kern_sysctl.c revision 1.88 1 /* $NetBSD: kern_sysctl.c,v 1.88 2001/04/26 06:07:13 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_sysv.h"
49 #include "pty.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/buf.h>
55 #include <sys/device.h>
56 #include <sys/disklabel.h>
57 #include <sys/dkstat.h>
58 #include <sys/exec.h>
59 #include <sys/file.h>
60 #include <sys/ioctl.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/msgbuf.h>
64 #include <sys/pool.h>
65 #include <sys/proc.h>
66 #include <sys/resource.h>
67 #include <sys/resourcevar.h>
68 #include <sys/syscallargs.h>
69 #include <sys/tty.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #define __SYSCTL_PRIVATE
73 #include <sys/sysctl.h>
74 #include <sys/lock.h>
75
76 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
77 #include <sys/ipc.h>
78 #endif
79 #ifdef SYSVMSG
80 #include <sys/msg.h>
81 #endif
82 #ifdef SYSVSEM
83 #include <sys/sem.h>
84 #endif
85 #ifdef SYSVSHM
86 #include <sys/shm.h>
87 #endif
88
89 #include <dev/cons.h>
90
91 #if defined(DDB)
92 #include <ddb/ddbvar.h>
93 #endif
94
95 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
96
97 static int sysctl_file __P((void *, size_t *));
98 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
99 static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
100 #endif
101 static int sysctl_msgbuf __P((void *, size_t *));
102 static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
103 #ifdef MULTIPROCESSOR
104 static int sysctl_docptime __P((void *, size_t *, void *));
105 static int sysctl_ncpus __P((void));
106 #endif
107 static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
108 static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
109 #if NPTY > 0
110 static int sysctl_pty __P((void *, size_t *, void *, size_t));
111 #endif
112
113 /*
114 * The `sysctl_memlock' is intended to keep too many processes from
115 * locking down memory by doing sysctls at once. Whether or not this
116 * is really a good idea to worry about it probably a subject of some
117 * debate.
118 */
119 struct lock sysctl_memlock;
120
121 void
122 sysctl_init(void)
123 {
124
125 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
126 }
127
128 int
129 sys___sysctl(p, v, retval)
130 struct proc *p;
131 void *v;
132 register_t *retval;
133 {
134 struct sys___sysctl_args /* {
135 syscallarg(int *) name;
136 syscallarg(u_int) namelen;
137 syscallarg(void *) old;
138 syscallarg(size_t *) oldlenp;
139 syscallarg(void *) new;
140 syscallarg(size_t) newlen;
141 } */ *uap = v;
142 int error;
143 size_t savelen = 0, oldlen = 0;
144 sysctlfn *fn;
145 int name[CTL_MAXNAME];
146 size_t *oldlenp;
147
148 /*
149 * all top-level sysctl names are non-terminal
150 */
151 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
152 return (EINVAL);
153 error = copyin(SCARG(uap, name), &name,
154 SCARG(uap, namelen) * sizeof(int));
155 if (error)
156 return (error);
157
158 /*
159 * For all but CTL_PROC, must be root to change a value.
160 * For CTL_PROC, must be root, or owner of the proc (and not suid),
161 * this is checked in proc_sysctl() (once we know the targer proc).
162 */
163 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
164 (error = suser(p->p_ucred, &p->p_acflag)))
165 return error;
166
167 switch (name[0]) {
168 case CTL_KERN:
169 fn = kern_sysctl;
170 break;
171 case CTL_HW:
172 fn = hw_sysctl;
173 break;
174 case CTL_VM:
175 fn = uvm_sysctl;
176 break;
177 case CTL_NET:
178 fn = net_sysctl;
179 break;
180 case CTL_VFS:
181 fn = vfs_sysctl;
182 break;
183 case CTL_MACHDEP:
184 fn = cpu_sysctl;
185 break;
186 #ifdef DEBUG
187 case CTL_DEBUG:
188 fn = debug_sysctl;
189 break;
190 #endif
191 #ifdef DDB
192 case CTL_DDB:
193 fn = ddb_sysctl;
194 break;
195 #endif
196 case CTL_PROC:
197 fn = proc_sysctl;
198 break;
199 default:
200 return (EOPNOTSUPP);
201 }
202
203 /*
204 * XXX Hey, we wire `old', but what about `new'?
205 */
206
207 oldlenp = SCARG(uap, oldlenp);
208 if (oldlenp) {
209 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
210 return (error);
211 oldlenp = &oldlen;
212 }
213 if (SCARG(uap, old) != NULL) {
214 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
215 if (error)
216 return (error);
217 error = uvm_vslock(p, SCARG(uap, old), oldlen,
218 VM_PROT_READ|VM_PROT_WRITE);
219 if (error) {
220 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
221 return error;
222 }
223 savelen = oldlen;
224 }
225 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
226 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
227 if (SCARG(uap, old) != NULL) {
228 uvm_vsunlock(p, SCARG(uap, old), savelen);
229 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
230 }
231 if (error)
232 return (error);
233 if (SCARG(uap, oldlenp))
234 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
235 return (error);
236 }
237
238 /*
239 * Attributes stored in the kernel.
240 */
241 char hostname[MAXHOSTNAMELEN];
242 int hostnamelen;
243
244 char domainname[MAXHOSTNAMELEN];
245 int domainnamelen;
246
247 long hostid;
248
249 #ifdef INSECURE
250 int securelevel = -1;
251 #else
252 int securelevel = 0;
253 #endif
254
255 #ifndef DEFCORENAME
256 #define DEFCORENAME "%n.core"
257 #endif
258 char defcorename[MAXPATHLEN] = DEFCORENAME;
259 int defcorenamelen = sizeof(DEFCORENAME);
260
261 extern int kern_logsigexit;
262 extern fixpt_t ccpu;
263
264 #ifndef MULTIPROCESSOR
265 #define sysctl_ncpus() 1
266 #endif
267
268 #ifdef MULTIPROCESSOR
269
270 #ifndef CPU_INFO_FOREACH
271 #define CPU_INFO_ITERATOR int
272 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
273 #endif
274
275 static int
276 sysctl_docptime(oldp, oldlenp, newp)
277 void *oldp;
278 size_t *oldlenp;
279 void *newp;
280 {
281 u_int64_t cp_time[CPUSTATES];
282 int i;
283 struct cpu_info *ci;
284 CPU_INFO_ITERATOR cii;
285
286 for (i=0; i<CPUSTATES; i++)
287 cp_time[i] = 0;
288
289 for (CPU_INFO_FOREACH(cii, ci)) {
290 for (i=0; i<CPUSTATES; i++)
291 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
292 }
293 return (sysctl_rdstruct(oldp, oldlenp, newp,
294 cp_time, sizeof(cp_time)));
295 }
296
297 static int
298 sysctl_ncpus(void)
299 {
300 struct cpu_info *ci;
301 CPU_INFO_ITERATOR cii;
302
303 int ncpus = 0;
304 for (CPU_INFO_FOREACH(cii, ci))
305 ncpus++;
306 return ncpus;
307 }
308
309 #endif
310
311 /*
312 * kernel related system variables.
