kern_sysctl.c revision 1.86.2.9 1 /* $NetBSD: kern_sysctl.c,v 1.86.2.9 2001/09/26 19:55:05 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_new_pipe.h"
49 #include "opt_sysv.h"
50 #include "pty.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/buf.h>
56 #include <sys/device.h>
57 #include <sys/disklabel.h>
58 #include <sys/dkstat.h>
59 #include <sys/exec.h>
60 #include <sys/file.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/msgbuf.h>
65 #include <sys/pool.h>
66 #include <sys/lwp.h>
67 #include <sys/proc.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/syscallargs.h>
71 #include <sys/tty.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
74 #include <sys/socketvar.h>
75 #define __SYSCTL_PRIVATE
76 #include <sys/sysctl.h>
77 #include <sys/lock.h>
78 #include <sys/namei.h>
79
80 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
81 #include <sys/ipc.h>
82 #endif
83 #ifdef SYSVMSG
84 #include <sys/msg.h>
85 #endif
86 #ifdef SYSVSEM
87 #include <sys/sem.h>
88 #endif
89 #ifdef SYSVSHM
90 #include <sys/shm.h>
91 #endif
92
93 #include <dev/cons.h>
94
95 #if defined(DDB)
96 #include <ddb/ddbvar.h>
97 #endif
98
99 #ifdef NEW_PIPE
100 #include <sys/pipe.h>
101 #endif
102
103 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
104
105 static int sysctl_file(void *, size_t *);
106 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
107 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
108 #endif
109 static int sysctl_msgbuf(void *, size_t *);
110 static int sysctl_doeproc(int *, u_int, void *, size_t *);
111 #ifdef MULTIPROCESSOR
112 static int sysctl_docptime(void *, size_t *, void *);
113 static int sysctl_ncpus(void);
114 #endif
115 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
116 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
117 #if NPTY > 0
118 static int sysctl_pty(void *, size_t *, void *, size_t);
119 #endif
120
121 static struct lwp *proc_representative_lwp(struct proc *);
122
123 /*
124 * The `sysctl_memlock' is intended to keep too many processes from
125 * locking down memory by doing sysctls at once. Whether or not this
126 * is really a good idea to worry about it probably a subject of some
127 * debate.
128 */
129 struct lock sysctl_memlock;
130
131 void
132 sysctl_init(void)
133 {
134
135 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
136 }
137
138 int
139 sys___sysctl(struct lwp *l, void *v, register_t *retval)
140 {
141 struct sys___sysctl_args /* {
142 syscallarg(int *) name;
143 syscallarg(u_int) namelen;
144 syscallarg(void *) old;
145 syscallarg(size_t *) oldlenp;
146 syscallarg(void *) new;
147 syscallarg(size_t) newlen;
148 } */ *uap = v;
149 struct proc *p = l->l_proc;
150 int error;
151 size_t savelen = 0, oldlen = 0;
152 sysctlfn *fn;
153 int name[CTL_MAXNAME];
154 size_t *oldlenp;
155
156 /*
157 * all top-level sysctl names are non-terminal
158 */
159 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
160 return (EINVAL);
161 error = copyin(SCARG(uap, name), &name,
162 SCARG(uap, namelen) * sizeof(int));
163 if (error)
164 return (error);
165
166 /*
167 * For all but CTL_PROC, must be root to change a value.
168 * For CTL_PROC, must be root, or owner of the proc (and not suid),
169 * this is checked in proc_sysctl() (once we know the targer proc).
170 */
171 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
172 (error = suser(p->p_ucred, &p->p_acflag)))
173 return error;
174
175 switch (name[0]) {
176 case CTL_KERN:
177 fn = kern_sysctl;
178 break;
179 case CTL_HW:
180 fn = hw_sysctl;
181 break;
182 case CTL_VM:
183 fn = uvm_sysctl;
184 break;
185 case CTL_NET:
186 fn = net_sysctl;
187 break;
188 case CTL_VFS:
189 fn = vfs_sysctl;
190 break;
191 case CTL_MACHDEP:
192 fn = cpu_sysctl;
193 break;
194 #ifdef DEBUG
195 case CTL_DEBUG:
196 fn = debug_sysctl;
197 break;
198 #endif
199 #ifdef DDB
200 case CTL_DDB:
201 fn = ddb_sysctl;
202 break;
203 #endif
204 case CTL_PROC:
205 fn = proc_sysctl;
206 break;
207 default:
208 return (EOPNOTSUPP);
209 }
210
211 /*
212 * XXX Hey, we wire `old', but what about `new'?
213 */
214
215 oldlenp = SCARG(uap, oldlenp);
216 if (oldlenp) {
217 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
218 return (error);
219 oldlenp = &oldlen;
220 }
221 if (SCARG(uap, old) != NULL) {
222 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
223 if (error)
224 return (error);
225 error = uvm_vslock(p, SCARG(uap, old), oldlen,
226 VM_PROT_READ|VM_PROT_WRITE);
227 if (error) {
228 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
229 return error;
230 }
231 savelen = oldlen;
232 }
233 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
234 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
235 if (SCARG(uap, old) != NULL) {
236 uvm_vsunlock(p, SCARG(uap, old), savelen);
237 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
238 }
239 if (error)
240 return (error);
241 if (SCARG(uap, oldlenp))
242 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
243 return (error);
244 }
245
246 /*
247 * Attributes stored in the kernel.
248 */
249 char hostname[MAXHOSTNAMELEN];
250 int hostnamelen;
251
252 char domainname[MAXHOSTNAMELEN];
253 int domainnamelen;
254
255 long hostid;
256
257 #ifdef INSECURE
258 int securelevel = -1;
259 #else
260 int securelevel = 0;
261 #endif
262
263 #ifndef DEFCORENAME
264 #define DEFCORENAME "%n.core"
265 #endif
266 char defcorename[MAXPATHLEN] = DEFCORENAME;
267 int defcorenamelen = sizeof(DEFCORENAME);
268
269 extern int kern_logsigexit;
270 extern fixpt_t ccpu;
271
272 #ifndef MULTIPROCESSOR
273 #define sysctl_ncpus() 1
274 #endif
275
276 #ifdef MULTIPROCESSOR
277
278 #ifndef CPU_INFO_FOREACH
279 #define CPU_INFO_ITERATOR int
280 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
281 #endif
282
283 static int
284 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
285 {
286 u_int64_t cp_time[CPUSTATES];
287 int i;
288 struct cpu_info *ci;
289 CPU_INFO_ITERATOR cii;
290
291 for (i=0; i<CPUSTATES; i++)
292 cp_time[i] = 0;
293
294 for (CPU_INFO_FOREACH(cii, ci)) {
295 for (i=0; i<CPUSTATES; i++)
296 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
297 }
298 return (sysctl_rdstruct(oldp, oldlenp, newp,
299 cp_time, sizeof(cp_time)));
300 }
301
302 static int
303 sysctl_ncpus(void)
304 {
305 struct cpu_info *ci;
306 CPU_INFO_ITERATOR cii;
307
308 int ncpus = 0;
309 for (CPU_INFO_FOREACH(cii, ci))
310 ncpus++;
311 return ncpus;
312 }
313
314 #endif
315
316 /*
317 * kernel related system variables.
