Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.1.1.1.2.8
      1  1.1.1.1.2.8  kardel /* $NetBSD: kern_tc.c,v 1.1.1.1.2.8 2006/04/24 19:38:21 kardel Exp $ */
      2  1.1.1.1.2.3  simonb 
      3  1.1.1.1.2.2  simonb /*-
      4  1.1.1.1.2.2  simonb  * ----------------------------------------------------------------------------
      5  1.1.1.1.2.2  simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6  1.1.1.1.2.2  simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7  1.1.1.1.2.2  simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8  1.1.1.1.2.2  simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  1.1.1.1.2.6  kardel  * ---------------------------------------------------------------------------
     10  1.1.1.1.2.2  simonb  */
     11  1.1.1.1.2.2  simonb 
     12  1.1.1.1.2.2  simonb #include <sys/cdefs.h>
     13  1.1.1.1.2.3  simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.1.1.1.2.8  kardel __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.8 2006/04/24 19:38:21 kardel Exp $");
     15  1.1.1.1.2.2  simonb 
     16  1.1.1.1.2.2  simonb #include "opt_ntp.h"
     17  1.1.1.1.2.2  simonb 
     18  1.1.1.1.2.2  simonb #include <sys/param.h>
     19  1.1.1.1.2.4  simonb #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20  1.1.1.1.2.2  simonb #include <sys/kernel.h>
     21  1.1.1.1.2.4  simonb #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22  1.1.1.1.2.2  simonb #include <sys/sysctl.h>
     23  1.1.1.1.2.2  simonb #include <sys/syslog.h>
     24  1.1.1.1.2.2  simonb #include <sys/systm.h>
     25  1.1.1.1.2.2  simonb #include <sys/timepps.h>
     26  1.1.1.1.2.2  simonb #include <sys/timetc.h>
     27  1.1.1.1.2.2  simonb #include <sys/timex.h>
     28  1.1.1.1.2.2  simonb 
     29  1.1.1.1.2.2  simonb /*
     30  1.1.1.1.2.7  kardel  * maximum name length for TC names in sysctl interface
     31  1.1.1.1.2.7  kardel  */
     32  1.1.1.1.2.7  kardel #define MAX_TCNAMELEN	64
     33  1.1.1.1.2.7  kardel 
     34  1.1.1.1.2.7  kardel /*
     35  1.1.1.1.2.2  simonb  * A large step happens on boot.  This constant detects such steps.
     36  1.1.1.1.2.2  simonb  * It is relatively small so that ntp_update_second gets called enough
     37  1.1.1.1.2.2  simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     38  1.1.1.1.2.2  simonb  * forever when the time step is large.
     39  1.1.1.1.2.2  simonb  */
     40  1.1.1.1.2.2  simonb #define LARGE_STEP	200
     41  1.1.1.1.2.2  simonb 
     42  1.1.1.1.2.2  simonb /*
     43  1.1.1.1.2.2  simonb  * Implement a dummy timecounter which we can use until we get a real one
     44  1.1.1.1.2.2  simonb  * in the air.  This allows the console and other early stuff to use
     45  1.1.1.1.2.2  simonb  * time services.
     46  1.1.1.1.2.2  simonb  */
     47  1.1.1.1.2.2  simonb 
     48  1.1.1.1.2.2  simonb static u_int
     49  1.1.1.1.2.2  simonb dummy_get_timecount(struct timecounter *tc)
     50  1.1.1.1.2.2  simonb {
     51  1.1.1.1.2.2  simonb 	static u_int now;
     52  1.1.1.1.2.2  simonb 
     53  1.1.1.1.2.2  simonb 	return (++now);
     54  1.1.1.1.2.2  simonb }
     55  1.1.1.1.2.2  simonb 
     56  1.1.1.1.2.2  simonb static struct timecounter dummy_timecounter = {
     57  1.1.1.1.2.2  simonb 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
     58  1.1.1.1.2.2  simonb };
     59  1.1.1.1.2.2  simonb 
     60  1.1.1.1.2.2  simonb struct timehands {
     61  1.1.1.1.2.2  simonb 	/* These fields must be initialized by the driver. */
     62  1.1.1.1.2.2  simonb 	struct timecounter	*th_counter;
     63  1.1.1.1.2.2  simonb 	int64_t			th_adjustment;
     64  1.1.1.1.2.2  simonb 	u_int64_t		th_scale;
     65  1.1.1.1.2.2  simonb 	u_int	 		th_offset_count;
     66  1.1.1.1.2.2  simonb 	struct bintime		th_offset;
     67  1.1.1.1.2.2  simonb 	struct timeval		th_microtime;
     68  1.1.1.1.2.2  simonb 	struct timespec		th_nanotime;
     69  1.1.1.1.2.2  simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     70  1.1.1.1.2.2  simonb 	volatile u_int		th_generation;
     71  1.1.1.1.2.2  simonb 	struct timehands	*th_next;