313 */
314 int
315 kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
316 int *name;
317 u_int namelen;
318 void *oldp;
319 size_t *oldlenp;
320 void *newp;
321 size_t newlen;
322 struct proc *p;
323 {
324 int error, level, inthostid;
325 int old_autonicetime;
326 int old_vnodes;
327 dev_t consdev;
328
329 /* All sysctl names at this level, except for a few, are terminal. */
330 switch (name[0]) {
331 case KERN_PROC:
332 case KERN_PROC2:
333 case KERN_PROF:
334 case KERN_MBUF:
335 case KERN_PROC_ARGS:
336 case KERN_SYSVIPC_INFO:
337 /* Not terminal. */
338 break;
339 default:
340 if (namelen != 1)
341 return (ENOTDIR); /* overloaded */
342 }
343
344 switch (name[0]) {
345 case KERN_OSTYPE:
346 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
347 case KERN_OSRELEASE:
348 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
349 case KERN_OSREV:
350 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
351 case KERN_VERSION:
352 return (sysctl_rdstring(oldp, oldlenp, newp, version));
353 case KERN_MAXVNODES:
354 old_vnodes = desiredvnodes;
355 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
356 if (old_vnodes > desiredvnodes) {
357 desiredvnodes = old_vnodes;
358 return (EINVAL);
359 }
360 return (error);
361 case KERN_MAXPROC:
362 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
363 case KERN_MAXFILES:
364 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
365 case KERN_ARGMAX:
366 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
367 case KERN_SECURELVL:
368 level = securelevel;
369 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
370 newp == NULL)
371 return (error);
372 if (level < securelevel && p->p_pid != 1)
373 return (EPERM);
374 securelevel = level;
375 return (0);
376 case KERN_HOSTNAME:
377 error = sysctl_string(oldp, oldlenp, newp, newlen,
378 hostname, sizeof(hostname));
379 if (newp && !error)
380 hostnamelen = newlen;
381 return (error);
382 case KERN_DOMAINNAME:
383 error = sysctl_string(oldp, oldlenp, newp, newlen,
384 domainname, sizeof(domainname));
385 if (newp && !error)
386 domainnamelen = newlen;
387 return (error);
388 case KERN_HOSTID:
389 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
390 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
391 hostid = inthostid;
392 return (error);
393 case KERN_CLOCKRATE:
394 return (sysctl_clockrate(oldp, oldlenp));
395 case KERN_BOOTTIME:
396 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
397 sizeof(struct timeval)));
398 case KERN_VNODE:
399 return (sysctl_vnode(oldp, oldlenp, p));
400 case KERN_PROC:
401 case KERN_PROC2:
402 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
403 case KERN_PROC_ARGS:
404 return (sysctl_procargs(name + 1, namelen - 1,
405 oldp, oldlenp, p));
406 case KERN_FILE:
407 return (sysctl_file(oldp, oldlenp));
408 #ifdef GPROF
409 case KERN_PROF:
410 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
411 newp, newlen));
412 #endif
413 case KERN_POSIX1:
414 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
415 case KERN_NGROUPS:
416 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
417 case KERN_JOB_CONTROL:
418 return (sysctl_rdint(oldp, oldlenp, newp, 1));
419 case KERN_SAVED_IDS:
420 #ifdef _POSIX_SAVED_IDS
421 return (sysctl_rdint(oldp, oldlenp, newp, 1));
422 #else
423 return (sysctl_rdint(oldp, oldlenp, newp, 0));
424 #endif
425 case KERN_MAXPARTITIONS:
426 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
427 case KERN_RAWPARTITION:
428 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
429 #ifdef NTP
430 case KERN_NTPTIME:
431 return (sysctl_ntptime(oldp, oldlenp));
432 #endif
433 case KERN_AUTONICETIME:
434 old_autonicetime = autonicetime;
435 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
436 if (autonicetime < 0)
437 autonicetime = old_autonicetime;
438 return (error);
439 case KERN_AUTONICEVAL:
440 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
441 if (autoniceval < PRIO_MIN)
442 autoniceval = PRIO_MIN;
443 if (autoniceval > PRIO_MAX)
444 autoniceval = PRIO_MAX;
445 return (error);
446 case KERN_RTC_OFFSET:
447 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
448 case KERN_ROOT_DEVICE:
449 return (sysctl_rdstring(oldp, oldlenp, newp,
450 root_device->dv_xname));
451 case KERN_MSGBUFSIZE:
452 /*
453 * deal with cases where the message buffer has
454 * become corrupted.
455 */
456 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
457 msgbufenabled = 0;
458 return (ENXIO);
459 }
460 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
461 case KERN_FSYNC:
462 return (sysctl_rdint(oldp, oldlenp, newp, 1));
463 case KERN_SYSVMSG:
464 #ifdef SYSVMSG
465 return (sysctl_rdint(oldp, oldlenp, newp, 1));
466 #else
467 return (sysctl_rdint(oldp, oldlenp, newp, 0));
468 #endif
469 case KERN_SYSVSEM:
470 #ifdef SYSVSEM
471 return (sysctl_rdint(oldp, oldlenp, newp, 1));
472 #else
473 return (sysctl_rdint(oldp, oldlenp, newp, 0));
474 #endif
475 case KERN_SYSVSHM:
476 #ifdef SYSVSHM
477 return (sysctl_rdint(oldp, oldlenp, newp, 1));
478 #else
479 return (sysctl_rdint(oldp, oldlenp, newp, 0));
480 #endif
481 case KERN_DEFCORENAME:
482 if (newp && newlen < 1)
483 return (EINVAL);
484 error = sysctl_string(oldp, oldlenp, newp, newlen,
485 defcorename, sizeof(defcorename));
486 if (newp && !error)
487 defcorenamelen = newlen;
488 return (error);
489 case KERN_SYNCHRONIZED_IO:
490 return (sysctl_rdint(oldp, oldlenp, newp, 1));
491 case KERN_IOV_MAX:
492 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
493 case KERN_MBUF:
494 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
495 newp, newlen));
496 case KERN_MAPPED_FILES:
497 return (sysctl_rdint(oldp, oldlenp, newp, 1));
498 case KERN_MEMLOCK:
499 return (sysctl_rdint(oldp, oldlenp, newp, 1));
500 case KERN_MEMLOCK_RANGE:
501 return (sysctl_rdint(oldp, oldlenp, newp, 1));
502 case KERN_MEMORY_PROTECTION:
503 return (sysctl_rdint(oldp, oldlenp, newp, 1));
504 case KERN_LOGIN_NAME_MAX:
505 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
506 case KERN_LOGSIGEXIT:
507 return (sysctl_int(oldp, oldlenp, newp, newlen,
508 &kern_logsigexit));
509 case KERN_FSCALE:
510 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
511 case KERN_CCPU:
512 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
513 case KERN_CP_TIME:
514 #ifndef MULTIPROCESSOR
515 return (sysctl_rdstruct(oldp, oldlenp, newp,
516 curcpu()->ci_schedstate.spc_cp_time,
517 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
518 #else
519 return (sysctl_docptime(oldp, oldlenp, newp));
520 #endif
521 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
522 case KERN_SYSVIPC_INFO:
523 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
524 #endif
525 case KERN_MSGBUF:
526 return (sysctl_msgbuf(oldp, oldlenp));
527 case KERN_CONSDEV:
528 if (cn_tab != NULL)
529 consdev = cn_tab->cn_dev;
530 else
531 consdev = NODEV;
532 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
533 sizeof consdev));
534 #if NPTY > 0
535 case KERN_MAXPTYS:
536 return sysctl_pty(oldp, oldlenp, newp, newlen);
537 #endif
538 default:
539 return (EOPNOTSUPP);
540 }
541 /* NOTREACHED */
542 }
543
544 /*
545 * hardware related system variables.
