kern_tc.c revision 1.1.1.1.2.3 1 1.1.1.1.2.3 simonb /* $NetBSD: kern_tc.c,v 1.1.1.1.2.3 2006/02/04 08:19:04 simonb Exp $ */
2 1.1.1.1.2.3 simonb
3 1.1.1.1.2.2 simonb /*-
4 1.1.1.1.2.2 simonb * ----------------------------------------------------------------------------
5 1.1.1.1.2.2 simonb * "THE BEER-WARE LICENSE" (Revision 42):
6 1.1.1.1.2.2 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.1.1.1.2.2 simonb * can do whatever you want with this stuff. If we meet some day, and you think
8 1.1.1.1.2.2 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.1.1.1.2.2 simonb * ----------------------------------------------------------------------------
10 1.1.1.1.2.2 simonb */
11 1.1.1.1.2.2 simonb
12 1.1.1.1.2.2 simonb #include <sys/cdefs.h>
13 1.1.1.1.2.3 simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.1.1.1.2.3 simonb __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.3 2006/02/04 08:19:04 simonb Exp $");
15 1.1.1.1.2.2 simonb
16 1.1.1.1.2.2 simonb #include "opt_ntp.h"
17 1.1.1.1.2.2 simonb
18 1.1.1.1.2.2 simonb #include <sys/param.h>
19 1.1.1.1.2.2 simonb #include <sys/kernel.h>
20 1.1.1.1.2.2 simonb #include <sys/sysctl.h>
21 1.1.1.1.2.2 simonb #include <sys/syslog.h>
22 1.1.1.1.2.2 simonb #include <sys/systm.h>
23 1.1.1.1.2.2 simonb #include <sys/timepps.h>
24 1.1.1.1.2.2 simonb #include <sys/timetc.h>
25 1.1.1.1.2.2 simonb #include <sys/timex.h>
26 1.1.1.1.2.2 simonb
27 1.1.1.1.2.2 simonb /*
28 1.1.1.1.2.2 simonb * A large step happens on boot. This constant detects such steps.
29 1.1.1.1.2.2 simonb * It is relatively small so that ntp_update_second gets called enough
30 1.1.1.1.2.2 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
31 1.1.1.1.2.2 simonb * forever when the time step is large.
32 1.1.1.1.2.2 simonb */
33 1.1.1.1.2.2 simonb #define LARGE_STEP 200
34 1.1.1.1.2.2 simonb
35 1.1.1.1.2.2 simonb /*
36 1.1.1.1.2.2 simonb * Implement a dummy timecounter which we can use until we get a real one
37 1.1.1.1.2.2 simonb * in the air. This allows the console and other early stuff to use
38 1.1.1.1.2.2 simonb * time services.
39 1.1.1.1.2.2 simonb */
40 1.1.1.1.2.2 simonb
41 1.1.1.1.2.2 simonb static u_int
42 1.1.1.1.2.2 simonb dummy_get_timecount(struct timecounter *tc)
43 1.1.1.1.2.2 simonb {
44 1.1.1.1.2.2 simonb static u_int now;
45 1.1.1.1.2.2 simonb
46 1.1.1.1.2.2 simonb return (++now);
47 1.1.1.1.2.2 simonb }
48 1.1.1.1.2.2 simonb
49 1.1.1.1.2.2 simonb static struct timecounter dummy_timecounter = {
50 1.1.1.1.2.2 simonb dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
51 1.1.1.1.2.2 simonb };
52 1.1.1.1.2.2 simonb
53 1.1.1.1.2.2 simonb struct timehands {
54 1.1.1.1.2.2 simonb /* These fields must be initialized by the driver. */
55 1.1.1.1.2.2 simonb struct timecounter *th_counter;
56 1.1.1.1.2.2 simonb int64_t th_adjustment;
57 1.1.1.1.2.2 simonb u_int64_t th_scale;
58 1.1.1.1.2.2 simonb u_int th_offset_count;
59 1.1.1.1.2.2 simonb struct bintime th_offset;
60 1.1.1.1.2.2 simonb struct timeval th_microtime;
61 1.1.1.1.2.2 simonb struct timespec th_nanotime;
62 1.1.1.1.2.2 simonb /* Fields not to be copied in tc_windup start with th_generation. */
63 1.1.1.1.2.2 simonb volatile u_int th_generation;
64 1.1.1.1.2.2 simonb struct timehands *th_next;
65 1.1.1.1.2.2 simonb };
66 1.1.1.1.2.2 simonb
67 1.1.1.1.2.2 simonb static struct timehands th0;
68 1.1.1.1.2.2 simonb static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
69 1.1.1.1.2.2 simonb static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
70 1.1.1.1.2.2 simonb static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
71 1.1.1.1.2.2 simonb static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
72 1.1.1.1.2.2 simonb static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
73 1.1.1.1.2.2 simonb static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
74 1.1.1.1.2.2 simonb static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
75 1.1.1.1.2.2 simonb static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
76 1.1.1.1.2.2 simonb static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
77 1.1.1.1.2.2 simonb static struct timehands th0 = {
78 1.1.1.1.2.2 simonb &dummy_timecounter,
79 1.1.1.1.2.2 simonb 0,
80 1.1.1.1.2.2 simonb (uint64_t)-1 / 1000000,
81 1.1.1.1.2.2 simonb 0,
82 1.1.1.1.2.2 simonb {1, 0},
83 1.1.1.1.2.2 simonb {0, 0},
84 1.1.1.1.2.2 simonb {0, 0},
85 1.1.1.1.2.2 simonb 1,
86 1.1.1.1.2.2 simonb &th1
87 1.1.1.1.2.2 simonb };
88 1.1.1.1.2.2 simonb
