Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.1.1.1.2.4
      1  1.1.1.1.2.4  simonb /* $NetBSD: kern_tc.c,v 1.1.1.1.2.4 2006/02/04 13:36:18 simonb Exp $ */
      2  1.1.1.1.2.3  simonb 
      3  1.1.1.1.2.2  simonb /*-
      4  1.1.1.1.2.2  simonb  * ----------------------------------------------------------------------------
      5  1.1.1.1.2.2  simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6  1.1.1.1.2.2  simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7  1.1.1.1.2.2  simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8  1.1.1.1.2.2  simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  1.1.1.1.2.2  simonb  * ----------------------------------------------------------------------------
     10  1.1.1.1.2.2  simonb  */
     11  1.1.1.1.2.2  simonb 
     12  1.1.1.1.2.2  simonb #include <sys/cdefs.h>
     13  1.1.1.1.2.3  simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.1.1.1.2.4  simonb __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.4 2006/02/04 13:36:18 simonb Exp $");
     15  1.1.1.1.2.2  simonb 
     16  1.1.1.1.2.2  simonb #include "opt_ntp.h"
     17  1.1.1.1.2.2  simonb 
     18  1.1.1.1.2.2  simonb #include <sys/param.h>
     19  1.1.1.1.2.4  simonb #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20  1.1.1.1.2.2  simonb #include <sys/kernel.h>
     21  1.1.1.1.2.4  simonb #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22  1.1.1.1.2.2  simonb #include <sys/sysctl.h>
     23  1.1.1.1.2.2  simonb #include <sys/syslog.h>
     24  1.1.1.1.2.2  simonb #include <sys/systm.h>
     25  1.1.1.1.2.2  simonb #include <sys/timepps.h>
     26  1.1.1.1.2.2  simonb #include <sys/timetc.h>
     27  1.1.1.1.2.2  simonb #include <sys/timex.h>
     28  1.1.1.1.2.2  simonb 
     29  1.1.1.1.2.2  simonb /*
     30  1.1.1.1.2.2  simonb  * A large step happens on boot.  This constant detects such steps.
     31  1.1.1.1.2.2  simonb  * It is relatively small so that ntp_update_second gets called enough
     32  1.1.1.1.2.2  simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     33  1.1.1.1.2.2  simonb  * forever when the time step is large.
     34  1.1.1.1.2.2  simonb  */
     35  1.1.1.1.2.2  simonb #define LARGE_STEP	200
     36  1.1.1.1.2.2  simonb 
     37  1.1.1.1.2.2  simonb /*
     38  1.1.1.1.2.2  simonb  * Implement a dummy timecounter which we can use until we get a real one
     39  1.1.1.1.2.2  simonb  * in the air.  This allows the console and other early stuff to use
     40  1.1.1.1.2.2  simonb  * time services.
     41  1.1.1.1.2.2  simonb  */
     42  1.1.1.1.2.2  simonb 
     43  1.1.1.1.2.2  simonb static u_int
     44  1.1.1.1.2.2  simonb dummy_get_timecount(struct timecounter *tc)
     45  1.1.1.1.2.2  simonb {
     46  1.1.1.1.2.2  simonb 	static u_int now;
     47  1.1.1.1.2.2  simonb 
     48  1.1.1.1.2.2  simonb 	return (++now);
     49  1.1.1.1.2.2  simonb }
     50  1.1.1.1.2.2  simonb 
     51  1.1.1.1.2.2  simonb static struct timecounter dummy_timecounter = {
     52  1.1.1.1.2.2  simonb 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
     53  1.1.1.1.2.2  simonb };
     54  1.1.1.1.2.2  simonb 
     55  1.1.1.1.2.2  simonb struct timehands {
     56  1.1.1.1.2.2  simonb 	/* These fields must be initialized by the driver. */
     57  1.1.1.1.2.2  simonb 	struct timecounter	*th_counter;
     58  1.1.1.1.2.2  simonb 	int64_t			th_adjustment;
     59  1.1.1.1.2.2  simonb 	u_int64_t		th_scale;
     60  1.1.1.1.2.2  simonb 	u_int	 		th_offset_count;
     61  1.1.1.1.2.2  simonb 	struct bintime		th_offset;
     62  1.1.1.1.2.2  simonb 	struct timeval		th_microtime;
     63  1.1.1.1.2.2  simonb 	struct timespec		th_nanotime;
     64  1.1.1.1.2.2  simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     65  1.1.1.1.2.2  simonb 	volatile u_int		th_generation;
     66  1.1.1.1.2.2  simonb 	struct timehands	*th_next;
     67  1.1.1.1.2.2  simonb };
     68  1.1.1.1.2.2  simonb 
     69  1.1.1.1.2.2  simonb static struct timehands th0;
     70  1.1.1.1.2.2  simonb static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
     71  1.1.1.1.2.2  simonb static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
     72  1.1.1.1.2.2  simonb static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
     73  1.1.1.1.2.2  simonb static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
     74  1.1.1.1.2.2  simonb static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
     75  1.1.1.1.2.2  simonb static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
     76  1.1.1.1.2.2  simonb static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
     77  1.1.1.1.2.2  simonb static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
     78  1.1.1.1.2.2  simonb static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
     79  1.1.1.1.2.2  simonb static struct timehands th0 = {
     80  1.1.1.1.2.2  simonb 	&dummy_timecounter,
     81  1.1.1.1.2.2  simonb 	0,
     82  1.1.1.1.2.2  simonb 	(uint64_t)-1 / 1000000,
     83  1.1.1.1.2.2  simonb 	0,
     84  1.1.1.1.2.2  simonb 	{1, 0},
     85  1.1.1.1.2.2  simonb 	{0, 0},
     86  1.1.1.1.2.2  simonb 	{0, 0},
     87  1.1.1.1.2.2  simonb 	1,
     88  1.1.1.1.2.2  simonb 	&th1
     89  1.1.1.1.2.2  simonb };
     90  1.1.1.1.2.2  simonb 
     91  1.1.1.1.2.2  simonb static struct timehands *volatile timehands = &th0;
     92  1.1.1.1.2.2  simonb struct timecounter *timecounter = &dummy_timecounter;
