kern_sysctl.c revision 1.93 1 /* $NetBSD: kern_sysctl.c,v 1.93 2001/07/27 21:19:09 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include "opt_ddb.h"
46 #include "opt_insecure.h"
47 #include "opt_defcorename.h"
48 #include "opt_new_pipe.h"
49 #include "opt_sysv.h"
50 #include "pty.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/buf.h>
56 #include <sys/device.h>
57 #include <sys/disklabel.h>
58 #include <sys/dkstat.h>
59 #include <sys/exec.h>
60 #include <sys/file.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/msgbuf.h>
65 #include <sys/pool.h>
66 #include <sys/proc.h>
67 #include <sys/resource.h>
68 #include <sys/resourcevar.h>
69 #include <sys/syscallargs.h>
70 #include <sys/tty.h>
71 #include <sys/unistd.h>
72 #include <sys/vnode.h>
73 #include <sys/socketvar.h>
74 #define __SYSCTL_PRIVATE
75 #include <sys/sysctl.h>
76 #include <sys/lock.h>
77
78 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
79 #include <sys/ipc.h>
80 #endif
81 #ifdef SYSVMSG
82 #include <sys/msg.h>
83 #endif
84 #ifdef SYSVSEM
85 #include <sys/sem.h>
86 #endif
87 #ifdef SYSVSHM
88 #include <sys/shm.h>
89 #endif
90
91 #include <dev/cons.h>
92
93 #if defined(DDB)
94 #include <ddb/ddbvar.h>
95 #endif
96
97 #ifdef NEW_PIPE
98 #include <sys/pipe.h>
99 #endif
100
101 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
102
103 static int sysctl_file(void *, size_t *);
104 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
105 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
106 #endif
107 static int sysctl_msgbuf(void *, size_t *);
108 static int sysctl_doeproc(int *, u_int, void *, size_t *);
109 #ifdef MULTIPROCESSOR
110 static int sysctl_docptime(void *, size_t *, void *);
111 static int sysctl_ncpus(void);
112 #endif
113 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
114 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
115 #if NPTY > 0
116 static int sysctl_pty(void *, size_t *, void *, size_t);
117 #endif
118
119 /*
120 * The `sysctl_memlock' is intended to keep too many processes from
121 * locking down memory by doing sysctls at once. Whether or not this
122 * is really a good idea to worry about it probably a subject of some
123 * debate.
124 */
125 struct lock sysctl_memlock;
126
127 void
128 sysctl_init(void)
129 {
130
131 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
132 }
133
134 int
135 sys___sysctl(struct proc *p, void *v, register_t *retval)
136 {
137 struct sys___sysctl_args /* {
138 syscallarg(int *) name;
139 syscallarg(u_int) namelen;
140 syscallarg(void *) old;
141 syscallarg(size_t *) oldlenp;
142 syscallarg(void *) new;
143 syscallarg(size_t) newlen;
144 } */ *uap = v;
145 int error;
146 size_t savelen = 0, oldlen = 0;
147 sysctlfn *fn;
148 int name[CTL_MAXNAME];
149 size_t *oldlenp;
150
151 /*
152 * all top-level sysctl names are non-terminal
153 */
154 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
155 return (EINVAL);
156 error = copyin(SCARG(uap, name), &name,
157 SCARG(uap, namelen) * sizeof(int));
158 if (error)
159 return (error);
160
161 /*
162 * For all but CTL_PROC, must be root to change a value.
163 * For CTL_PROC, must be root, or owner of the proc (and not suid),
164 * this is checked in proc_sysctl() (once we know the targer proc).
165 */
166 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
167 (error = suser(p->p_ucred, &p->p_acflag)))
168 return error;
169
170 switch (name[0]) {
171 case CTL_KERN:
172 fn = kern_sysctl;
173 break;
174 case CTL_HW:
175 fn = hw_sysctl;
176 break;
177 case CTL_VM:
178 fn = uvm_sysctl;
179 break;
180 case CTL_NET:
181 fn = net_sysctl;
182 break;
183 case CTL_VFS:
184 fn = vfs_sysctl;
185 break;
186 case CTL_MACHDEP:
187 fn = cpu_sysctl;
188 break;
189 #ifdef DEBUG
190 case CTL_DEBUG:
191 fn = debug_sysctl;
192 break;
193 #endif
194 #ifdef DDB
195 case CTL_DDB:
196 fn = ddb_sysctl;
197 break;
198 #endif
199 case CTL_PROC:
200 fn = proc_sysctl;
201 break;
202 default:
203 return (EOPNOTSUPP);
204 }
205
206 /*
207 * XXX Hey, we wire `old', but what about `new'?
208 */
209
210 oldlenp = SCARG(uap, oldlenp);
211 if (oldlenp) {
212 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
213 return (error);
214 oldlenp = &oldlen;
215 }
216 if (SCARG(uap, old) != NULL) {
217 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
218 if (error)
219 return (error);
220 error = uvm_vslock(p, SCARG(uap, old), oldlen,
221 VM_PROT_READ|VM_PROT_WRITE);
222 if (error) {
223 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
224 return error;
225 }
226 savelen = oldlen;
227 }
228 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
229 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
230 if (SCARG(uap, old) != NULL) {
231 uvm_vsunlock(p, SCARG(uap, old), savelen);
232 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
233 }
234 if (error)
235 return (error);
236 if (SCARG(uap, oldlenp))
237 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
238 return (error);
239 }
240
241 /*
242 * Attributes stored in the kernel.
243 */
244 char hostname[MAXHOSTNAMELEN];
245 int hostnamelen;
246
247 char domainname[MAXHOSTNAMELEN];
248 int domainnamelen;
249
250 long hostid;
251
252 #ifdef INSECURE
253 int securelevel = -1;
254 #else
255 int securelevel = 0;
256 #endif
257
258 #ifndef DEFCORENAME
259 #define DEFCORENAME "%n.core"
260 #endif
261 char defcorename[MAXPATHLEN] = DEFCORENAME;
262 int defcorenamelen = sizeof(DEFCORENAME);
263
264 extern int kern_logsigexit;
265 extern fixpt_t ccpu;
266
267 #ifndef MULTIPROCESSOR
268 #define sysctl_ncpus() 1
269 #endif
270
271 #ifdef MULTIPROCESSOR
272
273 #ifndef CPU_INFO_FOREACH
274 #define CPU_INFO_ITERATOR int
275 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
276 #endif
277
278 static int
279 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
280 {
281 u_int64_t cp_time[CPUSTATES];
282 int i;
283 struct cpu_info *ci;
284 CPU_INFO_ITERATOR cii;
285
286 for (i=0; i<CPUSTATES; i++)
287 cp_time[i] = 0;
288
289 for (CPU_INFO_FOREACH(cii, ci)) {
290 for (i=0; i<CPUSTATES; i++)
291 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
292 }
293 return (sysctl_rdstruct(oldp, oldlenp, newp,
294 cp_time, sizeof(cp_time)));
295 }
296
297 static int
298 sysctl_ncpus(void)
299 {
300 struct cpu_info *ci;
301 CPU_INFO_ITERATOR cii;
302
303 int ncpus = 0;
304 for (CPU_INFO_FOREACH(cii, ci))
305 ncpus++;
306 return ncpus;
307 }
308
309 #endif
310
311 /*
312 * kernel related system variables.