318 */
319 int
320 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
321 void *newp, size_t newlen, struct proc *p)
322 {
323 int error, level, inthostid;
324 int old_autonicetime;
325 int old_vnodes;
326 dev_t consdev;
327
328 /* All sysctl names at this level, except for a few, are terminal. */
329 switch (name[0]) {
330 case KERN_PROC:
331 case KERN_PROC2:
332 case KERN_PROF:
333 case KERN_MBUF:
334 case KERN_PROC_ARGS:
335 case KERN_SYSVIPC_INFO:
336 case KERN_PIPE:
337 /* Not terminal. */
338 break;
339 default:
340 if (namelen != 1)
341 return (ENOTDIR); /* overloaded */
342 }
343
344 switch (name[0]) {
345 case KERN_OSTYPE:
346 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
347 case KERN_OSRELEASE:
348 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
349 case KERN_OSREV:
350 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
351 case KERN_VERSION:
352 return (sysctl_rdstring(oldp, oldlenp, newp, version));
353 case KERN_MAXVNODES:
354 old_vnodes = desiredvnodes;
355 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
356 if (old_vnodes > desiredvnodes) {
357 desiredvnodes = old_vnodes;
358 return (EINVAL);
359 }
360 if (error == 0) {
361 vfs_reinit();
362 nchreinit();
363 }
364 return (error);
365 case KERN_MAXPROC:
366 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
367 case KERN_MAXFILES:
368 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
369 case KERN_ARGMAX:
370 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
371 case KERN_SECURELVL:
372 level = securelevel;
373 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
374 newp == NULL)
375 return (error);
376 if (level < securelevel && p->p_pid != 1)
377 return (EPERM);
378 securelevel = level;
379 return (0);
380 case KERN_HOSTNAME:
381 error = sysctl_string(oldp, oldlenp, newp, newlen,
382 hostname, sizeof(hostname));
383 if (newp && !error)
384 hostnamelen = newlen;
385 return (error);
386 case KERN_DOMAINNAME:
387 error = sysctl_string(oldp, oldlenp, newp, newlen,
388 domainname, sizeof(domainname));
389 if (newp && !error)
390 domainnamelen = newlen;
391 return (error);
392 case KERN_HOSTID:
393 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
394 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
395 hostid = inthostid;
396 return (error);
397 case KERN_CLOCKRATE:
398 return (sysctl_clockrate(oldp, oldlenp));
399 case KERN_BOOTTIME:
400 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
401 sizeof(struct timeval)));
402 case KERN_VNODE:
403 return (sysctl_vnode(oldp, oldlenp, p));
404 case KERN_PROC:
405 case KERN_PROC2:
406 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
407 case KERN_PROC_ARGS:
408 return (sysctl_procargs(name + 1, namelen - 1,
409 oldp, oldlenp, p));
410 case KERN_FILE:
411 return (sysctl_file(oldp, oldlenp));
412 #ifdef GPROF
413 case KERN_PROF:
414 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
415 newp, newlen));
416 #endif
417 case KERN_POSIX1:
418 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
419 case KERN_NGROUPS:
420 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
421 case KERN_JOB_CONTROL:
422 return (sysctl_rdint(oldp, oldlenp, newp, 1));
423 case KERN_SAVED_IDS:
424 #ifdef _POSIX_SAVED_IDS
425 return (sysctl_rdint(oldp, oldlenp, newp, 1));
426 #else
427 return (sysctl_rdint(oldp, oldlenp, newp, 0));
428 #endif
429 case KERN_MAXPARTITIONS:
430 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
431 case KERN_RAWPARTITION:
432 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
433 #ifdef NTP
434 case KERN_NTPTIME:
435 return (sysctl_ntptime(oldp, oldlenp));
436 #endif
437 case KERN_AUTONICETIME:
438 old_autonicetime = autonicetime;
439 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
440 if (autonicetime < 0)
441 autonicetime = old_autonicetime;
442 return (error);
443 case KERN_AUTONICEVAL:
444 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
445 if (autoniceval < PRIO_MIN)
446 autoniceval = PRIO_MIN;
447 if (autoniceval > PRIO_MAX)
448 autoniceval = PRIO_MAX;
449 return (error);
450 case KERN_RTC_OFFSET:
451 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
452 case KERN_ROOT_DEVICE:
453 return (sysctl_rdstring(oldp, oldlenp, newp,
454 root_device->dv_xname));
455 case KERN_MSGBUFSIZE:
456 /*
457 * deal with cases where the message buffer has
458 * become corrupted.
459 */
460 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
461 msgbufenabled = 0;
462 return (ENXIO);
463 }
464 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
465 case KERN_FSYNC:
466 return (sysctl_rdint(oldp, oldlenp, newp, 1));
467 case KERN_SYSVMSG:
468 #ifdef SYSVMSG
469 return (sysctl_rdint(oldp, oldlenp, newp, 1));
470 #else
471 return (sysctl_rdint(oldp, oldlenp, newp, 0));
472 #endif
473 case KERN_SYSVSEM:
474 #ifdef SYSVSEM
475 return (sysctl_rdint(oldp, oldlenp, newp, 1));
476 #else
477 return (sysctl_rdint(oldp, oldlenp, newp, 0));
478 #endif
479 case KERN_SYSVSHM:
480 #ifdef SYSVSHM
481 return (sysctl_rdint(oldp, oldlenp, newp, 1));
482 #else
483 return (sysctl_rdint(oldp, oldlenp, newp, 0));
484 #endif
485 case KERN_DEFCORENAME:
486 if (newp && newlen < 1)
487 return (EINVAL);
488 error = sysctl_string(oldp, oldlenp, newp, newlen,
489 defcorename, sizeof(defcorename));
490 if (newp && !error)
491 defcorenamelen = newlen;
492 return (error);
493 case KERN_SYNCHRONIZED_IO:
494 return (sysctl_rdint(oldp, oldlenp, newp, 1));
495 case KERN_IOV_MAX:
496 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
497 case KERN_MBUF:
498 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
499 newp, newlen));
500 case KERN_MAPPED_FILES:
501 return (sysctl_rdint(oldp, oldlenp, newp, 1));
502 case KERN_MEMLOCK:
503 return (sysctl_rdint(oldp, oldlenp, newp, 1));
504 case KERN_MEMLOCK_RANGE:
505 return (sysctl_rdint(oldp, oldlenp, newp, 1));
506 case KERN_MEMORY_PROTECTION:
507 return (sysctl_rdint(oldp, oldlenp, newp, 1));
508 case KERN_LOGIN_NAME_MAX:
509 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
510 case KERN_LOGSIGEXIT:
511 return (sysctl_int(oldp, oldlenp, newp, newlen,
512 &kern_logsigexit));
513 case KERN_FSCALE:
514 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
515 case KERN_CCPU:
516 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
517 case KERN_CP_TIME:
518 #ifndef MULTIPROCESSOR
519 return (sysctl_rdstruct(oldp, oldlenp, newp,
520 curcpu()->ci_schedstate.spc_cp_time,
521 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
522 #else
523 return (sysctl_docptime(oldp, oldlenp, newp));
524 #endif
525 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
526 case KERN_SYSVIPC_INFO:
527 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
528 #endif
529 case KERN_MSGBUF:
530 return (sysctl_msgbuf(oldp, oldlenp));
531 case KERN_CONSDEV:
532 if (cn_tab != NULL)
533 consdev = cn_tab->cn_dev;
534 else
535 consdev = NODEV;
536 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
537 sizeof consdev));
538 #if NPTY > 0
539 case KERN_MAXPTYS:
540 return sysctl_pty(oldp, oldlenp, newp, newlen);
541 #endif
542 #ifdef NEW_PIPE
543 case KERN_PIPE:
544 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
545 newp, newlen));
546 #endif
547 case KERN_MAXPHYS:
548 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
549 case KERN_SBMAX:
550 {
551 int new_sbmax = sb_max;
552
553 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
554 if (error == 0) {
555 if (new_sbmax < (16 * 1024)) /* sanity */
556 return (EINVAL);
557 sb_max = new_sbmax;
558 }
559 return (error);
560 }
561 default:
562 return (EOPNOTSUPP);
563 }
564 /* NOTREACHED */
565 }
566
567 /*
568 * hardware related system variables.