     93  1.1.1.1.2.2  simonb static struct timecounter *timecounters = &dummy_timecounter;
     94  1.1.1.1.2.2  simonb 
     95  1.1.1.1.2.2  simonb time_t time_second = 1;
     96  1.1.1.1.2.2  simonb time_t time_uptime = 1;
     97  1.1.1.1.2.2  simonb 
     98  1.1.1.1.2.2  simonb static struct bintime boottimebin;
     99  1.1.1.1.2.2  simonb struct timeval boottime;
    100  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    101  1.1.1.1.2.2  simonb static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
    102  1.1.1.1.2.2  simonb SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
    103  1.1.1.1.2.2  simonb     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
    104  1.1.1.1.2.2  simonb 
    105  1.1.1.1.2.2  simonb SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
    106  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    107  1.1.1.1.2.2  simonb 
    108  1.1.1.1.2.2  simonb static int timestepwarnings;
    109  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    110  1.1.1.1.2.2  simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    111  1.1.1.1.2.2  simonb     &timestepwarnings, 0, "");
    112  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    113  1.1.1.1.2.2  simonb 
    114  1.1.1.1.2.4  simonb #define	TC_STATS(name)							\
    115  1.1.1.1.2.4  simonb static struct evcnt name =						\
    116  1.1.1.1.2.4  simonb     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    117  1.1.1.1.2.4  simonb EVCNT_ATTACH_STATIC(name)
    118  1.1.1.1.2.2  simonb 
    119  1.1.1.1.2.2  simonb TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
    120  1.1.1.1.2.2  simonb TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
    121  1.1.1.1.2.2  simonb TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
    122  1.1.1.1.2.2  simonb TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
    123  1.1.1.1.2.2  simonb TC_STATS(nsetclock);
    124  1.1.1.1.2.2  simonb 
    125  1.1.1.1.2.2  simonb #undef TC_STATS
    126  1.1.1.1.2.2  simonb 
    127  1.1.1.1.2.2  simonb static void tc_windup(void);
    128  1.1.1.1.2.2  simonb 
    129  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    130  1.1.1.1.2.2  simonb static int
    131  1.1.1.1.2.2  simonb sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
    132  1.1.1.1.2.2  simonb {
    133  1.1.1.1.2.2  simonb #ifdef SCTL_MASK32
    134  1.1.1.1.2.2  simonb 	int tv[2];
    135  1.1.1.1.2.2  simonb 
    136  1.1.1.1.2.2  simonb 	if (req->flags & SCTL_MASK32) {
    137  1.1.1.1.2.2  simonb 		tv[0] = boottime.tv_sec;
    138  1.1.1.1.2.2  simonb 		tv[1] = boottime.tv_usec;
    139  1.1.1.1.2.2  simonb 		return SYSCTL_OUT(req, tv, sizeof(tv));
    140  1.1.1.1.2.2  simonb 	} else
    141  1.1.1.1.2.2  simonb #endif
    142  1.1.1.1.2.2  simonb 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
    143  1.1.1.1.2.2  simonb }
    144  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    145  1.1.1.1.2.4  simonb 
    146  1.1.1.1.2.2  simonb /*
    147  1.1.1.1.2.2  simonb  * Return the difference between the timehands' counter value now and what
    148  1.1.1.1.2.2  simonb  * was when we copied it to the timehands' offset_count.
    149  1.1.1.1.2.2  simonb  */
    150  1.1.1.1.2.2  simonb static __inline u_int
    151  1.1.1.1.2.2  simonb tc_delta(struct timehands *th)
    152  1.1.1.1.2.2  simonb {
    153  1.1.1.1.2.2  simonb 	struct timecounter *tc;
    154  1.1.1.1.2.2  simonb 
    155  1.1.1.1.2.2  simonb 	tc = th->th_counter;
    156  1.1.1.1.2.2  simonb 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
    157  1.1.1.1.2.2  simonb 	    tc->tc_counter_mask);
    158  1.1.1.1.2.2  simonb }
    159  1.1.1.1.2.2  simonb 
    160  1.1.1.1.2.2  simonb /*
    161  1.1.1.1.2.2  simonb  * Functions for reading the time.  We have to loop until we are sure that
    162  1.1.1.1.2.2  simonb  * the timehands that we operated on was not updated under our feet.  See
    163  1.1.1.1.2.2  simonb  * the comment in <sys/time.h> for a description of these 12 functions.
    164  1.1.1.1.2.2  simonb  */
    165  1.1.1.1.2.2  simonb 
    166  1.1.1.1.2.2  simonb void
    167  1.1.1.1.2.2  simonb binuptime(struct bintime *bt)
    168  1.1.1.1.2.2  simonb {
    169  1.1.1.1.2.2  simonb 	struct timehands *th;
    170  1.1.1.1.2.2  simonb 	u_int gen;
    171  1.1.1.1.2.2  simonb 
    172  1.1.1.1.2.4  simonb 	nbinuptime.ev_count++;
    173  1.1.1.1.2.2  simonb 	do {
    174  1.1.1.1.2.2  simonb 		th = timehands;
    175  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    176  1.1.1.1.2.2  simonb 		*bt = th->th_offset;
    177  1.1.1.1.2.2  simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    178  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    179  1.1.1.1.2.2  simonb }
    180  1.1.1.1.2.2  simonb 
    181  1.1.1.1.2.2  simonb void
    182  1.1.1.1.2.2  simonb nanouptime(struct timespec *tsp)
    183  1.1.1.1.2.2  simonb {
    184  1.1.1.1.2.2  simonb 	struct bintime bt;
    185  1.1.1.1.2.2  simonb 
    186  1.1.1.1.2.4  simonb 	nnanouptime.ev_count++;
    187  1.1.1.1.2.2  simonb 	binuptime(&bt);
    188  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, tsp);
    189  1.1.1.1.2.2  simonb }
    190  1.1.1.1.2.2  simonb 
    191  1.1.1.1.2.2  simonb void
    192  1.1.1.1.2.2  simonb microuptime(struct timeval *tvp)
    193  1.1.1.1.2.2  simonb {
    194  1.1.1.1.2.2  simonb 	struct bintime bt;
    195  1.1.1.1.2.2  simonb 