89 1.1.1.1.2.2 simonb static struct timehands *volatile timehands = &th0;
90 1.1.1.1.2.2 simonb struct timecounter *timecounter = &dummy_timecounter;
91 1.1.1.1.2.2 simonb static struct timecounter *timecounters = &dummy_timecounter;
92 1.1.1.1.2.2 simonb
93 1.1.1.1.2.2 simonb time_t time_second = 1;
94 1.1.1.1.2.2 simonb time_t time_uptime = 1;
95 1.1.1.1.2.2 simonb
96 1.1.1.1.2.2 simonb static struct bintime boottimebin;
97 1.1.1.1.2.2 simonb struct timeval boottime;
98 1.1.1.1.2.2 simonb static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
99 1.1.1.1.2.2 simonb SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
100 1.1.1.1.2.2 simonb NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
101 1.1.1.1.2.2 simonb
102 1.1.1.1.2.2 simonb SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
103 1.1.1.1.2.2 simonb
104 1.1.1.1.2.2 simonb static int timestepwarnings;
105 1.1.1.1.2.2 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106 1.1.1.1.2.2 simonb ×tepwarnings, 0, "");
107 1.1.1.1.2.2 simonb
108 1.1.1.1.2.2 simonb #define TC_STATS(foo) \
109 1.1.1.1.2.2 simonb static u_int foo; \
110 1.1.1.1.2.2 simonb SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
111 1.1.1.1.2.2 simonb struct __hack
112 1.1.1.1.2.2 simonb
113 1.1.1.1.2.2 simonb TC_STATS(nbinuptime); TC_STATS(nnanouptime); TC_STATS(nmicrouptime);
114 1.1.1.1.2.2 simonb TC_STATS(nbintime); TC_STATS(nnanotime); TC_STATS(nmicrotime);
115 1.1.1.1.2.2 simonb TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
116 1.1.1.1.2.2 simonb TC_STATS(ngetbintime); TC_STATS(ngetnanotime); TC_STATS(ngetmicrotime);
117 1.1.1.1.2.2 simonb TC_STATS(nsetclock);
118 1.1.1.1.2.2 simonb
119 1.1.1.1.2.2 simonb #undef TC_STATS
120 1.1.1.1.2.2 simonb
121 1.1.1.1.2.2 simonb static void tc_windup(void);
122 1.1.1.1.2.2 simonb
123 1.1.1.1.2.2 simonb static int
124 1.1.1.1.2.2 simonb sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
125 1.1.1.1.2.2 simonb {
126 1.1.1.1.2.2 simonb #ifdef SCTL_MASK32
127 1.1.1.1.2.2 simonb int tv[2];
128 1.1.1.1.2.2 simonb
129 1.1.1.1.2.2 simonb if (req->flags & SCTL_MASK32) {
130 1.1.1.1.2.2 simonb tv[0] = boottime.tv_sec;
131 1.1.1.1.2.2 simonb tv[1] = boottime.tv_usec;
132 1.1.1.1.2.2 simonb return SYSCTL_OUT(req, tv, sizeof(tv));
133 1.1.1.1.2.2 simonb } else
134 1.1.1.1.2.2 simonb #endif
135 1.1.1.1.2.2 simonb return SYSCTL_OUT(req, &boottime, sizeof(boottime));
136 1.1.1.1.2.2 simonb }
137 1.1.1.1.2.2 simonb /*
138 1.1.1.1.2.2 simonb * Return the difference between the timehands' counter value now and what
139 1.1.1.1.2.2 simonb * was when we copied it to the timehands' offset_count.
140 1.1.1.1.2.2 simonb */
141 1.1.1.1.2.2 simonb static __inline u_int
142 1.1.1.1.2.2 simonb tc_delta(struct timehands *th)
143 1.1.1.1.2.2 simonb {
144 1.1.1.1.2.2 simonb struct timecounter *tc;
145 1.1.1.1.2.2 simonb
146 1.1.1.1.2.2 simonb tc = th->th_counter;
147 1.1.1.1.2.2 simonb return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
148 1.1.1.1.2.2 simonb tc->tc_counter_mask);
149 1.1.1.1.2.2 simonb }
150 1.1.1.1.2.2 simonb
151 1.1.1.1.2.2 simonb /*
152 1.1.1.1.2.2 simonb * Functions for reading the time. We have to loop until we are sure that
153 1.1.1.1.2.2 simonb * the timehands that we operated on was not updated under our feet. See
154 1.1.1.1.2.2 simonb * the comment in <sys/time.h> for a description of these 12 functions.
155 1.1.1.1.2.2 simonb */
156 1.1.1.1.2.2 simonb
157 1.1.1.1.2.2 simonb void
158 1.1.1.1.2.2 simonb binuptime(struct bintime *bt)
159 1.1.1.1.2.2 simonb {
160 1.1.1.1.2.2 simonb struct timehands *th;
161 1.1.1.1.2.2 simonb u_int gen;
162 1.1.1.1.2.2 simonb
163 1.1.1.1.2.2 simonb nbinuptime++;
164 1.1.1.1.2.2 simonb do {
165 1.1.1.1.2.2 simonb th = timehands;
166 1.1.1.1.2.2 simonb gen = th->th_generation;
167 1.1.1.1.2.2 simonb *bt = th->th_offset;
168 1.1.1.1.2.2 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
169 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
170 1.1.1.1.2.2 simonb }
171 1.1.1.1.2.2 simonb
172 1.1.1.1.2.2 simonb void
173 1.1.1.1.2.2 simonb nanouptime(struct timespec *tsp)
174 1.1.1.1.2.2 simonb {
175 1.1.1.1.2.2 simonb struct bintime bt;
176 1.1.1.1.2.2 simonb
177 1.1.1.1.2.2 simonb nnanouptime++;
178 1.1.1.1.2.2 simonb binuptime(&bt);
179 1.1.1.1.2.2 simonb bintime2timespec(&bt, tsp);
180 1.1.1.1.2.2 simonb }
181 1.1.1.1.2.2 simonb
182 1.1.1.1.2.2 simonb void
183 1.1.1.1.2.2 simonb microuptime(struct timeval *tvp)
184 1.1.1.1.2.2 simonb {
185 1.1.1.1.2.2 simonb struct bintime bt;
186 1.1.1.1.2.2 simonb
