kern_sysctl.c revision 1.86.2.24 1 /* $NetBSD: kern_sysctl.c,v 1.86.2.24 2002/11/11 22:13:52 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.86.2.24 2002/11/11 22:13:52 nathanw Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 #include "rnd.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/buf.h>
60 #include <sys/device.h>
61 #include <sys/disklabel.h>
62 #include <sys/dkstat.h>
63 #include <sys/exec.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/msgbuf.h>
69 #include <sys/pool.h>
70 #include <sys/proc.h>
71 #include <sys/resource.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sa.h>
74 #include <sys/syscallargs.h>
75 #include <sys/tty.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/socketvar.h>
79 #define __SYSCTL_PRIVATE
80 #include <sys/sysctl.h>
81 #include <sys/lock.h>
82 #include <sys/namei.h>
83
84 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
85 #include <sys/ipc.h>
86 #endif
87 #ifdef SYSVMSG
88 #include <sys/msg.h>
89 #endif
90 #ifdef SYSVSEM
91 #include <sys/sem.h>
92 #endif
93 #ifdef SYSVSHM
94 #include <sys/shm.h>
95 #endif
96
97 #include <dev/cons.h>
98
99 #if defined(DDB)
100 #include <ddb/ddbvar.h>
101 #endif
102
103 #ifndef PIPE_SOCKETPAIR
104 #include <sys/pipe.h>
105 #endif
106
107 #if NRND > 0
108 #include <sys/rnd.h>
109 #endif
110
111 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
112
113 static int sysctl_file(void *, size_t *);
114 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
115 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
116 #endif
117 static int sysctl_msgbuf(void *, size_t *);
118 static int sysctl_doeproc(int *, u_int, void *, size_t *);
119 static int sysctl_dolwp(int *, u_int, void *, size_t *);
120 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
121 #ifdef MULTIPROCESSOR
122 static int sysctl_docptime(void *, size_t *, void *);
123 static int sysctl_ncpus(void);
124 #endif
125 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
126 static void fill_lwp(struct lwp *, struct kinfo_lwp *);
127 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
128 #if NPTY > 0
129 static int sysctl_pty(void *, size_t *, void *, size_t);
130 #endif
131
132 /*
133 * The `sysctl_memlock' is intended to keep too many processes from
134 * locking down memory by doing sysctls at once. Whether or not this
135 * is really a good idea to worry about it probably a subject of some
136 * debate.
137 */
138 struct lock sysctl_memlock;
139
140 void
141 sysctl_init(void)
142 {
143
144 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
145 }
146
147 int
148 sys___sysctl(struct lwp *l, void *v, register_t *retval)
149 {
150 struct sys___sysctl_args /* {
151 syscallarg(int *) name;
152 syscallarg(u_int) namelen;
153 syscallarg(void *) old;
154 syscallarg(size_t *) oldlenp;
155 syscallarg(void *) new;
156 syscallarg(size_t) newlen;
157 } */ *uap = v;
158 struct proc *p = l->l_proc;
159 int error;
160 size_t savelen = 0, oldlen = 0;
161 sysctlfn *fn;
162 int name[CTL_MAXNAME];
163 size_t *oldlenp;
164
165 /*
166 * all top-level sysctl names are non-terminal
167 */
168 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
169 return (EINVAL);
170 error = copyin(SCARG(uap, name), &name,
171 SCARG(uap, namelen) * sizeof(int));
172 if (error)
173 return (error);
174
175 /*
176 * For all but CTL_PROC, must be root to change a value.
177 * For CTL_PROC, must be root, or owner of the proc (and not suid),
178 * this is checked in proc_sysctl() (once we know the targer proc).
179 */
180 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
181 (error = suser(p->p_ucred, &p->p_acflag)))
182 return error;
183
184 switch (name[0]) {
185 case CTL_KERN:
186 fn = kern_sysctl;
187 break;
188 case CTL_HW:
189 fn = hw_sysctl;
190 break;
191 case CTL_VM:
192 fn = uvm_sysctl;
193 break;
194 case CTL_NET:
195 fn = net_sysctl;
196 break;
197 case CTL_VFS:
198 fn = vfs_sysctl;
199 break;
200 case CTL_MACHDEP:
201 fn = cpu_sysctl;
202 break;
203 #ifdef DEBUG
204 case CTL_DEBUG:
205 fn = debug_sysctl;
206 break;
207 #endif
208 #ifdef DDB
209 case CTL_DDB:
210 fn = ddb_sysctl;
211 break;
212 #endif
213 case CTL_PROC:
214 fn = proc_sysctl;
215 break;
216
217 case CTL_EMUL:
218 fn = emul_sysctl;
219 break;
220 default:
221 return (EOPNOTSUPP);
222 }
223
224 /*
225 * XXX Hey, we wire `old', but what about `new'?
226 */
227
228 oldlenp = SCARG(uap, oldlenp);
229 if (oldlenp) {
230 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
231 return (error);
232 oldlenp = &oldlen;
233 }
234 if (SCARG(uap, old) != NULL) {
235 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
236 if (error)
237 return (error);
238 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
239 if (error) {
240 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
241 return error;
242 }
243 savelen = oldlen;
244 }
245 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
246 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
247 if (SCARG(uap, old) != NULL) {
248 uvm_vsunlock(p, SCARG(uap, old), savelen);
249 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
250 }
251 if (error)
252 return (error);
253 if (SCARG(uap, oldlenp))
254 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
255 return (error);
256 }
257
258 /*
259 * Attributes stored in the kernel.
260 */
261 char hostname[MAXHOSTNAMELEN];
262 int hostnamelen;
263
264 char domainname[MAXHOSTNAMELEN];
265 int domainnamelen;
266
267 long hostid;
268
269 #ifdef INSECURE
270 int securelevel = -1;
271 #else
272 int securelevel = 0;
273 #endif
274
275 #ifndef DEFCORENAME
276 #define DEFCORENAME "%n.core"
277 #endif
278 char defcorename[MAXPATHLEN] = DEFCORENAME;
279 int defcorenamelen = sizeof(DEFCORENAME);
280
281 extern int kern_logsigexit;
282 extern fixpt_t ccpu;
283
284 #ifndef MULTIPROCESSOR
285 #define sysctl_ncpus() 1
286 #endif
287
288 #ifdef MULTIPROCESSOR
289
290 #ifndef CPU_INFO_FOREACH
291 #define CPU_INFO_ITERATOR int
292 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
293 #endif
294
295 static int
296 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
297 {
298 u_int64_t cp_time[CPUSTATES];
299 int i;
300 struct cpu_info *ci;
301 CPU_INFO_ITERATOR cii;
302
303 for (i=0; i<CPUSTATES; i++)
304 cp_time[i] = 0;
305
306 for (CPU_INFO_FOREACH(cii, ci)) {
307 for (i=0; i<CPUSTATES; i++)
308 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
309 }
310 return (sysctl_rdstruct(oldp, oldlenp, newp,
311 cp_time, sizeof(cp_time)));
312 }
313
314 static int
315 sysctl_ncpus(void)
316 {
317 struct cpu_info *ci;
318 CPU_INFO_ITERATOR cii;
319
320 int ncpus = 0;
321 for (CPU_INFO_FOREACH(cii, ci))
322 ncpus++;
323 return ncpus;
324 }
325
326 #endif
327
328 /*
329 * kernel related system variables.