    196  1.1.1.1.2.4  simonb 	nmicrouptime.ev_count++;
    197  1.1.1.1.2.2  simonb 	binuptime(&bt);
    198  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, tvp);
    199  1.1.1.1.2.2  simonb }
    200  1.1.1.1.2.2  simonb 
    201  1.1.1.1.2.2  simonb void
    202  1.1.1.1.2.2  simonb bintime(struct bintime *bt)
    203  1.1.1.1.2.2  simonb {
    204  1.1.1.1.2.2  simonb 
    205  1.1.1.1.2.4  simonb 	nbintime.ev_count++;
    206  1.1.1.1.2.2  simonb 	binuptime(bt);
    207  1.1.1.1.2.2  simonb 	bintime_add(bt, &boottimebin);
    208  1.1.1.1.2.2  simonb }
    209  1.1.1.1.2.2  simonb 
    210  1.1.1.1.2.2  simonb void
    211  1.1.1.1.2.2  simonb nanotime(struct timespec *tsp)
    212  1.1.1.1.2.2  simonb {
    213  1.1.1.1.2.2  simonb 	struct bintime bt;
    214  1.1.1.1.2.2  simonb 
    215  1.1.1.1.2.4  simonb 	nnanotime.ev_count++;
    216  1.1.1.1.2.2  simonb 	bintime(&bt);
    217  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, tsp);
    218  1.1.1.1.2.2  simonb }
    219  1.1.1.1.2.2  simonb 
    220  1.1.1.1.2.2  simonb void
    221  1.1.1.1.2.2  simonb microtime(struct timeval *tvp)
    222  1.1.1.1.2.2  simonb {
    223  1.1.1.1.2.2  simonb 	struct bintime bt;
    224  1.1.1.1.2.2  simonb 
    225  1.1.1.1.2.4  simonb 	nmicrotime.ev_count++;
    226  1.1.1.1.2.2  simonb 	bintime(&bt);
    227  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, tvp);
    228  1.1.1.1.2.2  simonb }
    229  1.1.1.1.2.2  simonb 
    230  1.1.1.1.2.2  simonb void
    231  1.1.1.1.2.2  simonb getbinuptime(struct bintime *bt)
    232  1.1.1.1.2.2  simonb {
    233  1.1.1.1.2.2  simonb 	struct timehands *th;
    234  1.1.1.1.2.2  simonb 	u_int gen;
    235  1.1.1.1.2.2  simonb 
    236  1.1.1.1.2.4  simonb 	ngetbinuptime.ev_count++;
    237  1.1.1.1.2.2  simonb 	do {
    238  1.1.1.1.2.2  simonb 		th = timehands;
    239  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    240  1.1.1.1.2.2  simonb 		*bt = th->th_offset;
    241  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    242  1.1.1.1.2.2  simonb }
    243  1.1.1.1.2.2  simonb 
    244  1.1.1.1.2.2  simonb void
    245  1.1.1.1.2.2  simonb getnanouptime(struct timespec *tsp)
    246  1.1.1.1.2.2  simonb {
    247  1.1.1.1.2.2  simonb 	struct timehands *th;
    248  1.1.1.1.2.2  simonb 	u_int gen;
    249  1.1.1.1.2.2  simonb 
    250  1.1.1.1.2.4  simonb 	ngetnanouptime.ev_count++;
    251  1.1.1.1.2.2  simonb 	do {
    252  1.1.1.1.2.2  simonb 		th = timehands;
    253  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    254  1.1.1.1.2.2  simonb 		bintime2timespec(&th->th_offset, tsp);
    255  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    256  1.1.1.1.2.2  simonb }
    257  1.1.1.1.2.2  simonb 
    258  1.1.1.1.2.2  simonb void
    259  1.1.1.1.2.2  simonb getmicrouptime(struct timeval *tvp)
    260  1.1.1.1.2.2  simonb {
    261  1.1.1.1.2.2  simonb 	struct timehands *th;
    262  1.1.1.1.2.2  simonb 	u_int gen;
    263  1.1.1.1.2.2  simonb 
    264  1.1.1.1.2.4  simonb 	ngetmicrouptime.ev_count++;
    265  1.1.1.1.2.2  simonb 	do {
    266  1.1.1.1.2.2  simonb 		th = timehands;
    267  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    268  1.1.1.1.2.2  simonb 		bintime2timeval(&th->th_offset, tvp);
    269  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    270  1.1.1.1.2.2  simonb }
    271  1.1.1.1.2.2  simonb 
    272  1.1.1.1.2.2  simonb void
    273  1.1.1.1.2.2  simonb getbintime(struct bintime *bt)
    274  1.1.1.1.2.2  simonb {
    275  1.1.1.1.2.2  simonb 	struct timehands *th;
    276  1.1.1.1.2.2  simonb 	u_int gen;
    277  1.1.1.1.2.2  simonb 
    278  1.1.1.1.2.4  simonb 	ngetbintime.ev_count++;
    279  1.1.1.1.2.2  simonb 	do {
    280  1.1.1.1.2.2  simonb 		th = timehands;
    281  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    282  1.1.1.1.2.2  simonb 		*bt = th->th_offset;
    283  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    284  1.1.1.1.2.2  simonb 	bintime_add(bt, &boottimebin);
    285  1.1.1.1.2.2  simonb }
    286  1.1.1.1.2.2  simonb 
    287  1.1.1.1.2.2  simonb void
    288  1.1.1.1.2.2  simonb getnanotime(struct timespec *tsp)
    289  1.1.1.1.2.2  simonb {
    290  1.1.1.1.2.2  simonb 	struct timehands *th;
    291  1.1.1.1.2.2  simonb 	u_int gen;
    292  1.1.1.1.2.2  simonb 
    293  1.1.1.1.2.4  simonb 	ngetnanotime.ev_count++;
    294  1.1.1.1.2.2  simonb 	do {
    295  1.1.1.1.2.2  simonb 		th = timehands;
    296  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    297  1.1.1.1.2.2  simonb 		*tsp = th->th_nanotime;
    298  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    299  1.1.1.1.2.2  simonb }
    300  1.1.1.1.2.2  simonb 
    301  1.1.1.1.2.2  simonb void
    302  1.1.1.1.2.2  simonb getmicrotime(struct timeval *tvp)
    303  1.1.1.1.2.2  simonb {
    304  1.1.1.1.2.2  simonb 	struct timehands *th;
    305  1.1.1.1.2.2  simonb 	u_int gen;
    306  1.1.1.1.2.2  simonb 
    307  1.1.1.1.2.4  simonb 	ngetmicrotime.ev_count++;
    308  1.1.1.1.2.2  simonb 	do {
    309  1.1.1.1.2.2  simonb 		th = timehands;
    310  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    311  1.1.1.1.2.2  simonb 		*tvp = th->th_microtime;
    312  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    313  1.1.1.1.2.2  simonb }
    314  1.1.1.1.2.2  simonb 
    315  1.1.1.1.2.2  simonb /*
    316  1.1.1.1.2.2  simonb  * Initialize a new timecounter and possibly use it.