187 1.1.1.1.2.2 simonb nmicrouptime++;
188 1.1.1.1.2.2 simonb binuptime(&bt);
189 1.1.1.1.2.2 simonb bintime2timeval(&bt, tvp);
190 1.1.1.1.2.2 simonb }
191 1.1.1.1.2.2 simonb
192 1.1.1.1.2.2 simonb void
193 1.1.1.1.2.2 simonb bintime(struct bintime *bt)
194 1.1.1.1.2.2 simonb {
195 1.1.1.1.2.2 simonb
196 1.1.1.1.2.2 simonb nbintime++;
197 1.1.1.1.2.2 simonb binuptime(bt);
198 1.1.1.1.2.2 simonb bintime_add(bt, &boottimebin);
199 1.1.1.1.2.2 simonb }
200 1.1.1.1.2.2 simonb
201 1.1.1.1.2.2 simonb void
202 1.1.1.1.2.2 simonb nanotime(struct timespec *tsp)
203 1.1.1.1.2.2 simonb {
204 1.1.1.1.2.2 simonb struct bintime bt;
205 1.1.1.1.2.2 simonb
206 1.1.1.1.2.2 simonb nnanotime++;
207 1.1.1.1.2.2 simonb bintime(&bt);
208 1.1.1.1.2.2 simonb bintime2timespec(&bt, tsp);
209 1.1.1.1.2.2 simonb }
210 1.1.1.1.2.2 simonb
211 1.1.1.1.2.2 simonb void
212 1.1.1.1.2.2 simonb microtime(struct timeval *tvp)
213 1.1.1.1.2.2 simonb {
214 1.1.1.1.2.2 simonb struct bintime bt;
215 1.1.1.1.2.2 simonb
216 1.1.1.1.2.2 simonb nmicrotime++;
217 1.1.1.1.2.2 simonb bintime(&bt);
218 1.1.1.1.2.2 simonb bintime2timeval(&bt, tvp);
219 1.1.1.1.2.2 simonb }
220 1.1.1.1.2.2 simonb
221 1.1.1.1.2.2 simonb void
222 1.1.1.1.2.2 simonb getbinuptime(struct bintime *bt)
223 1.1.1.1.2.2 simonb {
224 1.1.1.1.2.2 simonb struct timehands *th;
225 1.1.1.1.2.2 simonb u_int gen;
226 1.1.1.1.2.2 simonb
227 1.1.1.1.2.2 simonb ngetbinuptime++;
228 1.1.1.1.2.2 simonb do {
229 1.1.1.1.2.2 simonb th = timehands;
230 1.1.1.1.2.2 simonb gen = th->th_generation;
231 1.1.1.1.2.2 simonb *bt = th->th_offset;
232 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
233 1.1.1.1.2.2 simonb }
234 1.1.1.1.2.2 simonb
235 1.1.1.1.2.2 simonb void
236 1.1.1.1.2.2 simonb getnanouptime(struct timespec *tsp)
237 1.1.1.1.2.2 simonb {
238 1.1.1.1.2.2 simonb struct timehands *th;
239 1.1.1.1.2.2 simonb u_int gen;
240 1.1.1.1.2.2 simonb
241 1.1.1.1.2.2 simonb ngetnanouptime++;
242 1.1.1.1.2.2 simonb do {
243 1.1.1.1.2.2 simonb th = timehands;
244 1.1.1.1.2.2 simonb gen = th->th_generation;
245 1.1.1.1.2.2 simonb bintime2timespec(&th->th_offset, tsp);
246 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
247 1.1.1.1.2.2 simonb }
248 1.1.1.1.2.2 simonb
249 1.1.1.1.2.2 simonb void
250 1.1.1.1.2.2 simonb getmicrouptime(struct timeval *tvp)
251 1.1.1.1.2.2 simonb {
252 1.1.1.1.2.2 simonb struct timehands *th;
253 1.1.1.1.2.2 simonb u_int gen;
254 1.1.1.1.2.2 simonb
255 1.1.1.1.2.2 simonb ngetmicrouptime++;
256 1.1.1.1.2.2 simonb do {
257 1.1.1.1.2.2 simonb th = timehands;
258 1.1.1.1.2.2 simonb gen = th->th_generation;
259 1.1.1.1.2.2 simonb bintime2timeval(&th->th_offset, tvp);
260 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
261 1.1.1.1.2.2 simonb }
262 1.1.1.1.2.2 simonb
263 1.1.1.1.2.2 simonb void
264 1.1.1.1.2.2 simonb getbintime(struct bintime *bt)
265 1.1.1.1.2.2 simonb {
266 1.1.1.1.2.2 simonb struct timehands *th;
267 1.1.1.1.2.2 simonb u_int gen;
268 1.1.1.1.2.2 simonb
269 1.1.1.1.2.2 simonb ngetbintime++;
270 1.1.1.1.2.2 simonb do {
271 1.1.1.1.2.2 simonb th = timehands;
272 1.1.1.1.2.2 simonb gen = th->th_generation;
273 1.1.1.1.2.2 simonb *bt = th->th_offset;
274 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
275 1.1.1.1.2.2 simonb bintime_add(bt, &boottimebin);
276 1.1.1.1.2.2 simonb }
277 1.1.1.1.2.2 simonb
278 1.1.1.1.2.2 simonb void
279 1.1.1.1.2.2 simonb getnanotime(struct timespec *tsp)
280 1.1.1.1.2.2 simonb {
281 1.1.1.1.2.2 simonb struct timehands *th;
282 1.1.1.1.2.2 simonb u_int gen;
283 1.1.1.1.2.2 simonb
284 1.1.1.1.2.2 simonb ngetnanotime++;
285 1.1.1.1.2.2 simonb do {
286 1.1.1.1.2.2 simonb th = timehands;
287 1.1.1.1.2.2 simonb gen = th->th_generation;
288 1.1.1.1.2.2 simonb *tsp = th->th_nanotime;
289 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
290 1.1.1.1.2.2 simonb }
291 1.1.1.1.2.2 simonb
292 1.1.1.1.2.2 simonb void
293 1.1.1.1.2.2 simonb getmicrotime(struct timeval *tvp)
294 1.1.1.1.2.2 simonb {
295 1.1.1.1.2.2 simonb struct timehands *th;
296 1.1.1.1.2.2 simonb u_int gen;
297 1.1.1.1.2.2 simonb
298 1.1.1.1.2.2 simonb ngetmicrotime++;
299 1.1.1.1.2.2 simonb do {
300 1.1.1.1.2.2 simonb th = timehands;
301 1.1.1.1.2.2 simonb gen = th->th_generation;
302 1.1.1.1.2.2 simonb *tvp = th->th_microtime;
303 1.1.1.1.2.2 simonb } while (gen == 0 || gen != th->th_generation);
304 1.1.1.1.2.2 simonb }
305 1.1.1.1.2.2 simonb
306 1.1.1.1.2.2 simonb /*
307 1.1.1.1.2.2 simonb * Initialize a new timecounter and possibly use it.