313 */
314 int
315 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
316 void *newp, size_t newlen, struct proc *p)
317 {
318 int error, level, inthostid;
319 int old_autonicetime;
320 int old_vnodes;
321 dev_t consdev;
322
323 /* All sysctl names at this level, except for a few, are terminal. */
324 switch (name[0]) {
325 case KERN_PROC:
326 case KERN_PROC2:
327 case KERN_PROF:
328 case KERN_MBUF:
329 case KERN_PROC_ARGS:
330 case KERN_SYSVIPC_INFO:
331 case KERN_PIPE:
332 /* Not terminal. */
333 break;
334 default:
335 if (namelen != 1)
336 return (ENOTDIR); /* overloaded */
337 }
338
339 switch (name[0]) {
340 case KERN_OSTYPE:
341 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
342 case KERN_OSRELEASE:
343 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
344 case KERN_OSREV:
345 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
346 case KERN_VERSION:
347 return (sysctl_rdstring(oldp, oldlenp, newp, version));
348 case KERN_MAXVNODES:
349 old_vnodes = desiredvnodes;
350 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
351 if (old_vnodes > desiredvnodes) {
352 desiredvnodes = old_vnodes;
353 return (EINVAL);
354 }
355 return (error);
356 case KERN_MAXPROC:
357 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
358 case KERN_MAXFILES:
359 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
360 case KERN_ARGMAX:
361 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
362 case KERN_SECURELVL:
363 level = securelevel;
364 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
365 newp == NULL)
366 return (error);
367 if (level < securelevel && p->p_pid != 1)
368 return (EPERM);
369 securelevel = level;
370 return (0);
371 case KERN_HOSTNAME:
372 error = sysctl_string(oldp, oldlenp, newp, newlen,
373 hostname, sizeof(hostname));
374 if (newp && !error)
375 hostnamelen = newlen;
376 return (error);
377 case KERN_DOMAINNAME:
378 error = sysctl_string(oldp, oldlenp, newp, newlen,
379 domainname, sizeof(domainname));
380 if (newp && !error)
381 domainnamelen = newlen;
382 return (error);
383 case KERN_HOSTID:
384 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
385 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
386 hostid = inthostid;
387 return (error);
388 case KERN_CLOCKRATE:
389 return (sysctl_clockrate(oldp, oldlenp));
390 case KERN_BOOTTIME:
391 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
392 sizeof(struct timeval)));
393 case KERN_VNODE:
394 return (sysctl_vnode(oldp, oldlenp, p));
395 case KERN_PROC:
396 case KERN_PROC2:
397 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
398 case KERN_PROC_ARGS:
399 return (sysctl_procargs(name + 1, namelen - 1,
400 oldp, oldlenp, p));
401 case KERN_FILE:
402 return (sysctl_file(oldp, oldlenp));
403 #ifdef GPROF
404 case KERN_PROF:
405 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
406 newp, newlen));
407 #endif
408 case KERN_POSIX1:
409 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
410 case KERN_NGROUPS:
411 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
412 case KERN_JOB_CONTROL:
413 return (sysctl_rdint(oldp, oldlenp, newp, 1));
414 case KERN_SAVED_IDS:
415 #ifdef _POSIX_SAVED_IDS
416 return (sysctl_rdint(oldp, oldlenp, newp, 1));
417 #else
418 return (sysctl_rdint(oldp, oldlenp, newp, 0));
419 #endif
420 case KERN_MAXPARTITIONS:
421 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
422 case KERN_RAWPARTITION:
423 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
424 #ifdef NTP
425 case KERN_NTPTIME:
426 return (sysctl_ntptime(oldp, oldlenp));
427 #endif
428 case KERN_AUTONICETIME:
429 old_autonicetime = autonicetime;
430 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
431 if (autonicetime < 0)
432 autonicetime = old_autonicetime;
433 return (error);
434 case KERN_AUTONICEVAL:
435 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
436 if (autoniceval < PRIO_MIN)
437 autoniceval = PRIO_MIN;
438 if (autoniceval > PRIO_MAX)
439 autoniceval = PRIO_MAX;
440 return (error);
441 case KERN_RTC_OFFSET:
442 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
443 case KERN_ROOT_DEVICE:
444 return (sysctl_rdstring(oldp, oldlenp, newp,
445 root_device->dv_xname));
446 case KERN_MSGBUFSIZE:
447 /*
448 * deal with cases where the message buffer has
449 * become corrupted.