    317  1.1.1.1.2.2  simonb  */
    318  1.1.1.1.2.2  simonb void
    319  1.1.1.1.2.2  simonb tc_init(struct timecounter *tc)
    320  1.1.1.1.2.2  simonb {
    321  1.1.1.1.2.2  simonb 	u_int u;
    322  1.1.1.1.2.2  simonb 
    323  1.1.1.1.2.2  simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    324  1.1.1.1.2.2  simonb 	/* XXX: We need some margin here, 10% is a guess */
    325  1.1.1.1.2.2  simonb 	u *= 11;
    326  1.1.1.1.2.2  simonb 	u /= 10;
    327  1.1.1.1.2.2  simonb 	if (u > hz && tc->tc_quality >= 0) {
    328  1.1.1.1.2.2  simonb 		tc->tc_quality = -2000;
    329  1.1.1.1.2.2  simonb 		if (bootverbose) {
    330  1.1.1.1.2.2  simonb 			printf("Timecounter \"%s\" frequency %ju Hz",
    331  1.1.1.1.2.2  simonb 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    332  1.1.1.1.2.2  simonb 			printf(" -- Insufficient hz, needs at least %u\n", u);
    333  1.1.1.1.2.2  simonb 		}
    334  1.1.1.1.2.2  simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    335  1.1.1.1.2.2  simonb 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
    336  1.1.1.1.2.2  simonb 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
    337  1.1.1.1.2.2  simonb 		    tc->tc_quality);
    338  1.1.1.1.2.2  simonb 	}
    339  1.1.1.1.2.2  simonb 
    340  1.1.1.1.2.2  simonb 	tc->tc_next = timecounters;
    341  1.1.1.1.2.2  simonb 	timecounters = tc;
    342  1.1.1.1.2.2  simonb 	/*
    343  1.1.1.1.2.2  simonb 	 * Never automatically use a timecounter with negative quality.
    344  1.1.1.1.2.2  simonb 	 * Even though we run on the dummy counter, switching here may be
    345  1.1.1.1.2.2  simonb 	 * worse since this timecounter may not be monotonous.
    346  1.1.1.1.2.2  simonb 	 */
    347  1.1.1.1.2.2  simonb 	if (tc->tc_quality < 0)
    348  1.1.1.1.2.2  simonb 		return;
    349  1.1.1.1.2.2  simonb 	if (tc->tc_quality < timecounter->tc_quality)
    350  1.1.1.1.2.2  simonb 		return;
    351  1.1.1.1.2.2  simonb 	if (tc->tc_quality == timecounter->tc_quality &&
    352  1.1.1.1.2.2  simonb 	    tc->tc_frequency < timecounter->tc_frequency)
    353  1.1.1.1.2.2  simonb 		return;
    354  1.1.1.1.2.2  simonb 	(void)tc->tc_get_timecount(tc);
    355  1.1.1.1.2.2  simonb 	(void)tc->tc_get_timecount(tc);
    356  1.1.1.1.2.2  simonb 	timecounter = tc;
    357  1.1.1.1.2.2  simonb }
    358  1.1.1.1.2.2  simonb 
    359  1.1.1.1.2.2  simonb /* Report the frequency of the current timecounter. */
    360  1.1.1.1.2.2  simonb u_int64_t
    361  1.1.1.1.2.2  simonb tc_getfrequency(void)
    362  1.1.1.1.2.2  simonb {
    363  1.1.1.1.2.2  simonb 
    364  1.1.1.1.2.2  simonb 	return (timehands->th_counter->tc_frequency);
    365  1.1.1.1.2.2  simonb }
    366  1.1.1.1.2.2  simonb 
    367  1.1.1.1.2.2  simonb /*
    368  1.1.1.1.2.2  simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    369  1.1.1.1.2.2  simonb  * when we booted.
    370  1.1.1.1.2.2  simonb  * XXX: not locked.
    371  1.1.1.1.2.2  simonb  */
    372  1.1.1.1.2.2  simonb void
    373  1.1.1.1.2.2  simonb tc_setclock(struct timespec *ts)
    374  1.1.1.1.2.2  simonb {
    375  1.1.1.1.2.2  simonb 	struct timespec ts2;
    376  1.1.1.1.2.2  simonb 	struct bintime bt, bt2;
    377  1.1.1.1.2.2  simonb 
    378  1.1.1.1.2.4  simonb 	nsetclock.ev_count++;
    379  1.1.1.1.2.2  simonb 	binuptime(&bt2);
    380  1.1.1.1.2.2  simonb 	timespec2bintime(ts, &bt);
    381  1.1.1.1.2.2  simonb 	bintime_sub(&bt, &bt2);
    382  1.1.1.1.2.2  simonb 	bintime_add(&bt2, &boottimebin);
    383  1.1.1.1.2.2  simonb 	boottimebin = bt;
    384  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, &boottime);
    385  1.1.1.1.2.2  simonb 
    386  1.1.1.1.2.2  simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    387  1.1.1.1.2.2  simonb 	tc_windup();
    388  1.1.1.1.2.2  simonb 	if (timestepwarnings) {
    389  1.1.1.1.2.2  simonb 		bintime2timespec(&bt2, &ts2);
    390  1.1.1.1.2.2  simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    391  1.1.1.1.2.2  simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    392  1.1.1.1.2.2  simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    393  1.1.1.1.2.2  simonb 	}
    394  1.1.1.1.2.2  simonb }
    395  1.1.1.1.2.2  simonb 
    396  1.1.1.1.2.2  simonb /*
    397  1.1.1.1.2.2  simonb  * Initialize the next struct timehands in the ring and make
    398  1.1.1.1.2.2  simonb  * it the active timehands.  Along the way we might switch to a different
    399  1.1.1.1.2.2  simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    400  1.1.1.1.2.2  simonb  */
    401  1.1.1.1.2.2  simonb static void
    402  1.1.1.1.2.2  simonb tc_windup(void)
    403  1.1.1.1.2.2  simonb {
    404  1.1.1.1.2.2  simonb 	struct bintime bt;
    405  1.1.1.1.2.2  simonb 	struct timehands *th, *tho;
    406  1.1.1.1.2.2  simonb 	u_int64_t scale;
    407  1.1.1.1.2.2  simonb 	u_int delta, ncount, ogen;
    408  1.1.1.1.2.4  simonb #ifdef NTP
    409  1.1.1.1.2.2  simonb 	int i;
    410  1.1.1.1.2.2  simonb 	time_t t;
    411  1.1.1.1.2.4  simonb #endif /* NTP */
    412  1.1.1.1.2.2  simonb 
    413  1.1.1.1.2.2  simonb 	/*
    414  1.1.1.1.2.2  simonb 	 * Make the next timehands a copy of the current one, but do not
    415  1.1.1.1.2.2  simonb 	 * overwrite the generation or next pointer.  While we update
    416  1.1.1.1.2.2  simonb 	 * the contents, the generation must be zero.
    417  1.1.1.1.2.2  simonb 	 */
    418  1.1.1.1.2.2  simonb 	tho = timehands;
    419  1.1.1.1.2.2  simonb 	th = tho->th_next;
    420  1.1.1.1.2.2  simonb 	ogen = th->th_generation;
    421  1.1.1.1.2.2  simonb 	th->th_generation = 0;
    422  1.1.1.1.2.2  simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    423  1.1.1.1.2.2  simonb 
    424  1.1.1.1.2.2  simonb 	/*
    425  1.1.1.1.2.2  simonb 	 * Capture a timecounter delta on the current timecounter and if
    426  1.1.1.1.2.2  simonb 	 * changing timecounters, a counter value from the new timecounter.