569 */
570 int
571 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
572 void *newp, size_t newlen, struct proc *p)
573 {
574
575 /* all sysctl names at this level are terminal */
576 if (namelen != 1)
577 return (ENOTDIR); /* overloaded */
578
579 switch (name[0]) {
580 case HW_MACHINE:
581 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
582 case HW_MACHINE_ARCH:
583 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
584 case HW_MODEL:
585 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
586 case HW_NCPU:
587 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
588 case HW_BYTEORDER:
589 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
590 case HW_PHYSMEM:
591 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
592 case HW_USERMEM:
593 return (sysctl_rdint(oldp, oldlenp, newp,
594 ctob(physmem - uvmexp.wired)));
595 case HW_PAGESIZE:
596 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
597 case HW_ALIGNBYTES:
598 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
599 case HW_CNMAGIC: {
600 char magic[CNS_LEN];
601 int error;
602
603 if (oldp)
604 cn_get_magic(magic, CNS_LEN);
605 error = sysctl_string(oldp, oldlenp, newp, newlen,
606 magic, sizeof(magic));
607 if (newp && !error) {
608 error = cn_set_magic(magic);
609 }
610 return (error);
611 }
612 default:
613 return (EOPNOTSUPP);
614 }
615 /* NOTREACHED */
616 }
617
618 #ifdef DEBUG
619 /*
620 * Debugging related system variables.
621 */
622 struct ctldebug debug0, debug1, debug2, debug3, debug4;
623 struct ctldebug debug5, debug6, debug7, debug8, debug9;
624 struct ctldebug debug10, debug11, debug12, debug13, debug14;
625 struct ctldebug debug15, debug16, debug17, debug18, debug19;
626 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
627 &debug0, &debug1, &debug2, &debug3, &debug4,
628 &debug5, &debug6, &debug7, &debug8, &debug9,
629 &debug10, &debug11, &debug12, &debug13, &debug14,
630 &debug15, &debug16, &debug17, &debug18, &debug19,
631 };
632
633 int
634 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
635 void *newp, size_t newlen, struct proc *p)
636 {
637 struct ctldebug *cdp;
638
639 /* all sysctl names at this level are name and field */
640 if (namelen != 2)
641 return (ENOTDIR); /* overloaded */
642 cdp = debugvars[name[0]];
643 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
644 return (EOPNOTSUPP);
645 switch (name[1]) {
646 case CTL_DEBUG_NAME:
647 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
648 case CTL_DEBUG_VALUE:
649 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
650 default:
651 return (EOPNOTSUPP);
652 }
653 /* NOTREACHED */
654 }
655 #endif /* DEBUG */
656
657 int
658 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
659 void *newp, size_t newlen, struct proc *p)
660 {
661 struct proc *ptmp = NULL;
662 const struct proclist_desc *pd;
663 int error = 0;
664 struct rlimit alim;
665 struct plimit *newplim;
666 char *tmps = NULL;
667 int i, curlen, len;
668
669 if (namelen < 2)
670 return EINVAL;
671
672 if (name[0] == PROC_CURPROC) {
673 ptmp = p;
674 } else {
675 proclist_lock_read();
676 for (pd = proclists; pd->pd_list != NULL; pd++) {
677 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
678 ptmp = LIST_NEXT(ptmp, p_list)) {
679 /* Skip embryonic processes. */
680 if (ptmp->p_stat == SIDL)
681 continue;
682 if (ptmp->p_pid == (pid_t)name[0])
683 break;
684 }
685 if (ptmp != NULL)
686 break;
687 }
688 proclist_unlock_read();
689 if (ptmp == NULL)
690 return(ESRCH);
691 if (p->p_ucred->cr_uid != 0) {
692 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
693 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
694 return EPERM;
695 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
696 return EPERM; /* sgid proc */
697 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
698 if (p->p_ucred->cr_groups[i] ==
699 ptmp->p_cred->p_rgid)
700 break;
701 }
702 if (i == p->p_ucred->cr_ngroups)
703 return EPERM;
704 }
705 }
706 if (name[1] == PROC_PID_CORENAME) {
707 if (namelen != 2)
708 return EINVAL;
709 /*
710 * Can't use sysctl_string() here because we may malloc a new
711 * area during the process, so we have to do it by hand.