546 */
547 int
548 hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
549 int *name;
550 u_int namelen;
551 void *oldp;
552 size_t *oldlenp;
553 void *newp;
554 size_t newlen;
555 struct proc *p;
556 {
557
558 /* all sysctl names at this level are terminal */
559 if (namelen != 1)
560 return (ENOTDIR); /* overloaded */
561
562 switch (name[0]) {
563 case HW_MACHINE:
564 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
565 case HW_MACHINE_ARCH:
566 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
567 case HW_MODEL:
568 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
569 case HW_NCPU:
570 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
571 case HW_BYTEORDER:
572 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
573 case HW_PHYSMEM:
574 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
575 case HW_USERMEM:
576 return (sysctl_rdint(oldp, oldlenp, newp,
577 ctob(physmem - uvmexp.wired)));
578 case HW_PAGESIZE:
579 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
580 case HW_ALIGNBYTES:
581 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
582 case HW_CNMAGIC: {
583 char magic[CNS_LEN];
584 int error;
585
586 if (oldp)
587 cn_get_magic(magic, CNS_LEN);
588 error = sysctl_string(oldp, oldlenp, newp, newlen,
589 magic, sizeof(magic));
590 if (newp && !error) {
591 error = cn_set_magic(magic);
592 }
593 return (error);
594 }
595 default:
596 return (EOPNOTSUPP);
597 }
598 /* NOTREACHED */
599 }
600
601 #ifdef DEBUG
602 /*
603 * Debugging related system variables.
604 */
605 struct ctldebug debug0, debug1, debug2, debug3, debug4;
606 struct ctldebug debug5, debug6, debug7, debug8, debug9;
607 struct ctldebug debug10, debug11, debug12, debug13, debug14;
608 struct ctldebug debug15, debug16, debug17, debug18, debug19;
609 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
610 &debug0, &debug1, &debug2, &debug3, &debug4,
611 &debug5, &debug6, &debug7, &debug8, &debug9,
612 &debug10, &debug11, &debug12, &debug13, &debug14,
613 &debug15, &debug16, &debug17, &debug18, &debug19,
614 };
615 int
616 debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
617 int *name;
618 u_int namelen;
619 void *oldp;
620 size_t *oldlenp;
621 void *newp;
622 size_t newlen;
623 struct proc *p;
624 {
625 struct ctldebug *cdp;
626
627 /* all sysctl names at this level are name and field */
628 if (namelen != 2)
629 return (ENOTDIR); /* overloaded */
630 cdp = debugvars[name[0]];
631 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
632 return (EOPNOTSUPP);
633 switch (name[1]) {
634 case CTL_DEBUG_NAME:
635 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
636 case CTL_DEBUG_VALUE:
637 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
638 default:
639 return (EOPNOTSUPP);
640 }
641 /* NOTREACHED */
642 }
643 #endif /* DEBUG */
644
645 int
646 proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
647 int *name;
648 u_int namelen;
649 void *oldp;
650 size_t *oldlenp;
651 void *newp;
652 size_t newlen;
653 struct proc *p;
654 {
655 struct proc *ptmp = NULL;
656 const struct proclist_desc *pd;
657 int error = 0;
658 struct rlimit alim;
659 struct plimit *newplim;
660 char *tmps = NULL;
661 int i, curlen, len;
662
663 if (namelen < 2)
664 return EINVAL;
665
666 if (name[0] == PROC_CURPROC) {
667 ptmp = p;
668 } else {
669 proclist_lock_read();
670 for (pd = proclists; pd->pd_list != NULL; pd++) {
671 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
672 ptmp = LIST_NEXT(ptmp, p_list)) {
673 /* Skip embryonic processes. */
674 if (ptmp->p_stat == SIDL)
675 continue;
676 if (ptmp->p_pid == (pid_t)name[0])
677 break;
678 }
679 if (ptmp != NULL)
680 break;
681 }
682 proclist_unlock_read();
683 if (ptmp == NULL)
684 return(ESRCH);
685 if (p->p_ucred->cr_uid != 0) {
686 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
687 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
688 return EPERM;
689 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
690 return EPERM; /* sgid proc */
691 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
692 if (p->p_ucred->cr_groups[i] ==
693 ptmp->p_cred->p_rgid)
694 break;
695 }
696 if (i == p->p_ucred->cr_ngroups)
697 return EPERM;
698 }
699 }
700 if (name[1] == PROC_PID_CORENAME) {
701 if (namelen != 2)
702 return EINVAL;
703 /*
704 * Can't use sysctl_string() here because we may malloc a new
705 * area during the process, so we have to do it by hand.