330 */
331 int
332 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
333 void *newp, size_t newlen, struct proc *p)
334 {
335 int error, level, inthostid;
336 int old_autonicetime;
337 int old_vnodes;
338 dev_t consdev;
339 #if NRND > 0
340 int v;
341 #endif
342
343 /* All sysctl names at this level, except for a few, are terminal. */
344 switch (name[0]) {
345 case KERN_PROC:
346 case KERN_PROC2:
347 case KERN_LWP:
348 case KERN_PROF:
349 case KERN_MBUF:
350 case KERN_PROC_ARGS:
351 case KERN_SYSVIPC_INFO:
352 case KERN_PIPE:
353 case KERN_TKSTAT:
354 /* Not terminal. */
355 break;
356 default:
357 if (namelen != 1)
358 return (ENOTDIR); /* overloaded */
359 }
360
361 switch (name[0]) {
362 case KERN_OSTYPE:
363 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
364 case KERN_OSRELEASE:
365 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
366 case KERN_OSREV:
367 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
368 case KERN_VERSION:
369 return (sysctl_rdstring(oldp, oldlenp, newp, version));
370 case KERN_MAXVNODES:
371 old_vnodes = desiredvnodes;
372 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
373 if (newp && !error) {
374 if (old_vnodes > desiredvnodes) {
375 desiredvnodes = old_vnodes;
376 return (EINVAL);
377 }
378 vfs_reinit();
379 nchreinit();
380 }
381 return (error);
382 case KERN_MAXPROC:
383 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
384 case KERN_MAXFILES:
385 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
386 case KERN_ARGMAX:
387 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
388 case KERN_SECURELVL:
389 level = securelevel;
390 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
391 newp == NULL)
392 return (error);
393 if (level < securelevel && p->p_pid != 1)
394 return (EPERM);
395 securelevel = level;
396 return (0);
397 case KERN_HOSTNAME:
398 error = sysctl_string(oldp, oldlenp, newp, newlen,
399 hostname, sizeof(hostname));
400 if (newp && !error)
401 hostnamelen = newlen;
402 return (error);
403 case KERN_DOMAINNAME:
404 error = sysctl_string(oldp, oldlenp, newp, newlen,
405 domainname, sizeof(domainname));
406 if (newp && !error)
407 domainnamelen = newlen;
408 return (error);
409 case KERN_HOSTID:
410 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
411 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
412 if (newp && !error)
413 hostid = inthostid;
414 return (error);
415 case KERN_CLOCKRATE:
416 return (sysctl_clockrate(oldp, oldlenp));
417 case KERN_BOOTTIME:
418 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
419 sizeof(struct timeval)));
420 case KERN_VNODE:
421 return (sysctl_vnode(oldp, oldlenp, p));
422 case KERN_PROC:
423 case KERN_PROC2:
424 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
425 case KERN_LWP:
426 return (sysctl_dolwp(name, namelen, oldp, oldlenp));
427 case KERN_PROC_ARGS:
428 return (sysctl_procargs(name + 1, namelen - 1,
429 oldp, oldlenp, p));
430 case KERN_FILE:
431 return (sysctl_file(oldp, oldlenp));
432 #ifdef GPROF
433 case KERN_PROF:
434 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
435 newp, newlen));
436 #endif
437 case KERN_POSIX1:
438 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
439 case KERN_NGROUPS:
440 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
441 case KERN_JOB_CONTROL:
442 return (sysctl_rdint(oldp, oldlenp, newp, 1));
443 case KERN_SAVED_IDS:
444 #ifdef _POSIX_SAVED_IDS
445 return (sysctl_rdint(oldp, oldlenp, newp, 1));
446 #else
447 return (sysctl_rdint(oldp, oldlenp, newp, 0));
448 #endif
449 case KERN_MAXPARTITIONS:
450 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
451 case KERN_RAWPARTITION:
452 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
453 #ifdef NTP
454 case KERN_NTPTIME:
455 return (sysctl_ntptime(oldp, oldlenp));
456 #endif
457 case KERN_AUTONICETIME:
458 old_autonicetime = autonicetime;
459 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
460 if (autonicetime < 0)
461 autonicetime = old_autonicetime;
462 return (error);
463 case KERN_AUTONICEVAL:
464 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
465 if (autoniceval < PRIO_MIN)
466 autoniceval = PRIO_MIN;
467 if (autoniceval > PRIO_MAX)
468 autoniceval = PRIO_MAX;
469 return (error);
470 case KERN_RTC_OFFSET:
471 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
472 case KERN_ROOT_DEVICE:
473 return (sysctl_rdstring(oldp, oldlenp, newp,
474 root_device->dv_xname));
475 case KERN_MSGBUFSIZE:
476 /*
477 * deal with cases where the message buffer has
478 * become corrupted.
479 */
480 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
481 msgbufenabled = 0;
482 return (ENXIO);
483 }
484 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
485 case KERN_FSYNC:
486 return (sysctl_rdint(oldp, oldlenp, newp, 1));
487 case KERN_SYSVMSG:
488 #ifdef SYSVMSG
489 return (sysctl_rdint(oldp, oldlenp, newp, 1));
490 #else
491 return (sysctl_rdint(oldp, oldlenp, newp, 0));
492 #endif
493 case KERN_SYSVSEM:
494 #ifdef SYSVSEM
495 return (sysctl_rdint(oldp, oldlenp, newp, 1));
496 #else
497 return (sysctl_rdint(oldp, oldlenp, newp, 0));
498 #endif
499 case KERN_SYSVSHM:
500 #ifdef SYSVSHM
501 return (sysctl_rdint(oldp, oldlenp, newp, 1));
502 #else
503 return (sysctl_rdint(oldp, oldlenp, newp, 0));
504 #endif
505 case KERN_DEFCORENAME:
506 if (newp && newlen < 1)
507 return (EINVAL);
508 error = sysctl_string(oldp, oldlenp, newp, newlen,
509 defcorename, sizeof(defcorename));
510 if (newp && !error)
511 defcorenamelen = newlen;
512 return (error);
513 case KERN_SYNCHRONIZED_IO:
514 return (sysctl_rdint(oldp, oldlenp, newp, 1));
515 case KERN_IOV_MAX:
516 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
517 case KERN_MBUF:
518 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
519 newp, newlen));
520 case KERN_MAPPED_FILES:
521 return (sysctl_rdint(oldp, oldlenp, newp, 1));
522 case KERN_MEMLOCK:
523 return (sysctl_rdint(oldp, oldlenp, newp, 1));
524 case KERN_MEMLOCK_RANGE:
525 return (sysctl_rdint(oldp, oldlenp, newp, 1));
526 case KERN_MEMORY_PROTECTION:
527 return (sysctl_rdint(oldp, oldlenp, newp, 1));
528 case KERN_LOGIN_NAME_MAX:
529 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
530 case KERN_LOGSIGEXIT:
531 return (sysctl_int(oldp, oldlenp, newp, newlen,
532 &kern_logsigexit));
533 case KERN_FSCALE:
534 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
535 case KERN_CCPU:
536 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
537 case KERN_CP_TIME:
538 #ifndef MULTIPROCESSOR
539 return (sysctl_rdstruct(oldp, oldlenp, newp,
540 curcpu()->ci_schedstate.spc_cp_time,
541 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
542 #else
543 return (sysctl_docptime(oldp, oldlenp, newp));
544 #endif
545 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
546 case KERN_SYSVIPC_INFO:
547 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
548 #endif
549 case KERN_MSGBUF:
550 return (sysctl_msgbuf(oldp, oldlenp));
551 case KERN_CONSDEV:
552 if (cn_tab != NULL)
553 consdev = cn_tab->cn_dev;
554 else
555 consdev = NODEV;
556 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
557 sizeof consdev));
558 #if NPTY > 0
559 case KERN_MAXPTYS:
560 return sysctl_pty(oldp, oldlenp, newp, newlen);
561 #endif
562 #ifndef PIPE_SOCKETPAIR
563 case KERN_PIPE:
564 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
565 newp, newlen));
566 #endif
567 case KERN_MAXPHYS:
568 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
569 case KERN_SBMAX:
570 {
571 int new_sbmax = sb_max;
572
573 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
574 if (newp && !error) {
575 if (new_sbmax < (16 * 1024)) /* sanity */
576 return (EINVAL);
577 sb_max = new_sbmax;
578 }
579 return (error);
580 }
581 case KERN_TKSTAT:
582 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
583 newp));
584 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
585 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
586 case KERN_URND:
587 #if NRND > 0
588 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) ==
589 sizeof(v))
590 return (sysctl_rdint(oldp, oldlenp, newp, v));
591 else
592 return (EIO); /*XXX*/
593 #else
594 return (EOPNOTSUPP);
595 #endif
596 default:
597 return (EOPNOTSUPP);
598 }
599 /* NOTREACHED */
600 }
601
602 /*
603 * hardware related system variables.