     72  1.1.1.1.2.2  simonb };
     73  1.1.1.1.2.2  simonb 
     74  1.1.1.1.2.2  simonb static struct timehands th0;
     75  1.1.1.1.2.2  simonb static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
     76  1.1.1.1.2.2  simonb static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
     77  1.1.1.1.2.2  simonb static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
     78  1.1.1.1.2.2  simonb static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
     79  1.1.1.1.2.2  simonb static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
     80  1.1.1.1.2.2  simonb static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
     81  1.1.1.1.2.2  simonb static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
     82  1.1.1.1.2.2  simonb static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
     83  1.1.1.1.2.2  simonb static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
     84  1.1.1.1.2.2  simonb static struct timehands th0 = {
     85  1.1.1.1.2.2  simonb 	&dummy_timecounter,
     86  1.1.1.1.2.2  simonb 	0,
     87  1.1.1.1.2.2  simonb 	(uint64_t)-1 / 1000000,
     88  1.1.1.1.2.2  simonb 	0,
     89  1.1.1.1.2.2  simonb 	{1, 0},
     90  1.1.1.1.2.2  simonb 	{0, 0},
     91  1.1.1.1.2.2  simonb 	{0, 0},
     92  1.1.1.1.2.2  simonb 	1,
     93  1.1.1.1.2.2  simonb 	&th1
     94  1.1.1.1.2.2  simonb };
     95  1.1.1.1.2.2  simonb 
     96  1.1.1.1.2.2  simonb static struct timehands *volatile timehands = &th0;
     97  1.1.1.1.2.2  simonb struct timecounter *timecounter = &dummy_timecounter;
     98  1.1.1.1.2.2  simonb static struct timecounter *timecounters = &dummy_timecounter;
     99  1.1.1.1.2.2  simonb 
    100  1.1.1.1.2.2  simonb time_t time_second = 1;
    101  1.1.1.1.2.2  simonb time_t time_uptime = 1;
    102  1.1.1.1.2.2  simonb 
    103  1.1.1.1.2.2  simonb static struct bintime boottimebin;
    104  1.1.1.1.2.2  simonb struct timeval boottime;
    105  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    106  1.1.1.1.2.2  simonb static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
    107  1.1.1.1.2.2  simonb SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
    108  1.1.1.1.2.2  simonb     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
    109  1.1.1.1.2.2  simonb 
    110  1.1.1.1.2.2  simonb SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
    111  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    112  1.1.1.1.2.2  simonb 
    113  1.1.1.1.2.2  simonb static int timestepwarnings;
    114  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    115  1.1.1.1.2.2  simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    116  1.1.1.1.2.2  simonb     &timestepwarnings, 0, "");
    117  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    118  1.1.1.1.2.2  simonb 
    119  1.1.1.1.2.6  kardel /*
    120  1.1.1.1.2.6  kardel  * sysctl helper routine for kern.timercounter.current
    121  1.1.1.1.2.6  kardel  */
    122  1.1.1.1.2.6  kardel static int
    123  1.1.1.1.2.6  kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    124  1.1.1.1.2.6  kardel {
    125  1.1.1.1.2.6  kardel 	struct sysctlnode node;
    126  1.1.1.1.2.6  kardel 	int error;
    127  1.1.1.1.2.7  kardel 	char newname[MAX_TCNAMELEN];
    128  1.1.1.1.2.6  kardel 	struct timecounter *newtc, *tc;
    129  1.1.1.1.2.6  kardel 
    130  1.1.1.1.2.6  kardel 	tc = timecounter;
    131  1.1.1.1.2.6  kardel 
    132  1.1.1.1.2.6  kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    133  1.1.1.1.2.6  kardel 
    134  1.1.1.1.2.6  kardel 	node = *rnode;
    135  1.1.1.1.2.6  kardel 	node.sysctl_data = newname;
    136  1.1.1.1.2.6  kardel 	node.sysctl_size = sizeof(newname);
    137  1.1.1.1.2.6  kardel 
    138  1.1.1.1.2.6  kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    139  1.1.1.1.2.6  kardel 
    140  1.1.1.1.2.6  kardel 	if (error ||
    141  1.1.1.1.2.6  kardel 	    newp == NULL ||
    142  1.1.1.1.2.6  kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    143  1.1.1.1.2.6  kardel 		return error;
    144  1.1.1.1.2.6  kardel 