706 */
707 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
708 if (oldlenp && *oldlenp < curlen) {
709 if (!oldp)
710 *oldlenp = curlen;
711 return (ENOMEM);
712 }
713 if (newp) {
714 if (securelevel > 2)
715 return EPERM;
716 if (newlen > MAXPATHLEN)
717 return ENAMETOOLONG;
718 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
719 if (tmps == NULL)
720 return ENOMEM;
721 error = copyin(newp, tmps, newlen + 1);
722 tmps[newlen] = '\0';
723 if (error)
724 goto cleanup;
725 /* Enforce to be either 'core' for end with '.core' */
726 if (newlen < 4) { /* c.o.r.e */
727 error = EINVAL;
728 goto cleanup;
729 }
730 len = newlen - 4;
731 if (len > 0) {
732 if (tmps[len - 1] != '.' &&
733 tmps[len - 1] != '/') {
734 error = EINVAL;
735 goto cleanup;
736 }
737 }
738 if (strcmp(&tmps[len], "core") != 0) {
739 error = EINVAL;
740 goto cleanup;
741 }
742 }
743 if (oldp && oldlenp) {
744 *oldlenp = curlen;
745 error = copyout(ptmp->p_limit->pl_corename, oldp,
746 curlen);
747 }
748 if (newp && error == 0) {
749 /* if the 2 strings are identical, don't limcopy() */
750 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
751 error = 0;
752 goto cleanup;
753 }
754 if (ptmp->p_limit->p_refcnt > 1 &&
755 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
756 newplim = limcopy(ptmp->p_limit);
757 limfree(ptmp->p_limit);
758 ptmp->p_limit = newplim;
759 } else if (ptmp->p_limit->pl_corename != defcorename) {
760 free(ptmp->p_limit->pl_corename, M_TEMP);
761 }
762 ptmp->p_limit->pl_corename = tmps;
763 return (0);
764 }
765 cleanup:
766 if (tmps)
767 free(tmps, M_TEMP);
768 return (error);
769 }
770 if (name[1] == PROC_PID_LIMIT) {
771 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
772 return EINVAL;
773 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
774 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
775 error = sysctl_quad(oldp, oldlenp, newp, newlen,
776 &alim.rlim_max);
777 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
778 error = sysctl_quad(oldp, oldlenp, newp, newlen,
779 &alim.rlim_cur);
780 else
781 error = EINVAL;
782
783 if (error)
784 return error;
785
786 if (newp)
787 error = dosetrlimit(ptmp, p->p_cred,
788 name[2] - 1, &alim);
789 return error;
790 }
791 return (EINVAL);
792 }
793
794 /*
795 * Convenience macros.
796 */
797
798 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
799 if (oldlenp) { \
800 if (!oldp) \
801 *oldlenp = len; \
802 else { \
803 if (*oldlenp < len) \
804 return(ENOMEM); \
805 *oldlenp = len; \
806 error = copyout((caddr_t)valp, oldp, len); \
807 } \
808 }
809
810 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
811 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
812
813 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
814 if (newp && newlen != len) \
815 return (EINVAL);
816
817 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
818 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
819
820 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
821 if (error == 0 && newp) \
822 error = copyin(newp, valp, len);
823
824 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
825 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
826
827 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
828 if (oldlenp) { \
829 len = strlen(str) + 1; \
830 if (!oldp) \
831 *oldlenp = len; \
832 else { \
833 if (*oldlenp < len) { \
834 err2 = ENOMEM; \
835 len = *oldlenp; \
836 } else \
837 *oldlenp = len; \
838 error = copyout(str, oldp, len);\
839 if (error == 0) \
840 error = err2; \
841 } \
842 }
843
844 /*
845 * Validate parameters and get old / set new parameters
846 * for an integer-valued sysctl function.
847 */
848 int
849 sysctl_int(oldp, oldlenp, newp, newlen, valp)
850 void *oldp;
851 size_t *oldlenp;
852 void *newp;
853 size_t newlen;
854 int *valp;
855 {
856 int error = 0;
857
858 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
859 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
860 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
861
862 return (error);
863 }
864
865
866 /*
867 * As above, but read-only.
868 */
869 int
870 sysctl_rdint(oldp, oldlenp, newp, val)
871 void *oldp;
872 size_t *oldlenp;
873 void *newp;
874 int val;
875 {
876 int error = 0;
877
878 if (newp)
879 return (EPERM);
880
881 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
882
883 return (error);
884 }
885
886 /*
887 * Validate parameters and get old / set new parameters
888 * for an quad-valued sysctl function.
889 */
890 int
891 sysctl_quad(oldp, oldlenp, newp, newlen, valp)
892 void *oldp;
893 size_t *oldlenp;
894 void *newp;
895 size_t newlen;
896 quad_t *valp;
897 {
898 int error = 0;
899
900 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
901 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
902 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
903
904 return (error);
905 }
906
907 /*
908 * As above, but read-only.
909 */
910 int
911 sysctl_rdquad(oldp, oldlenp, newp, val)
912 void *oldp;
913 size_t *oldlenp;
914 void *newp;
915 quad_t val;
916 {
917 int error = 0;
918
919 if (newp)
920 return (EPERM);
921
922 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
923
924 return (error);
925 }
926
927 /*
928 * Validate parameters and get old / set new parameters
929 * for a string-valued sysctl function.
930 */
931 int
932 sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
933 void *oldp;
934 size_t *oldlenp;
935 void *newp;
936 size_t newlen;
937 char *str;
938 int maxlen;
939 {
940 int len, error = 0, err2 = 0;
941
942 if (newp && newlen >= maxlen)
943 return (EINVAL);
944
945 SYSCTL_STRING_CORE(oldp, oldlenp, str);
946
947 if (error == 0 && newp) {
948 error = copyin(newp, str, newlen);
949 str[newlen] = 0;
950 }
951 return (error);
952 }
953
954 /*
955 * As above, but read-only.
956 */
957 int
958 sysctl_rdstring(oldp, oldlenp, newp, str)
959 void *oldp;
960 size_t *oldlenp;
961 void *newp;
962 const char *str;
963 {
964 int len, error = 0, err2 = 0;
965
966 if (newp)
967 return (EPERM);
968
969 SYSCTL_STRING_CORE(oldp, oldlenp, str);
970
971 return (error);
972 }
973
974 /*
975 * Validate parameters and get old / set new parameters
976 * for a structure oriented sysctl function.
977 */
978 int
979 sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
980 void *oldp;
981 size_t *oldlenp;
982 void *newp;
983 size_t newlen;
984 void *sp;
985 int len;
986 {
987 int error = 0;
988
989 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
990 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
991 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
992
993 return (error);
994 }
995
996 /*
997 * Validate parameters and get old parameters
998 * for a structure oriented sysctl function.
999 */
1000 int
1001 sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
1002 void *oldp;
1003 size_t *oldlenp;
1004 void *newp;
1005 const void *sp;
1006 int len;
1007 {
1008 int error = 0;
1009
1010 if (newp)
1011 return (EPERM);
1012
1013 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1014
1015 return (error);
1016 }
1017
1018 /*
1019 * As above, but can return a truncated result.
1020 */
1021 int
1022 sysctl_rdminstruct(oldp, oldlenp, newp, sp, len)
1023 void *oldp;
1024 size_t *oldlenp;
1025 void *newp;
1026 const void *sp;
1027 int len;
1028 {
1029 int error = 0;
1030
1031 if (newp)
1032 return (EPERM);
1033
1034 len = min(*oldlenp, len);
1035 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1036
1037 return (error);
1038 }
1039
1040 /*
1041 * Get file structures.