604 */
605 int
606 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
607 void *newp, size_t newlen, struct proc *p)
608 {
609
610 /* All sysctl names at this level, except for a few, are terminal. */
611 switch (name[0]) {
612 case HW_DISKSTATS:
613 /* Not terminal. */
614 break;
615 default:
616 if (namelen != 1)
617 return (ENOTDIR); /* overloaded */
618 }
619
620 switch (name[0]) {
621 case HW_MACHINE:
622 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
623 case HW_MACHINE_ARCH:
624 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
625 case HW_MODEL:
626 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
627 case HW_NCPU:
628 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
629 case HW_BYTEORDER:
630 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
631 case HW_PHYSMEM:
632 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
633 case HW_USERMEM:
634 return (sysctl_rdint(oldp, oldlenp, newp,
635 ctob(physmem - uvmexp.wired)));
636 case HW_PAGESIZE:
637 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
638 case HW_ALIGNBYTES:
639 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
640 case HW_DISKNAMES:
641 return (sysctl_disknames(oldp, oldlenp));
642 case HW_DISKSTATS:
643 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
644 case HW_CNMAGIC: {
645 char magic[CNS_LEN];
646 int error;
647
648 if (oldp)
649 cn_get_magic(magic, CNS_LEN);
650 error = sysctl_string(oldp, oldlenp, newp, newlen,
651 magic, sizeof(magic));
652 if (newp && !error) {
653 error = cn_set_magic(magic);
654 }
655 return (error);
656 }
657 default:
658 return (EOPNOTSUPP);
659 }
660 /* NOTREACHED */
661 }
662
663 #ifdef DEBUG
664 /*
665 * Debugging related system variables.
666 */
667 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
668 struct ctldebug debug5, debug6, debug7, debug8, debug9;
669 struct ctldebug debug10, debug11, debug12, debug13, debug14;
670 struct ctldebug debug15, debug16, debug17, debug18, debug19;
671 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
672 &debug0, &debug1, &debug2, &debug3, &debug4,
673 &debug5, &debug6, &debug7, &debug8, &debug9,
674 &debug10, &debug11, &debug12, &debug13, &debug14,
675 &debug15, &debug16, &debug17, &debug18, &debug19,
676 };
677
678 int
679 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
680 void *newp, size_t newlen, struct proc *p)
681 {
682 struct ctldebug *cdp;
683
684 /* all sysctl names at this level are name and field */
685 if (namelen != 2)
686 return (ENOTDIR); /* overloaded */
687 if (name[0] >= CTL_DEBUG_MAXID)
688 return (EOPNOTSUPP);
689 cdp = debugvars[name[0]];
690 if (cdp->debugname == 0)
691 return (EOPNOTSUPP);
692 switch (name[1]) {
693 case CTL_DEBUG_NAME:
694 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
695 case CTL_DEBUG_VALUE:
696 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
697 default:
698 return (EOPNOTSUPP);
699 }
700 /* NOTREACHED */
701 }
702 #endif /* DEBUG */
703
704 int
705 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
706 void *newp, size_t newlen, struct proc *p)
707 {
708 struct proc *ptmp = NULL;
709 const struct proclist_desc *pd;
710 int error = 0;
711 struct rlimit alim;
712 struct plimit *newplim;
713 char *tmps = NULL;
714 size_t len, curlen;
715 u_int i;
716
717 if (namelen < 2)
718 return EINVAL;
719
720 if (name[0] == PROC_CURPROC) {
721 ptmp = p;
722 } else {
723 proclist_lock_read();
724 for (pd = proclists; pd->pd_list != NULL; pd++) {
725 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
726 ptmp = LIST_NEXT(ptmp, p_list)) {
727 /* Skip embryonic processes. */
728 if (ptmp->p_stat == SIDL)
729 continue;
730 if (ptmp->p_pid == (pid_t)name[0])
731 break;
732 }
733 if (ptmp != NULL)
734 break;
735 }
736 proclist_unlock_read();
737 if (ptmp == NULL)
738 return(ESRCH);
739 if (p->p_ucred->cr_uid != 0) {
740 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
741 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
742 return EPERM;
743 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
744 return EPERM; /* sgid proc */
745 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
746 if (p->p_ucred->cr_groups[i] ==
747 ptmp->p_cred->p_rgid)
748 break;
749 }
750 if (i == p->p_ucred->cr_ngroups)
751 return EPERM;
752 }
753 }
754 switch(name[1]) {
755 case PROC_PID_STOPFORK:
756 if (namelen != 2)
757 return EINVAL;
758 i = ((ptmp->p_flag & P_STOPFORK) != 0);
759 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
760 return error;
761 if (i != 0)
762 ptmp->p_flag |= P_STOPFORK;
763 else
764 ptmp->p_flag &= ~P_STOPFORK;
765 return 0;
766 break;
767
768 case PROC_PID_STOPEXEC:
769 if (namelen != 2)
770 return EINVAL;
771 i = ((ptmp->p_flag & P_STOPEXEC) != 0);
772 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &i)) != 0)
773 return error;
774 if (i != 0)
775 ptmp->p_flag |= P_STOPEXEC;
776 else
777 ptmp->p_flag &= ~P_STOPEXEC;
778 return 0;
779 break;
780
781 case PROC_PID_CORENAME:
782 if (namelen != 2)
783 return EINVAL;
784 /*
785 * Can't use sysctl_string() here because we may malloc a new
786 * area during the process, so we have to do it by hand.