308 1.1.1.1.2.2 simonb */
309 1.1.1.1.2.2 simonb void
310 1.1.1.1.2.2 simonb tc_init(struct timecounter *tc)
311 1.1.1.1.2.2 simonb {
312 1.1.1.1.2.2 simonb u_int u;
313 1.1.1.1.2.2 simonb
314 1.1.1.1.2.2 simonb u = tc->tc_frequency / tc->tc_counter_mask;
315 1.1.1.1.2.2 simonb /* XXX: We need some margin here, 10% is a guess */
316 1.1.1.1.2.2 simonb u *= 11;
317 1.1.1.1.2.2 simonb u /= 10;
318 1.1.1.1.2.2 simonb if (u > hz && tc->tc_quality >= 0) {
319 1.1.1.1.2.2 simonb tc->tc_quality = -2000;
320 1.1.1.1.2.2 simonb if (bootverbose) {
321 1.1.1.1.2.2 simonb printf("Timecounter \"%s\" frequency %ju Hz",
322 1.1.1.1.2.2 simonb tc->tc_name, (uintmax_t)tc->tc_frequency);
323 1.1.1.1.2.2 simonb printf(" -- Insufficient hz, needs at least %u\n", u);
324 1.1.1.1.2.2 simonb }
325 1.1.1.1.2.2 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
326 1.1.1.1.2.2 simonb printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
327 1.1.1.1.2.2 simonb tc->tc_name, (uintmax_t)tc->tc_frequency,
328 1.1.1.1.2.2 simonb tc->tc_quality);
329 1.1.1.1.2.2 simonb }
330 1.1.1.1.2.2 simonb
331 1.1.1.1.2.2 simonb tc->tc_next = timecounters;
332 1.1.1.1.2.2 simonb timecounters = tc;
333 1.1.1.1.2.2 simonb /*
334 1.1.1.1.2.2 simonb * Never automatically use a timecounter with negative quality.
335 1.1.1.1.2.2 simonb * Even though we run on the dummy counter, switching here may be
336 1.1.1.1.2.2 simonb * worse since this timecounter may not be monotonous.
337 1.1.1.1.2.2 simonb */
338 1.1.1.1.2.2 simonb if (tc->tc_quality < 0)
339 1.1.1.1.2.2 simonb return;
340 1.1.1.1.2.2 simonb if (tc->tc_quality < timecounter->tc_quality)
341 1.1.1.1.2.2 simonb return;
342 1.1.1.1.2.2 simonb if (tc->tc_quality == timecounter->tc_quality &&
343 1.1.1.1.2.2 simonb tc->tc_frequency < timecounter->tc_frequency)
344 1.1.1.1.2.2 simonb return;
345 1.1.1.1.2.2 simonb (void)tc->tc_get_timecount(tc);
346 1.1.1.1.2.2 simonb (void)tc->tc_get_timecount(tc);
347 1.1.1.1.2.2 simonb timecounter = tc;
348 1.1.1.1.2.2 simonb }
349 1.1.1.1.2.2 simonb
350 1.1.1.1.2.2 simonb /* Report the frequency of the current timecounter. */
351 1.1.1.1.2.2 simonb u_int64_t
352 1.1.1.1.2.2 simonb tc_getfrequency(void)
353 1.1.1.1.2.2 simonb {
354 1.1.1.1.2.2 simonb
355 1.1.1.1.2.2 simonb return (timehands->th_counter->tc_frequency);
356 1.1.1.1.2.2 simonb }
357 1.1.1.1.2.2 simonb
358 1.1.1.1.2.2 simonb /*
359 1.1.1.1.2.2 simonb * Step our concept of UTC. This is done by modifying our estimate of
360 1.1.1.1.2.2 simonb * when we booted.
361 1.1.1.1.2.2 simonb * XXX: not locked.
362 1.1.1.1.2.2 simonb */
363 1.1.1.1.2.2 simonb void
364 1.1.1.1.2.2 simonb tc_setclock(struct timespec *ts)
365 1.1.1.1.2.2 simonb {
366 1.1.1.1.2.2 simonb struct timespec ts2;
367 1.1.1.1.2.2 simonb struct bintime bt, bt2;
368 1.1.1.1.2.2 simonb
369 1.1.1.1.2.2 simonb nsetclock++;
370 1.1.1.1.2.2 simonb binuptime(&bt2);
371 1.1.1.1.2.2 simonb timespec2bintime(ts, &bt);
372 1.1.1.1.2.2 simonb bintime_sub(&bt, &bt2);
373 1.1.1.1.2.2 simonb bintime_add(&bt2, &boottimebin);
374 1.1.1.1.2.2 simonb boottimebin = bt;
375 1.1.1.1.2.2 simonb bintime2timeval(&bt, &boottime);
376 1.1.1.1.2.2 simonb
377 1.1.1.1.2.2 simonb /* XXX fiddle all the little crinkly bits around the fiords... */
378 1.1.1.1.2.2 simonb tc_windup();
379 1.1.1.1.2.2 simonb if (timestepwarnings) {
380 1.1.1.1.2.2 simonb bintime2timespec(&bt2, &ts2);
381 1.1.1.1.2.2 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
382 1.1.1.1.2.2 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
383 1.1.1.1.2.2 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
384 1.1.1.1.2.2 simonb }
385 1.1.1.1.2.2 simonb }
386 1.1.1.1.2.2 simonb
387 1.1.1.1.2.2 simonb /*
388 1.1.1.1.2.2 simonb * Initialize the next struct timehands in the ring and make
389 1.1.1.1.2.2 simonb * it the active timehands. Along the way we might switch to a different
390 1.1.1.1.2.2 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
391 1.1.1.1.2.2 simonb */
392 1.1.1.1.2.2 simonb static void
393 1.1.1.1.2.2 simonb tc_windup(void)
394 1.1.1.1.2.2 simonb {
395 1.1.1.1.2.2 simonb struct bintime bt;
396 1.1.1.1.2.2 simonb struct timehands *th, *tho;
397 1.1.1.1.2.2 simonb u_int64_t scale;
398 1.1.1.1.2.2 simonb u_int delta, ncount, ogen;
399 1.1.1.1.2.2 simonb int i;
400 1.1.1.1.2.2 simonb time_t t;
401 1.1.1.1.2.2 simonb
402 1.1.1.1.2.2 simonb /*
403 1.1.1.1.2.2 simonb * Make the next timehands a copy of the current one, but do not
404 1.1.1.1.2.2 simonb * overwrite the generation or next pointer. While we update
405 1.1.1.1.2.2 simonb * the contents, the generation must be zero.