1042 */
1043 static int
1044 sysctl_file(vwhere, sizep)
1045 void *vwhere;
1046 size_t *sizep;
1047 {
1048 int buflen, error;
1049 struct file *fp;
1050 char *start, *where;
1051
1052 start = where = vwhere;
1053 buflen = *sizep;
1054 if (where == NULL) {
1055 /*
1056 * overestimate by 10 files
1057 */
1058 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1059 return (0);
1060 }
1061
1062 /*
1063 * first copyout filehead
1064 */
1065 if (buflen < sizeof(filehead)) {
1066 *sizep = 0;
1067 return (0);
1068 }
1069 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1070 if (error)
1071 return (error);
1072 buflen -= sizeof(filehead);
1073 where += sizeof(filehead);
1074
1075 /*
1076 * followed by an array of file structures
1077 */
1078 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1079 if (buflen < sizeof(struct file)) {
1080 *sizep = where - start;
1081 return (ENOMEM);
1082 }
1083 error = copyout((caddr_t)fp, where, sizeof(struct file));
1084 if (error)
1085 return (error);
1086 buflen -= sizeof(struct file);
1087 where += sizeof(struct file);
1088 }
1089 *sizep = where - start;
1090 return (0);
1091 }
1092
1093 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1094 #define FILL_PERM(src, dst) do { \
1095 (dst)._key = (src)._key; \
1096 (dst).uid = (src).uid; \
1097 (dst).gid = (src).gid; \
1098 (dst).cuid = (src).cuid; \
1099 (dst).cgid = (src).cgid; \
1100 (dst).mode = (src).mode; \
1101 (dst)._seq = (src)._seq; \
1102 } while (0);
1103 #define FILL_MSG(src, dst) do { \
1104 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1105 (dst).msg_qnum = (src).msg_qnum; \
1106 (dst).msg_qbytes = (src).msg_qbytes; \
1107 (dst)._msg_cbytes = (src)._msg_cbytes; \
1108 (dst).msg_lspid = (src).msg_lspid; \
1109 (dst).msg_lrpid = (src).msg_lrpid; \
1110 (dst).msg_stime = (src).msg_stime; \
1111 (dst).msg_rtime = (src).msg_rtime; \
1112 (dst).msg_ctime = (src).msg_ctime; \
1113 } while (0)
1114 #define FILL_SEM(src, dst) do { \
1115 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1116 (dst).sem_nsems = (src).sem_nsems; \
1117 (dst).sem_otime = (src).sem_otime; \
1118 (dst).sem_ctime = (src).sem_ctime; \
1119 } while (0)
1120 #define FILL_SHM(src, dst) do { \
1121 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1122 (dst).shm_segsz = (src).shm_segsz; \
1123 (dst).shm_lpid = (src).shm_lpid; \
1124 (dst).shm_cpid = (src).shm_cpid; \
1125 (dst).shm_atime = (src).shm_atime; \
1126 (dst).shm_dtime = (src).shm_dtime; \
1127 (dst).shm_ctime = (src).shm_ctime; \
1128 (dst).shm_nattch = (src).shm_nattch; \
1129 } while (0)
1130
1131 static int
1132 sysctl_sysvipc(name, namelen, where, sizep)
1133 int *name;
1134 u_int namelen;
1135 void *where;
1136 size_t *sizep;
1137 {
1138 #ifdef SYSVMSG
1139 struct msg_sysctl_info *msgsi;
1140 #endif
1141 #ifdef SYSVSEM
1142 struct sem_sysctl_info *semsi;
1143 #endif
1144 #ifdef SYSVSHM
1145 struct shm_sysctl_info *shmsi;
1146 #endif
1147 size_t infosize, dssize, tsize, buflen;
1148 void *buf = NULL, *buf2;
1149 char *start;
1150 int32_t nds;
1151 int i, error, ret;
1152
1153 if (namelen != 1)
1154 return (EINVAL);
1155
1156 start = where;
1157 buflen = *sizep;
1158
1159 switch (*name) {
1160 case KERN_SYSVIPC_MSG_INFO:
1161 #ifdef SYSVMSG
1162 infosize = sizeof(msgsi->msginfo);
1163 nds = msginfo.msgmni;
1164 dssize = sizeof(msgsi->msgids[0]);
1165 break;
1166 #else
1167 return (EINVAL);
1168 #endif
1169 case KERN_SYSVIPC_SEM_INFO:
1170 #ifdef SYSVSEM
1171 infosize = sizeof(semsi->seminfo);
1172 nds = seminfo.semmni;
1173 dssize = sizeof(semsi->semids[0]);
1174 break;
1175 #else
1176 return (EINVAL);
1177 #endif
1178 case KERN_SYSVIPC_SHM_INFO:
1179 #ifdef SYSVSHM
1180 infosize = sizeof(shmsi->shminfo);
1181 nds = shminfo.shmmni;
1182 dssize = sizeof(shmsi->shmids[0]);
1183 break;
1184 #else
1185 return (EINVAL);
1186 #endif
1187 default:
1188 return (EINVAL);
1189 }
1190 /*
1191 * Round infosize to 64 bit boundary if requesting more than just
1192 * the info structure or getting the total data size.
1193 */
1194 if (where == NULL || *sizep > infosize)
1195 infosize = ((infosize + 7) / 8) * 8;
1196 tsize = infosize + nds * dssize;
1197
1198 /* Return just the total size required. */
1199 if (where == NULL) {
1200 *sizep = tsize;
1201 return (0);
1202 }
1203
1204 /* Not enough room for even the info struct. */
1205 if (buflen < infosize) {
1206 *sizep = 0;
1207 return (ENOMEM);
1208 }
1209 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1210 memset(buf, 0, min(tsize, buflen));
1211
1212 switch (*name) {
1213 #ifdef SYSVMSG
1214 case KERN_SYSVIPC_MSG_INFO:
1215 msgsi = (struct msg_sysctl_info *)buf;
1216 buf2 = &msgsi->msgids[0];
1217 msgsi->msginfo = msginfo;
1218 break;
1219 #endif
1220 #ifdef SYSVSEM
1221 case KERN_SYSVIPC_SEM_INFO:
1222 semsi = (struct sem_sysctl_info *)buf;
1223 buf2 = &semsi->semids[0];
1224 semsi->seminfo = seminfo;
1225 break;
1226 #endif
1227 #ifdef SYSVSHM
1228 case KERN_SYSVIPC_SHM_INFO:
1229 shmsi = (struct shm_sysctl_info *)buf;
1230 buf2 = &shmsi->shmids[0];
1231 shmsi->shminfo = shminfo;
1232 break;
1233 #endif
1234 }
1235 buflen -= infosize;
1236
1237 ret = 0;
1238 if (buflen > 0) {
1239 /* Fill in the IPC data structures. */
1240 for (i = 0; i < nds; i++) {
1241 if (buflen < dssize) {
1242 ret = ENOMEM;
1243 break;
1244 }
1245 switch (*name) {
1246 #ifdef SYSVMSG
1247 case KERN_SYSVIPC_MSG_INFO:
1248 FILL_MSG(msqids[i], msgsi->msgids[i]);
1249 break;
1250 #endif
1251 #ifdef SYSVSEM
1252 case KERN_SYSVIPC_SEM_INFO:
1253 FILL_SEM(sema[i], semsi->semids[i]);
1254 break;
1255 #endif
1256 #ifdef SYSVSHM
1257 case KERN_SYSVIPC_SHM_INFO:
1258 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1259 break;
1260 #endif
1261 }
1262 buflen -= dssize;
1263 }
1264 }
1265 *sizep -= buflen;
1266 error = copyout(buf, start, *sizep);
1267 /* If copyout succeeded, use return code set earlier. */
1268 if (error == 0)
1269 error = ret;
1270 if (buf)
1271 free(buf, M_TEMP);
1272 return (error);
1273 }
1274 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1275
1276 static int
1277 sysctl_msgbuf(vwhere, sizep)
1278 void *vwhere;
1279 size_t *sizep;
1280 {
1281 char *where = vwhere;
1282 size_t len, maxlen = *sizep;
1283 long beg, end;
1284 int error;
1285
1286 /*
1287 * deal with cases where the message buffer has
1288 * become corrupted.