787 */
788 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
789 if (oldlenp && *oldlenp < curlen) {
790 if (!oldp)
791 *oldlenp = curlen;
792 return (ENOMEM);
793 }
794 if (newp) {
795 if (securelevel > 2)
796 return EPERM;
797 if (newlen > MAXPATHLEN)
798 return ENAMETOOLONG;
799 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
800 if (tmps == NULL)
801 return ENOMEM;
802 error = copyin(newp, tmps, newlen + 1);
803 tmps[newlen] = '\0';
804 if (error)
805 goto cleanup;
806 /* Enforce to be either 'core' for end with '.core' */
807 if (newlen < 4) { /* c.o.r.e */
808 error = EINVAL;
809 goto cleanup;
810 }
811 len = newlen - 4;
812 if (len > 0) {
813 if (tmps[len - 1] != '.' &&
814 tmps[len - 1] != '/') {
815 error = EINVAL;
816 goto cleanup;
817 }
818 }
819 if (strcmp(&tmps[len], "core") != 0) {
820 error = EINVAL;
821 goto cleanup;
822 }
823 }
824 if (oldp && oldlenp) {
825 *oldlenp = curlen;
826 error = copyout(ptmp->p_limit->pl_corename, oldp,
827 curlen);
828 }
829 if (newp && error == 0) {
830 /* if the 2 strings are identical, don't limcopy() */
831 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
832 error = 0;
833 goto cleanup;
834 }
835 if (ptmp->p_limit->p_refcnt > 1 &&
836 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
837 newplim = limcopy(ptmp->p_limit);
838 limfree(ptmp->p_limit);
839 ptmp->p_limit = newplim;
840 }
841 if (ptmp->p_limit->pl_corename != defcorename) {
842 free(ptmp->p_limit->pl_corename, M_TEMP);
843 }
844 ptmp->p_limit->pl_corename = tmps;
845 return (0);
846 }
847 cleanup:
848 if (tmps)
849 free(tmps, M_TEMP);
850 return (error);
851 break;
852
853 case PROC_PID_LIMIT:
854 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
855 return EINVAL;
856 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
857 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
858 error = sysctl_quad(oldp, oldlenp, newp, newlen,
859 &alim.rlim_max);
860 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
861 error = sysctl_quad(oldp, oldlenp, newp, newlen,
862 &alim.rlim_cur);
863 else
864 error = EINVAL;
865
866 if (error)
867 return error;
868
869 if (newp)
870 error = dosetrlimit(ptmp, p->p_cred,
871 name[2] - 1, &alim);
872 return error;
873 break;
874
875 default:
876 return (EINVAL);
877 break;
878 }
879 /* NOTREACHED */
880 return (EINVAL);
881 }
882
883 int
884 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
885 void *newp, size_t newlen, struct proc *p)
886 {
887 static struct {
888 const char *name;
889 int type;
890 } emulations[] = CTL_EMUL_NAMES;
891 const struct emul *e;
892 const char *ename;
893 #ifdef LKM
894 extern struct lock exec_lock; /* XXX */
895 int error;
896 #else
897 extern int nexecs_builtin;
898 extern const struct execsw execsw_builtin[];
899 int i;
900 #endif
901
902 /* all sysctl names at this level are name and field */
903 if (namelen < 2)
904 return (ENOTDIR); /* overloaded */
905
906 if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
907 return (EOPNOTSUPP);
908
909 ename = emulations[name[0]].name;
910
911 #ifdef LKM
912 lockmgr(&exec_lock, LK_SHARED, NULL);
913 if ((e = emul_search(ename))) {
914 error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
915 newp, newlen, p);
916 } else
917 error = EOPNOTSUPP;
918 lockmgr(&exec_lock, LK_RELEASE, NULL);
919
920 return (error);
921 #else
922 for (i = 0; i < nexecs_builtin; i++) {
923 e = execsw_builtin[i].es_emul;
924 /*
925 * In order to match e.g. e->e_name "irix o32" with ename "irix",
926 * we limit the comparison to the length of ename.
927 */
928 if (e == NULL || strncmp(ename, e->e_name, strlen(ename)) != 0 ||
929 e->e_sysctl == NULL)
930 continue;
931
932 return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
933 newp, newlen, p);
934 }
935
936 return (EOPNOTSUPP);
937 #endif
938 }
939 /*
940 * Convenience macros.
941 */
942
943 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
944 if (oldlenp) { \
945 if (!oldp) \
946 *oldlenp = len; \
947 else { \
948 if (*oldlenp < len) \
949 return(ENOMEM); \
950 *oldlenp = len; \
951 error = copyout((caddr_t)valp, oldp, len); \
952 } \
953 }
954
955 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
956 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
957
958 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
959 if (newp && newlen != len) \
960 return (EINVAL);
961
962 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
963 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
964
965 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
966 if (error == 0 && newp) \
967 error = copyin(newp, valp, len);
968
969 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
970 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
971
972 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
973 if (oldlenp) { \
974 len = strlen(str) + 1; \
975 if (!oldp) \
976 *oldlenp = len; \
977 else { \
978 if (*oldlenp < len) { \
979 err2 = ENOMEM; \
980 len = *oldlenp; \
981 } else \
982 *oldlenp = len; \
983 error = copyout(str, oldp, len);\
984 if (error == 0) \
985 error = err2; \
986 } \
987 }
988
989 /*
990 * Validate parameters and get old / set new parameters
991 * for an integer-valued sysctl function.
992 */
993 int
994 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
995 {
996 int error = 0;
997
998 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
999 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
1000 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
1001
1002 return (error);
1003 }
1004
1005
1006 /*
1007 * As above, but read-only.
1008 */
1009 int
1010 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
1011 {
1012 int error = 0;
1013
1014 if (newp)
1015 return (EPERM);
1016
1017 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
1018
1019 return (error);
1020 }
1021
1022 /*
1023 * Validate parameters and get old / set new parameters
1024 * for an quad-valued sysctl function.
1025 */
1026 int
1027 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1028 quad_t *valp)
1029 {
1030 int error = 0;
1031
1032 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
1033 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
1034 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
1035
1036 return (error);
1037 }
1038
1039 /*
1040 * As above, but read-only.
1041 */
1042 int
1043 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
1044 {
1045 int error = 0;
1046
1047 if (newp)
1048 return (EPERM);
1049
1050 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
1051
1052 return (error);
1053 }
1054
1055 /*
1056 * Validate parameters and get old / set new parameters
1057 * for a string-valued sysctl function.
1058 */
1059 int
1060 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1061 size_t maxlen)
1062 {
1063 int error = 0, err2 = 0;
1064 size_t len;
1065
1066 if (newp && newlen >= maxlen)
1067 return (EINVAL);
1068
1069 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1070
1071 if (error == 0 && newp) {
1072 error = copyin(newp, str, newlen);
1073 str[newlen] = 0;
1074 }
1075 return (error);
1076 }
1077
1078 /*
1079 * As above, but read-only.
1080 */
1081 int
1082 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1083 {
1084 int error = 0, err2 = 0;
1085 size_t len;
1086
1087 if (newp)
1088 return (EPERM);
1089
1090 SYSCTL_STRING_CORE(oldp, oldlenp, str);
1091
1092 return (error);
1093 }
1094
1095 /*
1096 * Validate parameters and get old / set new parameters
1097 * for a structure oriented sysctl function.
1098 */
1099 int
1100 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1101 size_t len)
1102 {
1103 int error = 0;
1104
1105 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1106 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1107 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1108
1109 return (error);
1110 }
1111
1112 /*
1113 * Validate parameters and get old parameters
1114 * for a structure oriented sysctl function.
1115 */
1116 int
1117 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1118 size_t len)
1119 {
1120 int error = 0;
1121
1122 if (newp)
1123 return (EPERM);
1124
1125 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1126
1127 return (error);
1128 }
1129
1130 /*
1131 * As above, but can return a truncated result.
1132 */
1133 int
1134 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1135 size_t len)
1136 {
1137 int error = 0;
1138
1139 if (newp)
1140 return (EPERM);
1141
1142 len = min(*oldlenp, len);
1143 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1144
1145 return (error);
1146 }
1147
1148 /*
1149 * Get file structures.