450 */
451 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
452 msgbufenabled = 0;
453 return (ENXIO);
454 }
455 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
456 case KERN_FSYNC:
457 return (sysctl_rdint(oldp, oldlenp, newp, 1));
458 case KERN_SYSVMSG:
459 #ifdef SYSVMSG
460 return (sysctl_rdint(oldp, oldlenp, newp, 1));
461 #else
462 return (sysctl_rdint(oldp, oldlenp, newp, 0));
463 #endif
464 case KERN_SYSVSEM:
465 #ifdef SYSVSEM
466 return (sysctl_rdint(oldp, oldlenp, newp, 1));
467 #else
468 return (sysctl_rdint(oldp, oldlenp, newp, 0));
469 #endif
470 case KERN_SYSVSHM:
471 #ifdef SYSVSHM
472 return (sysctl_rdint(oldp, oldlenp, newp, 1));
473 #else
474 return (sysctl_rdint(oldp, oldlenp, newp, 0));
475 #endif
476 case KERN_DEFCORENAME:
477 if (newp && newlen < 1)
478 return (EINVAL);
479 error = sysctl_string(oldp, oldlenp, newp, newlen,
480 defcorename, sizeof(defcorename));
481 if (newp && !error)
482 defcorenamelen = newlen;
483 return (error);
484 case KERN_SYNCHRONIZED_IO:
485 return (sysctl_rdint(oldp, oldlenp, newp, 1));
486 case KERN_IOV_MAX:
487 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
488 case KERN_MBUF:
489 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
490 newp, newlen));
491 case KERN_MAPPED_FILES:
492 return (sysctl_rdint(oldp, oldlenp, newp, 1));
493 case KERN_MEMLOCK:
494 return (sysctl_rdint(oldp, oldlenp, newp, 1));
495 case KERN_MEMLOCK_RANGE:
496 return (sysctl_rdint(oldp, oldlenp, newp, 1));
497 case KERN_MEMORY_PROTECTION:
498 return (sysctl_rdint(oldp, oldlenp, newp, 1));
499 case KERN_LOGIN_NAME_MAX:
500 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
501 case KERN_LOGSIGEXIT:
502 return (sysctl_int(oldp, oldlenp, newp, newlen,
503 &kern_logsigexit));
504 case KERN_FSCALE:
505 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
506 case KERN_CCPU:
507 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
508 case KERN_CP_TIME:
509 #ifndef MULTIPROCESSOR
510 return (sysctl_rdstruct(oldp, oldlenp, newp,
511 curcpu()->ci_schedstate.spc_cp_time,
512 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
513 #else
514 return (sysctl_docptime(oldp, oldlenp, newp));
515 #endif
516 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
517 case KERN_SYSVIPC_INFO:
518 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
519 #endif
520 case KERN_MSGBUF:
521 return (sysctl_msgbuf(oldp, oldlenp));
522 case KERN_CONSDEV:
523 if (cn_tab != NULL)
524 consdev = cn_tab->cn_dev;
525 else
526 consdev = NODEV;
527 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
528 sizeof consdev));
529 #if NPTY > 0
530 case KERN_MAXPTYS:
531 return sysctl_pty(oldp, oldlenp, newp, newlen);
532 #endif
533 #ifdef NEW_PIPE
534 case KERN_PIPE:
535 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
536 newp, newlen));
537 #endif
538 case KERN_MAXPHYS:
539 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
540 case KERN_SBMAX:
541 {
542 int new_sbmax = sb_max;
543
544 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
545 if (error == 0) {
546 if (new_sbmax < (16 * 1024)) /* sanity */
547 return (EINVAL);
548 sb_max = new_sbmax;
549 }
550 return (error);
551 }
552 default:
553 return (EOPNOTSUPP);
554 }
555 /* NOTREACHED */
556 }
557
558 /*
559 * hardware related system variables.
560 */
561 int
562 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
563 void *newp, size_t newlen, struct proc *p)
564 {
565
566 /* all sysctl names at this level are terminal */
567 if (namelen != 1)
568 return (ENOTDIR); /* overloaded */
569
570 switch (name[0]) {
571 case HW_MACHINE:
572 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
573 case HW_MACHINE_ARCH:
574 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
575 case HW_MODEL:
576 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
577 case HW_NCPU:
578 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
579 case HW_BYTEORDER:
580 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
581 case HW_PHYSMEM:
582 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
583 case HW_USERMEM:
584 return (sysctl_rdint(oldp, oldlenp, newp,
585 ctob(physmem - uvmexp.wired)));
586 case HW_PAGESIZE:
587 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
588 case HW_ALIGNBYTES:
589 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
590 case HW_CNMAGIC: {
591 char magic[CNS_LEN];
592 int error;
593
594 if (oldp)
595 cn_get_magic(magic, CNS_LEN);
596 error = sysctl_string(oldp, oldlenp, newp, newlen,
597 magic, sizeof(magic));
598 if (newp && !error) {
599 error = cn_set_magic(magic);
600 }
601 return (error);
602 }
603 default:
604 return (EOPNOTSUPP);
605 }
606 /* NOTREACHED */
607 }
608
609 #ifdef DEBUG
610 /*
611 * Debugging related system variables.
612 */
613 struct ctldebug debug0, debug1, debug2, debug3, debug4;
614 struct ctldebug debug5, debug6, debug7, debug8, debug9;
615 struct ctldebug debug10, debug11, debug12, debug13, debug14;
616 struct ctldebug debug15, debug16, debug17, debug18, debug19;
617 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
618 &debug0, &debug1, &debug2, &debug3, &debug4,
619 &debug5, &debug6, &debug7, &debug8, &debug9,
620 &debug10, &debug11, &debug12, &debug13, &debug14,
621 &debug15, &debug16, &debug17, &debug18, &debug19,
622 };
623
624 int
625 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
626 void *newp, size_t newlen, struct proc *p)
627 {
628 struct ctldebug *cdp;
629
630 /* all sysctl names at this level are name and field */
631 if (namelen != 2)
632 return (ENOTDIR); /* overloaded */
633 cdp = debugvars[name[0]];
634 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
635 return (EOPNOTSUPP);
636 switch (name[1]) {
637 case CTL_DEBUG_NAME:
638 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
639 case CTL_DEBUG_VALUE:
640 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
641 default:
642 return (EOPNOTSUPP);
643 }
644 /* NOTREACHED */
645 }
646 #endif /* DEBUG */
647
648 int
649 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
650 void *newp, size_t newlen, struct proc *p)
651 {
652 struct proc *ptmp = NULL;
653 const struct proclist_desc *pd;
654 int error = 0;
655 struct rlimit alim;
656 struct plimit *newplim;
657 char *tmps = NULL;
658 int i, curlen, len;
659
660 if (namelen < 2)
661 return EINVAL;
662
663 if (name[0] == PROC_CURPROC) {
664 ptmp = p;
665 } else {
666 proclist_lock_read();
667 for (pd = proclists; pd->pd_list != NULL; pd++) {
668 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
669 ptmp = LIST_NEXT(ptmp, p_list)) {
670 /* Skip embryonic processes. */
671 if (ptmp->p_stat == SIDL)
672 continue;
673 if (ptmp->p_pid == (pid_t)name[0])
674 break;
675 }
676 if (ptmp != NULL)
677 break;
678 }
679 proclist_unlock_read();
680 if (ptmp == NULL)
681 return(ESRCH);
682 if (p->p_ucred->cr_uid != 0) {
683 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
684 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
685 return EPERM;
686 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
687 return EPERM; /* sgid proc */
688 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
689 if (p->p_ucred->cr_groups[i] ==
690 ptmp->p_cred->p_rgid)
691 break;
692 }
693 if (i == p->p_ucred->cr_ngroups)
694 return EPERM;
695 }
696 }
697 if (name[1] == PROC_PID_CORENAME) {
698 if (namelen != 2)
699 return EINVAL;
700 /*
701 * Can't use sysctl_string() here because we may malloc a new
702 * area during the process, so we have to do it by hand.