1289 */
1290 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1291 msgbufenabled = 0;
1292 return (ENXIO);
1293 }
1294
1295 if (where == NULL) {
1296 /* always return full buffer size */
1297 *sizep = msgbufp->msg_bufs;
1298 return (0);
1299 }
1300
1301 error = 0;
1302 maxlen = min(msgbufp->msg_bufs, maxlen);
1303
1304 /*
1305 * First, copy from the write pointer to the end of
1306 * message buffer.
1307 */
1308 beg = msgbufp->msg_bufx;
1309 end = msgbufp->msg_bufs;
1310 while (maxlen > 0) {
1311 len = min(end - beg, maxlen);
1312 if (len == 0)
1313 break;
1314 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1315 if (error)
1316 break;
1317 where += len;
1318 maxlen -= len;
1319
1320 /*
1321 * ... then, copy from the beginning of message buffer to
1322 * the write pointer.
1323 */
1324 beg = 0;
1325 end = msgbufp->msg_bufx;
1326 }
1327 return (error);
1328 }
1329
1330 /*
1331 * try over estimating by 5 procs
1332 */
1333 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1334
1335 static int
1336 sysctl_doeproc(name, namelen, vwhere, sizep)
1337 int *name;
1338 u_int namelen;
1339 void *vwhere;
1340 size_t *sizep;
1341 {
1342 struct eproc eproc;
1343 struct kinfo_proc2 kproc2;
1344 struct kinfo_proc *dp;
1345 struct proc *p;
1346 const struct proclist_desc *pd;
1347 char *where, *dp2;
1348 int type, op, arg, elem_size, elem_count;
1349 int buflen, needed, error;
1350
1351 dp = vwhere;
1352 dp2 = where = vwhere;
1353 buflen = where != NULL ? *sizep : 0;
1354 error = needed = 0;
1355 type = name[0];
1356
1357 if (type == KERN_PROC) {
1358 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1359 return (EINVAL);
1360 op = name[1];
1361 if (op != KERN_PROC_ALL)
1362 arg = name[2];
1363 } else {
1364 if (namelen != 5)
1365 return (EINVAL);
1366 op = name[1];
1367 arg = name[2];
1368 elem_size = name[3];
1369 elem_count = name[4];
1370 }
1371
1372 proclist_lock_read();
1373
1374 pd = proclists;
1375 again:
1376 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1377 /*
1378 * Skip embryonic processes.
1379 */
1380 if (p->p_stat == SIDL)
1381 continue;
1382 /*
1383 * TODO - make more efficient (see notes below).
1384 * do by session.
1385 */
1386 switch (op) {
1387
1388 case KERN_PROC_PID:
1389 /* could do this with just a lookup */
1390 if (p->p_pid != (pid_t)arg)
1391 continue;
1392 break;
1393
1394 case KERN_PROC_PGRP:
1395 /* could do this by traversing pgrp */
1396 if (p->p_pgrp->pg_id != (pid_t)arg)
1397 continue;
1398 break;
1399
1400 case KERN_PROC_SESSION:
1401 if (p->p_session->s_sid != (pid_t)arg)
1402 continue;
1403 break;
1404
1405 case KERN_PROC_TTY:
1406 if (arg == KERN_PROC_TTY_REVOKE) {
1407 if ((p->p_flag & P_CONTROLT) == 0 ||
1408 p->p_session->s_ttyp == NULL ||
1409 p->p_session->s_ttyvp != NULL)
1410 continue;
1411 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1412 p->p_session->s_ttyp == NULL) {
1413 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1414 continue;
1415 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1416 continue;
1417 break;
1418
1419 case KERN_PROC_UID:
1420 if (p->p_ucred->cr_uid != (uid_t)arg)
1421 continue;
1422 break;
1423
1424 case KERN_PROC_RUID:
1425 if (p->p_cred->p_ruid != (uid_t)arg)
1426 continue;
1427 break;
1428
1429 case KERN_PROC_GID:
1430 if (p->p_ucred->cr_gid != (uid_t)arg)
1431 continue;
1432 break;
1433
1434 case KERN_PROC_RGID:
1435 if (p->p_cred->p_rgid != (uid_t)arg)
1436 continue;
1437 break;
1438
1439 case KERN_PROC_ALL:
1440 /* allow everything */
1441 break;
1442
1443 default:
1444 error = EINVAL;
1445 goto cleanup;
1446 }
1447 if (type == KERN_PROC) {
1448 if (buflen >= sizeof(struct kinfo_proc)) {
1449 fill_eproc(p, &eproc);
1450 error = copyout((caddr_t)p, &dp->kp_proc,
1451 sizeof(struct proc));
1452 if (error)
1453 goto cleanup;
1454 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1455 sizeof(eproc));
1456 if (error)
1457 goto cleanup;
1458 dp++;
1459 buflen -= sizeof(struct kinfo_proc);
1460 }
1461 needed += sizeof(struct kinfo_proc);
1462 } else { /* KERN_PROC2 */
1463 if (buflen >= elem_size && elem_count > 0) {
1464 fill_kproc2(p, &kproc2);
1465 /*
1466 * Copy out elem_size, but not larger than
1467 * the size of a struct kinfo_proc2.
1468 */
1469 error = copyout(&kproc2, dp2,
1470 min(sizeof(kproc2), elem_size));
1471 if (error)
1472 goto cleanup;
1473 dp2 += elem_size;
1474 buflen -= elem_size;
1475 elem_count--;
1476 }
1477 needed += elem_size;
1478 }
1479 }
1480 pd++;
1481 if (pd->pd_list != NULL)
1482 goto again;
1483 proclist_unlock_read();
1484
1485 if (where != NULL) {
1486 if (type == KERN_PROC)
1487 *sizep = (caddr_t)dp - where;
1488 else
1489 *sizep = dp2 - where;
1490 if (needed > *sizep)
1491 return (ENOMEM);
1492 } else {
1493 needed += KERN_PROCSLOP;
1494 *sizep = needed;
1495 }
1496 return (0);
1497 cleanup:
1498 proclist_unlock_read();
1499 return (error);
1500 }
1501
1502 /*
1503 * Fill in an eproc structure for the specified process.