406 1.1.1.1.2.2 simonb */
407 1.1.1.1.2.2 simonb tho = timehands;
408 1.1.1.1.2.2 simonb th = tho->th_next;
409 1.1.1.1.2.2 simonb ogen = th->th_generation;
410 1.1.1.1.2.2 simonb th->th_generation = 0;
411 1.1.1.1.2.2 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
412 1.1.1.1.2.2 simonb
413 1.1.1.1.2.2 simonb /*
414 1.1.1.1.2.2 simonb * Capture a timecounter delta on the current timecounter and if
415 1.1.1.1.2.2 simonb * changing timecounters, a counter value from the new timecounter.
416 1.1.1.1.2.2 simonb * Update the offset fields accordingly.
417 1.1.1.1.2.2 simonb */
418 1.1.1.1.2.2 simonb delta = tc_delta(th);
419 1.1.1.1.2.2 simonb if (th->th_counter != timecounter)
420 1.1.1.1.2.2 simonb ncount = timecounter->tc_get_timecount(timecounter);
421 1.1.1.1.2.2 simonb else
422 1.1.1.1.2.2 simonb ncount = 0;
423 1.1.1.1.2.2 simonb th->th_offset_count += delta;
424 1.1.1.1.2.2 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
425 1.1.1.1.2.2 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
426 1.1.1.1.2.2 simonb
427 1.1.1.1.2.2 simonb /*
428 1.1.1.1.2.2 simonb * Hardware latching timecounters may not generate interrupts on
429 1.1.1.1.2.2 simonb * PPS events, so instead we poll them. There is a finite risk that
430 1.1.1.1.2.2 simonb * the hardware might capture a count which is later than the one we
431 1.1.1.1.2.2 simonb * got above, and therefore possibly in the next NTP second which might
432 1.1.1.1.2.2 simonb * have a different rate than the current NTP second. It doesn't
433 1.1.1.1.2.2 simonb * matter in practice.
434 1.1.1.1.2.2 simonb */
435 1.1.1.1.2.2 simonb if (tho->th_counter->tc_poll_pps)
436 1.1.1.1.2.2 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
437 1.1.1.1.2.2 simonb
438 1.1.1.1.2.2 simonb /*
439 1.1.1.1.2.2 simonb * Deal with NTP second processing. The for loop normally
440 1.1.1.1.2.2 simonb * iterates at most once, but in extreme situations it might
441 1.1.1.1.2.2 simonb * keep NTP sane if timeouts are not run for several seconds.
442 1.1.1.1.2.2 simonb * At boot, the time step can be large when the TOD hardware
443 1.1.1.1.2.2 simonb * has been read, so on really large steps, we call
444 1.1.1.1.2.2 simonb * ntp_update_second only twice. We need to call it twice in
445 1.1.1.1.2.2 simonb * case we missed a leap second.
446 1.1.1.1.2.2 simonb */
447 1.1.1.1.2.2 simonb bt = th->th_offset;
448 1.1.1.1.2.2 simonb bintime_add(&bt, &boottimebin);
449 1.1.1.1.2.2 simonb i = bt.sec - tho->th_microtime.tv_sec;
450 1.1.1.1.2.2 simonb if (i > LARGE_STEP)
451 1.1.1.1.2.2 simonb i = 2;
452 1.1.1.1.2.2 simonb for (; i > 0; i--) {
453 1.1.1.1.2.2 simonb t = bt.sec;
454 1.1.1.1.2.2 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
455 1.1.1.1.2.2 simonb if (bt.sec != t)
456 1.1.1.1.2.2 simonb boottimebin.sec += bt.sec - t;
457 1.1.1.1.2.2 simonb }
458 1.1.1.1.2.2 simonb /* Update the UTC timestamps used by the get*() functions. */
459 1.1.1.1.2.2 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
460 1.1.1.1.2.2 simonb bintime2timeval(&bt, &th->th_microtime);
461 1.1.1.1.2.2 simonb bintime2timespec(&bt, &th->th_nanotime);
462 1.1.1.1.2.2 simonb
463 1.1.1.1.2.2 simonb /* Now is a good time to change timecounters. */
464 1.1.1.1.2.2 simonb if (th->th_counter != timecounter) {
465 1.1.1.1.2.2 simonb th->th_counter = timecounter;
466 1.1.1.1.2.2 simonb th->th_offset_count = ncount;
467 1.1.1.1.2.2 simonb }
468 1.1.1.1.2.2 simonb
469 1.1.1.1.2.2 simonb /*-
470 1.1.1.1.2.2 simonb * Recalculate the scaling factor. We want the number of 1/2^64
471 1.1.1.1.2.2 simonb * fractions of a second per period of the hardware counter, taking
472 1.1.1.1.2.2 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
473 1.1.1.1.2.2 simonb * processing provides us with.
474 1.1.1.1.2.2 simonb *
475 1.1.1.1.2.2 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
476 1.1.1.1.2.2 simonb * fraction and we want 64 bit binary fraction of second:
477 1.1.1.1.2.2 simonb *
478 1.1.1.1.2.2 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
479 1.1.1.1.2.2 simonb *
480 1.1.1.1.2.2 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
481 1.1.1.1.2.2 simonb * we can only multiply by about 850 without overflowing, but that
482 1.1.1.1.2.2 simonb * leaves suitably precise fractions for multiply before divide.
483 1.1.1.1.2.2 simonb *
484 1.1.1.1.2.2 simonb * Divide before multiply with a fraction of 2199/512 results in a
485 1.1.1.1.2.2 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
486 1.1.1.1.2.2 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
487 1.1.1.1.2.2 simonb *
488 1.1.1.1.2.2 simonb * We happily sacrifice the lowest of the 64 bits of our result
489 1.1.1.1.2.2 simonb * to the goddess of code clarity.
490 1.1.1.1.2.2 simonb *
491 1.1.1.1.2.2 simonb */
492 1.1.1.1.2.2 simonb scale = (u_int64_t)1 << 63;
493 1.1.1.1.2.2 simonb scale += (th->th_adjustment / 1024) * 2199;
494 1.1.1.1.2.2 simonb scale /= th->th_counter->tc_frequency;
495 1.1.1.1.2.2 simonb th->th_scale = scale * 2;
496 1.1.1.1.2.2 simonb
497 1.1.1.1.2.2 simonb /*
498 1.1.1.1.2.2 simonb * Now that the struct timehands is again consistent, set the new
499 1.1.1.1.2.2 simonb * generation number, making sure to not make it zero.