703 */
704 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
705 if (oldlenp && *oldlenp < curlen) {
706 if (!oldp)
707 *oldlenp = curlen;
708 return (ENOMEM);
709 }
710 if (newp) {
711 if (securelevel > 2)
712 return EPERM;
713 if (newlen > MAXPATHLEN)
714 return ENAMETOOLONG;
715 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
716 if (tmps == NULL)
717 return ENOMEM;
718 error = copyin(newp, tmps, newlen + 1);
719 tmps[newlen] = '\0';
720 if (error)
721 goto cleanup;
722 /* Enforce to be either 'core' for end with '.core' */
723 if (newlen < 4) { /* c.o.r.e */
724 error = EINVAL;
725 goto cleanup;
726 }
727 len = newlen - 4;
728 if (len > 0) {
729 if (tmps[len - 1] != '.' &&
730 tmps[len - 1] != '/') {
731 error = EINVAL;
732 goto cleanup;
733 }
734 }
735 if (strcmp(&tmps[len], "core") != 0) {
736 error = EINVAL;
737 goto cleanup;
738 }
739 }
740 if (oldp && oldlenp) {
741 *oldlenp = curlen;
742 error = copyout(ptmp->p_limit->pl_corename, oldp,
743 curlen);
744 }
745 if (newp && error == 0) {
746 /* if the 2 strings are identical, don't limcopy() */
747 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
748 error = 0;
749 goto cleanup;
750 }
751 if (ptmp->p_limit->p_refcnt > 1 &&
752 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
753 newplim = limcopy(ptmp->p_limit);
754 limfree(ptmp->p_limit);
755 ptmp->p_limit = newplim;
756 } else if (ptmp->p_limit->pl_corename != defcorename) {
757 free(ptmp->p_limit->pl_corename, M_TEMP);
758 }
759 ptmp->p_limit->pl_corename = tmps;
760 return (0);
761 }
762 cleanup:
763 if (tmps)
764 free(tmps, M_TEMP);
765 return (error);
766 }
767 if (name[1] == PROC_PID_LIMIT) {
768 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
769 return EINVAL;
770 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
771 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
772 error = sysctl_quad(oldp, oldlenp, newp, newlen,
773 &alim.rlim_max);
774 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
775 error = sysctl_quad(oldp, oldlenp, newp, newlen,
776 &alim.rlim_cur);
777 else
778 error = EINVAL;
779
780 if (error)
781 return error;
782
783 if (newp)
784 error = dosetrlimit(ptmp, p->p_cred,
785 name[2] - 1, &alim);
786 return error;
787 }
788 return (EINVAL);
789 }
790
791 /*
792 * Convenience macros.
793 */
794
795 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
796 if (oldlenp) { \
797 if (!oldp) \
798 *oldlenp = len; \
799 else { \
800 if (*oldlenp < len) \
801 return(ENOMEM); \
802 *oldlenp = len; \
803 error = copyout((caddr_t)valp, oldp, len); \
804 } \
805 }
806
807 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
808 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
809
810 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
811 if (newp && newlen != len) \
812 return (EINVAL);
813
814 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
815 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
816
817 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
818 if (error == 0 && newp) \
819 error = copyin(newp, valp, len);
820
821 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
822 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
823
824 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
825 if (oldlenp) { \
826 len = strlen(str) + 1; \
827 if (!oldp) \
828 *oldlenp = len; \
829 else { \
830 if (*oldlenp < len) { \
831 err2 = ENOMEM; \
832 len = *oldlenp; \
833 } else \
834 *oldlenp = len; \
835 error = copyout(str, oldp, len);\
836 if (error == 0) \
837 error = err2; \
838 } \
839 }
840
841 /*
842 * Validate parameters and get old / set new parameters
843 * for an integer-valued sysctl function.
844 */
845 int
846 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
847 {
848 int error = 0;
849
850 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
851 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
852 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
853
854 return (error);
855 }
856
857
858 /*
859 * As above, but read-only.
860 */
861 int
862 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
863 {
864 int error = 0;
865
866 if (newp)
867 return (EPERM);
868
869 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
870
871 return (error);
872 }
873
874 /*
875 * Validate parameters and get old / set new parameters
876 * for an quad-valued sysctl function.
877 */
878 int
879 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
880 quad_t *valp)
881 {
882 int error = 0;
883
884 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
885 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
886 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
887
888 return (error);
889 }
890
891 /*
892 * As above, but read-only.
893 */
894 int
895 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
896 {
897 int error = 0;
898
899 if (newp)
900 return (EPERM);
901
902 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
903
904 return (error);
905 }
906
907 /*
908 * Validate parameters and get old / set new parameters
909 * for a string-valued sysctl function.
910 */
911 int
912 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
913 int maxlen)
914 {
915 int len, error = 0, err2 = 0;
916
917 if (newp && newlen >= maxlen)
918 return (EINVAL);
919
920 SYSCTL_STRING_CORE(oldp, oldlenp, str);
921
922 if (error == 0 && newp) {
923 error = copyin(newp, str, newlen);
924 str[newlen] = 0;
925 }
926 return (error);
927 }
928
929 /*
930 * As above, but read-only.
931 */
932 int
933 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
934 {
935 int len, error = 0, err2 = 0;
936
937 if (newp)
938 return (EPERM);
939
940 SYSCTL_STRING_CORE(oldp, oldlenp, str);
941
942 return (error);
943 }
944
945 /*
946 * Validate parameters and get old / set new parameters
947 * for a structure oriented sysctl function.
948 */
949 int
950 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
951 int len)
952 {
953 int error = 0;
954
955 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
956 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
957 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
958
959 return (error);
960 }
961
962 /*
963 * Validate parameters and get old parameters
964 * for a structure oriented sysctl function.
965 */
966 int
967 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
968 int len)
969 {
970 int error = 0;
971
972 if (newp)
973 return (EPERM);
974
975 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
976
977 return (error);
978 }
979
980 /*
981 * As above, but can return a truncated result.
982 */
983 int
984 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
985 int len)
986 {
987 int error = 0;
988
989 if (newp)
990 return (EPERM);
991
992 len = min(*oldlenp, len);
993 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
994
995 return (error);
996 }
997
998 /*
999 * Get file structures.