712 */
713 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
714 if (oldlenp && *oldlenp < curlen) {
715 if (!oldp)
716 *oldlenp = curlen;
717 return (ENOMEM);
718 }
719 if (newp) {
720 if (securelevel > 2)
721 return EPERM;
722 if (newlen > MAXPATHLEN)
723 return ENAMETOOLONG;
724 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
725 if (tmps == NULL)
726 return ENOMEM;
727 error = copyin(newp, tmps, newlen + 1);
728 tmps[newlen] = '\0';
729 if (error)
730 goto cleanup;
731 /* Enforce to be either 'core' for end with '.core' */
732 if (newlen < 4) { /* c.o.r.e */
733 error = EINVAL;
734 goto cleanup;
735 }
736 len = newlen - 4;
737 if (len > 0) {
738 if (tmps[len - 1] != '.' &&
739 tmps[len - 1] != '/') {
740 error = EINVAL;
741 goto cleanup;
742 }
743 }
744 if (strcmp(&tmps[len], "core") != 0) {
745 error = EINVAL;
746 goto cleanup;
747 }
748 }
749 if (oldp && oldlenp) {
750 *oldlenp = curlen;
751 error = copyout(ptmp->p_limit->pl_corename, oldp,
752 curlen);
753 }
754 if (newp && error == 0) {
755 /* if the 2 strings are identical, don't limcopy() */
756 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
757 error = 0;
758 goto cleanup;
759 }
760 if (ptmp->p_limit->p_refcnt > 1 &&
761 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
762 newplim = limcopy(ptmp->p_limit);
763 limfree(ptmp->p_limit);
764 ptmp->p_limit = newplim;
765 } else if (ptmp->p_limit->pl_corename != defcorename) {
766 free(ptmp->p_limit->pl_corename, M_TEMP);
767 }
768 ptmp->p_limit->pl_corename = tmps;
769 return (0);
770 }
771 cleanup:
772 if (tmps)
773 free(tmps, M_TEMP);
774 return (error);
775 }
776 if (name[1] == PROC_PID_LIMIT) {
777 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
778 return EINVAL;
779 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
780 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
781 error = sysctl_quad(oldp, oldlenp, newp, newlen,
782 &alim.rlim_max);
783 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
784 error = sysctl_quad(oldp, oldlenp, newp, newlen,
785 &alim.rlim_cur);
786 else
787 error = EINVAL;
788
789 if (error)
790 return error;
791
792 if (newp)
793 error = dosetrlimit(ptmp, p->p_cred,
794 name[2] - 1, &alim);
795 return error;
796 }
797 return (EINVAL);
798 }
799
800 /*
801 * Convenience macros.
802 */
803
804 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
805 if (oldlenp) { \
806 if (!oldp) \
807 *oldlenp = len; \
808 else { \
809 if (*oldlenp < len) \
810 return(ENOMEM); \
811 *oldlenp = len; \
812 error = copyout((caddr_t)valp, oldp, len); \
813 } \
814 }
815
816 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
817 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
818
819 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
820 if (newp && newlen != len) \
821 return (EINVAL);
822
823 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
824 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
825
826 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
827 if (error == 0 && newp) \
828 error = copyin(newp, valp, len);
829
830 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
831 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
832
833 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
834 if (oldlenp) { \
835 len = strlen(str) + 1; \
836 if (!oldp) \
837 *oldlenp = len; \
838 else { \
839 if (*oldlenp < len) { \
840 err2 = ENOMEM; \
841 len = *oldlenp; \
842 } else \
843 *oldlenp = len; \
844 error = copyout(str, oldp, len);\
845 if (error == 0) \
846 error = err2; \
847 } \
848 }
849
850 /*
851 * Validate parameters and get old / set new parameters
852 * for an integer-valued sysctl function.
853 */
854 int
855 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
856 {
857 int error = 0;
858
859 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
860 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
861 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
862
863 return (error);
864 }
865
866
867 /*
868 * As above, but read-only.
869 */
870 int
871 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
872 {
873 int error = 0;
874
875 if (newp)
876 return (EPERM);
877
878 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
879
880 return (error);
881 }
882
883 /*
884 * Validate parameters and get old / set new parameters
885 * for an quad-valued sysctl function.
886 */
887 int
888 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
889 quad_t *valp)
890 {
891 int error = 0;
892
893 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
894 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
895 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
896
897 return (error);
898 }
899
900 /*
901 * As above, but read-only.
902 */
903 int
904 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
905 {
906 int error = 0;
907
908 if (newp)
909 return (EPERM);
910
911 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
912
913 return (error);
914 }
915
916 /*
917 * Validate parameters and get old / set new parameters
918 * for a string-valued sysctl function.
919 */
920 int
921 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
922 int maxlen)
923 {
924 int len, error = 0, err2 = 0;
925
926 if (newp && newlen >= maxlen)
927 return (EINVAL);
928
929 SYSCTL_STRING_CORE(oldp, oldlenp, str);
930
931 if (error == 0 && newp) {
932 error = copyin(newp, str, newlen);
933 str[newlen] = 0;
934 }
935 return (error);
936 }
937
938 /*
939 * As above, but read-only.
940 */
941 int
942 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
943 {
944 int len, error = 0, err2 = 0;
945
946 if (newp)
947 return (EPERM);
948
949 SYSCTL_STRING_CORE(oldp, oldlenp, str);
950
951 return (error);
952 }
953
954 /*
955 * Validate parameters and get old / set new parameters
956 * for a structure oriented sysctl function.
957 */
958 int
959 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
960 int len)
961 {
962 int error = 0;
963
964 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
965 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
966 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
967
968 return (error);
969 }
970
971 /*
972 * Validate parameters and get old parameters
973 * for a structure oriented sysctl function.
974 */
975 int
976 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
977 int len)
978 {
979 int error = 0;
980
981 if (newp)
982 return (EPERM);
983
984 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
985
986 return (error);
987 }
988
989 /*
990 * As above, but can return a truncated result.
991 */
992 int
993 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
994 int len)
995 {
996 int error = 0;
997
998 if (newp)
999 return (EPERM);
1000
1001 len = min(*oldlenp, len);
1002 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1003
1004 return (error);
1005 }
1006
1007 /*
1008 * Get file structures.