500 1.1.1.1.2.2 simonb */
501 1.1.1.1.2.2 simonb if (++ogen == 0)
502 1.1.1.1.2.2 simonb ogen = 1;
503 1.1.1.1.2.2 simonb th->th_generation = ogen;
504 1.1.1.1.2.2 simonb
505 1.1.1.1.2.2 simonb /* Go live with the new struct timehands. */
506 1.1.1.1.2.2 simonb time_second = th->th_microtime.tv_sec;
507 1.1.1.1.2.2 simonb time_uptime = th->th_offset.sec;
508 1.1.1.1.2.2 simonb timehands = th;
509 1.1.1.1.2.2 simonb }
510 1.1.1.1.2.2 simonb
511 1.1.1.1.2.2 simonb /* Report or change the active timecounter hardware. */
512 1.1.1.1.2.2 simonb static int
513 1.1.1.1.2.2 simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
514 1.1.1.1.2.2 simonb {
515 1.1.1.1.2.2 simonb char newname[32];
516 1.1.1.1.2.2 simonb struct timecounter *newtc, *tc;
517 1.1.1.1.2.2 simonb int error;
518 1.1.1.1.2.2 simonb
519 1.1.1.1.2.2 simonb tc = timecounter;
520 1.1.1.1.2.2 simonb strlcpy(newname, tc->tc_name, sizeof(newname));
521 1.1.1.1.2.2 simonb
522 1.1.1.1.2.2 simonb error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
523 1.1.1.1.2.2 simonb if (error != 0 || req->newptr == NULL ||
524 1.1.1.1.2.2 simonb strcmp(newname, tc->tc_name) == 0)
525 1.1.1.1.2.2 simonb return (error);
526 1.1.1.1.2.2 simonb for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
527 1.1.1.1.2.2 simonb if (strcmp(newname, newtc->tc_name) != 0)
528 1.1.1.1.2.2 simonb continue;
529 1.1.1.1.2.2 simonb
530 1.1.1.1.2.2 simonb /* Warm up new timecounter. */
531 1.1.1.1.2.2 simonb (void)newtc->tc_get_timecount(newtc);
532 1.1.1.1.2.2 simonb (void)newtc->tc_get_timecount(newtc);
533 1.1.1.1.2.2 simonb
534 1.1.1.1.2.2 simonb timecounter = newtc;
535 1.1.1.1.2.2 simonb return (0);
536 1.1.1.1.2.2 simonb }
537 1.1.1.1.2.2 simonb return (EINVAL);
538 1.1.1.1.2.2 simonb }
539 1.1.1.1.2.2 simonb
540 1.1.1.1.2.2 simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
541 1.1.1.1.2.2 simonb 0, 0, sysctl_kern_timecounter_hardware, "A", "");
542 1.1.1.1.2.2 simonb
543 1.1.1.1.2.2 simonb
544 1.1.1.1.2.2 simonb /* Report or change the active timecounter hardware. */
545 1.1.1.1.2.2 simonb static int
546 1.1.1.1.2.2 simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
547 1.1.1.1.2.2 simonb {
548 1.1.1.1.2.2 simonb char buf[32], *spc;
549 1.1.1.1.2.2 simonb struct timecounter *tc;
550 1.1.1.1.2.2 simonb int error;
551 1.1.1.1.2.2 simonb
552 1.1.1.1.2.2 simonb spc = "";
553 1.1.1.1.2.2 simonb error = 0;
554 1.1.1.1.2.2 simonb for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
555 1.1.1.1.2.2 simonb sprintf(buf, "%s%s(%d)",
556 1.1.1.1.2.2 simonb spc, tc->tc_name, tc->tc_quality);
557 1.1.1.1.2.2 simonb error = SYSCTL_OUT(req, buf, strlen(buf));
558 1.1.1.1.2.2 simonb spc = " ";
559 1.1.1.1.2.2 simonb }
560 1.1.1.1.2.2 simonb return (error);
561 1.1.1.1.2.2 simonb }
562 1.1.1.1.2.2 simonb
563 1.1.1.1.2.2 simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
564 1.1.1.1.2.2 simonb 0, 0, sysctl_kern_timecounter_choice, "A", "");
565 1.1.1.1.2.2 simonb
566 1.1.1.1.2.2 simonb /*
567 1.1.1.1.2.2 simonb * RFC 2783 PPS-API implementation.