    145  1.1.1.1.2.6  kardel 	if (l && (error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag)) != 0)
    146  1.1.1.1.2.6  kardel 		return (error);
    147  1.1.1.1.2.6  kardel 
    148  1.1.1.1.2.6  kardel 	/* XXX locking */
    149  1.1.1.1.2.6  kardel 
    150  1.1.1.1.2.6  kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    151  1.1.1.1.2.6  kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    152  1.1.1.1.2.6  kardel 			continue;
    153  1.1.1.1.2.6  kardel 
    154  1.1.1.1.2.6  kardel 		/* Warm up new timecounter. */
    155  1.1.1.1.2.6  kardel 		(void)newtc->tc_get_timecount(newtc);
    156  1.1.1.1.2.6  kardel 		(void)newtc->tc_get_timecount(newtc);
    157  1.1.1.1.2.6  kardel 
    158  1.1.1.1.2.6  kardel 		timecounter = newtc;
    159  1.1.1.1.2.6  kardel 
    160  1.1.1.1.2.7  kardel 		/* XXX unlock */
    161  1.1.1.1.2.7  kardel 
    162  1.1.1.1.2.6  kardel 		return (0);
    163  1.1.1.1.2.6  kardel 	}
    164  1.1.1.1.2.6  kardel 
    165  1.1.1.1.2.6  kardel 	/* XXX unlock */
    166  1.1.1.1.2.6  kardel 
    167  1.1.1.1.2.6  kardel 	return (EINVAL);
    168  1.1.1.1.2.6  kardel }
    169  1.1.1.1.2.6  kardel 
    170  1.1.1.1.2.6  kardel static int
    171  1.1.1.1.2.6  kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    172  1.1.1.1.2.6  kardel {
    173  1.1.1.1.2.8  kardel 	char buf[48];
    174  1.1.1.1.2.6  kardel 	char *where = oldp;
    175  1.1.1.1.2.6  kardel 	const char *spc;
    176  1.1.1.1.2.6  kardel 	struct timecounter *tc;
    177  1.1.1.1.2.6  kardel 	size_t needed, left, slen;
    178  1.1.1.1.2.6  kardel 	int error;
    179  1.1.1.1.2.6  kardel 
    180  1.1.1.1.2.6  kardel 	if (newp != NULL)
    181  1.1.1.1.2.6  kardel 		return (EPERM);
    182  1.1.1.1.2.6  kardel 	if (namelen != 0)
    183  1.1.1.1.2.6  kardel 		return (EINVAL);
    184  1.1.1.1.2.6  kardel 
    185  1.1.1.1.2.6  kardel 	spc = "";
    186  1.1.1.1.2.6  kardel 	error = 0;
    187  1.1.1.1.2.6  kardel 	needed = 0;
    188  1.1.1.1.2.6  kardel 	left = *oldlenp;
    189  1.1.1.1.2.6  kardel 
    190  1.1.1.1.2.6  kardel 	/* XXX locking */
    191  1.1.1.1.2.6  kardel 
    192  1.1.1.1.2.6  kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    193  1.1.1.1.2.6  kardel 		if (where == NULL) {
    194  1.1.1.1.2.6  kardel 			needed += sizeof(buf);  /* be conservative */
    195  1.1.1.1.2.6  kardel 		} else {
    196  1.1.1.1.2.7  kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    197  1.1.1.1.2.7  kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    198  1.1.1.1.2.7  kardel 					tc->tc_frequency);
    199  1.1.1.1.2.6  kardel 			if (left < slen + 1)
    200  1.1.1.1.2.6  kardel 				break;
    201  1.1.1.1.2.6  kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    202  1.1.1.1.2.6  kardel 			error = copyout(buf, where, slen + 1);
    203  1.1.1.1.2.6  kardel 			spc = " ";
    204  1.1.1.1.2.6  kardel 			where += slen;
    205  1.1.1.1.2.6  kardel 			needed += slen;
    206  1.1.1.1.2.6  kardel 			left -= slen;
    207  1.1.1.1.2.6  kardel 		}
    208  1.1.1.1.2.6  kardel 	}
    209  1.1.1.1.2.6  kardel 
    210  1.1.1.1.2.6  kardel 	/* XXX unlock */
    211  1.1.1.1.2.6  kardel 
    212  1.1.1.1.2.6  kardel 	*oldlenp = needed;
    213  1.1.1.1.2.6  kardel 	return (error);
    214  1.1.1.1.2.6  kardel }
    215  1.1.1.1.2.6  kardel 
    216  1.1.1.1.2.6  kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    217  1.1.1.1.2.6  kardel {
    218  1.1.1.1.2.6  kardel 	const struct sysctlnode *node;
    219  1.1.1.1.2.6  kardel 
    220  1.1.1.1.2.6  kardel 	sysctl_createv(clog, 0, NULL, &node,
    221  1.1.1.1.2.6  kardel 		       CTLFLAG_PERMANENT,
    222  1.1.1.1.2.6  kardel 		       CTLTYPE_NODE, "timecounter",
    223  1.1.1.1.2.6  kardel 		       SYSCTL_DESCR("time counter information"),
    224  1.1.1.1.2.6  kardel 		       NULL, 0, NULL, 0,
    225  1.1.1.1.2.6  kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    226  1.1.1.1.2.6  kardel 
    227  1.1.1.1.2.6  kardel 	if (node != NULL) {
    228  1.1.1.1.2.6  kardel 		sysctl_createv(clog, 0, NULL, NULL,
    229  1.1.1.1.2.6  kardel 			       CTLFLAG_PERMANENT,
