kern_sysctl.c revision 1.98 1 /* $NetBSD: kern_sysctl.c,v 1.98 2002/01/27 12:41:08 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.98 2002/01/27 12:41:08 simonb Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_new_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/buf.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/dkstat.h>
62 #include <sys/exec.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/malloc.h>
66 #include <sys/mount.h>
67 #include <sys/msgbuf.h>
68 #include <sys/pool.h>
69 #include <sys/proc.h>
70 #include <sys/resource.h>
71 #include <sys/resourcevar.h>
72 #include <sys/syscallargs.h>
73 #include <sys/tty.h>
74 #include <sys/unistd.h>
75 #include <sys/vnode.h>
76 #include <sys/socketvar.h>
77 #define __SYSCTL_PRIVATE
78 #include <sys/sysctl.h>
79 #include <sys/lock.h>
80 #include <sys/namei.h>
81
82 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
83 #include <sys/ipc.h>
84 #endif
85 #ifdef SYSVMSG
86 #include <sys/msg.h>
87 #endif
88 #ifdef SYSVSEM
89 #include <sys/sem.h>
90 #endif
91 #ifdef SYSVSHM
92 #include <sys/shm.h>
93 #endif
94
95 #include <dev/cons.h>
96
97 #if defined(DDB)
98 #include <ddb/ddbvar.h>
99 #endif
100
101 #ifdef NEW_PIPE
102 #include <sys/pipe.h>
103 #endif
104
105 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
106
107 static int sysctl_file(void *, size_t *);
108 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
109 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
110 #endif
111 static int sysctl_msgbuf(void *, size_t *);
112 static int sysctl_doeproc(int *, u_int, void *, size_t *);
113 #ifdef MULTIPROCESSOR
114 static int sysctl_docptime(void *, size_t *, void *);
115 static int sysctl_ncpus(void);
116 #endif
117 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
118 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
119 #if NPTY > 0
120 static int sysctl_pty(void *, size_t *, void *, size_t);
121 #endif
122
123 /*
124 * The `sysctl_memlock' is intended to keep too many processes from
125 * locking down memory by doing sysctls at once. Whether or not this
126 * is really a good idea to worry about it probably a subject of some
127 * debate.
128 */
129 struct lock sysctl_memlock;
130
131 void
132 sysctl_init(void)
133 {
134
135 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
136 }
137
138 int
139 sys___sysctl(struct proc *p, void *v, register_t *retval)
140 {
141 struct sys___sysctl_args /* {
142 syscallarg(int *) name;
143 syscallarg(u_int) namelen;
144 syscallarg(void *) old;
145 syscallarg(size_t *) oldlenp;
146 syscallarg(void *) new;
147 syscallarg(size_t) newlen;
148 } */ *uap = v;
149 int error;
150 size_t savelen = 0, oldlen = 0;
151 sysctlfn *fn;
152 int name[CTL_MAXNAME];
153 size_t *oldlenp;
154
155 /*
156 * all top-level sysctl names are non-terminal
157 */
158 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
159 return (EINVAL);
160 error = copyin(SCARG(uap, name), &name,
161 SCARG(uap, namelen) * sizeof(int));
162 if (error)
163 return (error);
164
165 /*
166 * For all but CTL_PROC, must be root to change a value.
167 * For CTL_PROC, must be root, or owner of the proc (and not suid),
168 * this is checked in proc_sysctl() (once we know the targer proc).
169 */
170 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
171 (error = suser(p->p_ucred, &p->p_acflag)))
172 return error;
173
174 switch (name[0]) {
175 case CTL_KERN:
176 fn = kern_sysctl;
177 break;
178 case CTL_HW:
179 fn = hw_sysctl;
180 break;
181 case CTL_VM:
182 fn = uvm_sysctl;
183 break;
184 case CTL_NET:
185 fn = net_sysctl;
186 break;
187 case CTL_VFS:
188 fn = vfs_sysctl;
189 break;
190 case CTL_MACHDEP:
191 fn = cpu_sysctl;
192 break;
193 #ifdef DEBUG
194 case CTL_DEBUG:
195 fn = debug_sysctl;
196 break;
197 #endif
198 #ifdef DDB
199 case CTL_DDB:
200 fn = ddb_sysctl;
201 break;
202 #endif
203 case CTL_PROC:
204 fn = proc_sysctl;
205 break;
206 default:
207 return (EOPNOTSUPP);
208 }
209
210 /*
211 * XXX Hey, we wire `old', but what about `new'?
212 */
213
214 oldlenp = SCARG(uap, oldlenp);
215 if (oldlenp) {
216 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
217 return (error);
218 oldlenp = &oldlen;
219 }
220 if (SCARG(uap, old) != NULL) {
221 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
222 if (error)
223 return (error);
224 error = uvm_vslock(p, SCARG(uap, old), oldlen,
225 VM_PROT_READ|VM_PROT_WRITE);
226 if (error) {
227 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
228 return error;
229 }
230 savelen = oldlen;
231 }
232 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
233 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
234 if (SCARG(uap, old) != NULL) {
235 uvm_vsunlock(p, SCARG(uap, old), savelen);
236 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
237 }
238 if (error)
239 return (error);
240 if (SCARG(uap, oldlenp))
241 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
242 return (error);
243 }
244
245 /*
246 * Attributes stored in the kernel.
247 */
248 char hostname[MAXHOSTNAMELEN];
249 int hostnamelen;
250
251 char domainname[MAXHOSTNAMELEN];
252 int domainnamelen;
253
254 long hostid;
255
256 #ifdef INSECURE
257 int securelevel = -1;
258 #else
259 int securelevel = 0;
260 #endif
261
262 #ifndef DEFCORENAME
263 #define DEFCORENAME "%n.core"
264 #endif
265 char defcorename[MAXPATHLEN] = DEFCORENAME;
266 int defcorenamelen = sizeof(DEFCORENAME);
267
268 extern int kern_logsigexit;
269 extern fixpt_t ccpu;
270
271 #ifndef MULTIPROCESSOR
272 #define sysctl_ncpus() 1
273 #endif
274
275 #ifdef MULTIPROCESSOR
276
277 #ifndef CPU_INFO_FOREACH
278 #define CPU_INFO_ITERATOR int
279 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
280 #endif
281
282 static int
283 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
284 {
285 u_int64_t cp_time[CPUSTATES];
286 int i;
287 struct cpu_info *ci;
288 CPU_INFO_ITERATOR cii;
289
290 for (i=0; i<CPUSTATES; i++)
291 cp_time[i] = 0;
292
293 for (CPU_INFO_FOREACH(cii, ci)) {
294 for (i=0; i<CPUSTATES; i++)
295 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
296 }
297 return (sysctl_rdstruct(oldp, oldlenp, newp,
298 cp_time, sizeof(cp_time)));
299 }
300
301 static int
302 sysctl_ncpus(void)
303 {
304 struct cpu_info *ci;
305 CPU_INFO_ITERATOR cii;
306
307 int ncpus = 0;
308 for (CPU_INFO_FOREACH(cii, ci))
309 ncpus++;
310 return ncpus;
311 }
312
313 #endif
314
315 /*
316 * kernel related system variables.