1150 */
1151 static int
1152 sysctl_file(void *vwhere, size_t *sizep)
1153 {
1154 int error;
1155 size_t buflen;
1156 struct file *fp;
1157 char *start, *where;
1158
1159 start = where = vwhere;
1160 buflen = *sizep;
1161 if (where == NULL) {
1162 /*
1163 * overestimate by 10 files
1164 */
1165 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1166 return (0);
1167 }
1168
1169 /*
1170 * first copyout filehead
1171 */
1172 if (buflen < sizeof(filehead)) {
1173 *sizep = 0;
1174 return (0);
1175 }
1176 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1177 if (error)
1178 return (error);
1179 buflen -= sizeof(filehead);
1180 where += sizeof(filehead);
1181
1182 /*
1183 * followed by an array of file structures
1184 */
1185 LIST_FOREACH(fp, &filehead, f_list) {
1186 if (buflen < sizeof(struct file)) {
1187 *sizep = where - start;
1188 return (ENOMEM);
1189 }
1190 error = copyout((caddr_t)fp, where, sizeof(struct file));
1191 if (error)
1192 return (error);
1193 buflen -= sizeof(struct file);
1194 where += sizeof(struct file);
1195 }
1196 *sizep = where - start;
1197 return (0);
1198 }
1199
1200 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1201 #define FILL_PERM(src, dst) do { \
1202 (dst)._key = (src)._key; \
1203 (dst).uid = (src).uid; \
1204 (dst).gid = (src).gid; \
1205 (dst).cuid = (src).cuid; \
1206 (dst).cgid = (src).cgid; \
1207 (dst).mode = (src).mode; \
1208 (dst)._seq = (src)._seq; \
1209 } while (/*CONSTCOND*/ 0);
1210 #define FILL_MSG(src, dst) do { \
1211 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1212 (dst).msg_qnum = (src).msg_qnum; \
1213 (dst).msg_qbytes = (src).msg_qbytes; \
1214 (dst)._msg_cbytes = (src)._msg_cbytes; \
1215 (dst).msg_lspid = (src).msg_lspid; \
1216 (dst).msg_lrpid = (src).msg_lrpid; \
1217 (dst).msg_stime = (src).msg_stime; \
1218 (dst).msg_rtime = (src).msg_rtime; \
1219 (dst).msg_ctime = (src).msg_ctime; \
1220 } while (/*CONSTCOND*/ 0)
1221 #define FILL_SEM(src, dst) do { \
1222 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1223 (dst).sem_nsems = (src).sem_nsems; \
1224 (dst).sem_otime = (src).sem_otime; \
1225 (dst).sem_ctime = (src).sem_ctime; \
1226 } while (/*CONSTCOND*/ 0)
1227 #define FILL_SHM(src, dst) do { \
1228 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1229 (dst).shm_segsz = (src).shm_segsz; \
1230 (dst).shm_lpid = (src).shm_lpid; \
1231 (dst).shm_cpid = (src).shm_cpid; \
1232 (dst).shm_atime = (src).shm_atime; \
1233 (dst).shm_dtime = (src).shm_dtime; \
1234 (dst).shm_ctime = (src).shm_ctime; \
1235 (dst).shm_nattch = (src).shm_nattch; \
1236 } while (/*CONSTCOND*/ 0)
1237
1238 static int
1239 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1240 {
1241 #ifdef SYSVMSG
1242 struct msg_sysctl_info *msgsi;
1243 #endif
1244 #ifdef SYSVSEM
1245 struct sem_sysctl_info *semsi;
1246 #endif
1247 #ifdef SYSVSHM
1248 struct shm_sysctl_info *shmsi;
1249 #endif
1250 size_t infosize, dssize, tsize, buflen;
1251 void *buf = NULL;
1252 char *start;
1253 int32_t nds;
1254 int i, error, ret;
1255
1256 if (namelen != 1)
1257 return (EINVAL);
1258
1259 start = where;
1260 buflen = *sizep;
1261
1262 switch (*name) {
1263 case KERN_SYSVIPC_MSG_INFO:
1264 #ifdef SYSVMSG
1265 infosize = sizeof(msgsi->msginfo);
1266 nds = msginfo.msgmni;
1267 dssize = sizeof(msgsi->msgids[0]);
1268 break;
1269 #else
1270 return (EINVAL);
1271 #endif
1272 case KERN_SYSVIPC_SEM_INFO:
1273 #ifdef SYSVSEM
1274 infosize = sizeof(semsi->seminfo);
1275 nds = seminfo.semmni;
1276 dssize = sizeof(semsi->semids[0]);
1277 break;
1278 #else
1279 return (EINVAL);
1280 #endif
1281 case KERN_SYSVIPC_SHM_INFO:
1282 #ifdef SYSVSHM
1283 infosize = sizeof(shmsi->shminfo);
1284 nds = shminfo.shmmni;
1285 dssize = sizeof(shmsi->shmids[0]);
1286 break;
1287 #else
1288 return (EINVAL);
1289 #endif
1290 default:
1291 return (EINVAL);
1292 }
1293 /*
1294 * Round infosize to 64 bit boundary if requesting more than just
1295 * the info structure or getting the total data size.
1296 */
1297 if (where == NULL || *sizep > infosize)
1298 infosize = ((infosize + 7) / 8) * 8;
1299 tsize = infosize + nds * dssize;
1300
1301 /* Return just the total size required. */
1302 if (where == NULL) {
1303 *sizep = tsize;
1304 return (0);
1305 }
1306
1307 /* Not enough room for even the info struct. */
1308 if (buflen < infosize) {
1309 *sizep = 0;
1310 return (ENOMEM);
1311 }
1312 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1313 memset(buf, 0, min(tsize, buflen));
1314
1315 switch (*name) {
1316 #ifdef SYSVMSG
1317 case KERN_SYSVIPC_MSG_INFO:
1318 msgsi = (struct msg_sysctl_info *)buf;
1319 msgsi->msginfo = msginfo;
1320 break;
1321 #endif
1322 #ifdef SYSVSEM
1323 case KERN_SYSVIPC_SEM_INFO:
1324 semsi = (struct sem_sysctl_info *)buf;
1325 semsi->seminfo = seminfo;
1326 break;
1327 #endif
1328 #ifdef SYSVSHM
1329 case KERN_SYSVIPC_SHM_INFO:
1330 shmsi = (struct shm_sysctl_info *)buf;
1331 shmsi->shminfo = shminfo;
1332 break;
1333 #endif
1334 }
1335 buflen -= infosize;
1336
1337 ret = 0;
1338 if (buflen > 0) {
1339 /* Fill in the IPC data structures. */
1340 for (i = 0; i < nds; i++) {
1341 if (buflen < dssize) {
1342 ret = ENOMEM;
1343 break;
1344 }
1345 switch (*name) {
1346 #ifdef SYSVMSG
1347 case KERN_SYSVIPC_MSG_INFO:
1348 FILL_MSG(msqids[i], msgsi->msgids[i]);
1349 break;
1350 #endif
1351 #ifdef SYSVSEM
1352 case KERN_SYSVIPC_SEM_INFO:
1353 FILL_SEM(sema[i], semsi->semids[i]);
1354 break;
1355 #endif
1356 #ifdef SYSVSHM
1357 case KERN_SYSVIPC_SHM_INFO:
1358 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1359 break;
1360 #endif
1361 }
1362 buflen -= dssize;
1363 }
1364 }
1365 *sizep -= buflen;
1366 error = copyout(buf, start, *sizep);
1367 /* If copyout succeeded, use return code set earlier. */
1368 if (error == 0)
1369 error = ret;
1370 if (buf)
1371 free(buf, M_TEMP);
1372 return (error);
1373 }
1374 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1375
1376 static int
1377 sysctl_msgbuf(void *vwhere, size_t *sizep)
1378 {
1379 char *where = vwhere;
1380 size_t len, maxlen = *sizep;
1381 long beg, end;
1382 int error;
1383
1384 /*
1385 * deal with cases where the message buffer has
1386 * become corrupted.
1387 */
1388 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1389 msgbufenabled = 0;
1390 return (ENXIO);
1391 }
1392
1393 if (where == NULL) {
1394 /* always return full buffer size */
1395 *sizep = msgbufp->msg_bufs;
1396 return (0);
1397 }
1398
1399 error = 0;
1400 maxlen = min(msgbufp->msg_bufs, maxlen);
1401
1402 /*
1403 * First, copy from the write pointer to the end of
1404 * message buffer.