    230  1.1.1.1.2.6  kardel 			       CTLTYPE_STRING, "choice",
    231  1.1.1.1.2.6  kardel 			       SYSCTL_DESCR("available counters"),
    232  1.1.1.1.2.6  kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    233  1.1.1.1.2.6  kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    234  1.1.1.1.2.6  kardel 
    235  1.1.1.1.2.6  kardel 		sysctl_createv(clog, 0, NULL, NULL,
    236  1.1.1.1.2.6  kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    237  1.1.1.1.2.6  kardel 			       CTLTYPE_STRING, "hardware",
    238  1.1.1.1.2.6  kardel 			       SYSCTL_DESCR("currently active time counter"),
    239  1.1.1.1.2.7  kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    240  1.1.1.1.2.6  kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    241  1.1.1.1.2.6  kardel 
    242  1.1.1.1.2.6  kardel 		sysctl_createv(clog, 0, NULL, NULL,
    243  1.1.1.1.2.6  kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    244  1.1.1.1.2.6  kardel 			       CTLTYPE_INT, "timestepwarnings",
    245  1.1.1.1.2.6  kardel 			       SYSCTL_DESCR("log time steps"),
    246  1.1.1.1.2.6  kardel 			       NULL, 0, &timestepwarnings, 0,
    247  1.1.1.1.2.6  kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    248  1.1.1.1.2.6  kardel 	}
    249  1.1.1.1.2.6  kardel }
    250  1.1.1.1.2.6  kardel 
    251  1.1.1.1.2.4  simonb #define	TC_STATS(name)							\
    252  1.1.1.1.2.5  simonb static struct evcnt n##name =						\
    253  1.1.1.1.2.4  simonb     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    254  1.1.1.1.2.5  simonb EVCNT_ATTACH_STATIC(n##name)
    255  1.1.1.1.2.2  simonb 
    256  1.1.1.1.2.5  simonb TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    257  1.1.1.1.2.5  simonb TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    258  1.1.1.1.2.5  simonb TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    259  1.1.1.1.2.5  simonb TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    260  1.1.1.1.2.5  simonb TC_STATS(setclock);
    261  1.1.1.1.2.2  simonb 
    262  1.1.1.1.2.2  simonb #undef TC_STATS
    263  1.1.1.1.2.2  simonb 
    264  1.1.1.1.2.2  simonb static void tc_windup(void);
    265  1.1.1.1.2.2  simonb 
    266  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    267  1.1.1.1.2.2  simonb static int
    268  1.1.1.1.2.2  simonb sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
    269  1.1.1.1.2.2  simonb {
    270  1.1.1.1.2.2  simonb #ifdef SCTL_MASK32
    271  1.1.1.1.2.2  simonb 	int tv[2];
    272  1.1.1.1.2.2  simonb 
    273  1.1.1.1.2.2  simonb 	if (req->flags & SCTL_MASK32) {
    274  1.1.1.1.2.2  simonb 		tv[0] = boottime.tv_sec;
    275  1.1.1.1.2.2  simonb 		tv[1] = boottime.tv_usec;
    276  1.1.1.1.2.2  simonb 		return SYSCTL_OUT(req, tv, sizeof(tv));
    277  1.1.1.1.2.2  simonb 	} else
    278  1.1.1.1.2.2  simonb #endif
    279  1.1.1.1.2.2  simonb 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
    280  1.1.1.1.2.2  simonb }
    281  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    282  1.1.1.1.2.4  simonb 
    283  1.1.1.1.2.2  simonb /*
    284  1.1.1.1.2.2  simonb  * Return the difference between the timehands' counter value now and what
    285  1.1.1.1.2.2  simonb  * was when we copied it to the timehands' offset_count.
    286  1.1.1.1.2.2  simonb  */
    287  1.1.1.1.2.2  simonb static __inline u_int
    288  1.1.1.1.2.2  simonb tc_delta(struct timehands *th)
    289  1.1.1.1.2.2  simonb {
    290  1.1.1.1.2.2  simonb 	struct timecounter *tc;
    291  1.1.1.1.2.2  simonb 
    292  1.1.1.1.2.2  simonb 	tc = th->th_counter;
    293  1.1.1.1.2.7  kardel 	return ((tc->tc_get_timecount(tc) -
    294  1.1.1.1.2.7  kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    295  1.1.1.1.2.2  simonb }
    296  1.1.1.1.2.2  simonb 
    297  1.1.1.1.2.2  simonb /*
    298  1.1.1.1.2.2  simonb  * Functions for reading the time.  We have to loop until we are sure that
    299  1.1.1.1.2.2  simonb  * the timehands that we operated on was not updated under our feet.  See
    300  1.1.1.1.2.2  simonb  * the comment in <sys/time.h> for a description of these 12 functions.