568 1.1.1.1.2.2 simonb */
569 1.1.1.1.2.2 simonb
570 1.1.1.1.2.2 simonb int
571 1.1.1.1.2.2 simonb pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
572 1.1.1.1.2.2 simonb {
573 1.1.1.1.2.2 simonb pps_params_t *app;
574 1.1.1.1.2.2 simonb struct pps_fetch_args *fapi;
575 1.1.1.1.2.2 simonb #ifdef PPS_SYNC
576 1.1.1.1.2.2 simonb struct pps_kcbind_args *kapi;
577 1.1.1.1.2.2 simonb #endif
578 1.1.1.1.2.2 simonb
579 1.1.1.1.2.2 simonb KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
580 1.1.1.1.2.2 simonb switch (cmd) {
581 1.1.1.1.2.2 simonb case PPS_IOC_CREATE:
582 1.1.1.1.2.2 simonb return (0);
583 1.1.1.1.2.2 simonb case PPS_IOC_DESTROY:
584 1.1.1.1.2.2 simonb return (0);
585 1.1.1.1.2.2 simonb case PPS_IOC_SETPARAMS:
586 1.1.1.1.2.2 simonb app = (pps_params_t *)data;
587 1.1.1.1.2.2 simonb if (app->mode & ~pps->ppscap)
588 1.1.1.1.2.2 simonb return (EINVAL);
589 1.1.1.1.2.2 simonb pps->ppsparam = *app;
590 1.1.1.1.2.2 simonb return (0);
591 1.1.1.1.2.2 simonb case PPS_IOC_GETPARAMS:
592 1.1.1.1.2.2 simonb app = (pps_params_t *)data;
593 1.1.1.1.2.2 simonb *app = pps->ppsparam;
594 1.1.1.1.2.2 simonb app->api_version = PPS_API_VERS_1;
595 1.1.1.1.2.2 simonb return (0);
596 1.1.1.1.2.2 simonb case PPS_IOC_GETCAP:
597 1.1.1.1.2.2 simonb *(int*)data = pps->ppscap;
598 1.1.1.1.2.2 simonb return (0);
599 1.1.1.1.2.2 simonb case PPS_IOC_FETCH:
600 1.1.1.1.2.2 simonb fapi = (struct pps_fetch_args *)data;
601 1.1.1.1.2.2 simonb if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
602 1.1.1.1.2.2 simonb return (EINVAL);
603 1.1.1.1.2.2 simonb if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
604 1.1.1.1.2.2 simonb return (EOPNOTSUPP);
605 1.1.1.1.2.2 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
606 1.1.1.1.2.2 simonb fapi->pps_info_buf = pps->ppsinfo;
607 1.1.1.1.2.2 simonb return (0);
608 1.1.1.1.2.2 simonb case PPS_IOC_KCBIND:
609 1.1.1.1.2.2 simonb #ifdef PPS_SYNC
610 1.1.1.1.2.2 simonb kapi = (struct pps_kcbind_args *)data;
611 1.1.1.1.2.2 simonb /* XXX Only root should be able to do this */
612 1.1.1.1.2.2 simonb if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
613 1.1.1.1.2.2 simonb return (EINVAL);
614 1.1.1.1.2.2 simonb if (kapi->kernel_consumer != PPS_KC_HARDPPS)
615 1.1.1.1.2.2 simonb return (EINVAL);
616 1.1.1.1.2.2 simonb if (kapi->edge & ~pps->ppscap)
617 1.1.1.1.2.2 simonb return (EINVAL);
618 1.1.1.1.2.2 simonb pps->kcmode = kapi->edge;
619 1.1.1.1.2.2 simonb return (0);
620 1.1.1.1.2.2 simonb #else
621 1.1.1.1.2.2 simonb return (EOPNOTSUPP);
622 1.1.1.1.2.2 simonb #endif
623 1.1.1.1.2.2 simonb default:
624 1.1.1.1.2.2 simonb return (ENOIOCTL);
625 1.1.1.1.2.2 simonb }
626 1.1.1.1.2.2 simonb }
627 1.1.1.1.2.2 simonb
628 1.1.1.1.2.2 simonb void
629 1.1.1.1.2.2 simonb pps_init(struct pps_state *pps)
630 1.1.1.1.2.2 simonb {
631 1.1.1.1.2.2 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
632 1.1.1.1.2.2 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
633 1.1.1.1.2.2 simonb pps->ppscap |= PPS_OFFSETASSERT;
634 1.1.1.1.2.2 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
635 1.1.1.1.2.2 simonb pps->ppscap |= PPS_OFFSETCLEAR;
636 1.1.1.1.2.2 simonb }
637 1.1.1.1.2.2 simonb
638 1.1.1.1.2.2 simonb void
639 1.1.1.1.2.2 simonb pps_capture(struct pps_state *pps)
640 1.1.1.1.2.2 simonb {
641 1.1.1.1.2.2 simonb struct timehands *th;
642 1.1.1.1.2.2 simonb
643 1.1.1.1.2.2 simonb KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
644 1.1.1.1.2.2 simonb th = timehands;
645 1.1.1.1.2.2 simonb pps->capgen = th->th_generation;
646 1.1.1.1.2.2 simonb pps->capth = th;
647 1.1.1.1.2.2 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
648 1.1.1.1.2.2 simonb if (pps->capgen != th->th_generation)
649 1.1.1.1.2.2 simonb pps->capgen = 0;
650 1.1.1.1.2.2 simonb }
651 1.1.1.1.2.2 simonb
652 1.1.1.1.2.2 simonb void
653 1.1.1.1.2.2 simonb pps_event(struct pps_state *pps, int event)
654 1.1.1.1.2.2 simonb {
655 1.1.1.1.2.2 simonb struct bintime bt;
656 1.1.1.1.2.2 simonb struct timespec ts, *tsp, *osp;
657 1.1.1.1.2.2 simonb u_int tcount, *pcount;
658 1.1.1.1.2.2 simonb int foff, fhard;
659 1.1.1.1.2.2 simonb pps_seq_t *pseq;
660 1.1.1.1.2.2 simonb
661 1.1.1.1.2.2 simonb KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
662 1.1.1.1.2.2 simonb /* If the timecounter was wound up underneath us, bail out. */
663 1.1.1.1.2.2 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
664 1.1.1.1.2.2 simonb return;
665 1.1.1.1.2.2 simonb
666 1.1.1.1.2.2 simonb /* Things would be easier with arrays. */
667 1.1.1.1.2.2 simonb if (event == PPS_CAPTUREASSERT) {
668 1.1.1.1.2.2 simonb tsp = &pps->ppsinfo.assert_timestamp;
669 1.1.1.1.2.2 simonb osp = &pps->ppsparam.assert_offset;
670 1.1.1.1.2.2 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
671 1.1.1.1.2.2 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
672 1.1.1.1.2.2 simonb pcount = &pps->ppscount[0];
673 1.1.1.1.2.2 simonb pseq = &pps->ppsinfo.assert_sequence;
674 1.1.1.1.2.2 simonb } else {
675 1.1.1.1.2.2 simonb tsp = &pps->ppsinfo.clear_timestamp;
676 1.1.1.1.2.2 simonb osp = &pps->ppsparam.clear_offset;
677 1.1.1.1.2.2 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
678 1.1.1.1.2.2 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
679 1.1.1.1.2.2 simonb pcount = &pps->ppscount[1];
680 1.1.1.1.2.2 simonb pseq = &pps->ppsinfo.clear_sequence;
681 1.1.1.1.2.2 simonb }
682 1.1.1.1.2.2 simonb
683 1.1.1.1.2.2 simonb /*
684 1.1.1.1.2.2 simonb * If the timecounter changed, we cannot compare the count values, so
685 1.1.1.1.2.2 simonb * we have to drop the rest of the PPS-stuff until the next event.