1000 */
1001 static int
1002 sysctl_file(void *vwhere, size_t *sizep)
1003 {
1004 int buflen, error;
1005 struct file *fp;
1006 char *start, *where;
1007
1008 start = where = vwhere;
1009 buflen = *sizep;
1010 if (where == NULL) {
1011 /*
1012 * overestimate by 10 files
1013 */
1014 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1015 return (0);
1016 }
1017
1018 /*
1019 * first copyout filehead
1020 */
1021 if (buflen < sizeof(filehead)) {
1022 *sizep = 0;
1023 return (0);
1024 }
1025 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1026 if (error)
1027 return (error);
1028 buflen -= sizeof(filehead);
1029 where += sizeof(filehead);
1030
1031 /*
1032 * followed by an array of file structures
1033 */
1034 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1035 if (buflen < sizeof(struct file)) {
1036 *sizep = where - start;
1037 return (ENOMEM);
1038 }
1039 error = copyout((caddr_t)fp, where, sizeof(struct file));
1040 if (error)
1041 return (error);
1042 buflen -= sizeof(struct file);
1043 where += sizeof(struct file);
1044 }
1045 *sizep = where - start;
1046 return (0);
1047 }
1048
1049 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1050 #define FILL_PERM(src, dst) do { \
1051 (dst)._key = (src)._key; \
1052 (dst).uid = (src).uid; \
1053 (dst).gid = (src).gid; \
1054 (dst).cuid = (src).cuid; \
1055 (dst).cgid = (src).cgid; \
1056 (dst).mode = (src).mode; \
1057 (dst)._seq = (src)._seq; \
1058 } while (0);
1059 #define FILL_MSG(src, dst) do { \
1060 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1061 (dst).msg_qnum = (src).msg_qnum; \
1062 (dst).msg_qbytes = (src).msg_qbytes; \
1063 (dst)._msg_cbytes = (src)._msg_cbytes; \
1064 (dst).msg_lspid = (src).msg_lspid; \
1065 (dst).msg_lrpid = (src).msg_lrpid; \
1066 (dst).msg_stime = (src).msg_stime; \
1067 (dst).msg_rtime = (src).msg_rtime; \
1068 (dst).msg_ctime = (src).msg_ctime; \
1069 } while (0)
1070 #define FILL_SEM(src, dst) do { \
1071 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1072 (dst).sem_nsems = (src).sem_nsems; \
1073 (dst).sem_otime = (src).sem_otime; \
1074 (dst).sem_ctime = (src).sem_ctime; \
1075 } while (0)
1076 #define FILL_SHM(src, dst) do { \
1077 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1078 (dst).shm_segsz = (src).shm_segsz; \
1079 (dst).shm_lpid = (src).shm_lpid; \
1080 (dst).shm_cpid = (src).shm_cpid; \
1081 (dst).shm_atime = (src).shm_atime; \
1082 (dst).shm_dtime = (src).shm_dtime; \
1083 (dst).shm_ctime = (src).shm_ctime; \
1084 (dst).shm_nattch = (src).shm_nattch; \
1085 } while (0)
1086
1087 static int
1088 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1089 {
1090 #ifdef SYSVMSG
1091 struct msg_sysctl_info *msgsi;
1092 #endif
1093 #ifdef SYSVSEM
1094 struct sem_sysctl_info *semsi;
1095 #endif
1096 #ifdef SYSVSHM
1097 struct shm_sysctl_info *shmsi;
1098 #endif
1099 size_t infosize, dssize, tsize, buflen;
1100 void *buf = NULL, *buf2;
1101 char *start;
1102 int32_t nds;
1103 int i, error, ret;
1104
1105 if (namelen != 1)
1106 return (EINVAL);
1107
1108 start = where;
1109 buflen = *sizep;
1110
1111 switch (*name) {
1112 case KERN_SYSVIPC_MSG_INFO:
1113 #ifdef SYSVMSG
1114 infosize = sizeof(msgsi->msginfo);
1115 nds = msginfo.msgmni;
1116 dssize = sizeof(msgsi->msgids[0]);
1117 break;
1118 #else
1119 return (EINVAL);
1120 #endif
1121 case KERN_SYSVIPC_SEM_INFO:
1122 #ifdef SYSVSEM
1123 infosize = sizeof(semsi->seminfo);
1124 nds = seminfo.semmni;
1125 dssize = sizeof(semsi->semids[0]);
1126 break;
1127 #else
1128 return (EINVAL);
1129 #endif
1130 case KERN_SYSVIPC_SHM_INFO:
1131 #ifdef SYSVSHM
1132 infosize = sizeof(shmsi->shminfo);
1133 nds = shminfo.shmmni;
1134 dssize = sizeof(shmsi->shmids[0]);
1135 break;
1136 #else
1137 return (EINVAL);
1138 #endif
1139 default:
1140 return (EINVAL);
1141 }
1142 /*
1143 * Round infosize to 64 bit boundary if requesting more than just
1144 * the info structure or getting the total data size.
1145 */
1146 if (where == NULL || *sizep > infosize)
1147 infosize = ((infosize + 7) / 8) * 8;
1148 tsize = infosize + nds * dssize;
1149
1150 /* Return just the total size required. */
1151 if (where == NULL) {
1152 *sizep = tsize;
1153 return (0);
1154 }
1155
1156 /* Not enough room for even the info struct. */
1157 if (buflen < infosize) {
1158 *sizep = 0;
1159 return (ENOMEM);
1160 }
1161 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1162 memset(buf, 0, min(tsize, buflen));
1163
1164 switch (*name) {
1165 #ifdef SYSVMSG
1166 case KERN_SYSVIPC_MSG_INFO:
1167 msgsi = (struct msg_sysctl_info *)buf;
1168 buf2 = &msgsi->msgids[0];
1169 msgsi->msginfo = msginfo;
1170 break;
1171 #endif
1172 #ifdef SYSVSEM
1173 case KERN_SYSVIPC_SEM_INFO:
1174 semsi = (struct sem_sysctl_info *)buf;
1175 buf2 = &semsi->semids[0];
1176 semsi->seminfo = seminfo;
1177 break;
1178 #endif
1179 #ifdef SYSVSHM
1180 case KERN_SYSVIPC_SHM_INFO:
1181 shmsi = (struct shm_sysctl_info *)buf;
1182 buf2 = &shmsi->shmids[0];
1183 shmsi->shminfo = shminfo;
1184 break;
1185 #endif
1186 }
1187 buflen -= infosize;
1188
1189 ret = 0;
1190 if (buflen > 0) {
1191 /* Fill in the IPC data structures. */
1192 for (i = 0; i < nds; i++) {
1193 if (buflen < dssize) {
1194 ret = ENOMEM;
1195 break;
1196 }
1197 switch (*name) {
1198 #ifdef SYSVMSG
1199 case KERN_SYSVIPC_MSG_INFO:
1200 FILL_MSG(msqids[i], msgsi->msgids[i]);
1201 break;
1202 #endif
1203 #ifdef SYSVSEM
1204 case KERN_SYSVIPC_SEM_INFO:
1205 FILL_SEM(sema[i], semsi->semids[i]);
1206 break;
1207 #endif
1208 #ifdef SYSVSHM
1209 case KERN_SYSVIPC_SHM_INFO:
1210 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1211 break;
1212 #endif
1213 }
1214 buflen -= dssize;
1215 }
1216 }
1217 *sizep -= buflen;
1218 error = copyout(buf, start, *sizep);
1219 /* If copyout succeeded, use return code set earlier. */
1220 if (error == 0)
1221 error = ret;
1222 if (buf)
1223 free(buf, M_TEMP);
1224 return (error);
1225 }
1226 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1227
1228 static int
1229 sysctl_msgbuf(void *vwhere, size_t *sizep)
1230 {
1231 char *where = vwhere;
1232 size_t len, maxlen = *sizep;
1233 long beg, end;
1234 int error;
1235
1236 /*
1237 * deal with cases where the message buffer has
1238 * become corrupted.