    427  1.1.1.1.2.2  simonb 	 * Update the offset fields accordingly.
    428  1.1.1.1.2.2  simonb 	 */
    429  1.1.1.1.2.2  simonb 	delta = tc_delta(th);
    430  1.1.1.1.2.2  simonb 	if (th->th_counter != timecounter)
    431  1.1.1.1.2.2  simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    432  1.1.1.1.2.2  simonb 	else
    433  1.1.1.1.2.2  simonb 		ncount = 0;
    434  1.1.1.1.2.2  simonb 	th->th_offset_count += delta;
    435  1.1.1.1.2.2  simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    436  1.1.1.1.2.2  simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    437  1.1.1.1.2.2  simonb 
    438  1.1.1.1.2.4  simonb #ifdef PPS_SYNC
    439  1.1.1.1.2.2  simonb 	/*
    440  1.1.1.1.2.2  simonb 	 * Hardware latching timecounters may not generate interrupts on
    441  1.1.1.1.2.2  simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    442  1.1.1.1.2.2  simonb 	 * the hardware might capture a count which is later than the one we
    443  1.1.1.1.2.2  simonb 	 * got above, and therefore possibly in the next NTP second which might
    444  1.1.1.1.2.2  simonb 	 * have a different rate than the current NTP second.  It doesn't
    445  1.1.1.1.2.2  simonb 	 * matter in practice.
    446  1.1.1.1.2.2  simonb 	 */
    447  1.1.1.1.2.2  simonb 	if (tho->th_counter->tc_poll_pps)
    448  1.1.1.1.2.2  simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    449  1.1.1.1.2.4  simonb #endif /* PPS_SYNC */
    450  1.1.1.1.2.2  simonb 
    451  1.1.1.1.2.4  simonb #ifdef NTP
    452  1.1.1.1.2.2  simonb 	/*
    453  1.1.1.1.2.2  simonb 	 * Deal with NTP second processing.  The for loop normally
    454  1.1.1.1.2.2  simonb 	 * iterates at most once, but in extreme situations it might
    455  1.1.1.1.2.2  simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    456  1.1.1.1.2.2  simonb 	 * At boot, the time step can be large when the TOD hardware
    457  1.1.1.1.2.2  simonb 	 * has been read, so on really large steps, we call
    458  1.1.1.1.2.2  simonb 	 * ntp_update_second only twice.  We need to call it twice in
    459  1.1.1.1.2.2  simonb 	 * case we missed a leap second.
    460  1.1.1.1.2.2  simonb 	 */
    461  1.1.1.1.2.2  simonb 	bt = th->th_offset;
    462  1.1.1.1.2.2  simonb 	bintime_add(&bt, &boottimebin);
    463  1.1.1.1.2.2  simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    464  1.1.1.1.2.2  simonb 	if (i > LARGE_STEP)
    465  1.1.1.1.2.2  simonb 		i = 2;
    466  1.1.1.1.2.2  simonb 	for (; i > 0; i--) {
    467  1.1.1.1.2.2  simonb 		t = bt.sec;
    468  1.1.1.1.2.2  simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    469  1.1.1.1.2.2  simonb 		if (bt.sec != t)
    470  1.1.1.1.2.2  simonb 			boottimebin.sec += bt.sec - t;
    471  1.1.1.1.2.2  simonb 	}
    472  1.1.1.1.2.4  simonb #endif /* NTP */
    473  1.1.1.1.2.4  simonb 
    474  1.1.1.1.2.2  simonb 	/* Update the UTC timestamps used by the get*() functions. */
    475  1.1.1.1.2.2  simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    476  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, &th->th_microtime);
    477  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, &th->th_nanotime);
    478  1.1.1.1.2.2  simonb 
    479  1.1.1.1.2.2  simonb 	/* Now is a good time to change timecounters. */
    480  1.1.1.1.2.2  simonb 	if (th->th_counter != timecounter) {
    481  1.1.1.1.2.2  simonb 		th->th_counter = timecounter;
    482  1.1.1.1.2.2  simonb 		th->th_offset_count = ncount;
    483  1.1.1.1.2.2  simonb 	}
    484  1.1.1.1.2.2  simonb 
    485  1.1.1.1.2.2  simonb 	/*-
    486  1.1.1.1.2.2  simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    487  1.1.1.1.2.2  simonb 	 * fractions of a second per period of the hardware counter, taking
    488  1.1.1.1.2.2  simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    489  1.1.1.1.2.2  simonb 	 * processing provides us with.
    490  1.1.1.1.2.2  simonb 	 *
    491  1.1.1.1.2.2  simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    492  1.1.1.1.2.2  simonb 	 * fraction and we want 64 bit binary fraction of second:
    493  1.1.1.1.2.2  simonb 	 *
    494  1.1.1.1.2.2  simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    495  1.1.1.1.2.2  simonb 	 *
    496  1.1.1.1.2.2  simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    497  1.1.1.1.2.2  simonb 	 * we can only multiply by about 850 without overflowing, but that
    498  1.1.1.1.2.2  simonb 	 * leaves suitably precise fractions for multiply before divide.
    499  1.1.1.1.2.2  simonb 	 *
    500  1.1.1.1.2.2  simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    501  1.1.1.1.2.2  simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    502  1.1.1.1.2.2  simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    503  1.1.1.1.2.2  simonb  	 *
    504  1.1.1.1.2.2  simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    505  1.1.1.1.2.2  simonb 	 * to the goddess of code clarity.
    506  1.1.1.1.2.2  simonb 	 *
    507  1.1.1.1.2.2  simonb 	 */
    508  1.1.1.1.2.2  simonb 	scale = (u_int64_t)1 << 63;
    509  1.1.1.1.2.2  simonb 	scale += (th->th_adjustment / 1024) * 2199;
    510  1.1.1.1.2.2  simonb 	scale /= th->th_counter->tc_frequency;
    511  1.1.1.1.2.2  simonb 	th->th_scale = scale * 2;
    512  1.1.1.1.2.2  simonb 
    513  1.1.1.1.2.2  simonb 	/*
    514  1.1.1.1.2.2  simonb 	 * Now that the struct timehands is again consistent, set the new
    515  1.1.1.1.2.2  simonb 	 * generation number, making sure to not make it zero.