    301  1.1.1.1.2.2  simonb  */
    302  1.1.1.1.2.2  simonb 
    303  1.1.1.1.2.2  simonb void
    304  1.1.1.1.2.2  simonb binuptime(struct bintime *bt)
    305  1.1.1.1.2.2  simonb {
    306  1.1.1.1.2.2  simonb 	struct timehands *th;
    307  1.1.1.1.2.2  simonb 	u_int gen;
    308  1.1.1.1.2.2  simonb 
    309  1.1.1.1.2.4  simonb 	nbinuptime.ev_count++;
    310  1.1.1.1.2.2  simonb 	do {
    311  1.1.1.1.2.2  simonb 		th = timehands;
    312  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    313  1.1.1.1.2.2  simonb 		*bt = th->th_offset;
    314  1.1.1.1.2.2  simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    315  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    316  1.1.1.1.2.2  simonb }
    317  1.1.1.1.2.2  simonb 
    318  1.1.1.1.2.2  simonb void
    319  1.1.1.1.2.2  simonb nanouptime(struct timespec *tsp)
    320  1.1.1.1.2.2  simonb {
    321  1.1.1.1.2.2  simonb 	struct bintime bt;
    322  1.1.1.1.2.2  simonb 
    323  1.1.1.1.2.4  simonb 	nnanouptime.ev_count++;
    324  1.1.1.1.2.2  simonb 	binuptime(&bt);
    325  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, tsp);
    326  1.1.1.1.2.2  simonb }
    327  1.1.1.1.2.2  simonb 
    328  1.1.1.1.2.2  simonb void
    329  1.1.1.1.2.2  simonb microuptime(struct timeval *tvp)
    330  1.1.1.1.2.2  simonb {
    331  1.1.1.1.2.2  simonb 	struct bintime bt;
    332  1.1.1.1.2.2  simonb 
    333  1.1.1.1.2.4  simonb 	nmicrouptime.ev_count++;
    334  1.1.1.1.2.2  simonb 	binuptime(&bt);
    335  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, tvp);
    336  1.1.1.1.2.2  simonb }
    337  1.1.1.1.2.2  simonb 
    338  1.1.1.1.2.2  simonb void
    339  1.1.1.1.2.2  simonb bintime(struct bintime *bt)
    340  1.1.1.1.2.2  simonb {
    341  1.1.1.1.2.2  simonb 
    342  1.1.1.1.2.4  simonb 	nbintime.ev_count++;
    343  1.1.1.1.2.2  simonb 	binuptime(bt);
    344  1.1.1.1.2.2  simonb 	bintime_add(bt, &boottimebin);
    345  1.1.1.1.2.2  simonb }
    346  1.1.1.1.2.2  simonb 
    347  1.1.1.1.2.2  simonb void
    348  1.1.1.1.2.2  simonb nanotime(struct timespec *tsp)
    349  1.1.1.1.2.2  simonb {
    350  1.1.1.1.2.2  simonb 	struct bintime bt;
    351  1.1.1.1.2.2  simonb 
    352  1.1.1.1.2.4  simonb 	nnanotime.ev_count++;
    353  1.1.1.1.2.2  simonb 	bintime(&bt);
    354  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, tsp);
    355  1.1.1.1.2.2  simonb }
    356  1.1.1.1.2.2  simonb 
    357  1.1.1.1.2.2  simonb void
    358  1.1.1.1.2.2  simonb microtime(struct timeval *tvp)
    359  1.1.1.1.2.2  simonb {
    360  1.1.1.1.2.2  simonb 	struct bintime bt;
    361  1.1.1.1.2.2  simonb 
    362  1.1.1.1.2.4  simonb 	nmicrotime.ev_count++;
    363  1.1.1.1.2.2  simonb 	bintime(&bt);
    364  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, tvp);
    365  1.1.1.1.2.2  simonb }
    366  1.1.1.1.2.2  simonb 
    367  1.1.1.1.2.2  simonb void
    368  1.1.1.1.2.2  simonb getbinuptime(struct bintime *bt)
    369  1.1.1.1.2.2  simonb {
    370  1.1.1.1.2.2  simonb 	struct timehands *th;
    371  1.1.1.1.2.2  simonb 	u_int gen;
    372  1.1.1.1.2.2  simonb 
    373  1.1.1.1.2.4  simonb 	ngetbinuptime.ev_count++;
    374  1.1.1.1.2.2  simonb 	do {
    375  1.1.1.1.2.2  simonb 		th = timehands;
    376  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    377  1.1.1.1.2.2  simonb 		*bt = th->th_offset;
    378  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    379  1.1.1.1.2.2  simonb }
    380  1.1.1.1.2.2  simonb 
    381  1.1.1.1.2.2  simonb void
    382  1.1.1.1.2.2  simonb getnanouptime(struct timespec *tsp)
    383  1.1.1.1.2.2  simonb {
    384  1.1.1.1.2.2  simonb 	struct timehands *th;
    385  1.1.1.1.2.2  simonb 	u_int gen;
    386  1.1.1.1.2.2  simonb 
    387  1.1.1.1.2.4  simonb 	ngetnanouptime.ev_count++;
    388  1.1.1.1.2.2  simonb 	do {
    389  1.1.1.1.2.2  simonb 		th = timehands;
    390  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    391  1.1.1.1.2.2  simonb 		bintime2timespec(&th->th_offset, tsp);
    392  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    393  1.1.1.1.2.2  simonb }
    394  1.1.1.1.2.2  simonb 
    395  1.1.1.1.2.2  simonb void
    396  1.1.1.1.2.2  simonb getmicrouptime(struct timeval *tvp)
    397  1.1.1.1.2.2  simonb {
    398  1.1.1.1.2.2  simonb 	struct timehands *th;
    399  1.1.1.1.2.2  simonb 	u_int gen;
    400  1.1.1.1.2.2  simonb 
    401  1.1.1.1.2.4  simonb 	ngetmicrouptime.ev_count++;
    402  1.1.1.1.2.2  simonb 	do {
    403  1.1.1.1.2.2  simonb 		th = timehands;
    404  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    405  1.1.1.1.2.2  simonb 		bintime2timeval(&th->th_offset, tvp);
    406  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    407  1.1.1.1.2.2  simonb }
    408  1.1.1.1.2.2  simonb 
    409  1.1.1.1.2.2  simonb void
    410  1.1.1.1.2.2  simonb getbintime(struct bintime *bt)
    411  1.1.1.1.2.2  simonb {