1239 */
1240 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1241 msgbufenabled = 0;
1242 return (ENXIO);
1243 }
1244
1245 if (where == NULL) {
1246 /* always return full buffer size */
1247 *sizep = msgbufp->msg_bufs;
1248 return (0);
1249 }
1250
1251 error = 0;
1252 maxlen = min(msgbufp->msg_bufs, maxlen);
1253
1254 /*
1255 * First, copy from the write pointer to the end of
1256 * message buffer.
1257 */
1258 beg = msgbufp->msg_bufx;
1259 end = msgbufp->msg_bufs;
1260 while (maxlen > 0) {
1261 len = min(end - beg, maxlen);
1262 if (len == 0)
1263 break;
1264 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1265 if (error)
1266 break;
1267 where += len;
1268 maxlen -= len;
1269
1270 /*
1271 * ... then, copy from the beginning of message buffer to
1272 * the write pointer.
1273 */
1274 beg = 0;
1275 end = msgbufp->msg_bufx;
1276 }
1277 return (error);
1278 }
1279
1280 /*
1281 * try over estimating by 5 procs
1282 */
1283 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1284
1285 static int
1286 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1287 {
1288 struct eproc eproc;
1289 struct kinfo_proc2 kproc2;
1290 struct kinfo_proc *dp;
1291 struct proc *p;
1292 const struct proclist_desc *pd;
1293 char *where, *dp2;
1294 int type, op, arg, elem_size, elem_count;
1295 int buflen, needed, error;
1296
1297 dp = vwhere;
1298 dp2 = where = vwhere;
1299 buflen = where != NULL ? *sizep : 0;
1300 error = needed = 0;
1301 type = name[0];
1302
1303 if (type == KERN_PROC) {
1304 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1305 return (EINVAL);
1306 op = name[1];
1307 if (op != KERN_PROC_ALL)
1308 arg = name[2];
1309 } else {
1310 if (namelen != 5)
1311 return (EINVAL);
1312 op = name[1];
1313 arg = name[2];
1314 elem_size = name[3];
1315 elem_count = name[4];
1316 }
1317
1318 proclist_lock_read();
1319
1320 pd = proclists;
1321 again:
1322 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1323 /*
1324 * Skip embryonic processes.
1325 */
1326 if (p->p_stat == SIDL)
1327 continue;
1328 /*
1329 * TODO - make more efficient (see notes below).
1330 * do by session.
1331 */
1332 switch (op) {
1333
1334 case KERN_PROC_PID:
1335 /* could do this with just a lookup */
1336 if (p->p_pid != (pid_t)arg)
1337 continue;
1338 break;
1339
1340 case KERN_PROC_PGRP:
1341 /* could do this by traversing pgrp */
1342 if (p->p_pgrp->pg_id != (pid_t)arg)
1343 continue;
1344 break;
1345
1346 case KERN_PROC_SESSION:
1347 if (p->p_session->s_sid != (pid_t)arg)
1348 continue;
1349 break;
1350
1351 case KERN_PROC_TTY:
1352 if (arg == KERN_PROC_TTY_REVOKE) {
1353 if ((p->p_flag & P_CONTROLT) == 0 ||
1354 p->p_session->s_ttyp == NULL ||
1355 p->p_session->s_ttyvp != NULL)
1356 continue;
1357 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1358 p->p_session->s_ttyp == NULL) {
1359 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1360 continue;
1361 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1362 continue;
1363 break;
1364
1365 case KERN_PROC_UID:
1366 if (p->p_ucred->cr_uid != (uid_t)arg)
1367 continue;
1368 break;
1369
1370 case KERN_PROC_RUID:
1371 if (p->p_cred->p_ruid != (uid_t)arg)
1372 continue;
1373 break;
1374
1375 case KERN_PROC_GID:
1376 if (p->p_ucred->cr_gid != (uid_t)arg)
1377 continue;
1378 break;
1379
1380 case KERN_PROC_RGID:
1381 if (p->p_cred->p_rgid != (uid_t)arg)
1382 continue;
1383 break;
1384
1385 case KERN_PROC_ALL:
1386 /* allow everything */
1387 break;
1388
1389 default:
1390 error = EINVAL;
1391 goto cleanup;
1392 }
1393 if (type == KERN_PROC) {
1394 if (buflen >= sizeof(struct kinfo_proc)) {
1395 fill_eproc(p, &eproc);
1396 error = copyout((caddr_t)p, &dp->kp_proc,
1397 sizeof(struct proc));
1398 if (error)
1399 goto cleanup;
1400 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1401 sizeof(eproc));
1402 if (error)
1403 goto cleanup;
1404 dp++;
1405 buflen -= sizeof(struct kinfo_proc);
1406 }
1407 needed += sizeof(struct kinfo_proc);
1408 } else { /* KERN_PROC2 */
1409 if (buflen >= elem_size && elem_count > 0) {
1410 fill_kproc2(p, &kproc2);
1411 /*
1412 * Copy out elem_size, but not larger than
1413 * the size of a struct kinfo_proc2.
1414 */
1415 error = copyout(&kproc2, dp2,
1416 min(sizeof(kproc2), elem_size));
1417 if (error)
1418 goto cleanup;
1419 dp2 += elem_size;
1420 buflen -= elem_size;
1421 elem_count--;
1422 }
1423 needed += elem_size;
1424 }
1425 }
1426 pd++;
1427 if (pd->pd_list != NULL)
1428 goto again;
1429 proclist_unlock_read();
1430
1431 if (where != NULL) {
1432 if (type == KERN_PROC)
1433 *sizep = (caddr_t)dp - where;
1434 else
1435 *sizep = dp2 - where;
1436 if (needed > *sizep)
1437 return (ENOMEM);
1438 } else {
1439 needed += KERN_PROCSLOP;
1440 *sizep = needed;
1441 }
1442 return (0);
1443 cleanup:
1444 proclist_unlock_read();
1445 return (error);
1446 }
1447
1448 /*
1449 * Fill in an eproc structure for the specified process.