317 */
318 int
319 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
320 void *newp, size_t newlen, struct proc *p)
321 {
322 int error, level, inthostid;
323 int old_autonicetime;
324 int old_vnodes;
325 dev_t consdev;
326
327 /* All sysctl names at this level, except for a few, are terminal. */
328 switch (name[0]) {
329 case KERN_PROC:
330 case KERN_PROC2:
331 case KERN_PROF:
332 case KERN_MBUF:
333 case KERN_PROC_ARGS:
334 case KERN_SYSVIPC_INFO:
335 case KERN_PIPE:
336 /* Not terminal. */
337 break;
338 default:
339 if (namelen != 1)
340 return (ENOTDIR); /* overloaded */
341 }
342
343 switch (name[0]) {
344 case KERN_OSTYPE:
345 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
346 case KERN_OSRELEASE:
347 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
348 case KERN_OSREV:
349 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
350 case KERN_VERSION:
351 return (sysctl_rdstring(oldp, oldlenp, newp, version));
352 case KERN_MAXVNODES:
353 old_vnodes = desiredvnodes;
354 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
355 if (old_vnodes > desiredvnodes) {
356 desiredvnodes = old_vnodes;
357 return (EINVAL);
358 }
359 if (error == 0) {
360 vfs_reinit();
361 nchreinit();
362 }
363 return (error);
364 case KERN_MAXPROC:
365 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
366 case KERN_MAXFILES:
367 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
368 case KERN_ARGMAX:
369 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
370 case KERN_SECURELVL:
371 level = securelevel;
372 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
373 newp == NULL)
374 return (error);
375 if (level < securelevel && p->p_pid != 1)
376 return (EPERM);
377 securelevel = level;
378 return (0);
379 case KERN_HOSTNAME:
380 error = sysctl_string(oldp, oldlenp, newp, newlen,
381 hostname, sizeof(hostname));
382 if (newp && !error)
383 hostnamelen = newlen;
384 return (error);
385 case KERN_DOMAINNAME:
386 error = sysctl_string(oldp, oldlenp, newp, newlen,
387 domainname, sizeof(domainname));
388 if (newp && !error)
389 domainnamelen = newlen;
390 return (error);
391 case KERN_HOSTID:
392 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
393 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
394 hostid = inthostid;
395 return (error);
396 case KERN_CLOCKRATE:
397 return (sysctl_clockrate(oldp, oldlenp));
398 case KERN_BOOTTIME:
399 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
400 sizeof(struct timeval)));
401 case KERN_VNODE:
402 return (sysctl_vnode(oldp, oldlenp, p));
403 case KERN_PROC:
404 case KERN_PROC2:
405 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
406 case KERN_PROC_ARGS:
407 return (sysctl_procargs(name + 1, namelen - 1,
408 oldp, oldlenp, p));
409 case KERN_FILE:
410 return (sysctl_file(oldp, oldlenp));
411 #ifdef GPROF
412 case KERN_PROF:
413 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
414 newp, newlen));
415 #endif
416 case KERN_POSIX1:
417 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
418 case KERN_NGROUPS:
419 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
420 case KERN_JOB_CONTROL:
421 return (sysctl_rdint(oldp, oldlenp, newp, 1));
422 case KERN_SAVED_IDS:
423 #ifdef _POSIX_SAVED_IDS
424 return (sysctl_rdint(oldp, oldlenp, newp, 1));
425 #else
426 return (sysctl_rdint(oldp, oldlenp, newp, 0));
427 #endif
428 case KERN_MAXPARTITIONS:
429 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
430 case KERN_RAWPARTITION:
431 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
432 #ifdef NTP
433 case KERN_NTPTIME:
434 return (sysctl_ntptime(oldp, oldlenp));
435 #endif
436 case KERN_AUTONICETIME:
437 old_autonicetime = autonicetime;
438 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
439 if (autonicetime < 0)
440 autonicetime = old_autonicetime;
441 return (error);
442 case KERN_AUTONICEVAL:
443 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
444 if (autoniceval < PRIO_MIN)
445 autoniceval = PRIO_MIN;
446 if (autoniceval > PRIO_MAX)
447 autoniceval = PRIO_MAX;
448 return (error);
449 case KERN_RTC_OFFSET:
450 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
451 case KERN_ROOT_DEVICE:
452 return (sysctl_rdstring(oldp, oldlenp, newp,
453 root_device->dv_xname));
454 case KERN_MSGBUFSIZE:
455 /*
456 * deal with cases where the message buffer has
457 * become corrupted.