1009 */
1010 static int
1011 sysctl_file(void *vwhere, size_t *sizep)
1012 {
1013 int buflen, error;
1014 struct file *fp;
1015 char *start, *where;
1016
1017 start = where = vwhere;
1018 buflen = *sizep;
1019 if (where == NULL) {
1020 /*
1021 * overestimate by 10 files
1022 */
1023 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1024 return (0);
1025 }
1026
1027 /*
1028 * first copyout filehead
1029 */
1030 if (buflen < sizeof(filehead)) {
1031 *sizep = 0;
1032 return (0);
1033 }
1034 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1035 if (error)
1036 return (error);
1037 buflen -= sizeof(filehead);
1038 where += sizeof(filehead);
1039
1040 /*
1041 * followed by an array of file structures
1042 */
1043 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1044 if (buflen < sizeof(struct file)) {
1045 *sizep = where - start;
1046 return (ENOMEM);
1047 }
1048 error = copyout((caddr_t)fp, where, sizeof(struct file));
1049 if (error)
1050 return (error);
1051 buflen -= sizeof(struct file);
1052 where += sizeof(struct file);
1053 }
1054 *sizep = where - start;
1055 return (0);
1056 }
1057
1058 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1059 #define FILL_PERM(src, dst) do { \
1060 (dst)._key = (src)._key; \
1061 (dst).uid = (src).uid; \
1062 (dst).gid = (src).gid; \
1063 (dst).cuid = (src).cuid; \
1064 (dst).cgid = (src).cgid; \
1065 (dst).mode = (src).mode; \
1066 (dst)._seq = (src)._seq; \
1067 } while (0);
1068 #define FILL_MSG(src, dst) do { \
1069 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1070 (dst).msg_qnum = (src).msg_qnum; \
1071 (dst).msg_qbytes = (src).msg_qbytes; \
1072 (dst)._msg_cbytes = (src)._msg_cbytes; \
1073 (dst).msg_lspid = (src).msg_lspid; \
1074 (dst).msg_lrpid = (src).msg_lrpid; \
1075 (dst).msg_stime = (src).msg_stime; \
1076 (dst).msg_rtime = (src).msg_rtime; \
1077 (dst).msg_ctime = (src).msg_ctime; \
1078 } while (0)
1079 #define FILL_SEM(src, dst) do { \
1080 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1081 (dst).sem_nsems = (src).sem_nsems; \
1082 (dst).sem_otime = (src).sem_otime; \
1083 (dst).sem_ctime = (src).sem_ctime; \
1084 } while (0)
1085 #define FILL_SHM(src, dst) do { \
1086 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1087 (dst).shm_segsz = (src).shm_segsz; \
1088 (dst).shm_lpid = (src).shm_lpid; \
1089 (dst).shm_cpid = (src).shm_cpid; \
1090 (dst).shm_atime = (src).shm_atime; \
1091 (dst).shm_dtime = (src).shm_dtime; \
1092 (dst).shm_ctime = (src).shm_ctime; \
1093 (dst).shm_nattch = (src).shm_nattch; \
1094 } while (0)
1095
1096 static int
1097 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1098 {
1099 #ifdef SYSVMSG
1100 struct msg_sysctl_info *msgsi;
1101 #endif
1102 #ifdef SYSVSEM
1103 struct sem_sysctl_info *semsi;
1104 #endif
1105 #ifdef SYSVSHM
1106 struct shm_sysctl_info *shmsi;
1107 #endif
1108 size_t infosize, dssize, tsize, buflen;
1109 void *buf = NULL, *buf2;
1110 char *start;
1111 int32_t nds;
1112 int i, error, ret;
1113
1114 if (namelen != 1)
1115 return (EINVAL);
1116
1117 start = where;
1118 buflen = *sizep;
1119
1120 switch (*name) {
1121 case KERN_SYSVIPC_MSG_INFO:
1122 #ifdef SYSVMSG
1123 infosize = sizeof(msgsi->msginfo);
1124 nds = msginfo.msgmni;
1125 dssize = sizeof(msgsi->msgids[0]);
1126 break;
1127 #else
1128 return (EINVAL);
1129 #endif
1130 case KERN_SYSVIPC_SEM_INFO:
1131 #ifdef SYSVSEM
1132 infosize = sizeof(semsi->seminfo);
1133 nds = seminfo.semmni;
1134 dssize = sizeof(semsi->semids[0]);
1135 break;
1136 #else
1137 return (EINVAL);
1138 #endif
1139 case KERN_SYSVIPC_SHM_INFO:
1140 #ifdef SYSVSHM
1141 infosize = sizeof(shmsi->shminfo);
1142 nds = shminfo.shmmni;
1143 dssize = sizeof(shmsi->shmids[0]);
1144 break;
1145 #else
1146 return (EINVAL);
1147 #endif
1148 default:
1149 return (EINVAL);
1150 }
1151 /*
1152 * Round infosize to 64 bit boundary if requesting more than just
1153 * the info structure or getting the total data size.
1154 */
1155 if (where == NULL || *sizep > infosize)
1156 infosize = ((infosize + 7) / 8) * 8;
1157 tsize = infosize + nds * dssize;
1158
1159 /* Return just the total size required. */
1160 if (where == NULL) {
1161 *sizep = tsize;
1162 return (0);
1163 }
1164
1165 /* Not enough room for even the info struct. */
1166 if (buflen < infosize) {
1167 *sizep = 0;
1168 return (ENOMEM);
1169 }
1170 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1171 memset(buf, 0, min(tsize, buflen));
1172
1173 switch (*name) {
1174 #ifdef SYSVMSG
1175 case KERN_SYSVIPC_MSG_INFO:
1176 msgsi = (struct msg_sysctl_info *)buf;
1177 buf2 = &msgsi->msgids[0];
1178 msgsi->msginfo = msginfo;
1179 break;
1180 #endif
1181 #ifdef SYSVSEM
1182 case KERN_SYSVIPC_SEM_INFO:
1183 semsi = (struct sem_sysctl_info *)buf;
1184 buf2 = &semsi->semids[0];
1185 semsi->seminfo = seminfo;
1186 break;
1187 #endif
1188 #ifdef SYSVSHM
1189 case KERN_SYSVIPC_SHM_INFO:
1190 shmsi = (struct shm_sysctl_info *)buf;
1191 buf2 = &shmsi->shmids[0];
1192 shmsi->shminfo = shminfo;
1193 break;
1194 #endif
1195 }
1196 buflen -= infosize;
1197
1198 ret = 0;
1199 if (buflen > 0) {
1200 /* Fill in the IPC data structures. */
1201 for (i = 0; i < nds; i++) {
1202 if (buflen < dssize) {
1203 ret = ENOMEM;
1204 break;
1205 }
1206 switch (*name) {
1207 #ifdef SYSVMSG
1208 case KERN_SYSVIPC_MSG_INFO:
1209 FILL_MSG(msqids[i], msgsi->msgids[i]);
1210 break;
1211 #endif
1212 #ifdef SYSVSEM
1213 case KERN_SYSVIPC_SEM_INFO:
1214 FILL_SEM(sema[i], semsi->semids[i]);
1215 break;
1216 #endif
1217 #ifdef SYSVSHM
1218 case KERN_SYSVIPC_SHM_INFO:
1219 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1220 break;
1221 #endif
1222 }
1223 buflen -= dssize;
1224 }
1225 }
1226 *sizep -= buflen;
1227 error = copyout(buf, start, *sizep);
1228 /* If copyout succeeded, use return code set earlier. */
1229 if (error == 0)
1230 error = ret;
1231 if (buf)
1232 free(buf, M_TEMP);
1233 return (error);
1234 }
1235 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1236
1237 static int
1238 sysctl_msgbuf(void *vwhere, size_t *sizep)
1239 {
1240 char *where = vwhere;
1241 size_t len, maxlen = *sizep;
1242 long beg, end;
1243 int error;
1244
1245 /*
1246 * deal with cases where the message buffer has
1247 * become corrupted.
1248 */
1249 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1250 msgbufenabled = 0;
1251 return (ENXIO);
1252 }
1253
1254 if (where == NULL) {
1255 /* always return full buffer size */
1256 *sizep = msgbufp->msg_bufs;
1257 return (0);
1258 }
1259
1260 error = 0;
1261 maxlen = min(msgbufp->msg_bufs, maxlen);
1262
1263 /*
1264 * First, copy from the write pointer to the end of
1265 * message buffer.
1266 */
1267 beg = msgbufp->msg_bufx;
1268 end = msgbufp->msg_bufs;
1269 while (maxlen > 0) {
1270 len = min(end - beg, maxlen);
1271 if (len == 0)
1272 break;
1273 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1274 if (error)
1275 break;
1276 where += len;
1277 maxlen -= len;
1278
1279 /*
1280 * ... then, copy from the beginning of message buffer to
1281 * the write pointer.