1405 */
1406 beg = msgbufp->msg_bufx;
1407 end = msgbufp->msg_bufs;
1408 while (maxlen > 0) {
1409 len = min(end - beg, maxlen);
1410 if (len == 0)
1411 break;
1412 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1413 if (error)
1414 break;
1415 where += len;
1416 maxlen -= len;
1417
1418 /*
1419 * ... then, copy from the beginning of message buffer to
1420 * the write pointer.
1421 */
1422 beg = 0;
1423 end = msgbufp->msg_bufx;
1424 }
1425 return (error);
1426 }
1427
1428 /*
1429 * try over estimating by 5 procs
1430 */
1431 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1432
1433 static int
1434 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1435 {
1436 struct eproc eproc;
1437 struct kinfo_proc2 kproc2;
1438 struct kinfo_proc *dp;
1439 struct proc *p;
1440 const struct proclist_desc *pd;
1441 char *where, *dp2;
1442 int type, op, arg;
1443 u_int elem_size, elem_count;
1444 size_t buflen, needed;
1445 int error;
1446
1447 dp = vwhere;
1448 dp2 = where = vwhere;
1449 buflen = where != NULL ? *sizep : 0;
1450 error = 0;
1451 needed = 0;
1452 type = name[0];
1453
1454 if (type == KERN_PROC) {
1455 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1456 return (EINVAL);
1457 op = name[1];
1458 if (op != KERN_PROC_ALL)
1459 arg = name[2];
1460 } else {
1461 if (namelen != 5)
1462 return (EINVAL);
1463 op = name[1];
1464 arg = name[2];
1465 elem_size = name[3];
1466 elem_count = name[4];
1467 }
1468
1469 proclist_lock_read();
1470
1471 pd = proclists;
1472 again:
1473 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1474 /*
1475 * Skip embryonic processes.
1476 */
1477 if (p->p_stat == SIDL)
1478 continue;
1479 /*
1480 * TODO - make more efficient (see notes below).
1481 * do by session.
1482 */
1483 switch (op) {
1484
1485 case KERN_PROC_PID:
1486 /* could do this with just a lookup */
1487 if (p->p_pid != (pid_t)arg)
1488 continue;
1489 break;
1490
1491 case KERN_PROC_PGRP:
1492 /* could do this by traversing pgrp */
1493 if (p->p_pgrp->pg_id != (pid_t)arg)
1494 continue;
1495 break;
1496
1497 case KERN_PROC_SESSION:
1498 if (p->p_session->s_sid != (pid_t)arg)
1499 continue;
1500 break;
1501
1502 case KERN_PROC_TTY:
1503 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1504 if ((p->p_flag & P_CONTROLT) == 0 ||
1505 p->p_session->s_ttyp == NULL ||
1506 p->p_session->s_ttyvp != NULL)
1507 continue;
1508 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1509 p->p_session->s_ttyp == NULL) {
1510 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1511 continue;
1512 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1513 continue;
1514 break;
1515
1516 case KERN_PROC_UID:
1517 if (p->p_ucred->cr_uid != (uid_t)arg)
1518 continue;
1519 break;
1520
1521 case KERN_PROC_RUID:
1522 if (p->p_cred->p_ruid != (uid_t)arg)
1523 continue;
1524 break;
1525
1526 case KERN_PROC_GID:
1527 if (p->p_ucred->cr_gid != (uid_t)arg)
1528 continue;
1529 break;
1530
1531 case KERN_PROC_RGID:
1532 if (p->p_cred->p_rgid != (uid_t)arg)
1533 continue;
1534 break;
1535
1536 case KERN_PROC_ALL:
1537 /* allow everything */
1538 break;
1539
1540 default:
1541 error = EINVAL;
1542 goto cleanup;
1543 }
1544 if (type == KERN_PROC) {
1545 if (buflen >= sizeof(struct kinfo_proc)) {
1546 fill_eproc(p, &eproc);
1547 error = copyout((caddr_t)p, &dp->kp_proc,
1548 sizeof(struct proc));
1549 if (error)
1550 goto cleanup;
1551 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1552 sizeof(eproc));
1553 if (error)
1554 goto cleanup;
1555 dp++;
1556 buflen -= sizeof(struct kinfo_proc);
1557 }
1558 needed += sizeof(struct kinfo_proc);
1559 } else { /* KERN_PROC2 */
1560 if (buflen >= elem_size && elem_count > 0) {
1561 fill_kproc2(p, &kproc2);
1562 /*
1563 * Copy out elem_size, but not larger than
1564 * the size of a struct kinfo_proc2.
1565 */
1566 error = copyout(&kproc2, dp2,
1567 min(sizeof(kproc2), elem_size));
1568 if (error)
1569 goto cleanup;
1570 dp2 += elem_size;
1571 buflen -= elem_size;
1572 elem_count--;
1573 }
1574 needed += elem_size;
1575 }
1576 }
1577 pd++;
1578 if (pd->pd_list != NULL)
1579 goto again;
1580 proclist_unlock_read();
1581
1582 if (where != NULL) {
1583 if (type == KERN_PROC)
1584 *sizep = (caddr_t)dp - where;
1585 else
1586 *sizep = dp2 - where;
1587 if (needed > *sizep)
1588 return (ENOMEM);
1589 } else {
1590 needed += KERN_PROCSLOP;
1591 *sizep = needed;
1592 }
1593 return (0);
1594 cleanup:
1595 proclist_unlock_read();
1596 return (error);
1597 }
1598
1599
1600 /*
1601 * try over estimating by 5 LWPs
1602 */
1603 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
1604
1605 static int
1606 sysctl_dolwp(int *name, u_int namelen, void *vwhere, size_t *sizep)
1607 {
1608 struct kinfo_lwp klwp;
1609 struct proc *p;
1610 struct lwp *l;
1611 char *where, *dp;
1612 int type, pid, elem_size, elem_count;
1613 int buflen, needed, error;
1614
1615 dp = where = vwhere;
1616 buflen = where != NULL ? *sizep : 0;
1617 error = needed = 0;
1618 type = name[0];
1619
1620 if (namelen != 4)
1621 return (EINVAL);
1622 pid = name[1];
1623 elem_size = name[2];
1624 elem_count = name[3];
1625
1626 p = pfind(pid);
1627 if (p == NULL)
1628 return (ESRCH);
1629 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1630 if (buflen >= elem_size && elem_count > 0) {
1631 fill_lwp(l, &klwp);
1632 /*
1633 * Copy out elem_size, but not larger than
1634 * the size of a struct kinfo_proc2.
1635 */
1636 error = copyout(&klwp, dp,
1637 min(sizeof(klwp), elem_size));
1638 if (error)
1639 goto cleanup;
1640 dp += elem_size;
1641 buflen -= elem_size;
1642 elem_count--;
1643 }
1644 needed += elem_size;
1645 }
1646
1647 if (where != NULL) {
1648 *sizep = dp - where;
1649 if (needed > *sizep)
1650 return (ENOMEM);
1651 } else {
1652 needed += KERN_PROCSLOP;
1653 *sizep = needed;
1654 }
1655 return (0);
1656 cleanup:
1657 return (error);
1658 }
1659
1660 /*
1661 * Fill in an eproc structure for the specified process.