458 */
459 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
460 msgbufenabled = 0;
461 return (ENXIO);
462 }
463 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
464 case KERN_FSYNC:
465 return (sysctl_rdint(oldp, oldlenp, newp, 1));
466 case KERN_SYSVMSG:
467 #ifdef SYSVMSG
468 return (sysctl_rdint(oldp, oldlenp, newp, 1));
469 #else
470 return (sysctl_rdint(oldp, oldlenp, newp, 0));
471 #endif
472 case KERN_SYSVSEM:
473 #ifdef SYSVSEM
474 return (sysctl_rdint(oldp, oldlenp, newp, 1));
475 #else
476 return (sysctl_rdint(oldp, oldlenp, newp, 0));
477 #endif
478 case KERN_SYSVSHM:
479 #ifdef SYSVSHM
480 return (sysctl_rdint(oldp, oldlenp, newp, 1));
481 #else
482 return (sysctl_rdint(oldp, oldlenp, newp, 0));
483 #endif
484 case KERN_DEFCORENAME:
485 if (newp && newlen < 1)
486 return (EINVAL);
487 error = sysctl_string(oldp, oldlenp, newp, newlen,
488 defcorename, sizeof(defcorename));
489 if (newp && !error)
490 defcorenamelen = newlen;
491 return (error);
492 case KERN_SYNCHRONIZED_IO:
493 return (sysctl_rdint(oldp, oldlenp, newp, 1));
494 case KERN_IOV_MAX:
495 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
496 case KERN_MBUF:
497 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
498 newp, newlen));
499 case KERN_MAPPED_FILES:
500 return (sysctl_rdint(oldp, oldlenp, newp, 1));
501 case KERN_MEMLOCK:
502 return (sysctl_rdint(oldp, oldlenp, newp, 1));
503 case KERN_MEMLOCK_RANGE:
504 return (sysctl_rdint(oldp, oldlenp, newp, 1));
505 case KERN_MEMORY_PROTECTION:
506 return (sysctl_rdint(oldp, oldlenp, newp, 1));
507 case KERN_LOGIN_NAME_MAX:
508 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
509 case KERN_LOGSIGEXIT:
510 return (sysctl_int(oldp, oldlenp, newp, newlen,
511 &kern_logsigexit));
512 case KERN_FSCALE:
513 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
514 case KERN_CCPU:
515 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
516 case KERN_CP_TIME:
517 #ifndef MULTIPROCESSOR
518 return (sysctl_rdstruct(oldp, oldlenp, newp,
519 curcpu()->ci_schedstate.spc_cp_time,
520 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
521 #else
522 return (sysctl_docptime(oldp, oldlenp, newp));
523 #endif
524 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
525 case KERN_SYSVIPC_INFO:
526 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
527 #endif
528 case KERN_MSGBUF:
529 return (sysctl_msgbuf(oldp, oldlenp));
530 case KERN_CONSDEV:
531 if (cn_tab != NULL)
532 consdev = cn_tab->cn_dev;
533 else
534 consdev = NODEV;
535 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
536 sizeof consdev));
537 #if NPTY > 0
538 case KERN_MAXPTYS:
539 return sysctl_pty(oldp, oldlenp, newp, newlen);
540 #endif
541 #ifdef NEW_PIPE
542 case KERN_PIPE:
543 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
544 newp, newlen));
545 #endif
546 case KERN_MAXPHYS:
547 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
548 case KERN_SBMAX:
549 {
550 int new_sbmax = sb_max;
551
552 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
553 if (error == 0) {
554 if (new_sbmax < (16 * 1024)) /* sanity */
555 return (EINVAL);
556 sb_max = new_sbmax;
557 }
558 return (error);
559 }
560 default:
561 return (EOPNOTSUPP);
562 }
563 /* NOTREACHED */
564 }
565
566 /*
567 * hardware related system variables.
568 */
569 int
570 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
571 void *newp, size_t newlen, struct proc *p)
572 {
573
574 /* All sysctl names at this level, except for a few, are terminal. */
575 switch (name[0]) {
576 case HW_DISKSTATS:
577 /* Not terminal. */
578 break;
579 default:
580 if (namelen != 1)
581 return (ENOTDIR); /* overloaded */
582 }
583
584 switch (name[0]) {
585 case HW_MACHINE:
586 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
587 case HW_MACHINE_ARCH:
588 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
589 case HW_MODEL:
590 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
591 case HW_NCPU:
592 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
593 case HW_BYTEORDER:
594 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
595 case HW_PHYSMEM:
596 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
597 case HW_USERMEM:
598 return (sysctl_rdint(oldp, oldlenp, newp,
599 ctob(physmem - uvmexp.wired)));
600 case HW_PAGESIZE:
601 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
602 case HW_ALIGNBYTES:
603 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
604 case HW_DISKNAMES:
605 return (sysctl_disknames(oldp, oldlenp));
606 case HW_DISKSTATS:
607 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
608 case HW_CNMAGIC: {
609 char magic[CNS_LEN];
610 int error;
611
612 if (oldp)
613 cn_get_magic(magic, CNS_LEN);
614 error = sysctl_string(oldp, oldlenp, newp, newlen,
615 magic, sizeof(magic));
616 if (newp && !error) {
617 error = cn_set_magic(magic);
618 }
619 return (error);
620 }
621 default:
622 return (EOPNOTSUPP);
623 }
624 /* NOTREACHED */
625 }
626
627 #ifdef DEBUG
628 /*
629 * Debugging related system variables.
630 */
631 struct ctldebug debug0, debug1, debug2, debug3, debug4;
632 struct ctldebug debug5, debug6, debug7, debug8, debug9;
633 struct ctldebug debug10, debug11, debug12, debug13, debug14;
634 struct ctldebug debug15, debug16, debug17, debug18, debug19;
635 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
636 &debug0, &debug1, &debug2, &debug3, &debug4,
637 &debug5, &debug6, &debug7, &debug8, &debug9,
638 &debug10, &debug11, &debug12, &debug13, &debug14,
639 &debug15, &debug16, &debug17, &debug18, &debug19,
640 };
641
642 int
643 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
644 void *newp, size_t newlen, struct proc *p)
645 {
646 struct ctldebug *cdp;
647
648 /* all sysctl names at this level are name and field */
649 if (namelen != 2)
650 return (ENOTDIR); /* overloaded */
651 cdp = debugvars[name[0]];
652 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
653 return (EOPNOTSUPP);
654 switch (name[1]) {
655 case CTL_DEBUG_NAME:
656 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
657 case CTL_DEBUG_VALUE:
658 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
659 default:
660 return (EOPNOTSUPP);
661 }
662 /* NOTREACHED */
663 }
664 #endif /* DEBUG */
665
666 int
667 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
668 void *newp, size_t newlen, struct proc *p)
669 {
670 struct proc *ptmp = NULL;
671 const struct proclist_desc *pd;
672 int error = 0;
673 struct rlimit alim;
674 struct plimit *newplim;
675 char *tmps = NULL;
676 int i, curlen, len;
677
678 if (namelen < 2)
679 return EINVAL;
680
681 if (name[0] == PROC_CURPROC) {
682 ptmp = p;
683 } else {
684 proclist_lock_read();
685 for (pd = proclists; pd->pd_list != NULL; pd++) {
686 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
687 ptmp = LIST_NEXT(ptmp, p_list)) {
688 /* Skip embryonic processes. */
689 if (ptmp->p_stat == SIDL)
690 continue;
691 if (ptmp->p_pid == (pid_t)name[0])
692 break;
693 }
694 if (ptmp != NULL)
695 break;
696 }
697 proclist_unlock_read();
698 if (ptmp == NULL)
699 return(ESRCH);
700 if (p->p_ucred->cr_uid != 0) {
701 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
702 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
703 return EPERM;
704 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
705 return EPERM; /* sgid proc */
706 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
707 if (p->p_ucred->cr_groups[i] ==
708 ptmp->p_cred->p_rgid)
709 break;
710 }
711 if (i == p->p_ucred->cr_ngroups)
712 return EPERM;
713 }
714 }
715 if (name[1] == PROC_PID_CORENAME) {
716 if (namelen != 2)
717 return EINVAL;
718 /*
719 * Can't use sysctl_string() here because we may malloc a new
720 * area during the process, so we have to do it by hand.