1282 */
1283 beg = 0;
1284 end = msgbufp->msg_bufx;
1285 }
1286 return (error);
1287 }
1288
1289 /*
1290 * try over estimating by 5 procs
1291 */
1292 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1293
1294 static int
1295 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1296 {
1297 struct eproc eproc;
1298 struct kinfo_proc2 kproc2;
1299 struct kinfo_proc *dp;
1300 struct proc *p;
1301 const struct proclist_desc *pd;
1302 char *where, *dp2;
1303 int type, op, arg, elem_size, elem_count;
1304 int buflen, needed, error;
1305
1306 dp = vwhere;
1307 dp2 = where = vwhere;
1308 buflen = where != NULL ? *sizep : 0;
1309 error = needed = 0;
1310 type = name[0];
1311
1312 if (type == KERN_PROC) {
1313 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1314 return (EINVAL);
1315 op = name[1];
1316 if (op != KERN_PROC_ALL)
1317 arg = name[2];
1318 } else {
1319 if (namelen != 5)
1320 return (EINVAL);
1321 op = name[1];
1322 arg = name[2];
1323 elem_size = name[3];
1324 elem_count = name[4];
1325 }
1326
1327 proclist_lock_read();
1328
1329 pd = proclists;
1330 again:
1331 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1332 /*
1333 * Skip embryonic processes.
1334 */
1335 if (p->p_stat == SIDL)
1336 continue;
1337 /*
1338 * TODO - make more efficient (see notes below).
1339 * do by session.
1340 */
1341 switch (op) {
1342
1343 case KERN_PROC_PID:
1344 /* could do this with just a lookup */
1345 if (p->p_pid != (pid_t)arg)
1346 continue;
1347 break;
1348
1349 case KERN_PROC_PGRP:
1350 /* could do this by traversing pgrp */
1351 if (p->p_pgrp->pg_id != (pid_t)arg)
1352 continue;
1353 break;
1354
1355 case KERN_PROC_SESSION:
1356 if (p->p_session->s_sid != (pid_t)arg)
1357 continue;
1358 break;
1359
1360 case KERN_PROC_TTY:
1361 if (arg == KERN_PROC_TTY_REVOKE) {
1362 if ((p->p_flag & P_CONTROLT) == 0 ||
1363 p->p_session->s_ttyp == NULL ||
1364 p->p_session->s_ttyvp != NULL)
1365 continue;
1366 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1367 p->p_session->s_ttyp == NULL) {
1368 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1369 continue;
1370 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1371 continue;
1372 break;
1373
1374 case KERN_PROC_UID:
1375 if (p->p_ucred->cr_uid != (uid_t)arg)
1376 continue;
1377 break;
1378
1379 case KERN_PROC_RUID:
1380 if (p->p_cred->p_ruid != (uid_t)arg)
1381 continue;
1382 break;
1383
1384 case KERN_PROC_GID:
1385 if (p->p_ucred->cr_gid != (uid_t)arg)
1386 continue;
1387 break;
1388
1389 case KERN_PROC_RGID:
1390 if (p->p_cred->p_rgid != (uid_t)arg)
1391 continue;
1392 break;
1393
1394 case KERN_PROC_ALL:
1395 /* allow everything */
1396 break;
1397
1398 default:
1399 error = EINVAL;
1400 goto cleanup;
1401 }
1402 if (type == KERN_PROC) {
1403 if (buflen >= sizeof(struct kinfo_proc)) {
1404 fill_eproc(p, &eproc);
1405 error = copyout((caddr_t)p, &dp->kp_proc,
1406 sizeof(struct proc));
1407 if (error)
1408 goto cleanup;
1409 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1410 sizeof(eproc));
1411 if (error)
1412 goto cleanup;
1413 dp++;
1414 buflen -= sizeof(struct kinfo_proc);
1415 }
1416 needed += sizeof(struct kinfo_proc);
1417 } else { /* KERN_PROC2 */
1418 if (buflen >= elem_size && elem_count > 0) {
1419 fill_kproc2(p, &kproc2);
1420 /*
1421 * Copy out elem_size, but not larger than
1422 * the size of a struct kinfo_proc2.
1423 */
1424 error = copyout(&kproc2, dp2,
1425 min(sizeof(kproc2), elem_size));
1426 if (error)
1427 goto cleanup;
1428 dp2 += elem_size;
1429 buflen -= elem_size;
1430 elem_count--;
1431 }
1432 needed += elem_size;
1433 }
1434 }
1435 pd++;
1436 if (pd->pd_list != NULL)
1437 goto again;
1438 proclist_unlock_read();
1439
1440 if (where != NULL) {
1441 if (type == KERN_PROC)
1442 *sizep = (caddr_t)dp - where;
1443 else
1444 *sizep = dp2 - where;
1445 if (needed > *sizep)
1446 return (ENOMEM);
1447 } else {
1448 needed += KERN_PROCSLOP;
1449 *sizep = needed;
1450 }
1451 return (0);
1452 cleanup:
1453 proclist_unlock_read();
1454 return (error);
1455 }
1456
1457 /*
1458 * Fill in an eproc structure for the specified process.
1459 */
1460 void
1461 fill_eproc(struct proc *p, struct eproc *ep)
1462 {
1463 struct tty *tp;
1464 struct lwp *l;
1465
1466 ep->e_paddr = p;
1467 ep->e_sess = p->p_session;
1468 ep->e_pcred = *p->p_cred;
1469 ep->e_ucred = *p->p_ucred;
1470 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1471 ep->e_vm.vm_rssize = 0;
1472 ep->e_vm.vm_tsize = 0;
1473 ep->e_vm.vm_dsize = 0;
1474 ep->e_vm.vm_ssize = 0;
1475 /* ep->e_vm.vm_pmap = XXX; */
1476 } else {
1477 struct vmspace *vm = p->p_vmspace;
1478
1479 ep->e_vm.vm_rssize = vm_resident_count(vm);
1480 ep->e_vm.vm_tsize = vm->vm_tsize;
1481 ep->e_vm.vm_dsize = vm->vm_dsize;
1482 ep->e_vm.vm_ssize = vm->vm_ssize;
1483
1484 /* Pick a "representative" LWP */
1485 l = proc_representative_lwp(p);
1486
1487 if (l->l_wmesg)
1488 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
1489 }
1490 if (p->p_pptr)
1491 ep->e_ppid = p->p_pptr->p_pid;
1492 else
1493 ep->e_ppid = 0;
1494 ep->e_pgid = p->p_pgrp->pg_id;
1495 ep->e_sid = ep->e_sess->s_sid;
1496 ep->e_jobc = p->p_pgrp->pg_jobc;
1497 if ((p->p_flag & P_CONTROLT) &&
1498 (tp = ep->e_sess->s_ttyp)) {
1499 ep->e_tdev = tp->t_dev;
1500 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1501 ep->e_tsess = tp->t_session;
1502 } else
1503 ep->e_tdev = NODEV;
1504
1505 ep->e_xsize = ep->e_xrssize = 0;
1506 ep->e_xccount = ep->e_xswrss = 0;
1507 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1508 if (SESS_LEADER(p))
1509 ep->e_flag |= EPROC_SLEADER;
1510 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1511 }
1512
1513 /*
1514 * Fill in an eproc structure for the specified process.
