 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1520 } else
1521 ki->p_schedflags = 0;
1522
1523 ki->p_uticks = p->p_uticks;
1524 ki->p_sticks = p->p_sticks;
1525 ki->p_iticks = p->p_iticks;
1526
1527 ki->p_tracep = PTRTOINT64(p->p_tracep);
1528 ki->p_traceflag = p->p_traceflag;
1529
1530 ki->p_holdcnt = p->p_holdcnt;
1531
1532 memcpy(&ki->p_siglist, &p->p_siglist, sizeof(ki_sigset_t));
1533 memcpy(&ki->p_sigmask, &p->p_sigmask, sizeof(ki_sigset_t));
1534 memcpy(&ki->p_sigignore, &p->p_sigignore, sizeof(ki_sigset_t));
1535 memcpy(&ki->p_sigcatch, &p->p_sigcatch, sizeof(ki_sigset_t));
1536
1537 ki->p_stat = p->p_stat;
1538 ki->p_priority = p->p_priority;
1539 ki->p_usrpri = p->p_usrpri;
1540 ki->p_nice = p->p_nice;
1541
1542 ki->p_xstat = p->p_xstat;
1543 ki->p_acflag = p->p_acflag;
1544
1545 strncpy(ki->p_comm, p->p_comm,
1546 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1547
1548 if (p->p_wmesg)
1549 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1550 ki->p_wchan = PTRTOINT64(p->p_wchan);
1551
1552 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1553
1554 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1555 ki->p_vm_rssize = 0;
1556 ki->p_vm_tsize = 0;
1557 ki->p_vm_dsize = 0;
1558 ki->p_vm_ssize = 0;
1559 } else {
1560 struct vmspace *vm = p->p_vmspace;
1561
1562 ki->p_vm_rssize = vm_resident_count(vm);
1563 ki->p_vm_tsize = vm->vm_tsize;
1564 ki->p_vm_dsize = vm->vm_dsize;
1565 ki->p_vm_ssize = vm->vm_ssize;
1566 }
1567
1568 if (p->p_session->s_ttyvp)
1569 ki->p_eflag |= EPROC_CTTY;
1570 if (SESS_LEADER(p))
1571 ki->p_eflag |= EPROC_SLEADER;
1572
1573 /* XXX Is this double check necessary? */
1574 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1575 ki->p_uvalid = 0;
1576 } else {
1577 ki->p_uvalid = 1;
1578
1579 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1580 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1581
1582 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1583 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1584 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1585 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1586
1587 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1588 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1589 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1590 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1591 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1592 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1593 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1594 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1595 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1596 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1597 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1598 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1599 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1600 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1601
1602 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1603 p->p_stats->p_cru.ru_stime.tv_sec;
1604 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1605 p->p_stats->p_cru.ru_stime.tv_usec;
1606 }
1607 }
1608
1609 int
1610 sysctl_procargs(name, namelen, where, sizep, up)
1611 int *name;
1612 u_int namelen;
1613 void *where;
1614 size_t *sizep;
1615 struct proc *up;
1616 {
1617 struct ps_strings pss;
1618 struct proc *p;
1619 size_t len, upper_bound, xlen;
1620 struct uio auio;
1621 struct iovec aiov;
1622 vaddr_t argv;
1623 pid_t pid;
1624 int nargv, type, error, i;
1625 char *arg;
1626 char *tmp;
1627
1628 if (namelen != 2)
1629 return (EINVAL);
1630 pid = name[0];
1631 type = name[1];
1632
1633 switch (type) {
1634 case KERN_PROC_ARGV:
1635 case KERN_PROC_NARGV:
1636 case KERN_PROC_ENV:
1637 case KERN_PROC_NENV:
1638 /* ok */
1639 break;
1640 default:
1641 return (EINVAL);
1642 }
1643
1644 /* check pid */
1645 if ((p = pfind(pid)) == NULL)
1646 return (EINVAL);
1647
1648 /* only root or same user change look at the environment */
1649 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1650 if (up->p_ucred->cr_uid != 0) {
1651 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1652 up->p_cred->p_ruid != p->p_cred->p_svuid)
1653 return (EPERM);
1654 }
1655 }
1656
1657 if (sizep != NULL && where == NULL) {
1658 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1659 *sizep = sizeof (int);
1660 else
1661 *sizep = ARG_MAX; /* XXX XXX XXX */
1662 return (0);
1663 }
1664 if (where == NULL || sizep == NULL)
1665 return (EINVAL);
1666
1667 /*
1668 * Zombies don't have a stack, so we can't read their psstrings.