721 */
722 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
723 if (oldlenp && *oldlenp < curlen) {
724 if (!oldp)
725 *oldlenp = curlen;
726 return (ENOMEM);
727 }
728 if (newp) {
729 if (securelevel > 2)
730 return EPERM;
731 if (newlen > MAXPATHLEN)
732 return ENAMETOOLONG;
733 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
734 if (tmps == NULL)
735 return ENOMEM;
736 error = copyin(newp, tmps, newlen + 1);
737 tmps[newlen] = '\0';
738 if (error)
739 goto cleanup;
740 /* Enforce to be either 'core' for end with '.core' */
741 if (newlen < 4) { /* c.o.r.e */
742 error = EINVAL;
743 goto cleanup;
744 }
745 len = newlen - 4;
746 if (len > 0) {
747 if (tmps[len - 1] != '.' &&
748 tmps[len - 1] != '/') {
749 error = EINVAL;
750 goto cleanup;
751 }
752 }
753 if (strcmp(&tmps[len], "core") != 0) {
754 error = EINVAL;
755 goto cleanup;
756 }
757 }
758 if (oldp && oldlenp) {
759 *oldlenp = curlen;
760 error = copyout(ptmp->p_limit->pl_corename, oldp,
761 curlen);
762 }
763 if (newp && error == 0) {
764 /* if the 2 strings are identical, don't limcopy() */
765 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
766 error = 0;
767 goto cleanup;
768 }
769 if (ptmp->p_limit->p_refcnt > 1 &&
770 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
771 newplim = limcopy(ptmp->p_limit);
772 limfree(ptmp->p_limit);
773 ptmp->p_limit = newplim;
774 }
775 if (ptmp->p_limit->pl_corename != defcorename) {
776 free(ptmp->p_limit->pl_corename, M_TEMP);
777 }
778 ptmp->p_limit->pl_corename = tmps;
779 return (0);
780 }
781 cleanup:
782 if (tmps)
783 free(tmps, M_TEMP);
784 return (error);
785 }
786 if (name[1] == PROC_PID_LIMIT) {
787 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
788 return EINVAL;
789 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
790 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
791 error = sysctl_quad(oldp, oldlenp, newp, newlen,
792 &alim.rlim_max);
793 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
794 error = sysctl_quad(oldp, oldlenp, newp, newlen,
795 &alim.rlim_cur);
796 else
797 error = EINVAL;
798
799 if (error)
800 return error;
801
802 if (newp)
803 error = dosetrlimit(ptmp, p->p_cred,
804 name[2] - 1, &alim);
805 return error;
806 }
807 return (EINVAL);
808 }
809
810 /*
811 * Convenience macros.
812 */
813
814 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
815 if (oldlenp) { \
816 if (!oldp) \
817 *oldlenp = len; \
818 else { \
819 if (*oldlenp < len) \
820 return(ENOMEM); \
821 *oldlenp = len; \
822 error = copyout((caddr_t)valp, oldp, len); \
823 } \
824 }
825
826 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
827 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
828
829 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
830 if (newp && newlen != len) \
831 return (EINVAL);
832
833 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
834 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
835
836 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
837 if (error == 0 && newp) \
838 error = copyin(newp, valp, len);
839
840 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
841 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
842
843 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
844 if (oldlenp) { \
845 len = strlen(str) + 1; \
846 if (!oldp) \
847 *oldlenp = len; \
848 else { \
849 if (*oldlenp < len) { \
850 err2 = ENOMEM; \
851 len = *oldlenp; \
852 } else \
853 *oldlenp = len; \
854 error = copyout(str, oldp, len);\
855 if (error == 0) \
856 error = err2; \
857 } \
858 }
859
860 /*
861 * Validate parameters and get old / set new parameters
862 * for an integer-valued sysctl function.
863 */
864 int
865 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
866 {
867 int error = 0;
868
869 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
870 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
871 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
872
873 return (error);
874 }
875
876
877 /*
878 * As above, but read-only.
879 */
880 int
881 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
882 {
883 int error = 0;
884
885 if (newp)
886 return (EPERM);
887
888 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
889
890 return (error);
891 }
892
893 /*
894 * Validate parameters and get old / set new parameters
895 * for an quad-valued sysctl function.
896 */
897 int
898 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
899 quad_t *valp)
900 {
901 int error = 0;
902
903 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
904 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
905 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
906
907 return (error);
908 }
909
910 /*
911 * As above, but read-only.
912 */
913 int
914 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
915 {
916 int error = 0;
917
918 if (newp)
919 return (EPERM);
920
921 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
922
923 return (error);
924 }
925
926 /*
927 * Validate parameters and get old / set new parameters
928 * for a string-valued sysctl function.
929 */
930 int
931 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
932 int maxlen)
933 {
934 int len, error = 0, err2 = 0;
935
936 if (newp && newlen >= maxlen)
937 return (EINVAL);
938
939 SYSCTL_STRING_CORE(oldp, oldlenp, str);
940
941 if (error == 0 && newp) {
942 error = copyin(newp, str, newlen);
943 str[newlen] = 0;
944 }
945 return (error);
946 }
947
948 /*
949 * As above, but read-only.
950 */
951 int
952 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
953 {
954 int len, error = 0, err2 = 0;
955
956 if (newp)
957 return (EPERM);
958
959 SYSCTL_STRING_CORE(oldp, oldlenp, str);
960
961 return (error);
962 }
963
964 /*
965 * Validate parameters and get old / set new parameters
966 * for a structure oriented sysctl function.
967 */
968 int
969 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
970 int len)
971 {
972 int error = 0;
973
974 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
975 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
976 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
977
978 return (error);
979 }
980
981 /*
982 * Validate parameters and get old parameters
983 * for a structure oriented sysctl function.
984 */
985 int
986 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
987 int len)
988 {
989 int error = 0;
990
991 if (newp)
992 return (EPERM);
993
994 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
995
996 return (error);
997 }
998
999 /*
1000 * As above, but can return a truncated result.
1001 */
1002 int
1003 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1004 int len)
1005 {
1006 int error = 0;
1007
1008 if (newp)
1009 return (EPERM);
1010
1011 len = min(*oldlenp, len);
1012 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1013
1014 return (error);
1015 }
1016
1017 /*
1018 * Get file structures.