1515 */
1516 static void
1517 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1518 {
1519 struct tty *tp;
1520 struct lwp *l;
1521 memset(ki, 0, sizeof(*ki));
1522
1523 /* XXX NJWLWP
1524 * These are likely not what the caller was looking for.
1525 * The perils of playing with the kernel data structures...
1526 */
1527 ki->p_paddr = PTRTOINT64(p);
1528 ki->p_fd = PTRTOINT64(p->p_fd);
1529 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1530 ki->p_stats = PTRTOINT64(p->p_stats);
1531 ki->p_limit = PTRTOINT64(p->p_limit);
1532 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1533 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1534 ki->p_sess = PTRTOINT64(p->p_session);
1535 ki->p_tsess = 0; /* may be changed if controlling tty below */
1536 ki->p_ru = PTRTOINT64(p->p_ru);
1537
1538 ki->p_eflag = 0;
1539 ki->p_exitsig = p->p_exitsig;
1540 ki->p_flag = p->p_flag;
1541
1542 ki->p_pid = p->p_pid;
1543 if (p->p_pptr)
1544 ki->p_ppid = p->p_pptr->p_pid;
1545 else
1546 ki->p_ppid = 0;
1547 ki->p_sid = p->p_session->s_sid;
1548 ki->p__pgid = p->p_pgrp->pg_id;
1549
1550 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1551
1552 ki->p_uid = p->p_ucred->cr_uid;
1553 ki->p_ruid = p->p_cred->p_ruid;
1554 ki->p_gid = p->p_ucred->cr_gid;
1555 ki->p_rgid = p->p_cred->p_rgid;
1556
1557 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1558 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1559 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1560
1561 ki->p_jobc = p->p_pgrp->pg_jobc;
1562 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1563 ki->p_tdev = tp->t_dev;
1564 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1565 ki->p_tsess = PTRTOINT64(tp->t_session);
1566 } else {
1567 ki->p_tdev = NODEV;
1568 }
1569
1570 ki->p_estcpu = p->p_estcpu;
1571 ki->p_rtime_sec = p->p_rtime.tv_sec;
1572 ki->p_rtime_usec = p->p_rtime.tv_usec;
1573 ki->p_cpticks = p->p_cpticks;
1574 ki->p_pctcpu = p->p_pctcpu;
1575
1576 ki->p_uticks = p->p_uticks;
1577 ki->p_sticks = p->p_sticks;
1578 ki->p_iticks = p->p_iticks;
1579
1580 ki->p_tracep = PTRTOINT64(p->p_tracep);
1581 ki->p_traceflag = p->p_traceflag;
1582
1583
1584 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1585 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1586 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1587 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1588
1589 ki->p_stat = p->p_stat;
1590 ki->p_nice = p->p_nice;
1591
1592 ki->p_xstat = p->p_xstat;
1593 ki->p_acflag = p->p_acflag;
1594
1595 strncpy(ki->p_comm, p->p_comm,
1596 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1597
1598 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1599
1600 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1601 ki->p_vm_rssize = 0;
1602 ki->p_vm_tsize = 0;
1603 ki->p_vm_dsize = 0;
1604 ki->p_vm_ssize = 0;
1605 } else {
1606 struct vmspace *vm = p->p_vmspace;
1607
1608 ki->p_vm_rssize = vm_resident_count(vm);
1609 ki->p_vm_tsize = vm->vm_tsize;
1610 ki->p_vm_dsize = vm->vm_dsize;
1611 ki->p_vm_ssize = vm->vm_ssize;
1612
1613 /* Pick a "representative" LWP */
1614 l = proc_representative_lwp(p);
1615 ki->p_forw = PTRTOINT64(l->l_forw);
1616 ki->p_back = PTRTOINT64(l->l_back);
1617 ki->p_addr = PTRTOINT64(l->l_addr);
1618 ki->p_stat = l->l_stat;
1619 ki->p_flag |= l->l_flag;
1620 ki->p_swtime = l->l_swtime;
1621 ki->p_slptime = l->l_slptime;
1622 if (l->l_stat == LSONPROC) {
1623 KDASSERT(l->l_cpu != NULL);
1624 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
1625 } else
1626 ki->p_schedflags = 0;
1627 ki->p_holdcnt = l->l_holdcnt;
1628 ki->p_priority = l->l_priority;
1629 ki->p_usrpri = l->l_usrpri;
1630 if (l->l_wmesg)
1631 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
1632 ki->p_wchan = PTRTOINT64(l->l_wchan);
1633
1634 }
1635
1636 if (p->p_session->s_ttyvp)
1637 ki->p_eflag |= EPROC_CTTY;
1638 if (SESS_LEADER(p))
1639 ki->p_eflag |= EPROC_SLEADER;
1640
1641 /* XXX Is this double check necessary? */
1642 if (P_ZOMBIE(p)) {
1643 ki->p_uvalid = 0;
1644 } else {
1645 ki->p_uvalid = 1;
1646
1647 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1648 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1649
1650 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1651 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1652 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1653 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1654
1655 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1656 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1657 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1658 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1659 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1660 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1661 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1662 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1663 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1664 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1665 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1666 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1667 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1668 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1669
1670 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1671 p->p_stats->p_cru.ru_stime.tv_sec;
1672 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1673 p->p_stats->p_cru.ru_stime.tv_usec;
1674 }
1675 #ifdef MULTIPROCESSOR
1676 if (p->p_cpu != NULL)
1677 ki->p_cpuid = p->p_cpu->ci_cpuid;
1678 else
1679 #endif
1680 ki->p_cpuid = KI_NOCPU;
1681
1682 }
1683
1684
1685 /*
1686 * Pick a LWP to represent the process for those operations which
1687 * want information about a "process" that is actually associated
1688 * with a LWP.
1689 */
1690 static struct lwp *proc_representative_lwp(p)
1691 struct proc *p;
1692 {
1693 struct lwp *l = NULL;
1694
1695 /* Trivial case: only one LWP */
1696 if (p->p_nrlwps == 1)
1697 return (LIST_FIRST(&p->p_lwps));
1698
1699 switch (p->p_stat) {
1700 case SSTOP:
1701 /* Pick the first stopped LWP */
1702 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1703 if (l->l_stat == LSSTOP)
1704 return (l);
1705 }
1706 /* NOTREACHED */
1707 break;
1708 case SACTIVE:
1709 /* Pick the first live LWP */
1710 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1711 if (l->l_stat == LSRUN ||
1712 l->l_stat == LSSLEEP ||
1713 l->l_stat == LSONPROC ||
1714 l->l_stat == LSSUSPENDED)
1715 return (l);
1716 }
1717 break;
1718 case SDEAD:
1719 case SZOMB:
1720 /* Doesn't really matter... */
1721 l = LIST_FIRST(&p->p_lwps);
1722 break;
1723 #ifdef DIAGNOSTIC
1724 case SIDL:
1725 /* We have more than one LWP and we're in SIDL?