1669 * System processes also don't have a user stack.
1670 */
1671 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1672 return (EINVAL);
1673
1674 /*
1675 * Lock the process down in memory.
1676 */
1677 /* XXXCDC: how should locking work here? */
1678 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1679 return (EFAULT);
1680 PHOLD(p);
1681 p->p_vmspace->vm_refcnt++; /* XXX */
1682
1683 /*
1684 * Allocate a temporary buffer to hold the arguments.
1685 */
1686 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1687
1688 /*
1689 * Read in the ps_strings structure.
1690 */
1691 aiov.iov_base = &pss;
1692 aiov.iov_len = sizeof(pss);
1693 auio.uio_iov = &aiov;
1694 auio.uio_iovcnt = 1;
1695 auio.uio_offset = (vaddr_t)p->p_psstr;
1696 auio.uio_resid = sizeof(pss);
1697 auio.uio_segflg = UIO_SYSSPACE;
1698 auio.uio_rw = UIO_READ;
1699 auio.uio_procp = NULL;
1700 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1701 if (error)
1702 goto done;
1703
1704 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1705 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1706 else
1707 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1708 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1709 error = copyout(&nargv, where, sizeof(nargv));
1710 *sizep = sizeof(nargv);
1711 goto done;
1712 }
1713 /*
1714 * Now read the address of the argument vector.
1715 */
1716 switch (type) {
1717 case KERN_PROC_ARGV:
1718 /* XXX compat32 stuff here */
1719 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1720 break;
1721 case KERN_PROC_ENV:
1722 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1723 break;
1724 default:
1725 return (EINVAL);
1726 }
1727 auio.uio_offset = (off_t)(long)tmp;
1728 aiov.iov_base = &argv;
1729 aiov.iov_len = sizeof(argv);
1730 auio.uio_iov = &aiov;
1731 auio.uio_iovcnt = 1;
1732 auio.uio_resid = sizeof(argv);
1733 auio.uio_segflg = UIO_SYSSPACE;
1734 auio.uio_rw = UIO_READ;
1735 auio.uio_procp = NULL;
1736 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1737 if (error)
1738 goto done;
1739
1740 /*
1741 * Now copy in the actual argument vector, one page at a time,
1742 * since we don't know how long the vector is (though, we do
1743 * know how many NUL-terminated strings are in the vector).
1744 */
1745 len = 0;
1746 upper_bound = *sizep;
1747 for (; nargv != 0 && len < upper_bound; len += xlen) {
1748 aiov.iov_base = arg;
1749 aiov.iov_len = PAGE_SIZE;
1750 auio.uio_iov = &aiov;
1751 auio.uio_iovcnt = 1;
1752 auio.uio_offset = argv + len;
1753 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1754 auio.uio_resid = xlen;
1755 auio.uio_segflg = UIO_SYSSPACE;
1756 auio.uio_rw = UIO_READ;
1757 auio.uio_procp = NULL;
1758 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1759 if (error)
1760 goto done;
1761
1762 for (i = 0; i < xlen && nargv != 0; i++) {
1763 if (arg[i] == '\0')
1764 nargv--; /* one full string */
1765 }
1766
1767 /* make sure we don't copyout past the end of the user's buffer */
1768 if (len + i > upper_bound)
1769 i = upper_bound - len;
1770
1771 error = copyout(arg, (char *)where + len, i);
1772 if (error)
1773 break;
1774
1775 if (nargv == 0) {
1776 len += i;
1777 break;
1778 }
1779 }
1780 *sizep = len;
1781
1782 done:
1783 PRELE(p);
1784 uvmspace_free(p->p_vmspace);
1785
1786 free(arg, M_TEMP);
1787 return (error);
1788 }
1789
1790 #if NPTY > 0
1791 int pty_maxptys __P((int, int)); /* defined in kern/tty_pty.c */
1792
1793 /*
1794 * Validate parameters and get old / set new parameters
1795 * for pty sysctl function.
1796 */
1797 static int
1798 sysctl_pty(oldp, oldlenp, newp, newlen)
1799 void *oldp;
1800 size_t *oldlenp;
1801 void *newp;
1802 size_t newlen;
1803 {
1804 int error = 0;
1805 int oldmax = 0, newmax = 0;
1806
1807 /* get current value of maxptys */
1808 oldmax = pty_maxptys(0, 0);
1809
1810 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1811
1812 if (!error && newp) {
1813 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1814 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1815
1816 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1817 return (EINVAL);
1818
1819 }
1820
1821 return (error);
1822 }
1823 #endif /* NPTY > 0 */
1824