1019 */
1020 static int
1021 sysctl_file(void *vwhere, size_t *sizep)
1022 {
1023 int buflen, error;
1024 struct file *fp;
1025 char *start, *where;
1026
1027 start = where = vwhere;
1028 buflen = *sizep;
1029 if (where == NULL) {
1030 /*
1031 * overestimate by 10 files
1032 */
1033 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1034 return (0);
1035 }
1036
1037 /*
1038 * first copyout filehead
1039 */
1040 if (buflen < sizeof(filehead)) {
1041 *sizep = 0;
1042 return (0);
1043 }
1044 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1045 if (error)
1046 return (error);
1047 buflen -= sizeof(filehead);
1048 where += sizeof(filehead);
1049
1050 /*
1051 * followed by an array of file structures
1052 */
1053 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1054 if (buflen < sizeof(struct file)) {
1055 *sizep = where - start;
1056 return (ENOMEM);
1057 }
1058 error = copyout((caddr_t)fp, where, sizeof(struct file));
1059 if (error)
1060 return (error);
1061 buflen -= sizeof(struct file);
1062 where += sizeof(struct file);
1063 }
1064 *sizep = where - start;
1065 return (0);
1066 }
1067
1068 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1069 #define FILL_PERM(src, dst) do { \
1070 (dst)._key = (src)._key; \
1071 (dst).uid = (src).uid; \
1072 (dst).gid = (src).gid; \
1073 (dst).cuid = (src).cuid; \
1074 (dst).cgid = (src).cgid; \
1075 (dst).mode = (src).mode; \
1076 (dst)._seq = (src)._seq; \
1077 } while (0);
1078 #define FILL_MSG(src, dst) do { \
1079 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1080 (dst).msg_qnum = (src).msg_qnum; \
1081 (dst).msg_qbytes = (src).msg_qbytes; \
1082 (dst)._msg_cbytes = (src)._msg_cbytes; \
1083 (dst).msg_lspid = (src).msg_lspid; \
1084 (dst).msg_lrpid = (src).msg_lrpid; \
1085 (dst).msg_stime = (src).msg_stime; \
1086 (dst).msg_rtime = (src).msg_rtime; \
1087 (dst).msg_ctime = (src).msg_ctime; \
1088 } while (0)
1089 #define FILL_SEM(src, dst) do { \
1090 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1091 (dst).sem_nsems = (src).sem_nsems; \
1092 (dst).sem_otime = (src).sem_otime; \
1093 (dst).sem_ctime = (src).sem_ctime; \
1094 } while (0)
1095 #define FILL_SHM(src, dst) do { \
1096 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1097 (dst).shm_segsz = (src).shm_segsz; \
1098 (dst).shm_lpid = (src).shm_lpid; \
1099 (dst).shm_cpid = (src).shm_cpid; \
1100 (dst).shm_atime = (src).shm_atime; \
1101 (dst).shm_dtime = (src).shm_dtime; \
1102 (dst).shm_ctime = (src).shm_ctime; \
1103 (dst).shm_nattch = (src).shm_nattch; \
1104 } while (0)
1105
1106 static int
1107 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1108 {
1109 #ifdef SYSVMSG
1110 struct msg_sysctl_info *msgsi;
1111 #endif
1112 #ifdef SYSVSEM
1113 struct sem_sysctl_info *semsi;
1114 #endif
1115 #ifdef SYSVSHM
1116 struct shm_sysctl_info *shmsi;
1117 #endif
1118 size_t infosize, dssize, tsize, buflen;
1119 void *buf = NULL, *buf2;
1120 char *start;
1121 int32_t nds;
1122 int i, error, ret;
1123
1124 if (namelen != 1)
1125 return (EINVAL);
1126
1127 start = where;
1128 buflen = *sizep;
1129
1130 switch (*name) {
1131 case KERN_SYSVIPC_MSG_INFO:
1132 #ifdef SYSVMSG
1133 infosize = sizeof(msgsi->msginfo);
1134 nds = msginfo.msgmni;
1135 dssize = sizeof(msgsi->msgids[0]);
1136 break;
1137 #else
1138 return (EINVAL);
1139 #endif
1140 case KERN_SYSVIPC_SEM_INFO:
1141 #ifdef SYSVSEM
1142 infosize = sizeof(semsi->seminfo);
1143 nds = seminfo.semmni;
1144 dssize = sizeof(semsi->semids[0]);
1145 break;
1146 #else
1147 return (EINVAL);
1148 #endif
1149 case KERN_SYSVIPC_SHM_INFO:
1150 #ifdef SYSVSHM
1151 infosize = sizeof(shmsi->shminfo);
1152 nds = shminfo.shmmni;
1153 dssize = sizeof(shmsi->shmids[0]);
1154 break;
1155 #else
1156 return (EINVAL);
1157 #endif
1158 default:
1159 return (EINVAL);
1160 }
1161 /*
1162 * Round infosize to 64 bit boundary if requesting more than just
1163 * the info structure or getting the total data size.
1164 */
1165 if (where == NULL || *sizep > infosize)
1166 infosize = ((infosize + 7) / 8) * 8;
1167 tsize = infosize + nds * dssize;
1168
1169 /* Return just the total size required. */
1170 if (where == NULL) {
1171 *sizep = tsize;
1172 return (0);
1173 }
1174
1175 /* Not enough room for even the info struct. */
1176 if (buflen < infosize) {
1177 *sizep = 0;
1178 return (ENOMEM);
1179 }
1180 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1181 memset(buf, 0, min(tsize, buflen));
1182
1183 switch (*name) {
1184 #ifdef SYSVMSG
1185 case KERN_SYSVIPC_MSG_INFO:
1186 msgsi = (struct msg_sysctl_info *)buf;
1187 buf2 = &msgsi->msgids[0];
1188 msgsi->msginfo = msginfo;
1189 break;
1190 #endif
1191 #ifdef SYSVSEM
1192 case KERN_SYSVIPC_SEM_INFO:
1193 semsi = (struct sem_sysctl_info *)buf;
1194 buf2 = &semsi->semids[0];
1195 semsi->seminfo = seminfo;
1196 break;
1197 #endif
1198 #ifdef SYSVSHM
1199 case KERN_SYSVIPC_SHM_INFO:
1200 shmsi = (struct shm_sysctl_info *)buf;
1201 buf2 = &shmsi->shmids[0];
1202 shmsi->shminfo = shminfo;
1203 break;
1204 #endif
1205 }
1206 buflen -= infosize;
1207
1208 ret = 0;
1209 if (buflen > 0) {
1210 /* Fill in the IPC data structures. */
1211 for (i = 0; i < nds; i++) {
1212 if (buflen < dssize) {
1213 ret = ENOMEM;
1214 break;
1215 }
1216 switch (*name) {
1217 #ifdef SYSVMSG
1218 case KERN_SYSVIPC_MSG_INFO:
1219 FILL_MSG(msqids[i], msgsi->msgids[i]);
1220 break;
1221 #endif
1222 #ifdef SYSVSEM
1223 case KERN_SYSVIPC_SEM_INFO:
1224 FILL_SEM(sema[i], semsi->semids[i]);
1225 break;
1226 #endif
1227 #ifdef SYSVSHM
1228 case KERN_SYSVIPC_SHM_INFO:
1229 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1230 break;
1231 #endif
1232 }
1233 buflen -= dssize;
1234 }
1235 }
1236 *sizep -= buflen;
1237 error = copyout(buf, start, *sizep);
1238 /* If copyout succeeded, use return code set earlier. */
1239 if (error == 0)
1240 error = ret;
1241 if (buf)
1242 free(buf, M_TEMP);
1243 return (error);
1244 }
1245 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1246
1247 static int
1248 sysctl_msgbuf(void *vwhere, size_t *sizep)
1249 {
1250 char *where = vwhere;
1251 size_t len, maxlen = *sizep;
1252 long beg, end;
1253 int error;
1254
1255 /*
1256 * deal with cases where the message buffer has
1257 * become corrupted.