    412  1.1.1.1.2.2  simonb 	struct timehands *th;
    413  1.1.1.1.2.2  simonb 	u_int gen;
    414  1.1.1.1.2.2  simonb 
    415  1.1.1.1.2.4  simonb 	ngetbintime.ev_count++;
    416  1.1.1.1.2.2  simonb 	do {
    417  1.1.1.1.2.2  simonb 		th = timehands;
    418  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    419  1.1.1.1.2.2  simonb 		*bt = th->th_offset;
    420  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    421  1.1.1.1.2.2  simonb 	bintime_add(bt, &boottimebin);
    422  1.1.1.1.2.2  simonb }
    423  1.1.1.1.2.2  simonb 
    424  1.1.1.1.2.2  simonb void
    425  1.1.1.1.2.2  simonb getnanotime(struct timespec *tsp)
    426  1.1.1.1.2.2  simonb {
    427  1.1.1.1.2.2  simonb 	struct timehands *th;
    428  1.1.1.1.2.2  simonb 	u_int gen;
    429  1.1.1.1.2.2  simonb 
    430  1.1.1.1.2.4  simonb 	ngetnanotime.ev_count++;
    431  1.1.1.1.2.2  simonb 	do {
    432  1.1.1.1.2.2  simonb 		th = timehands;
    433  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    434  1.1.1.1.2.2  simonb 		*tsp = th->th_nanotime;
    435  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    436  1.1.1.1.2.2  simonb }
    437  1.1.1.1.2.2  simonb 
    438  1.1.1.1.2.2  simonb void
    439  1.1.1.1.2.2  simonb getmicrotime(struct timeval *tvp)
    440  1.1.1.1.2.2  simonb {
    441  1.1.1.1.2.2  simonb 	struct timehands *th;
    442  1.1.1.1.2.2  simonb 	u_int gen;
    443  1.1.1.1.2.2  simonb 
    444  1.1.1.1.2.4  simonb 	ngetmicrotime.ev_count++;
    445  1.1.1.1.2.2  simonb 	do {
    446  1.1.1.1.2.2  simonb 		th = timehands;
    447  1.1.1.1.2.2  simonb 		gen = th->th_generation;
    448  1.1.1.1.2.2  simonb 		*tvp = th->th_microtime;
    449  1.1.1.1.2.2  simonb 	} while (gen == 0 || gen != th->th_generation);
    450  1.1.1.1.2.2  simonb }
    451  1.1.1.1.2.2  simonb 
    452  1.1.1.1.2.2  simonb /*
    453  1.1.1.1.2.2  simonb  * Initialize a new timecounter and possibly use it.
    454  1.1.1.1.2.2  simonb  */
    455  1.1.1.1.2.2  simonb void
    456  1.1.1.1.2.2  simonb tc_init(struct timecounter *tc)
    457  1.1.1.1.2.2  simonb {
    458  1.1.1.1.2.2  simonb 	u_int u;
    459  1.1.1.1.2.2  simonb 
    460  1.1.1.1.2.2  simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    461  1.1.1.1.2.2  simonb 	/* XXX: We need some margin here, 10% is a guess */
    462  1.1.1.1.2.2  simonb 	u *= 11;
    463  1.1.1.1.2.2  simonb 	u /= 10;
    464  1.1.1.1.2.2  simonb 	if (u > hz && tc->tc_quality >= 0) {
    465  1.1.1.1.2.2  simonb 		tc->tc_quality = -2000;
    466  1.1.1.1.2.2  simonb 		if (bootverbose) {
    467  1.1.1.1.2.6  kardel 			printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
    468  1.1.1.1.2.2  simonb 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    469  1.1.1.1.2.2  simonb 			printf(" -- Insufficient hz, needs at least %u\n", u);
    470  1.1.1.1.2.2  simonb 		}
    471  1.1.1.1.2.2  simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    472  1.1.1.1.2.6  kardel 		printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
    473  1.1.1.1.2.2  simonb 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
    474  1.1.1.1.2.2  simonb 		    tc->tc_quality);
    475  1.1.1.1.2.2  simonb 	}
    476  1.1.1.1.2.2  simonb 
    477  1.1.1.1.2.6  kardel 	/* XXX locking */
    478  1.1.1.1.2.2  simonb 	tc->tc_next = timecounters;
    479  1.1.1.1.2.2  simonb 	timecounters = tc;
    480  1.1.1.1.2.2  simonb 	/*
    481  1.1.1.1.2.2  simonb 	 * Never automatically use a timecounter with negative quality.
    482  1.1.1.1.2.2  simonb 	 * Even though we run on the dummy counter, switching here may be
    483  1.1.1.1.2.2  simonb 	 * worse since this timecounter may not be monotonous.
    484  1.1.1.1.2.2  simonb 	 */
    485  1.1.1.1.2.2  simonb 	if (tc->tc_quality < 0)
    486  1.1.1.1.2.2  simonb 		return;
    487  1.1.1.1.2.2  simonb 	if (tc->tc_quality < timecounter->tc_quality)
    488  1.1.1.1.2.2  simonb 		return;
    489  1.1.1.1.2.2  simonb 	if (tc->tc_quality == timecounter->tc_quality &&
    490  1.1.1.1.2.2  simonb 	    tc->tc_frequency < timecounter->tc_frequency)
    491  1.1.1.1.2.2  simonb 		return;
    492  1.1.1.1.2.2  simonb 	(void)tc->tc_get_timecount(tc);
    493  1.1.1.1.2.2  simonb 	(void)tc->tc_get_timecount(tc);
    494  1.1.1.1.2.2  simonb 	timecounter = tc;
    495  1.1.1.1.2.2  simonb }
    496  1.1.1.1.2.2  simonb 
    497  1.1.1.1.2.2  simonb /* Report the frequency of the current timecounter. */
    498  1.1.1.1.2.2  simonb u_int64_t
    499  1.1.1.1.2.2  simonb tc_getfrequency(void)
    500  1.1.1.1.2.2  simonb {
    501  1.1.1.1.2.2  simonb 
    502  1.1.1.1.2.2  simonb 	return (timehands->th_counter->tc_frequency);
    503  1.1.1.1.2.2  simonb }
    504  1.1.1.1.2.2  simonb 
    505  1.1.1.1.2.2  simonb /*
    506  1.1.1.1.2.2  simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    507  1.1.1.1.2.2  simonb  * when we booted.