    516  1.1.1.1.2.2  simonb 	 */
    517  1.1.1.1.2.2  simonb 	if (++ogen == 0)
    518  1.1.1.1.2.2  simonb 		ogen = 1;
    519  1.1.1.1.2.2  simonb 	th->th_generation = ogen;
    520  1.1.1.1.2.2  simonb 
    521  1.1.1.1.2.2  simonb 	/* Go live with the new struct timehands. */
    522  1.1.1.1.2.2  simonb 	time_second = th->th_microtime.tv_sec;
    523  1.1.1.1.2.2  simonb 	time_uptime = th->th_offset.sec;
    524  1.1.1.1.2.2  simonb 	timehands = th;
    525  1.1.1.1.2.2  simonb }
    526  1.1.1.1.2.2  simonb 
    527  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    528  1.1.1.1.2.2  simonb /* Report or change the active timecounter hardware. */
    529  1.1.1.1.2.2  simonb static int
    530  1.1.1.1.2.2  simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    531  1.1.1.1.2.2  simonb {
    532  1.1.1.1.2.2  simonb 	char newname[32];
    533  1.1.1.1.2.2  simonb 	struct timecounter *newtc, *tc;
    534  1.1.1.1.2.2  simonb 	int error;
    535  1.1.1.1.2.2  simonb 
    536  1.1.1.1.2.2  simonb 	tc = timecounter;
    537  1.1.1.1.2.2  simonb 	strlcpy(newname, tc->tc_name, sizeof(newname));
    538  1.1.1.1.2.2  simonb 
    539  1.1.1.1.2.2  simonb 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    540  1.1.1.1.2.2  simonb 	if (error != 0 || req->newptr == NULL ||
    541  1.1.1.1.2.2  simonb 	    strcmp(newname, tc->tc_name) == 0)
    542  1.1.1.1.2.2  simonb 		return (error);
    543  1.1.1.1.2.2  simonb 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    544  1.1.1.1.2.2  simonb 		if (strcmp(newname, newtc->tc_name) != 0)
    545  1.1.1.1.2.2  simonb 			continue;
    546  1.1.1.1.2.2  simonb 
    547  1.1.1.1.2.2  simonb 		/* Warm up new timecounter. */
    548  1.1.1.1.2.2  simonb 		(void)newtc->tc_get_timecount(newtc);
    549  1.1.1.1.2.2  simonb 		(void)newtc->tc_get_timecount(newtc);
    550  1.1.1.1.2.2  simonb 
    551  1.1.1.1.2.2  simonb 		timecounter = newtc;
    552  1.1.1.1.2.2  simonb 		return (0);
    553  1.1.1.1.2.2  simonb 	}
    554  1.1.1.1.2.2  simonb 	return (EINVAL);
    555  1.1.1.1.2.2  simonb }
    556  1.1.1.1.2.2  simonb 
    557  1.1.1.1.2.2  simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    558  1.1.1.1.2.2  simonb     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    559  1.1.1.1.2.2  simonb 
    560  1.1.1.1.2.2  simonb 
    561  1.1.1.1.2.2  simonb /* Report or change the active timecounter hardware. */
    562  1.1.1.1.2.2  simonb static int
    563  1.1.1.1.2.2  simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    564  1.1.1.1.2.2  simonb {
    565  1.1.1.1.2.2  simonb 	char buf[32], *spc;
    566  1.1.1.1.2.2  simonb 	struct timecounter *tc;
    567  1.1.1.1.2.2  simonb 	int error;
    568  1.1.1.1.2.2  simonb 
    569  1.1.1.1.2.2  simonb 	spc = "";
    570  1.1.1.1.2.2  simonb 	error = 0;
    571  1.1.1.1.2.2  simonb 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    572  1.1.1.1.2.2  simonb 		sprintf(buf, "%s%s(%d)",
    573  1.1.1.1.2.2  simonb 		    spc, tc->tc_name, tc->tc_quality);
    574  1.1.1.1.2.2  simonb 		error = SYSCTL_OUT(req, buf, strlen(buf));
    575  1.1.1.1.2.2  simonb 		spc = " ";
    576  1.1.1.1.2.2  simonb 	}
    577  1.1.1.1.2.2  simonb 	return (error);
    578  1.1.1.1.2.2  simonb }
    579  1.1.1.1.2.2  simonb 
    580  1.1.1.1.2.2  simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    581  1.1.1.1.2.2  simonb     0, 0, sysctl_kern_timecounter_choice, "A", "");
    582  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    583  1.1.1.1.2.2  simonb 
    584  1.1.1.1.2.2  simonb /*
    585  1.1.1.1.2.2  simonb  * RFC 2783 PPS-API implementation.
    586  1.1.1.1.2.2  simonb  */
    587  1.1.1.1.2.2  simonb 
    588  1.1.1.1.2.2  simonb int
    589  1.1.1.1.2.2  simonb pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
    590  1.1.1.1.2.2  simonb {
    591  1.1.1.1.2.2  simonb 	pps_params_t *app;
    592  1.1.1.1.2.2  simonb 	struct pps_fetch_args *fapi;
    593  1.1.1.1.2.2  simonb #ifdef PPS_SYNC
    594  1.1.1.1.2.2  simonb 	struct pps_kcbind_args *kapi;
    595  1.1.1.1.2.2  simonb #endif
    596  1.1.1.1.2.2  simonb 
    597  1.1.1.1.2.4  simonb 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    598  1.1.1.1.2.2  simonb 	switch (cmd) {
    599  1.1.1.1.2.2  simonb 	case PPS_IOC_CREATE:
    600  1.1.1.1.2.2  simonb 		return (0);
    601  1.1.1.1.2.2  simonb 	case PPS_IOC_DESTROY:
    602  1.1.1.1.2.2  simonb 		return (0);
    603  1.1.1.1.2.2  simonb 	case PPS_IOC_SETPARAMS:
    604  1.1.1.1.2.2  simonb 		app = (pps_params_t *)data;
    605  1.1.1.1.2.2  simonb 		if (app->mode & ~pps->ppscap)
    606  1.1.1.1.2.2  simonb 			return (EINVAL);
    607  1.1.1.1.2.2  simonb 		pps->ppsparam = *app;
    608  1.1.1.1.2.2  simonb 		return (0);
    609  1.1.1.1.2.2  simonb 	case PPS_IOC_GETPARAMS:
    610  1.1.1.1.2.2  simonb 		app = (pps_params_t *)data;
    611  1.1.1.1.2.2  simonb 		*app = pps->ppsparam;
    612  1.1.1.1.2.2  simonb 		app->api_version = PPS_API_VERS_1;
    613  1.1.1.1.2.2  simonb 		return (0);
    614  1.1.1.1.2.2  simonb 	case PPS_IOC_GETCAP:
    615  1.1.1.1.2.2  simonb 		*(int*)data = pps->ppscap;
    616  1.1.1.1.2.2  simonb 		return (0);
    617  1.1.1.1.2.2  simonb 	case PPS_IOC_FETCH:
    618  1.1.1.1.2.2  simonb 		fapi = (struct pps_fetch_args *)data;