1258 */
1259 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1260 msgbufenabled = 0;
1261 return (ENXIO);
1262 }
1263
1264 if (where == NULL) {
1265 /* always return full buffer size */
1266 *sizep = msgbufp->msg_bufs;
1267 return (0);
1268 }
1269
1270 error = 0;
1271 maxlen = min(msgbufp->msg_bufs, maxlen);
1272
1273 /*
1274 * First, copy from the write pointer to the end of
1275 * message buffer.
1276 */
1277 beg = msgbufp->msg_bufx;
1278 end = msgbufp->msg_bufs;
1279 while (maxlen > 0) {
1280 len = min(end - beg, maxlen);
1281 if (len == 0)
1282 break;
1283 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1284 if (error)
1285 break;
1286 where += len;
1287 maxlen -= len;
1288
1289 /*
1290 * ... then, copy from the beginning of message buffer to
1291 * the write pointer.
1292 */
1293 beg = 0;
1294 end = msgbufp->msg_bufx;
1295 }
1296 return (error);
1297 }
1298
1299 /*
1300 * try over estimating by 5 procs
1301 */
1302 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1303
1304 static int
1305 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1306 {
1307 struct eproc eproc;
1308 struct kinfo_proc2 kproc2;
1309 struct kinfo_proc *dp;
1310 struct proc *p;
1311 const struct proclist_desc *pd;
1312 char *where, *dp2;
1313 int type, op, arg, elem_size, elem_count;
1314 int buflen, needed, error;
1315
1316 dp = vwhere;
1317 dp2 = where = vwhere;
1318 buflen = where != NULL ? *sizep : 0;
1319 error = needed = 0;
1320 type = name[0];
1321
1322 if (type == KERN_PROC) {
1323 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1324 return (EINVAL);
1325 op = name[1];
1326 if (op != KERN_PROC_ALL)
1327 arg = name[2];
1328 } else {
1329 if (namelen != 5)
1330 return (EINVAL);
1331 op = name[1];
1332 arg = name[2];
1333 elem_size = name[3];
1334 elem_count = name[4];
1335 }
1336
1337 proclist_lock_read();
1338
1339 pd = proclists;
1340 again:
1341 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1342 /*
1343 * Skip embryonic processes.
1344 */
1345 if (p->p_stat == SIDL)
1346 continue;
1347 /*
1348 * TODO - make more efficient (see notes below).
1349 * do by session.
1350 */
1351 switch (op) {
1352
1353 case KERN_PROC_PID:
1354 /* could do this with just a lookup */
1355 if (p->p_pid != (pid_t)arg)
1356 continue;
1357 break;
1358
1359 case KERN_PROC_PGRP:
1360 /* could do this by traversing pgrp */
1361 if (p->p_pgrp->pg_id != (pid_t)arg)
1362 continue;
1363 break;
1364
1365 case KERN_PROC_SESSION:
1366 if (p->p_session->s_sid != (pid_t)arg)
1367 continue;
1368 break;
1369
1370 case KERN_PROC_TTY:
1371 if (arg == KERN_PROC_TTY_REVOKE) {
1372 if ((p->p_flag & P_CONTROLT) == 0 ||
1373 p->p_session->s_ttyp == NULL ||
1374 p->p_session->s_ttyvp != NULL)
1375 continue;
1376 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1377 p->p_session->s_ttyp == NULL) {
1378 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1379 continue;
1380 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1381 continue;
1382 break;
1383
1384 case KERN_PROC_UID:
1385 if (p->p_ucred->cr_uid != (uid_t)arg)
1386 continue;
1387 break;
1388
1389 case KERN_PROC_RUID:
1390 if (p->p_cred->p_ruid != (uid_t)arg)
1391 continue;
1392 break;
1393
1394 case KERN_PROC_GID:
1395 if (p->p_ucred->cr_gid != (uid_t)arg)
1396 continue;
1397 break;
1398
1399 case KERN_PROC_RGID:
1400 if (p->p_cred->p_rgid != (uid_t)arg)
1401 continue;
1402 break;
1403
1404 case KERN_PROC_ALL:
1405 /* allow everything */
1406 break;
1407
1408 default:
1409 error = EINVAL;
1410 goto cleanup;
1411 }
1412 if (type == KERN_PROC) {
1413 if (buflen >= sizeof(struct kinfo_proc)) {
1414 fill_eproc(p, &eproc);
1415 error = copyout((caddr_t)p, &dp->kp_proc,
1416 sizeof(struct proc));
1417 if (error)
1418 goto cleanup;
1419 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1420 sizeof(eproc));
1421 if (error)
1422 goto cleanup;
1423 dp++;
1424 buflen -= sizeof(struct kinfo_proc);
1425 }
1426 needed += sizeof(struct kinfo_proc);
1427 } else { /* KERN_PROC2 */
1428 if (buflen >= elem_size && elem_count > 0) {
1429 fill_kproc2(p, &kproc2);
1430 /*
1431 * Copy out elem_size, but not larger than
1432 * the size of a struct kinfo_proc2.
1433 */
1434 error = copyout(&kproc2, dp2,
1435 min(sizeof(kproc2), elem_size));
1436 if (error)
1437 goto cleanup;
1438 dp2 += elem_size;
1439 buflen -= elem_size;
1440 elem_count--;
1441 }
1442 needed += elem_size;
1443 }
1444 }
1445 pd++;
1446 if (pd->pd_list != NULL)
1447 goto again;
1448 proclist_unlock_read();
1449
1450 if (where != NULL) {
1451 if (type == KERN_PROC)
1452 *sizep = (caddr_t)dp - where;
1453 else
1454 *sizep = dp2 - where;
1455 if (needed > *sizep)
1456 return (ENOMEM);
1457 } else {
1458 needed += KERN_PROCSLOP;
1459 *sizep = needed;
1460 }
1461 return (0);
1462 cleanup:
1463 proclist_unlock_read();
1464 return (error);
1465 }
1466
1467 /*
1468 * Fill in an eproc structure for the specified process.