    508  1.1.1.1.2.2  simonb  * XXX: not locked.
    509  1.1.1.1.2.2  simonb  */
    510  1.1.1.1.2.2  simonb void
    511  1.1.1.1.2.2  simonb tc_setclock(struct timespec *ts)
    512  1.1.1.1.2.2  simonb {
    513  1.1.1.1.2.2  simonb 	struct timespec ts2;
    514  1.1.1.1.2.2  simonb 	struct bintime bt, bt2;
    515  1.1.1.1.2.2  simonb 
    516  1.1.1.1.2.4  simonb 	nsetclock.ev_count++;
    517  1.1.1.1.2.2  simonb 	binuptime(&bt2);
    518  1.1.1.1.2.2  simonb 	timespec2bintime(ts, &bt);
    519  1.1.1.1.2.2  simonb 	bintime_sub(&bt, &bt2);
    520  1.1.1.1.2.2  simonb 	bintime_add(&bt2, &boottimebin);
    521  1.1.1.1.2.2  simonb 	boottimebin = bt;
    522  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, &boottime);
    523  1.1.1.1.2.2  simonb 
    524  1.1.1.1.2.2  simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    525  1.1.1.1.2.2  simonb 	tc_windup();
    526  1.1.1.1.2.2  simonb 	if (timestepwarnings) {
    527  1.1.1.1.2.2  simonb 		bintime2timespec(&bt2, &ts2);
    528  1.1.1.1.2.2  simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    529  1.1.1.1.2.2  simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    530  1.1.1.1.2.2  simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    531  1.1.1.1.2.2  simonb 	}
    532  1.1.1.1.2.2  simonb }
    533  1.1.1.1.2.2  simonb 
    534  1.1.1.1.2.2  simonb /*
    535  1.1.1.1.2.2  simonb  * Initialize the next struct timehands in the ring and make
    536  1.1.1.1.2.2  simonb  * it the active timehands.  Along the way we might switch to a different
    537  1.1.1.1.2.2  simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    538  1.1.1.1.2.2  simonb  */
    539  1.1.1.1.2.2  simonb static void
    540  1.1.1.1.2.2  simonb tc_windup(void)
    541  1.1.1.1.2.2  simonb {
    542  1.1.1.1.2.2  simonb 	struct bintime bt;
    543  1.1.1.1.2.2  simonb 	struct timehands *th, *tho;
    544  1.1.1.1.2.2  simonb 	u_int64_t scale;
    545  1.1.1.1.2.2  simonb 	u_int delta, ncount, ogen;
    546  1.1.1.1.2.2  simonb 	int i;
    547  1.1.1.1.2.2  simonb 	time_t t;
    548  1.1.1.1.2.2  simonb 
    549  1.1.1.1.2.2  simonb 	/*
    550  1.1.1.1.2.2  simonb 	 * Make the next timehands a copy of the current one, but do not
    551  1.1.1.1.2.2  simonb 	 * overwrite the generation or next pointer.  While we update
    552  1.1.1.1.2.2  simonb 	 * the contents, the generation must be zero.
    553  1.1.1.1.2.2  simonb 	 */
    554  1.1.1.1.2.2  simonb 	tho = timehands;
    555  1.1.1.1.2.2  simonb 	th = tho->th_next;
    556  1.1.1.1.2.2  simonb 	ogen = th->th_generation;
    557  1.1.1.1.2.2  simonb 	th->th_generation = 0;
    558  1.1.1.1.2.2  simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    559  1.1.1.1.2.2  simonb 
    560  1.1.1.1.2.2  simonb 	/*
    561  1.1.1.1.2.2  simonb 	 * Capture a timecounter delta on the current timecounter and if
    562  1.1.1.1.2.2  simonb 	 * changing timecounters, a counter value from the new timecounter.
    563  1.1.1.1.2.2  simonb 	 * Update the offset fields accordingly.
    564  1.1.1.1.2.2  simonb 	 */
    565  1.1.1.1.2.2  simonb 	delta = tc_delta(th);
    566  1.1.1.1.2.2  simonb 	if (th->th_counter != timecounter)
    567  1.1.1.1.2.2  simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    568  1.1.1.1.2.2  simonb 	else
    569  1.1.1.1.2.2  simonb 		ncount = 0;
    570  1.1.1.1.2.2  simonb 	th->th_offset_count += delta;
    571  1.1.1.1.2.2  simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    572  1.1.1.1.2.2  simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    573  1.1.1.1.2.2  simonb 
    574  1.1.1.1.2.2  simonb 	/*
    575  1.1.1.1.2.2  simonb 	 * Hardware latching timecounters may not generate interrupts on
    576  1.1.1.1.2.2  simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    577  1.1.1.1.2.2  simonb 	 * the hardware might capture a count which is later than the one we
    578  1.1.1.1.2.2  simonb 	 * got above, and therefore possibly in the next NTP second which might
    579  1.1.1.1.2.2  simonb 	 * have a different rate than the current NTP second.  It doesn't
    580  1.1.1.1.2.2  simonb 	 * matter in practice.