1504 */
1505 void
1506 fill_eproc(p, ep)
1507 struct proc *p;
1508 struct eproc *ep;
1509 {
1510 struct tty *tp;
1511
1512 ep->e_paddr = p;
1513 ep->e_sess = p->p_session;
1514 ep->e_pcred = *p->p_cred;
1515 ep->e_ucred = *p->p_ucred;
1516 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1517 ep->e_vm.vm_rssize = 0;
1518 ep->e_vm.vm_tsize = 0;
1519 ep->e_vm.vm_dsize = 0;
1520 ep->e_vm.vm_ssize = 0;
1521 /* ep->e_vm.vm_pmap = XXX; */
1522 } else {
1523 struct vmspace *vm = p->p_vmspace;
1524
1525 ep->e_vm.vm_rssize = vm_resident_count(vm);
1526 ep->e_vm.vm_tsize = vm->vm_tsize;
1527 ep->e_vm.vm_dsize = vm->vm_dsize;
1528 ep->e_vm.vm_ssize = vm->vm_ssize;
1529 }
1530 if (p->p_pptr)
1531 ep->e_ppid = p->p_pptr->p_pid;
1532 else
1533 ep->e_ppid = 0;
1534 ep->e_pgid = p->p_pgrp->pg_id;
1535 ep->e_sid = ep->e_sess->s_sid;
1536 ep->e_jobc = p->p_pgrp->pg_jobc;
1537 if ((p->p_flag & P_CONTROLT) &&
1538 (tp = ep->e_sess->s_ttyp)) {
1539 ep->e_tdev = tp->t_dev;
1540 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1541 ep->e_tsess = tp->t_session;
1542 } else
1543 ep->e_tdev = NODEV;
1544 if (p->p_wmesg)
1545 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1546 ep->e_xsize = ep->e_xrssize = 0;
1547 ep->e_xccount = ep->e_xswrss = 0;
1548 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1549 if (SESS_LEADER(p))
1550 ep->e_flag |= EPROC_SLEADER;
1551 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1552 }
1553
1554 /*
1555 * Fill in an eproc structure for the specified process.
1556 */
1557 static void
1558 fill_kproc2(p, ki)
1559 struct proc *p;
1560 struct kinfo_proc2 *ki;
1561 {
1562 struct tty *tp;
1563
1564 memset(ki, 0, sizeof(*ki));
1565
1566 ki->p_forw = PTRTOINT64(p->p_forw);
1567 ki->p_back = PTRTOINT64(p->p_back);
1568 ki->p_paddr = PTRTOINT64(p);
1569
1570 ki->p_addr = PTRTOINT64(p->p_addr);
1571 ki->p_fd = PTRTOINT64(p->p_fd);
1572 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1573 ki->p_stats = PTRTOINT64(p->p_stats);
1574 ki->p_limit = PTRTOINT64(p->p_limit);
1575 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1576 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1577 ki->p_sess = PTRTOINT64(p->p_session);
1578 ki->p_tsess = 0; /* may be changed if controlling tty below */
1579 ki->p_ru = PTRTOINT64(p->p_ru);
1580
1581 ki->p_eflag = 0;
1582 ki->p_exitsig = p->p_exitsig;
1583 ki->p_flag = p->p_flag;
1584
1585 ki->p_pid = p->p_pid;
1586 if (p->p_pptr)
1587 ki->p_ppid = p->p_pptr->p_pid;
1588 else
1589 ki->p_ppid = 0;
1590 ki->p_sid = p->p_session->s_sid;
1591 ki->p__pgid = p->p_pgrp->pg_id;
1592
1593 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1594
1595 ki->p_uid = p->p_ucred->cr_uid;
1596 ki->p_ruid = p->p_cred->p_ruid;
1597 ki->p_gid = p->p_ucred->cr_gid;
1598 ki->p_rgid = p->p_cred->p_rgid;
1599
1600 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1601 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1602 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1603
1604 ki->p_jobc = p->p_pgrp->pg_jobc;
1605 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1606 ki->p_tdev = tp->t_dev;
1607 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1608 ki->p_tsess = PTRTOINT64(tp->t_session);
1609 } else {
1610 ki->p_tdev = NODEV;
1611 }
1612
1613 ki->p_estcpu = p->p_estcpu;
1614 ki->p_rtime_sec = p->p_rtime.tv_sec;
1615 ki->p_rtime_usec = p->p_rtime.tv_usec;
1616 ki->p_cpticks = p->p_cpticks;
1617 ki->p_pctcpu = p->p_pctcpu;
1618 ki->p_swtime = p->p_swtime;
1619 ki->p_slptime = p->p_slptime;
1620 if (p->p_stat == SONPROC) {
1621 KDASSERT(p->p_cpu != NULL);
1622 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1623 } else
1624 ki->p_schedflags = 0;
1625
1626 ki->p_uticks = p->p_uticks;
1627 ki->p_sticks = p->p_sticks;
1628 ki->p_iticks = p->p_iticks;
1629
1630 ki->p_tracep = PTRTOINT64(p->p_tracep);
1631 ki->p_traceflag = p->p_traceflag;
1632
1633 ki->p_holdcnt = p->p_holdcnt;
1634
1635 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1636 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1637 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1638 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1639
1640 ki->p_stat = p->p_stat;
1641 ki->p_priority = p->p_priority;
1642 ki->p_usrpri = p->p_usrpri;
1643 ki->p_nice = p->p_nice;
1644
1645 ki->p_xstat = p->p_xstat;
1646 ki->p_acflag = p->p_acflag;
1647
1648 strncpy(ki->p_comm, p->p_comm,
1649 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1650
1651 if (p->p_wmesg)
1652 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1653 ki->p_wchan = PTRTOINT64(p->p_wchan);
1654
1655 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1656
1657 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1658 ki->p_vm_rssize = 0;
1659 ki->p_vm_tsize = 0;
1660 ki->p_vm_dsize = 0;
1661 ki->p_vm_ssize = 0;
1662 } else {
1663 struct vmspace *vm = p->p_vmspace;
1664
1665 ki->p_vm_rssize = vm_resident_count(vm);
1666 ki->p_vm_tsize = vm->vm_tsize;
1667 ki->p_vm_dsize = vm->vm_dsize;
1668 ki->p_vm_ssize = vm->vm_ssize;
1669 }
1670
1671 if (p->p_session->s_ttyvp)
1672 ki->p_eflag |= EPROC_CTTY;
1673 if (SESS_LEADER(p))
1674 ki->p_eflag |= EPROC_SLEADER;
1675
1676 /* XXX Is this double check necessary? */
1677 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1678 ki->p_uvalid = 0;
1679 } else {
1680 ki->p_uvalid = 1;
1681
1682 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1683 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1684
1685 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1686 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1687 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1688 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1689
1690 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1691 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1692 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1693 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1694 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1695 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1696 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1697 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1698 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1699 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1700 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1701 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1702 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1703 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1704