1469 */
1470 void
1471 fill_eproc(struct proc *p, struct eproc *ep)
1472 {
1473 struct tty *tp;
1474
1475 ep->e_paddr = p;
1476 ep->e_sess = p->p_session;
1477 ep->e_pcred = *p->p_cred;
1478 ep->e_ucred = *p->p_ucred;
1479 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1480 ep->e_vm.vm_rssize = 0;
1481 ep->e_vm.vm_tsize = 0;
1482 ep->e_vm.vm_dsize = 0;
1483 ep->e_vm.vm_ssize = 0;
1484 /* ep->e_vm.vm_pmap = XXX; */
1485 } else {
1486 struct vmspace *vm = p->p_vmspace;
1487
1488 ep->e_vm.vm_rssize = vm_resident_count(vm);
1489 ep->e_vm.vm_tsize = vm->vm_tsize;
1490 ep->e_vm.vm_dsize = vm->vm_dsize;
1491 ep->e_vm.vm_ssize = vm->vm_ssize;
1492 }
1493 if (p->p_pptr)
1494 ep->e_ppid = p->p_pptr->p_pid;
1495 else
1496 ep->e_ppid = 0;
1497 ep->e_pgid = p->p_pgrp->pg_id;
1498 ep->e_sid = ep->e_sess->s_sid;
1499 ep->e_jobc = p->p_pgrp->pg_jobc;
1500 if ((p->p_flag & P_CONTROLT) &&
1501 (tp = ep->e_sess->s_ttyp)) {
1502 ep->e_tdev = tp->t_dev;
1503 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1504 ep->e_tsess = tp->t_session;
1505 } else
1506 ep->e_tdev = NODEV;
1507 if (p->p_wmesg)
1508 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1509 ep->e_xsize = ep->e_xrssize = 0;
1510 ep->e_xccount = ep->e_xswrss = 0;
1511 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1512 if (SESS_LEADER(p))
1513 ep->e_flag |= EPROC_SLEADER;
1514 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1515 }
1516
1517 /*
1518 * Fill in an eproc structure for the specified process.
1519 */
1520 static void
1521 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1522 {
1523 struct tty *tp;
1524
1525 memset(ki, 0, sizeof(*ki));
1526
1527 ki->p_forw = PTRTOINT64(p->p_forw);
1528 ki->p_back = PTRTOINT64(p->p_back);
1529 ki->p_paddr = PTRTOINT64(p);
1530
1531 ki->p_addr = PTRTOINT64(p->p_addr);
1532 ki->p_fd = PTRTOINT64(p->p_fd);
1533 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1534 ki->p_stats = PTRTOINT64(p->p_stats);
1535 ki->p_limit = PTRTOINT64(p->p_limit);
1536 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1537 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1538 ki->p_sess = PTRTOINT64(p->p_session);
1539 ki->p_tsess = 0; /* may be changed if controlling tty below */
1540 ki->p_ru = PTRTOINT64(p->p_ru);
1541
1542 ki->p_eflag = 0;
1543 ki->p_exitsig = p->p_exitsig;
1544 ki->p_flag = p->p_flag;
1545
1546 ki->p_pid = p->p_pid;
1547 if (p->p_pptr)
1548 ki->p_ppid = p->p_pptr->p_pid;
1549 else
1550 ki->p_ppid = 0;
1551 ki->p_sid = p->p_session->s_sid;
1552 ki->p__pgid = p->p_pgrp->pg_id;
1553
1554 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1555
1556 ki->p_uid = p->p_ucred->cr_uid;
1557 ki->p_ruid = p->p_cred->p_ruid;
1558 ki->p_gid = p->p_ucred->cr_gid;
1559 ki->p_rgid = p->p_cred->p_rgid;
1560
1561 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1562 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1563 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1564
1565 ki->p_jobc = p->p_pgrp->pg_jobc;
1566 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1567 ki->p_tdev = tp->t_dev;
1568 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1569 ki->p_tsess = PTRTOINT64(tp->t_session);
1570 } else {
1571 ki->p_tdev = NODEV;
1572 }
1573
1574 ki->p_estcpu = p->p_estcpu;
1575 ki->p_rtime_sec = p->p_rtime.tv_sec;
1576 ki->p_rtime_usec = p->p_rtime.tv_usec;
1577 ki->p_cpticks = p->p_cpticks;
1578 ki->p_pctcpu = p->p_pctcpu;
1579 ki->p_swtime = p->p_swtime;
1580 ki->p_slptime = p->p_slptime;
1581 if (p->p_stat == SONPROC) {
1582 KDASSERT(p->p_cpu != NULL);
1583 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1584 } else
1585 ki->p_schedflags = 0;
1586
1587 ki->p_uticks = p->p_uticks;
1588 ki->p_sticks = p->p_sticks;
1589 ki->p_iticks = p->p_iticks;
1590
1591 ki->p_tracep = PTRTOINT64(p->p_tracep);
1592 ki->p_traceflag = p->p_traceflag;
1593
1594 ki->p_holdcnt = p->p_holdcnt;
1595
1596 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1597 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1598 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1599 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1600
1601 ki->p_stat = p->p_stat;
1602 ki->p_priority = p->p_priority;
1603 ki->p_usrpri = p->p_usrpri;
1604 ki->p_nice = p->p_nice;
1605
1606 ki->p_xstat = p->p_xstat;
1607 ki->p_acflag = p->p_acflag;
1608
1609 strncpy(ki->p_comm, p->p_comm,
1610 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1611
1612 if (p->p_wmesg)
1613 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1614 ki->p_wchan = PTRTOINT64(p->p_wchan);
1615
1616 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1617
1618 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1619 ki->p_vm_rssize = 0;
1620 ki->p_vm_tsize = 0;
1621 ki->p_vm_dsize = 0;
1622 ki->p_vm_ssize = 0;
1623 } else {
1624 struct vmspace *vm = p->p_vmspace;
1625
1626 ki->p_vm_rssize = vm_resident_count(vm);
1627 ki->p_vm_tsize = vm->vm_tsize;
1628 ki->p_vm_dsize = vm->vm_dsize;
1629 ki->p_vm_ssize = vm->vm_ssize;
1630 }
1631
1632 if (p->p_session->s_ttyvp)
1633 ki->p_eflag |= EPROC_CTTY;
1634 if (SESS_LEADER(p))
1635 ki->p_eflag |= EPROC_SLEADER;
1636
1637 /* XXX Is this double check necessary? */
1638 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1639 ki->p_uvalid = 0;
1640 } else {
1641 ki->p_uvalid = 1;
1642
1643 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1644 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1645
1646 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1647 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1648 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1649 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1650
1651 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1652 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1653 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1654 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1655 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1656 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1657 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1658 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1659 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1660 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1661 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1662 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1663 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1664 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1665