1726 * How'd that happen?
1727 */
1728 panic("Too many LWPs (%d) in SIDL process %d (%s)",
1729 p->p_nrlwps, p->p_pid, p->p_comm);
1730 default:
1731 panic("Process %d (%s) in unknown state %d",
1732 p->p_pid, p->p_comm, p->p_stat);
1733 #endif
1734 }
1735
1736 panic("proc_representative_lwp: couldn't find a lwp for process"
1737 " %d (%s)", p->p_pid, p->p_comm);
1738 /* NOTREACHED */
1739 return NULL;
1740 }
1741
1742
1743 int
1744 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1745 struct proc *up)
1746 {
1747 struct ps_strings pss;
1748 struct proc *p;
1749 size_t len, upper_bound, xlen;
1750 struct uio auio;
1751 struct iovec aiov;
1752 vaddr_t argv;
1753 pid_t pid;
1754 int nargv, type, error, i;
1755 char *arg;
1756 char *tmp;
1757
1758 if (namelen != 2)
1759 return (EINVAL);
1760 pid = name[0];
1761 type = name[1];
1762
1763 switch (type) {
1764 case KERN_PROC_ARGV:
1765 case KERN_PROC_NARGV:
1766 case KERN_PROC_ENV:
1767 case KERN_PROC_NENV:
1768 /* ok */
1769 break;
1770 default:
1771 return (EINVAL);
1772 }
1773
1774 /* check pid */
1775 if ((p = pfind(pid)) == NULL)
1776 return (EINVAL);
1777
1778 /* only root or same user change look at the environment */
1779 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1780 if (up->p_ucred->cr_uid != 0) {
1781 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1782 up->p_cred->p_ruid != p->p_cred->p_svuid)
1783 return (EPERM);
1784 }
1785 }
1786
1787 if (sizep != NULL && where == NULL) {
1788 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1789 *sizep = sizeof (int);
1790 else
1791 *sizep = ARG_MAX; /* XXX XXX XXX */
1792 return (0);
1793 }
1794 if (where == NULL || sizep == NULL)
1795 return (EINVAL);
1796
1797 /*
1798 * Zombies don't have a stack, so we can't read their psstrings.
1799 * System processes also don't have a user stack.
1800 */
1801 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1802 return (EINVAL);
1803
1804 /*
1805 * Lock the process down in memory.
1806 */
1807 /* XXXCDC: how should locking work here? */
1808 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1809 return (EFAULT);
1810
1811 p->p_vmspace->vm_refcnt++; /* XXX */
1812
1813 /*
1814 * Allocate a temporary buffer to hold the arguments.
1815 */
1816 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1817
1818 /*
1819 * Read in the ps_strings structure.
1820 */
1821 aiov.iov_base = &pss;
1822 aiov.iov_len = sizeof(pss);
1823 auio.uio_iov = &aiov;
1824 auio.uio_iovcnt = 1;
1825 auio.uio_offset = (vaddr_t)p->p_psstr;
1826 auio.uio_resid = sizeof(pss);
1827 auio.uio_segflg = UIO_SYSSPACE;
1828 auio.uio_rw = UIO_READ;
1829 auio.uio_procp = NULL;
1830 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1831 if (error)
1832 goto done;
1833
1834 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1835 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1836 else
1837 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1838 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1839 error = copyout(&nargv, where, sizeof(nargv));
1840 *sizep = sizeof(nargv);
1841 goto done;
1842 }
1843 /*
1844 * Now read the address of the argument vector.
1845 */
1846 switch (type) {
1847 case KERN_PROC_ARGV:
1848 /* XXX compat32 stuff here */
1849 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1850 break;
1851 case KERN_PROC_ENV:
1852 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1853 break;
1854 default:
1855 return (EINVAL);
1856 }
1857 auio.uio_offset = (off_t)(long)tmp;
1858 aiov.iov_base = &argv;
1859 aiov.iov_len = sizeof(argv);
1860 auio.uio_iov = &aiov;
1861 auio.uio_iovcnt = 1;
1862 auio.uio_resid = sizeof(argv);
1863 auio.uio_segflg = UIO_SYSSPACE;
1864 auio.uio_rw = UIO_READ;
1865 auio.uio_procp = NULL;
1866 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1867 if (error)
1868 goto done;
1869
1870 /*
1871 * Now copy in the actual argument vector, one page at a time,
1872 * since we don't know how long the vector is (though, we do
1873 * know how many NUL-terminated strings are in the vector).
1874 */
1875 len = 0;
1876 upper_bound = *sizep;
1877 for (; nargv != 0 && len < upper_bound; len += xlen) {
1878 aiov.iov_base = arg;
1879 aiov.iov_len = PAGE_SIZE;
1880 auio.uio_iov = &aiov;
1881 auio.uio_iovcnt = 1;
1882 auio.uio_offset = argv + len;
1883 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1884 auio.uio_resid = xlen;
1885 auio.uio_segflg = UIO_SYSSPACE;
1886 auio.uio_rw = UIO_READ;
1887 auio.uio_procp = NULL;
1888 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1889 if (error)
1890 goto done;
1891
1892 for (i = 0; i < xlen && nargv != 0; i++) {
1893 if (arg[i] == '\0')
1894 nargv--; /* one full string */
1895 }
1896
1897 /* make sure we don't copyout past the end of the user's buffer */
1898 if (len + i > upper_bound)
1899 i = upper_bound - len;
1900
1901 error = copyout(arg, (char *)where + len, i);
1902 if (error)
1903 break;
1904
1905 if (nargv == 0) {
1906 len += i;
1907 break;
1908 }
1909 }
1910 *sizep = len;
1911
1912 done:
1913 uvmspace_free(p->p_vmspace);
1914
1915 free(arg, M_TEMP);
1916 return (error);
1917 }
1918
1919 #if NPTY > 0
1920 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1921
1922 /*
1923 * Validate parameters and get old / set new parameters
1924 * for pty sysctl function.
1925 */
1926 static int
1927 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1928 {
1929 int error = 0;
1930 int oldmax = 0, newmax = 0;
1931
1932 /* get current value of maxptys */
1933 oldmax = pty_maxptys(0, 0);
1934
1935 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1936
1937 if (!error && newp) {
1938 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1939 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1940
1941 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1942 return (EINVAL);
1943
1944 }
1945
1946 return (error);
1947 }
1948 #endif /* NPTY > 0 */
1949