    619  1.1.1.1.2.2  simonb 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
    620  1.1.1.1.2.2  simonb 			return (EINVAL);
    621  1.1.1.1.2.2  simonb 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
    622  1.1.1.1.2.2  simonb 			return (EOPNOTSUPP);
    623  1.1.1.1.2.2  simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    624  1.1.1.1.2.2  simonb 		fapi->pps_info_buf = pps->ppsinfo;
    625  1.1.1.1.2.2  simonb 		return (0);
    626  1.1.1.1.2.2  simonb 	case PPS_IOC_KCBIND:
    627  1.1.1.1.2.2  simonb #ifdef PPS_SYNC
    628  1.1.1.1.2.2  simonb 		kapi = (struct pps_kcbind_args *)data;
    629  1.1.1.1.2.2  simonb 		/* XXX Only root should be able to do this */
    630  1.1.1.1.2.2  simonb 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
    631  1.1.1.1.2.2  simonb 			return (EINVAL);
    632  1.1.1.1.2.2  simonb 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
    633  1.1.1.1.2.2  simonb 			return (EINVAL);
    634  1.1.1.1.2.2  simonb 		if (kapi->edge & ~pps->ppscap)
    635  1.1.1.1.2.2  simonb 			return (EINVAL);
    636  1.1.1.1.2.2  simonb 		pps->kcmode = kapi->edge;
    637  1.1.1.1.2.2  simonb 		return (0);
    638  1.1.1.1.2.2  simonb #else
    639  1.1.1.1.2.2  simonb 		return (EOPNOTSUPP);
    640  1.1.1.1.2.2  simonb #endif
    641  1.1.1.1.2.2  simonb 	default:
    642  1.1.1.1.2.4  simonb 		return (EPASSTHROUGH);
    643  1.1.1.1.2.2  simonb 	}
    644  1.1.1.1.2.2  simonb }
    645  1.1.1.1.2.2  simonb 
    646  1.1.1.1.2.2  simonb void
    647  1.1.1.1.2.2  simonb pps_init(struct pps_state *pps)
    648  1.1.1.1.2.2  simonb {
    649  1.1.1.1.2.2  simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    650  1.1.1.1.2.2  simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    651  1.1.1.1.2.2  simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    652  1.1.1.1.2.2  simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    653  1.1.1.1.2.2  simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    654  1.1.1.1.2.2  simonb }
    655  1.1.1.1.2.2  simonb 
    656  1.1.1.1.2.2  simonb void
    657  1.1.1.1.2.2  simonb pps_capture(struct pps_state *pps)
    658  1.1.1.1.2.2  simonb {
    659  1.1.1.1.2.2  simonb 	struct timehands *th;
    660  1.1.1.1.2.2  simonb 
    661  1.1.1.1.2.4  simonb 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    662  1.1.1.1.2.2  simonb 	th = timehands;
    663  1.1.1.1.2.2  simonb 	pps->capgen = th->th_generation;
    664  1.1.1.1.2.2  simonb 	pps->capth = th;
    665  1.1.1.1.2.2  simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    666  1.1.1.1.2.2  simonb 	if (pps->capgen != th->th_generation)
    667  1.1.1.1.2.2  simonb 		pps->capgen = 0;
    668  1.1.1.1.2.2  simonb }
    669  1.1.1.1.2.2  simonb 
    670  1.1.1.1.2.2  simonb void
    671  1.1.1.1.2.2  simonb pps_event(struct pps_state *pps, int event)
    672  1.1.1.1.2.2  simonb {
    673  1.1.1.1.2.2  simonb 	struct bintime bt;
    674  1.1.1.1.2.2  simonb 	struct timespec ts, *tsp, *osp;
    675  1.1.1.1.2.2  simonb 	u_int tcount, *pcount;
    676  1.1.1.1.2.2  simonb 	int foff, fhard;
    677  1.1.1.1.2.2  simonb 	pps_seq_t *pseq;
    678  1.1.1.1.2.2  simonb 
    679  1.1.1.1.2.4  simonb 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    680  1.1.1.1.2.2  simonb 	/* If the timecounter was wound up underneath us, bail out. */
    681  1.1.1.1.2.2  simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    682  1.1.1.1.2.2  simonb 		return;
    683  1.1.1.1.2.2  simonb 
    684  1.1.1.1.2.2  simonb 	/* Things would be easier with arrays. */
    685  1.1.1.1.2.2  simonb 	if (event == PPS_CAPTUREASSERT) {
    686  1.1.1.1.2.2  simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    687  1.1.1.1.2.2  simonb 		osp = &pps->ppsparam.assert_offset;
    688  1.1.1.1.2.2  simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    689  1.1.1.1.2.2  simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    690  1.1.1.1.2.2  simonb 		pcount = &pps->ppscount[0];
    691  1.1.1.1.2.2  simonb 		pseq = &pps->ppsinfo.assert_sequence;
    692  1.1.1.1.2.2  simonb 	} else {
    693  1.1.1.1.2.2  simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    694  1.1.1.1.2.2  simonb 		osp = &pps->ppsparam.clear_offset;
    695  1.1.1.1.2.2  simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    696  1.1.1.1.2.2  simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    697  1.1.1.1.2.2  simonb 		pcount = &pps->ppscount[1];
    698  1.1.1.1.2.2  simonb 		pseq = &pps->ppsinfo.clear_sequence;
    699  1.1.1.1.2.2  simonb 	}
    700  1.1.1.1.2.2  simonb 
    701  1.1.1.1.2.2  simonb 	/*
    702  1.1.1.1.2.2  simonb 	 * If the timecounter changed, we cannot compare the count values, so
    703  1.1.1.1.2.2  simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    704  1.1.1.1.2.2  simonb 	 */
    705  1.1.1.1.2.2  simonb 	if (pps->ppstc != pps->capth->th_counter) {
    706  1.1.1.1.2.2  simonb 		pps->ppstc = pps->capth->th_counter;
    707  1.1.1.1.2.2  simonb 		*pcount = pps->capcount;
    708  1.1.1.1.2.2  simonb 		pps->ppscount[2] = pps->capcount;
    709  1.1.1.1.2.2  simonb 		return;
    710  1.1.1.1.2.2  simonb 	}
    711  1.1.1.1.2.2  simonb 
    712  1.1.1.1.2.2  simonb 	/* Convert the count to a timespec. */