1666 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1667 p->p_stats->p_cru.ru_stime.tv_sec;
1668 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1669 p->p_stats->p_cru.ru_stime.tv_usec;
1670 }
1671 #ifdef MULTIPROCESSOR
1672 if (p->p_cpu != NULL)
1673 ki->p_cpuid = p->p_cpu->ci_cpuid;
1674 else
1675 #endif
1676 ki->p_cpuid = KI_NOCPU;
1677 }
1678
1679 int
1680 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1681 struct proc *up)
1682 {
1683 struct ps_strings pss;
1684 struct proc *p;
1685 size_t len, upper_bound, xlen;
1686 struct uio auio;
1687 struct iovec aiov;
1688 vaddr_t argv;
1689 pid_t pid;
1690 int nargv, type, error, i;
1691 char *arg;
1692 char *tmp;
1693
1694 if (namelen != 2)
1695 return (EINVAL);
1696 pid = name[0];
1697 type = name[1];
1698
1699 switch (type) {
1700 case KERN_PROC_ARGV:
1701 case KERN_PROC_NARGV:
1702 case KERN_PROC_ENV:
1703 case KERN_PROC_NENV:
1704 /* ok */
1705 break;
1706 default:
1707 return (EINVAL);
1708 }
1709
1710 /* check pid */
1711 if ((p = pfind(pid)) == NULL)
1712 return (EINVAL);
1713
1714 /* only root or same user change look at the environment */
1715 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1716 if (up->p_ucred->cr_uid != 0) {
1717 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1718 up->p_cred->p_ruid != p->p_cred->p_svuid)
1719 return (EPERM);
1720 }
1721 }
1722
1723 if (sizep != NULL && where == NULL) {
1724 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1725 *sizep = sizeof (int);
1726 else
1727 *sizep = ARG_MAX; /* XXX XXX XXX */
1728 return (0);
1729 }
1730 if (where == NULL || sizep == NULL)
1731 return (EINVAL);
1732
1733 /*
1734 * Zombies don't have a stack, so we can't read their psstrings.
1735 * System processes also don't have a user stack.
1736 */
1737 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1738 return (EINVAL);
1739
1740 /*
1741 * Lock the process down in memory.
1742 */
1743 /* XXXCDC: how should locking work here? */
1744 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1745 return (EFAULT);
1746 p->p_vmspace->vm_refcnt++; /* XXX */
1747
1748 /*
1749 * Allocate a temporary buffer to hold the arguments.
1750 */
1751 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1752
1753 /*
1754 * Read in the ps_strings structure.
1755 */
1756 aiov.iov_base = &pss;
1757 aiov.iov_len = sizeof(pss);
1758 auio.uio_iov = &aiov;
1759 auio.uio_iovcnt = 1;
1760 auio.uio_offset = (vaddr_t)p->p_psstr;
1761 auio.uio_resid = sizeof(pss);
1762 auio.uio_segflg = UIO_SYSSPACE;
1763 auio.uio_rw = UIO_READ;
1764 auio.uio_procp = NULL;
1765 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1766 if (error)
1767 goto done;
1768
1769 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1770 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1771 else
1772 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1773 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1774 error = copyout(&nargv, where, sizeof(nargv));
1775 *sizep = sizeof(nargv);
1776 goto done;
1777 }
1778 /*
1779 * Now read the address of the argument vector.
1780 */
1781 switch (type) {
1782 case KERN_PROC_ARGV:
1783 /* XXX compat32 stuff here */
1784 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1785 break;
1786 case KERN_PROC_ENV:
1787 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1788 break;
1789 default:
1790 return (EINVAL);
1791 }
1792 auio.uio_offset = (off_t)(long)tmp;
1793 aiov.iov_base = &argv;
1794 aiov.iov_len = sizeof(argv);
1795 auio.uio_iov = &aiov;
1796 auio.uio_iovcnt = 1;
1797 auio.uio_resid = sizeof(argv);
1798 auio.uio_segflg = UIO_SYSSPACE;
1799 auio.uio_rw = UIO_READ;
1800 auio.uio_procp = NULL;
1801 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1802 if (error)
1803 goto done;
1804
1805 /*
1806 * Now copy in the actual argument vector, one page at a time,
1807 * since we don't know how long the vector is (though, we do
1808 * know how many NUL-terminated strings are in the vector).
1809 */
1810 len = 0;
1811 upper_bound = *sizep;
1812 for (; nargv != 0 && len < upper_bound; len += xlen) {
1813 aiov.iov_base = arg;
1814 aiov.iov_len = PAGE_SIZE;
1815 auio.uio_iov = &aiov;
1816 auio.uio_iovcnt = 1;
1817 auio.uio_offset = argv + len;
1818 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1819 auio.uio_resid = xlen;
1820 auio.uio_segflg = UIO_SYSSPACE;
1821 auio.uio_rw = UIO_READ;
1822 auio.uio_procp = NULL;
1823 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1824 if (error)
1825 goto done;
1826
1827 for (i = 0; i < xlen && nargv != 0; i++) {
1828 if (arg[i] == '\0')
1829 nargv--; /* one full string */
1830 }
1831
1832 /* make sure we don't copyout past the end of the user's buffer */
1833 if (len + i > upper_bound)
1834 i = upper_bound - len;
1835
1836 error = copyout(arg, (char *)where + len, i);
1837 if (error)
1838 break;
1839
1840 if (nargv == 0) {
1841 len += i;
1842 break;
1843 }
1844 }
1845 *sizep = len;
1846
1847 done:
1848 uvmspace_free(p->p_vmspace);
1849
1850 free(arg, M_TEMP);
1851 return (error);
1852 }
1853
1854 #if NPTY > 0
1855 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1856
1857 /*
1858 * Validate parameters and get old / set new parameters
1859 * for pty sysctl function.
1860 */
1861 static int
1862 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1863 {
1864 int error = 0;
1865 int oldmax = 0, newmax = 0;
1866
1867 /* get current value of maxptys */
1868 oldmax = pty_maxptys(0, 0);
1869
1870 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1871
1872 if (!error && newp) {
1873 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1874 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1875
1876 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1877 return (EINVAL);
1878
1879 }
1880
1881 return (error);
1882 }
1883 #endif /* NPTY > 0 */
1884