1662 */
1663 void
1664 fill_eproc(struct proc *p, struct eproc *ep)
1665 {
1666 struct tty *tp;
1667 struct lwp *l;
1668
1669 ep->e_paddr = p;
1670 ep->e_sess = p->p_session;
1671 ep->e_pcred = *p->p_cred;
1672 ep->e_ucred = *p->p_ucred;
1673 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1674 ep->e_vm.vm_rssize = 0;
1675 ep->e_vm.vm_tsize = 0;
1676 ep->e_vm.vm_dsize = 0;
1677 ep->e_vm.vm_ssize = 0;
1678 /* ep->e_vm.vm_pmap = XXX; */
1679 } else {
1680 struct vmspace *vm = p->p_vmspace;
1681
1682 ep->e_vm.vm_rssize = vm_resident_count(vm);
1683 ep->e_vm.vm_tsize = vm->vm_tsize;
1684 ep->e_vm.vm_dsize = vm->vm_dsize;
1685 ep->e_vm.vm_ssize = vm->vm_ssize;
1686
1687 /* Pick a "representative" LWP */
1688 l = proc_representative_lwp(p);
1689
1690 if (l->l_wmesg)
1691 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
1692 }
1693 if (p->p_pptr)
1694 ep->e_ppid = p->p_pptr->p_pid;
1695 else
1696 ep->e_ppid = 0;
1697 ep->e_pgid = p->p_pgrp->pg_id;
1698 ep->e_sid = ep->e_sess->s_sid;
1699 ep->e_jobc = p->p_pgrp->pg_jobc;
1700 if ((p->p_flag & P_CONTROLT) &&
1701 (tp = ep->e_sess->s_ttyp)) {
1702 ep->e_tdev = tp->t_dev;
1703 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1704 ep->e_tsess = tp->t_session;
1705 } else
1706 ep->e_tdev = NODEV;
1707
1708 ep->e_xsize = ep->e_xrssize = 0;
1709 ep->e_xccount = ep->e_xswrss = 0;
1710 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1711 if (SESS_LEADER(p))
1712 ep->e_flag |= EPROC_SLEADER;
1713 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1714 }
1715
1716 /*
1717 * Fill in an eproc structure for the specified process.
1718 */
1719 static void
1720 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1721 {
1722 struct tty *tp;
1723 struct lwp *l;
1724 memset(ki, 0, sizeof(*ki));
1725
1726 ki->p_paddr = PTRTOINT64(p);
1727 ki->p_fd = PTRTOINT64(p->p_fd);
1728 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1729 ki->p_stats = PTRTOINT64(p->p_stats);
1730 ki->p_limit = PTRTOINT64(p->p_limit);
1731 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1732 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1733 ki->p_sess = PTRTOINT64(p->p_session);
1734 ki->p_tsess = 0; /* may be changed if controlling tty below */
1735 ki->p_ru = PTRTOINT64(p->p_ru);
1736
1737 ki->p_eflag = 0;
1738 ki->p_exitsig = p->p_exitsig;
1739 ki->p_flag = p->p_flag;
1740
1741 ki->p_pid = p->p_pid;
1742 if (p->p_pptr)
1743 ki->p_ppid = p->p_pptr->p_pid;
1744 else
1745 ki->p_ppid = 0;
1746 ki->p_sid = p->p_session->s_sid;
1747 ki->p__pgid = p->p_pgrp->pg_id;
1748
1749 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1750
1751 ki->p_uid = p->p_ucred->cr_uid;
1752 ki->p_ruid = p->p_cred->p_ruid;
1753 ki->p_gid = p->p_ucred->cr_gid;
1754 ki->p_rgid = p->p_cred->p_rgid;
1755
1756 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1757 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1758 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1759
1760 ki->p_jobc = p->p_pgrp->pg_jobc;
1761 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1762 ki->p_tdev = tp->t_dev;
1763 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1764 ki->p_tsess = PTRTOINT64(tp->t_session);
1765 } else {
1766 ki->p_tdev = NODEV;
1767 }
1768
1769 ki->p_estcpu = p->p_estcpu;
1770 ki->p_rtime_sec = p->p_rtime.tv_sec;
1771 ki->p_rtime_usec = p->p_rtime.tv_usec;
1772 ki->p_cpticks = p->p_cpticks;
1773 ki->p_pctcpu = p->p_pctcpu;
1774
1775 ki->p_uticks = p->p_uticks;
1776 ki->p_sticks = p->p_sticks;
1777 ki->p_iticks = p->p_iticks;
1778
1779 ki->p_tracep = PTRTOINT64(p->p_tracep);
1780 ki->p_traceflag = p->p_traceflag;
1781
1782
1783 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1784 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1785 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1786 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1787
1788 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
1789 ki->p_realstat = p->p_stat;
1790 ki->p_nice = p->p_nice;
1791
1792 ki->p_xstat = p->p_xstat;
1793 ki->p_acflag = p->p_acflag;
1794
1795 strncpy(ki->p_comm, p->p_comm,
1796 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1797
1798 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1799
1800 ki->p_nlwps = p->p_nlwps;
1801 ki->p_nrlwps = p->p_nrlwps;
1802 ki->p_realflag = p->p_flag;
1803
1804 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1805 ki->p_vm_rssize = 0;
1806 ki->p_vm_tsize = 0;
1807 ki->p_vm_dsize = 0;
1808 ki->p_vm_ssize = 0;
1809 l = NULL;
1810 } else {
1811 struct vmspace *vm = p->p_vmspace;
1812
1813 ki->p_vm_rssize = vm_resident_count(vm);
1814 ki->p_vm_tsize = vm->vm_tsize;
1815 ki->p_vm_dsize = vm->vm_dsize;
1816 ki->p_vm_ssize = vm->vm_ssize;
1817
1818 /* Pick a "representative" LWP */
1819 l = proc_representative_lwp(p);
1820 ki->p_forw = PTRTOINT64(l->l_forw);
1821 ki->p_back = PTRTOINT64(l->l_back);
1822 ki->p_addr = PTRTOINT64(l->l_addr);
1823 ki->p_stat = l->l_stat;
1824 ki->p_flag |= l->l_flag;
1825 ki->p_swtime = l->l_swtime;
1826 ki->p_slptime = l->l_slptime;
1827 if (l->l_stat == LSONPROC) {
1828 KDASSERT(l->l_cpu != NULL);
1829 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1830 } else
1831 ki->p_schedflags = 0;
1832 ki->p_holdcnt = l->l_holdcnt;
1833 ki->p_priority = l->l_priority;
1834 ki->p_usrpri = l->l_usrpri;
1835 if (l->l_wmesg)
1836 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
1837 ki->p_wchan = PTRTOINT64(l->l_wchan);
1838
1839 }
1840
1841 if (p->p_session->s_ttyvp)
1842 ki->p_eflag |= EPROC_CTTY;
1843 if (SESS_LEADER(p))
1844 ki->p_eflag |= EPROC_SLEADER;
1845
1846 /* XXX Is this double check necessary? */
1847 if (P_ZOMBIE(p)) {
1848 ki->p_uvalid = 0;
1849 } else {
1850 ki->p_uvalid = 1;
1851
1852 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1853 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1854
1855 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1856 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1857 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1858 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1859
1860 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1861 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1862 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1863 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1864 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1865 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1866 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1867 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1868 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1869 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1870 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1871 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1872 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1873 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1874
1875 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1876 p->p_stats->p_cru.ru_stime.tv_sec;
1877 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1878 p->p_stats->p_cru.ru_stime.tv_usec;
1879 }
1880 #ifdef MULTIPROCESSOR
1881 if (l && l->l_cpu != NULL)
1882 ki->p_cpuid = l->l_cpu->ci_cpuid;
1883 else
1884 #endif
1885 ki->p_cpuid = KI_NOCPU;
1886
1887 }
1888
1889 /*
1890 * Fill in a kinfo_lwp structure for the specified lwp.