    713  1.1.1.1.2.2  simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    714  1.1.1.1.2.2  simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    715  1.1.1.1.2.2  simonb 	bt = pps->capth->th_offset;
    716  1.1.1.1.2.2  simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    717  1.1.1.1.2.2  simonb 	bintime_add(&bt, &boottimebin);
    718  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, &ts);
    719  1.1.1.1.2.2  simonb 
    720  1.1.1.1.2.2  simonb 	/* If the timecounter was wound up underneath us, bail out. */
    721  1.1.1.1.2.2  simonb 	if (pps->capgen != pps->capth->th_generation)
    722  1.1.1.1.2.2  simonb 		return;
    723  1.1.1.1.2.2  simonb 
    724  1.1.1.1.2.2  simonb 	*pcount = pps->capcount;
    725  1.1.1.1.2.2  simonb 	(*pseq)++;
    726  1.1.1.1.2.2  simonb 	*tsp = ts;
    727  1.1.1.1.2.2  simonb 
    728  1.1.1.1.2.2  simonb 	if (foff) {
    729  1.1.1.1.2.4  simonb 		timespecadd(tsp, osp, tsp);
    730  1.1.1.1.2.2  simonb 		if (tsp->tv_nsec < 0) {
    731  1.1.1.1.2.2  simonb 			tsp->tv_nsec += 1000000000;
    732  1.1.1.1.2.2  simonb 			tsp->tv_sec -= 1;
    733  1.1.1.1.2.2  simonb 		}
    734  1.1.1.1.2.2  simonb 	}
    735  1.1.1.1.2.2  simonb #ifdef PPS_SYNC
    736  1.1.1.1.2.2  simonb 	if (fhard) {
    737  1.1.1.1.2.2  simonb 		u_int64_t scale;
    738  1.1.1.1.2.2  simonb 
    739  1.1.1.1.2.2  simonb 		/*
    740  1.1.1.1.2.2  simonb 		 * Feed the NTP PLL/FLL.
    741  1.1.1.1.2.2  simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    742  1.1.1.1.2.2  simonb 		 * elapsed since the previous event.
    743  1.1.1.1.2.2  simonb 		 */
    744  1.1.1.1.2.2  simonb 		tcount = pps->capcount - pps->ppscount[2];
    745  1.1.1.1.2.2  simonb 		pps->ppscount[2] = pps->capcount;
    746  1.1.1.1.2.2  simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    747  1.1.1.1.2.2  simonb 		scale = (u_int64_t)1 << 63;
    748  1.1.1.1.2.2  simonb 		scale /= pps->capth->th_counter->tc_frequency;
    749  1.1.1.1.2.2  simonb 		scale *= 2;
    750  1.1.1.1.2.2  simonb 		bt.sec = 0;
    751  1.1.1.1.2.2  simonb 		bt.frac = 0;
    752  1.1.1.1.2.2  simonb 		bintime_addx(&bt, scale * tcount);
    753  1.1.1.1.2.2  simonb 		bintime2timespec(&bt, &ts);
    754  1.1.1.1.2.2  simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    755  1.1.1.1.2.2  simonb 	}
    756  1.1.1.1.2.2  simonb #endif
    757  1.1.1.1.2.2  simonb }
    758  1.1.1.1.2.2  simonb 
    759  1.1.1.1.2.2  simonb /*
    760  1.1.1.1.2.2  simonb  * Timecounters need to be updated every so often to prevent the hardware
    761  1.1.1.1.2.2  simonb  * counter from overflowing.  Updating also recalculates the cached values
    762  1.1.1.1.2.2  simonb  * used by the get*() family of functions, so their precision depends on
    763  1.1.1.1.2.2  simonb  * the update frequency.
    764  1.1.1.1.2.2  simonb  */
    765  1.1.1.1.2.2  simonb 
    766  1.1.1.1.2.2  simonb static int tc_tick;
    767  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    768  1.1.1.1.2.2  simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    769  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    770  1.1.1.1.2.2  simonb 
    771  1.1.1.1.2.2  simonb void
    772  1.1.1.1.2.2  simonb tc_ticktock(void)
    773  1.1.1.1.2.2  simonb {
    774  1.1.1.1.2.2  simonb 	static int count;
    775  1.1.1.1.2.2  simonb 
    776  1.1.1.1.2.2  simonb 	if (++count < tc_tick)
    777  1.1.1.1.2.2  simonb 		return;
    778  1.1.1.1.2.2  simonb 	count = 0;
    779  1.1.1.1.2.2  simonb 	tc_windup();
    780  1.1.1.1.2.2  simonb }
    781  1.1.1.1.2.2  simonb 
    782  1.1.1.1.2.4  simonb void
    783  1.1.1.1.2.4  simonb inittimecounter(void)
    784  1.1.1.1.2.2  simonb {
    785  1.1.1.1.2.2  simonb 	u_int p;
    786  1.1.1.1.2.2  simonb 
    787  1.1.1.1.2.2  simonb 	/*
    788  1.1.1.1.2.2  simonb 	 * Set the initial timeout to
    789  1.1.1.1.2.2  simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    790  1.1.1.1.2.2  simonb 	 * People should probably not use the sysctl to set the timeout
    791  1.1.1.1.2.2  simonb 	 * to smaller than its inital value, since that value is the
    792  1.1.1.1.2.2  simonb 	 * smallest reasonable one.  If they want better timestamps they
    793  1.1.1.1.2.2  simonb 	 * should use the non-"get"* functions.
    794  1.1.1.1.2.2  simonb 	 */
    795  1.1.1.1.2.2  simonb 	if (hz > 1000)
    796  1.1.1.1.2.2  simonb 		tc_tick = (hz + 500) / 1000;
    797  1.1.1.1.2.2  simonb 	else
    798  1.1.1.1.2.2  simonb 		tc_tick = 1;
    799  1.1.1.1.2.2  simonb 	p = (tc_tick * 1000000) / hz;
    800  1.1.1.1.2.2  simonb 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
    801  1.1.1.1.2.2  simonb 
    802  1.1.1.1.2.2  simonb 	/* warm up new timecounter (again) and get rolling. */
    803  1.1.1.1.2.2  simonb 	(void)timecounter->tc_get_timecount(timecounter);
    804  1.1.1.1.2.2  simonb 	(void)timecounter->tc_get_timecount(timecounter);
    805  1.1.1.1.2.2  simonb }
    806  1.1.1.1.2.2  simonb 
    807  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    808  1.1.1.1.2.2  simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    809  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    810  1.1.1.1.2.4  simonb #endif /* __HAVE_TIMECOUNTER */
    811