1450 */
1451 void
1452 fill_eproc(struct proc *p, struct eproc *ep)
1453 {
1454 struct tty *tp;
1455
1456 ep->e_paddr = p;
1457 ep->e_sess = p->p_session;
1458 ep->e_pcred = *p->p_cred;
1459 ep->e_ucred = *p->p_ucred;
1460 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1461 ep->e_vm.vm_rssize = 0;
1462 ep->e_vm.vm_tsize = 0;
1463 ep->e_vm.vm_dsize = 0;
1464 ep->e_vm.vm_ssize = 0;
1465 /* ep->e_vm.vm_pmap = XXX; */
1466 } else {
1467 struct vmspace *vm = p->p_vmspace;
1468
1469 ep->e_vm.vm_rssize = vm_resident_count(vm);
1470 ep->e_vm.vm_tsize = vm->vm_tsize;
1471 ep->e_vm.vm_dsize = vm->vm_dsize;
1472 ep->e_vm.vm_ssize = vm->vm_ssize;
1473 }
1474 if (p->p_pptr)
1475 ep->e_ppid = p->p_pptr->p_pid;
1476 else
1477 ep->e_ppid = 0;
1478 ep->e_pgid = p->p_pgrp->pg_id;
1479 ep->e_sid = ep->e_sess->s_sid;
1480 ep->e_jobc = p->p_pgrp->pg_jobc;
1481 if ((p->p_flag & P_CONTROLT) &&
1482 (tp = ep->e_sess->s_ttyp)) {
1483 ep->e_tdev = tp->t_dev;
1484 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1485 ep->e_tsess = tp->t_session;
1486 } else
1487 ep->e_tdev = NODEV;
1488 if (p->p_wmesg)
1489 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1490 ep->e_xsize = ep->e_xrssize = 0;
1491 ep->e_xccount = ep->e_xswrss = 0;
1492 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1493 if (SESS_LEADER(p))
1494 ep->e_flag |= EPROC_SLEADER;
1495 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1496 }
1497
1498 /*
1499 * Fill in an eproc structure for the specified process.
1500 */
1501 static void
1502 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1503 {
1504 struct tty *tp;
1505
1506 memset(ki, 0, sizeof(*ki));
1507
1508 ki->p_forw = PTRTOINT64(p->p_forw);
1509 ki->p_back = PTRTOINT64(p->p_back);
1510 ki->p_paddr = PTRTOINT64(p);
1511
1512 ki->p_addr = PTRTOINT64(p->p_addr);
1513 ki->p_fd = PTRTOINT64(p->p_fd);
1514 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1515 ki->p_stats = PTRTOINT64(p->p_stats);
1516 ki->p_limit = PTRTOINT64(p->p_limit);
1517 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1518 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1519 ki->p_sess = PTRTOINT64(p->p_session);
1520 ki->p_tsess = 0; /* may be changed if controlling tty below */
1521 ki->p_ru = PTRTOINT64(p->p_ru);
1522
1523 ki->p_eflag = 0;
1524 ki->p_exitsig = p->p_exitsig;
1525 ki->p_flag = p->p_flag;
1526
1527 ki->p_pid = p->p_pid;
1528 if (p->p_pptr)
1529 ki->p_ppid = p->p_pptr->p_pid;
1530 else
1531 ki->p_ppid = 0;
1532 ki->p_sid = p->p_session->s_sid;
1533 ki->p__pgid = p->p_pgrp->pg_id;
1534
1535 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1536
1537 ki->p_uid = p->p_ucred->cr_uid;
1538 ki->p_ruid = p->p_cred->p_ruid;
1539 ki->p_gid = p->p_ucred->cr_gid;
1540 ki->p_rgid = p->p_cred->p_rgid;
1541
1542 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1543 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1544 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1545
1546 ki->p_jobc = p->p_pgrp->pg_jobc;
1547 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1548 ki->p_tdev = tp->t_dev;
1549 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1550 ki->p_tsess = PTRTOINT64(tp->t_session);
1551 } else {
1552 ki->p_tdev = NODEV;
1553 }
1554
1555 ki->p_estcpu = p->p_estcpu;
1556 ki->p_rtime_sec = p->p_rtime.tv_sec;
1557 ki->p_rtime_usec = p->p_rtime.tv_usec;
1558 ki->p_cpticks = p->p_cpticks;
1559 ki->p_pctcpu = p->p_pctcpu;
1560 ki->p_swtime = p->p_swtime;
1561 ki->p_slptime = p->p_slptime;
1562 if (p->p_stat == SONPROC) {
1563 KDASSERT(p->p_cpu != NULL);
1564 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1565 } else
1566 ki->p_schedflags = 0;
1567
1568 ki->p_uticks = p->p_uticks;
1569 ki->p_sticks = p->p_sticks;
1570 ki->p_iticks = p->p_iticks;
1571
1572 ki->p_tracep = PTRTOINT64(p->p_tracep);
1573 ki->p_traceflag = p->p_traceflag;
1574
1575 ki->p_holdcnt = p->p_holdcnt;
1576
1577 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1578 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1579 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1580 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1581
1582 ki->p_stat = p->p_stat;
1583 ki->p_priority = p->p_priority;
1584 ki->p_usrpri = p->p_usrpri;
1585 ki->p_nice = p->p_nice;
1586
1587 ki->p_xstat = p->p_xstat;
1588 ki->p_acflag = p->p_acflag;
1589
1590 strncpy(ki->p_comm, p->p_comm,
1591 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1592
1593 if (p->p_wmesg)
1594 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1595 ki->p_wchan = PTRTOINT64(p->p_wchan);
1596
1597 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1598
1599 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1600 ki->p_vm_rssize = 0;
1601 ki->p_vm_tsize = 0;
1602 ki->p_vm_dsize = 0;
1603 ki->p_vm_ssize = 0;
1604 } else {
1605 struct vmspace *vm = p->p_vmspace;
1606
1607 ki->p_vm_rssize = vm_resident_count(vm);
1608 ki->p_vm_tsize = vm->vm_tsize;
1609 ki->p_vm_dsize = vm->vm_dsize;
1610 ki->p_vm_ssize = vm->vm_ssize;
1611 }
1612
1613 if (p->p_session->s_ttyvp)
1614 ki->p_eflag |= EPROC_CTTY;
1615 if (SESS_LEADER(p))
1616 ki->p_eflag |= EPROC_SLEADER;
1617
1618 /* XXX Is this double check necessary? */
1619 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1620 ki->p_uvalid = 0;
1621 } else {
1622 ki->p_uvalid = 1;
1623
1624 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1625 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1626
1627 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1628 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1629 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1630 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1631
1632 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1633 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1634 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1635 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1636 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1637 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1638 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1639 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1640 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1641 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1642 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1643 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1644 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1645 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1646