686 1.1.1.1.2.2 simonb */
687 1.1.1.1.2.2 simonb if (pps->ppstc != pps->capth->th_counter) {
688 1.1.1.1.2.2 simonb pps->ppstc = pps->capth->th_counter;
689 1.1.1.1.2.2 simonb *pcount = pps->capcount;
690 1.1.1.1.2.2 simonb pps->ppscount[2] = pps->capcount;
691 1.1.1.1.2.2 simonb return;
692 1.1.1.1.2.2 simonb }
693 1.1.1.1.2.2 simonb
694 1.1.1.1.2.2 simonb /* Convert the count to a timespec. */
695 1.1.1.1.2.2 simonb tcount = pps->capcount - pps->capth->th_offset_count;
696 1.1.1.1.2.2 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
697 1.1.1.1.2.2 simonb bt = pps->capth->th_offset;
698 1.1.1.1.2.2 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
699 1.1.1.1.2.2 simonb bintime_add(&bt, &boottimebin);
700 1.1.1.1.2.2 simonb bintime2timespec(&bt, &ts);
701 1.1.1.1.2.2 simonb
702 1.1.1.1.2.2 simonb /* If the timecounter was wound up underneath us, bail out. */
703 1.1.1.1.2.2 simonb if (pps->capgen != pps->capth->th_generation)
704 1.1.1.1.2.2 simonb return;
705 1.1.1.1.2.2 simonb
706 1.1.1.1.2.2 simonb *pcount = pps->capcount;
707 1.1.1.1.2.2 simonb (*pseq)++;
708 1.1.1.1.2.2 simonb *tsp = ts;
709 1.1.1.1.2.2 simonb
710 1.1.1.1.2.2 simonb if (foff) {
711 1.1.1.1.2.2 simonb timespecadd(tsp, osp);
712 1.1.1.1.2.2 simonb if (tsp->tv_nsec < 0) {
713 1.1.1.1.2.2 simonb tsp->tv_nsec += 1000000000;
714 1.1.1.1.2.2 simonb tsp->tv_sec -= 1;
715 1.1.1.1.2.2 simonb }
716 1.1.1.1.2.2 simonb }
717 1.1.1.1.2.2 simonb #ifdef PPS_SYNC
718 1.1.1.1.2.2 simonb if (fhard) {
719 1.1.1.1.2.2 simonb u_int64_t scale;
720 1.1.1.1.2.2 simonb
721 1.1.1.1.2.2 simonb /*
722 1.1.1.1.2.2 simonb * Feed the NTP PLL/FLL.
723 1.1.1.1.2.2 simonb * The FLL wants to know how many (hardware) nanoseconds
724 1.1.1.1.2.2 simonb * elapsed since the previous event.
725 1.1.1.1.2.2 simonb */
726 1.1.1.1.2.2 simonb tcount = pps->capcount - pps->ppscount[2];
727 1.1.1.1.2.2 simonb pps->ppscount[2] = pps->capcount;
728 1.1.1.1.2.2 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
729 1.1.1.1.2.2 simonb scale = (u_int64_t)1 << 63;
730 1.1.1.1.2.2 simonb scale /= pps->capth->th_counter->tc_frequency;
731 1.1.1.1.2.2 simonb scale *= 2;
732 1.1.1.1.2.2 simonb bt.sec = 0;
733 1.1.1.1.2.2 simonb bt.frac = 0;
734 1.1.1.1.2.2 simonb bintime_addx(&bt, scale * tcount);
735 1.1.1.1.2.2 simonb bintime2timespec(&bt, &ts);
736 1.1.1.1.2.2 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
737 1.1.1.1.2.2 simonb }
738 1.1.1.1.2.2 simonb #endif
739 1.1.1.1.2.2 simonb }
740 1.1.1.1.2.2 simonb
741 1.1.1.1.2.2 simonb /*
742 1.1.1.1.2.2 simonb * Timecounters need to be updated every so often to prevent the hardware
743 1.1.1.1.2.2 simonb * counter from overflowing. Updating also recalculates the cached values
744 1.1.1.1.2.2 simonb * used by the get*() family of functions, so their precision depends on
745 1.1.1.1.2.2 simonb * the update frequency.
746 1.1.1.1.2.2 simonb */
747 1.1.1.1.2.2 simonb
748 1.1.1.1.2.2 simonb static int tc_tick;
749 1.1.1.1.2.2 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
750 1.1.1.1.2.2 simonb
751 1.1.1.1.2.2 simonb void
752 1.1.1.1.2.2 simonb tc_ticktock(void)
753 1.1.1.1.2.2 simonb {
754 1.1.1.1.2.2 simonb static int count;
755 1.1.1.1.2.2 simonb
756 1.1.1.1.2.2 simonb if (++count < tc_tick)
757 1.1.1.1.2.2 simonb return;
758 1.1.1.1.2.2 simonb count = 0;
759 1.1.1.1.2.2 simonb tc_windup();
760 1.1.1.1.2.2 simonb }
761 1.1.1.1.2.2 simonb
762 1.1.1.1.2.2 simonb static void
763 1.1.1.1.2.2 simonb inittimecounter(void *dummy)
764 1.1.1.1.2.2 simonb {
765 1.1.1.1.2.2 simonb u_int p;
766 1.1.1.1.2.2 simonb
767 1.1.1.1.2.2 simonb /*
768 1.1.1.1.2.2 simonb * Set the initial timeout to
769 1.1.1.1.2.2 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
770 1.1.1.1.2.2 simonb * People should probably not use the sysctl to set the timeout
771 1.1.1.1.2.2 simonb * to smaller than its inital value, since that value is the
772 1.1.1.1.2.2 simonb * smallest reasonable one. If they want better timestamps they
773 1.1.1.1.2.2 simonb * should use the non-"get"* functions.
774 1.1.1.1.2.2 simonb */
775 1.1.1.1.2.2 simonb if (hz > 1000)
776 1.1.1.1.2.2 simonb tc_tick = (hz + 500) / 1000;
777 1.1.1.1.2.2 simonb else
778 1.1.1.1.2.2 simonb tc_tick = 1;
779 1.1.1.1.2.2 simonb p = (tc_tick * 1000000) / hz;
780 1.1.1.1.2.2 simonb printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
781 1.1.1.1.2.2 simonb
782 1.1.1.1.2.2 simonb /* warm up new timecounter (again) and get rolling. */
783 1.1.1.1.2.2 simonb (void)timecounter->tc_get_timecount(timecounter);
784 1.1.1.1.2.2 simonb (void)timecounter->tc_get_timecount(timecounter);
785 1.1.1.1.2.2 simonb }
786 1.1.1.1.2.2 simonb
787 1.1.1.1.2.2 simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
788