1891 */
1892 static void
1893 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
1894 {
1895 kl->l_forw = PTRTOINT64(l->l_forw);
1896 kl->l_back = PTRTOINT64(l->l_back);
1897 kl->l_laddr = PTRTOINT64(l);
1898 kl->l_addr = PTRTOINT64(l->l_addr);
1899 kl->l_stat = l->l_stat;
1900 kl->l_lid = l->l_lid;
1901 kl->l_flag = l->l_flag;
1902
1903 kl->l_swtime = l->l_swtime;
1904 kl->l_slptime = l->l_slptime;
1905 if (l->l_stat == LSONPROC) {
1906 KDASSERT(l->l_cpu != NULL);
1907 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1908 } else
1909 kl->l_schedflags = 0;
1910 kl->l_holdcnt = l->l_holdcnt;
1911 kl->l_priority = l->l_priority;
1912 kl->l_usrpri = l->l_usrpri;
1913 if (l->l_wmesg)
1914 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
1915 kl->l_wchan = PTRTOINT64(l->l_wchan);
1916 #ifdef MULTIPROCESSOR
1917 if (l->l_cpu != NULL)
1918 kl->l_cpuid = l->l_cpu->ci_cpuid;
1919 else
1920 #endif
1921 kl->l_cpuid = KI_NOCPU;
1922 }
1923
1924 int
1925 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1926 struct proc *up)
1927 {
1928 struct ps_strings pss;
1929 struct proc *p;
1930 size_t len, upper_bound, xlen, i;
1931 struct uio auio;
1932 struct iovec aiov;
1933 vaddr_t argv;
1934 pid_t pid;
1935 int nargv, type, error;
1936 char *arg;
1937 char *tmp;
1938
1939 if (namelen != 2)
1940 return (EINVAL);
1941 pid = name[0];
1942 type = name[1];
1943
1944 switch (type) {
1945 case KERN_PROC_ARGV:
1946 case KERN_PROC_NARGV:
1947 case KERN_PROC_ENV:
1948 case KERN_PROC_NENV:
1949 /* ok */
1950 break;
1951 default:
1952 return (EINVAL);
1953 }
1954
1955 /* check pid */
1956 if ((p = pfind(pid)) == NULL)
1957 return (EINVAL);
1958
1959 /* only root or same user change look at the environment */
1960 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1961 if (up->p_ucred->cr_uid != 0) {
1962 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1963 up->p_cred->p_ruid != p->p_cred->p_svuid)
1964 return (EPERM);
1965 }
1966 }
1967
1968 if (sizep != NULL && where == NULL) {
1969 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1970 *sizep = sizeof (int);
1971 else
1972 *sizep = ARG_MAX; /* XXX XXX XXX */
1973 return (0);
1974 }
1975 if (where == NULL || sizep == NULL)
1976 return (EINVAL);
1977
1978 /*
1979 * Zombies don't have a stack, so we can't read their psstrings.
1980 * System processes also don't have a user stack.
1981 */
1982 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1983 return (EINVAL);
1984
1985 /*
1986 * Lock the process down in memory.
1987 */
1988 /* XXXCDC: how should locking work here? */
1989 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1990 return (EFAULT);
1991
1992 p->p_vmspace->vm_refcnt++; /* XXX */
1993
1994 /*
1995 * Allocate a temporary buffer to hold the arguments.
1996 */
1997 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1998
1999 /*
2000 * Read in the ps_strings structure.
2001 */
2002 aiov.iov_base = &pss;
2003 aiov.iov_len = sizeof(pss);
2004 auio.uio_iov = &aiov;
2005 auio.uio_iovcnt = 1;
2006 auio.uio_offset = (vaddr_t)p->p_psstr;
2007 auio.uio_resid = sizeof(pss);
2008 auio.uio_segflg = UIO_SYSSPACE;
2009 auio.uio_rw = UIO_READ;
2010 auio.uio_procp = NULL;
2011 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2012 if (error)
2013 goto done;
2014
2015 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2016 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
2017 else
2018 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
2019 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2020 error = copyout(&nargv, where, sizeof(nargv));
2021 *sizep = sizeof(nargv);
2022 goto done;
2023 }
2024 /*
2025 * Now read the address of the argument vector.
2026 */
2027 switch (type) {
2028 case KERN_PROC_ARGV:
2029 /* XXX compat32 stuff here */
2030 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
2031 break;
2032 case KERN_PROC_ENV:
2033 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
2034 break;
2035 default:
2036 return (EINVAL);
2037 }
2038 auio.uio_offset = (off_t)(long)tmp;
2039 aiov.iov_base = &argv;
2040 aiov.iov_len = sizeof(argv);
2041 auio.uio_iov = &aiov;
2042 auio.uio_iovcnt = 1;
2043 auio.uio_resid = sizeof(argv);
2044 auio.uio_segflg = UIO_SYSSPACE;
2045 auio.uio_rw = UIO_READ;
2046 auio.uio_procp = NULL;
2047 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2048 if (error)
2049 goto done;
2050
2051 /*
2052 * Now copy in the actual argument vector, one page at a time,
2053 * since we don't know how long the vector is (though, we do
2054 * know how many NUL-terminated strings are in the vector).
2055 */
2056 len = 0;
2057 upper_bound = *sizep;
2058 for (; nargv != 0 && len < upper_bound; len += xlen) {
2059 aiov.iov_base = arg;
2060 aiov.iov_len = PAGE_SIZE;
2061 auio.uio_iov = &aiov;
2062 auio.uio_iovcnt = 1;
2063 auio.uio_offset = argv + len;
2064 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2065 auio.uio_resid = xlen;
2066 auio.uio_segflg = UIO_SYSSPACE;
2067 auio.uio_rw = UIO_READ;
2068 auio.uio_procp = NULL;
2069 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2070 if (error)
2071 goto done;
2072
2073 for (i = 0; i < xlen && nargv != 0; i++) {
2074 if (arg[i] == '\0')
2075 nargv--; /* one full string */
2076 }
2077
2078 /*
2079 * Make sure we don't copyout past the end of the user's
2080 * buffer.
2081 */
2082 if (len + i > upper_bound)
2083 i = upper_bound - len;
2084
2085 error = copyout(arg, (char *)where + len, i);
2086 if (error)
2087 break;
2088
2089 if (nargv == 0) {
2090 len += i;
2091 break;
2092 }
2093 }
2094 *sizep = len;
2095
2096 done:
2097 uvmspace_free(p->p_vmspace);
2098
2099 free(arg, M_TEMP);
2100 return (error);
2101 }
2102
2103 #if NPTY > 0
2104 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
2105
2106 /*
2107 * Validate parameters and get old / set new parameters
2108 * for pty sysctl function.
2109 */
2110 static int
2111 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2112 {
2113 int error = 0;
2114 int oldmax = 0, newmax = 0;
2115
2116 /* get current value of maxptys */
2117 oldmax = pty_maxptys(0, 0);
2118
2119 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
2120
2121 if (!error && newp) {
2122 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
2123 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
2124
2125 if (newmax != pty_maxptys(newmax, (newp != NULL)))
2126 return (EINVAL);
2127
2128 }
2129
2130 return (error);
2131 }
2132 #endif /* NPTY > 0 */
2133
2134 static int
2135 sysctl_dotkstat(name, namelen, where, sizep, newp)
2136 int *name;
2137 u_int namelen;
2138 void *where;
2139 size_t *sizep;
2140 void *newp;
2141 {
2142 /* all sysctl names at this level are terminal */
2143 if (namelen != 1)
2144 return (ENOTDIR); /* overloaded */
2145
2146 switch (name[0]) {
2147 case KERN_TKSTAT_NIN:
2148 return (sysctl_rdquad(where, sizep, newp, tk_nin));
2149 case KERN_TKSTAT_NOUT:
2150 return (sysctl_rdquad(where, sizep, newp, tk_nout));
2151 case KERN_TKSTAT_CANCC:
2152 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
2153 case KERN_TKSTAT_RAWCC:
2154 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
2155 default:
2156 return (EOPNOTSUPP);
2157 }
2158 }
2159