1647 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1648 p->p_stats->p_cru.ru_stime.tv_sec;
1649 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1650 p->p_stats->p_cru.ru_stime.tv_usec;
1651 }
1652 #ifdef MULTIPROCESSOR
1653 if (p->p_cpu != NULL)
1654 ki->p_cpuid = p->p_cpu->ci_cpuid;
1655 else
1656 #endif
1657 ki->p_cpuid = KI_NOCPU;
1658 }
1659
1660 int
1661 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1662 struct proc *up)
1663 {
1664 struct ps_strings pss;
1665 struct proc *p;
1666 size_t len, upper_bound, xlen;
1667 struct uio auio;
1668 struct iovec aiov;
1669 vaddr_t argv;
1670 pid_t pid;
1671 int nargv, type, error, i;
1672 char *arg;
1673 char *tmp;
1674
1675 if (namelen != 2)
1676 return (EINVAL);
1677 pid = name[0];
1678 type = name[1];
1679
1680 switch (type) {
1681 case KERN_PROC_ARGV:
1682 case KERN_PROC_NARGV:
1683 case KERN_PROC_ENV:
1684 case KERN_PROC_NENV:
1685 /* ok */
1686 break;
1687 default:
1688 return (EINVAL);
1689 }
1690
1691 /* check pid */
1692 if ((p = pfind(pid)) == NULL)
1693 return (EINVAL);
1694
1695 /* only root or same user change look at the environment */
1696 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1697 if (up->p_ucred->cr_uid != 0) {
1698 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1699 up->p_cred->p_ruid != p->p_cred->p_svuid)
1700 return (EPERM);
1701 }
1702 }
1703
1704 if (sizep != NULL && where == NULL) {
1705 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1706 *sizep = sizeof (int);
1707 else
1708 *sizep = ARG_MAX; /* XXX XXX XXX */
1709 return (0);
1710 }
1711 if (where == NULL || sizep == NULL)
1712 return (EINVAL);
1713
1714 /*
1715 * Zombies don't have a stack, so we can't read their psstrings.
1716 * System processes also don't have a user stack.
1717 */
1718 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1719 return (EINVAL);
1720
1721 /*
1722 * Lock the process down in memory.
1723 */
1724 /* XXXCDC: how should locking work here? */
1725 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1726 return (EFAULT);
1727 p->p_vmspace->vm_refcnt++; /* XXX */
1728
1729 /*
1730 * Allocate a temporary buffer to hold the arguments.
1731 */
1732 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1733
1734 /*
1735 * Read in the ps_strings structure.
1736 */
1737 aiov.iov_base = &pss;
1738 aiov.iov_len = sizeof(pss);
1739 auio.uio_iov = &aiov;
1740 auio.uio_iovcnt = 1;
1741 auio.uio_offset = (vaddr_t)p->p_psstr;
1742 auio.uio_resid = sizeof(pss);
1743 auio.uio_segflg = UIO_SYSSPACE;
1744 auio.uio_rw = UIO_READ;
1745 auio.uio_procp = NULL;
1746 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1747 if (error)
1748 goto done;
1749
1750 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1751 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1752 else
1753 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1754 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1755 error = copyout(&nargv, where, sizeof(nargv));
1756 *sizep = sizeof(nargv);
1757 goto done;
1758 }
1759 /*
1760 * Now read the address of the argument vector.
1761 */
1762 switch (type) {
1763 case KERN_PROC_ARGV:
1764 /* XXX compat32 stuff here */
1765 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1766 break;
1767 case KERN_PROC_ENV:
1768 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1769 break;
1770 default:
1771 return (EINVAL);
1772 }
1773 auio.uio_offset = (off_t)(long)tmp;
1774 aiov.iov_base = &argv;
1775 aiov.iov_len = sizeof(argv);
1776 auio.uio_iov = &aiov;
1777 auio.uio_iovcnt = 1;
1778 auio.uio_resid = sizeof(argv);
1779 auio.uio_segflg = UIO_SYSSPACE;
1780 auio.uio_rw = UIO_READ;
1781 auio.uio_procp = NULL;
1782 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1783 if (error)
1784 goto done;
1785
1786 /*
1787 * Now copy in the actual argument vector, one page at a time,
1788 * since we don't know how long the vector is (though, we do
1789 * know how many NUL-terminated strings are in the vector).
1790 */
1791 len = 0;
1792 upper_bound = *sizep;
1793 for (; nargv != 0 && len < upper_bound; len += xlen) {
1794 aiov.iov_base = arg;
1795 aiov.iov_len = PAGE_SIZE;
1796 auio.uio_iov = &aiov;
1797 auio.uio_iovcnt = 1;
1798 auio.uio_offset = argv + len;
1799 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1800 auio.uio_resid = xlen;
1801 auio.uio_segflg = UIO_SYSSPACE;
1802 auio.uio_rw = UIO_READ;
1803 auio.uio_procp = NULL;
1804 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1805 if (error)
1806 goto done;
1807
1808 for (i = 0; i < xlen && nargv != 0; i++) {
1809 if (arg[i] == '\0')
1810 nargv--; /* one full string */
1811 }
1812
1813 /* make sure we don't copyout past the end of the user's buffer */
1814 if (len + i > upper_bound)
1815 i = upper_bound - len;
1816
1817 error = copyout(arg, (char *)where + len, i);
1818 if (error)
1819 break;
1820
1821 if (nargv == 0) {
1822 len += i;
1823 break;
1824 }
1825 }
1826 *sizep = len;
1827
1828 done:
1829 uvmspace_free(p->p_vmspace);
1830
1831 free(arg, M_TEMP);
1832 return (error);
1833 }
1834
1835 #if NPTY > 0
1836 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1837
1838 /*
1839 * Validate parameters and get old / set new parameters
1840 * for pty sysctl function.
1841 */
1842 static int
1843 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1844 {
1845 int error = 0;
1846 int oldmax = 0, newmax = 0;
1847
1848 /* get current value of maxptys */
1849 oldmax = pty_maxptys(0, 0);
1850
1851 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1852
1853 if (!error && newp) {
1854 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1855 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1856
1857 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1858 return (EINVAL);
1859
1860 }
1861
1862 return (error);
1863 }
1864 #endif /* NPTY > 0 */
1865