1705 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1706 p->p_stats->p_cru.ru_stime.tv_sec;
1707 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1708 p->p_stats->p_cru.ru_stime.tv_usec;
1709 }
1710 #ifdef MULTIPROCESSOR
1711 if (p->p_cpu != NULL)
1712 ki->p_cpuid = p->p_cpu->ci_cpuid;
1713 else
1714 #endif
1715 ki->p_cpuid = KI_NOCPU;
1716 }
1717
1718 int
1719 sysctl_procargs(name, namelen, where, sizep, up)
1720 int *name;
1721 u_int namelen;
1722 void *where;
1723 size_t *sizep;
1724 struct proc *up;
1725 {
1726 struct ps_strings pss;
1727 struct proc *p;
1728 size_t len, upper_bound, xlen;
1729 struct uio auio;
1730 struct iovec aiov;
1731 vaddr_t argv;
1732 pid_t pid;
1733 int nargv, type, error, i;
1734 char *arg;
1735 char *tmp;
1736
1737 if (namelen != 2)
1738 return (EINVAL);
1739 pid = name[0];
1740 type = name[1];
1741
1742 switch (type) {
1743 case KERN_PROC_ARGV:
1744 case KERN_PROC_NARGV:
1745 case KERN_PROC_ENV:
1746 case KERN_PROC_NENV:
1747 /* ok */
1748 break;
1749 default:
1750 return (EINVAL);
1751 }
1752
1753 /* check pid */
1754 if ((p = pfind(pid)) == NULL)
1755 return (EINVAL);
1756
1757 /* only root or same user change look at the environment */
1758 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1759 if (up->p_ucred->cr_uid != 0) {
1760 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1761 up->p_cred->p_ruid != p->p_cred->p_svuid)
1762 return (EPERM);
1763 }
1764 }
1765
1766 if (sizep != NULL && where == NULL) {
1767 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1768 *sizep = sizeof (int);
1769 else
1770 *sizep = ARG_MAX; /* XXX XXX XXX */
1771 return (0);
1772 }
1773 if (where == NULL || sizep == NULL)
1774 return (EINVAL);
1775
1776 /*
1777 * Zombies don't have a stack, so we can't read their psstrings.
1778 * System processes also don't have a user stack.
1779 */
1780 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1781 return (EINVAL);
1782
1783 /*
1784 * Lock the process down in memory.
1785 */
1786 /* XXXCDC: how should locking work here? */
1787 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1788 return (EFAULT);
1789 p->p_vmspace->vm_refcnt++; /* XXX */
1790
1791 /*
1792 * Allocate a temporary buffer to hold the arguments.
1793 */
1794 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1795
1796 /*
1797 * Read in the ps_strings structure.
1798 */
1799 aiov.iov_base = &pss;
1800 aiov.iov_len = sizeof(pss);
1801 auio.uio_iov = &aiov;
1802 auio.uio_iovcnt = 1;
1803 auio.uio_offset = (vaddr_t)p->p_psstr;
1804 auio.uio_resid = sizeof(pss);
1805 auio.uio_segflg = UIO_SYSSPACE;
1806 auio.uio_rw = UIO_READ;
1807 auio.uio_procp = NULL;
1808 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1809 if (error)
1810 goto done;
1811
1812 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1813 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1814 else
1815 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1816 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1817 error = copyout(&nargv, where, sizeof(nargv));
1818 *sizep = sizeof(nargv);
1819 goto done;
1820 }
1821 /*
1822 * Now read the address of the argument vector.
1823 */
1824 switch (type) {
1825 case KERN_PROC_ARGV:
1826 /* XXX compat32 stuff here */
1827 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1828 break;
1829 case KERN_PROC_ENV:
1830 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1831 break;
1832 default:
1833 return (EINVAL);
1834 }
1835 auio.uio_offset = (off_t)(long)tmp;
1836 aiov.iov_base = &argv;
1837 aiov.iov_len = sizeof(argv);
1838 auio.uio_iov = &aiov;
1839 auio.uio_iovcnt = 1;
1840 auio.uio_resid = sizeof(argv);
1841 auio.uio_segflg = UIO_SYSSPACE;
1842 auio.uio_rw = UIO_READ;
1843 auio.uio_procp = NULL;
1844 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1845 if (error)
1846 goto done;
1847
1848 /*
1849 * Now copy in the actual argument vector, one page at a time,
1850 * since we don't know how long the vector is (though, we do
1851 * know how many NUL-terminated strings are in the vector).
1852 */
1853 len = 0;
1854 upper_bound = *sizep;
1855 for (; nargv != 0 && len < upper_bound; len += xlen) {
1856 aiov.iov_base = arg;
1857 aiov.iov_len = PAGE_SIZE;
1858 auio.uio_iov = &aiov;
1859 auio.uio_iovcnt = 1;
1860 auio.uio_offset = argv + len;
1861 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1862 auio.uio_resid = xlen;
1863 auio.uio_segflg = UIO_SYSSPACE;
1864 auio.uio_rw = UIO_READ;
1865 auio.uio_procp = NULL;
1866 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1867 if (error)
1868 goto done;
1869
1870 for (i = 0; i < xlen && nargv != 0; i++) {
1871 if (arg[i] == '\0')
1872 nargv--; /* one full string */
1873 }
1874
1875 /* make sure we don't copyout past the end of the user's buffer */
1876 if (len + i > upper_bound)
1877 i = upper_bound - len;
1878
1879 error = copyout(arg, (char *)where + len, i);
1880 if (error)
1881 break;
1882
1883 if (nargv == 0) {
1884 len += i;
1885 break;
1886 }
1887 }
1888 *sizep = len;
1889
1890 done:
1891 uvmspace_free(p->p_vmspace);
1892
1893 free(arg, M_TEMP);
1894 return (error);
1895 }
1896
1897 #if NPTY > 0
1898 int pty_maxptys __P((int, int)); /* defined in kern/tty_pty.c */
1899
1900 /*
1901 * Validate parameters and get old / set new parameters
1902 * for pty sysctl function.
1903 */
1904 static int
1905 sysctl_pty(oldp, oldlenp, newp, newlen)
1906 void *oldp;
1907 size_t *oldlenp;
1908 void *newp;
1909 size_t newlen;
1910 {
1911 int error = 0;
1912 int oldmax = 0, newmax = 0;
1913
1914 /* get current value of maxptys */
1915 oldmax = pty_maxptys(0, 0);
1916
1917 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1918
1919 if (!error && newp) {
1920 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1921 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1922
1923 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1924 return (EINVAL);
1925
1926 }
1927
1928 return (error);
1929 }
1930 #endif /* NPTY > 0 */
1931