    581  1.1.1.1.2.2  simonb 	 */
    582  1.1.1.1.2.2  simonb 	if (tho->th_counter->tc_poll_pps)
    583  1.1.1.1.2.2  simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    584  1.1.1.1.2.2  simonb 
    585  1.1.1.1.2.2  simonb 	/*
    586  1.1.1.1.2.2  simonb 	 * Deal with NTP second processing.  The for loop normally
    587  1.1.1.1.2.2  simonb 	 * iterates at most once, but in extreme situations it might
    588  1.1.1.1.2.2  simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    589  1.1.1.1.2.2  simonb 	 * At boot, the time step can be large when the TOD hardware
    590  1.1.1.1.2.2  simonb 	 * has been read, so on really large steps, we call
    591  1.1.1.1.2.2  simonb 	 * ntp_update_second only twice.  We need to call it twice in
    592  1.1.1.1.2.2  simonb 	 * case we missed a leap second.
    593  1.1.1.1.2.6  kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    594  1.1.1.1.2.6  kardel 	 * the adjustment resulting from adjtime() calls.
    595  1.1.1.1.2.2  simonb 	 */
    596  1.1.1.1.2.2  simonb 	bt = th->th_offset;
    597  1.1.1.1.2.2  simonb 	bintime_add(&bt, &boottimebin);
    598  1.1.1.1.2.2  simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    599  1.1.1.1.2.2  simonb 	if (i > LARGE_STEP)
    600  1.1.1.1.2.2  simonb 		i = 2;
    601  1.1.1.1.2.2  simonb 	for (; i > 0; i--) {
    602  1.1.1.1.2.2  simonb 		t = bt.sec;
    603  1.1.1.1.2.2  simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    604  1.1.1.1.2.2  simonb 		if (bt.sec != t)
    605  1.1.1.1.2.2  simonb 			boottimebin.sec += bt.sec - t;
    606  1.1.1.1.2.2  simonb 	}
    607  1.1.1.1.2.4  simonb 
    608  1.1.1.1.2.2  simonb 	/* Update the UTC timestamps used by the get*() functions. */
    609  1.1.1.1.2.2  simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    610  1.1.1.1.2.2  simonb 	bintime2timeval(&bt, &th->th_microtime);
    611  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, &th->th_nanotime);
    612  1.1.1.1.2.2  simonb 
    613  1.1.1.1.2.2  simonb 	/* Now is a good time to change timecounters. */
    614  1.1.1.1.2.2  simonb 	if (th->th_counter != timecounter) {
    615  1.1.1.1.2.2  simonb 		th->th_counter = timecounter;
    616  1.1.1.1.2.2  simonb 		th->th_offset_count = ncount;
    617  1.1.1.1.2.6  kardel 
    618  1.1.1.1.2.6  kardel 		printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
    619  1.1.1.1.2.6  kardel 		    timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
    620  1.1.1.1.2.6  kardel 		    timecounter->tc_quality);
    621  1.1.1.1.2.2  simonb 	}
    622  1.1.1.1.2.2  simonb 
    623  1.1.1.1.2.2  simonb 	/*-
    624  1.1.1.1.2.2  simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    625  1.1.1.1.2.2  simonb 	 * fractions of a second per period of the hardware counter, taking
    626  1.1.1.1.2.2  simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    627  1.1.1.1.2.2  simonb 	 * processing provides us with.
    628  1.1.1.1.2.2  simonb 	 *
    629  1.1.1.1.2.2  simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    630  1.1.1.1.2.2  simonb 	 * fraction and we want 64 bit binary fraction of second:
    631  1.1.1.1.2.2  simonb 	 *
    632  1.1.1.1.2.2  simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    633  1.1.1.1.2.2  simonb 	 *
    634  1.1.1.1.2.2  simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    635  1.1.1.1.2.2  simonb 	 * we can only multiply by about 850 without overflowing, but that
    636  1.1.1.1.2.2  simonb 	 * leaves suitably precise fractions for multiply before divide.
    637  1.1.1.1.2.2  simonb 	 *
    638  1.1.1.1.2.2  simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    639  1.1.1.1.2.2  simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    640  1.1.1.1.2.2  simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    641  1.1.1.1.2.2  simonb  	 *
    642  1.1.1.1.2.2  simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    643  1.1.1.1.2.2  simonb 	 * to the goddess of code clarity.
    644  1.1.1.1.2.2  simonb 	 *
    645  1.1.1.1.2.2  simonb 	 */
    646  1.1.1.1.2.2  simonb 	scale = (u_int64_t)1 << 63;
    647  1.1.1.1.2.2  simonb 	scale += (th->th_adjustment / 1024) * 2199;
    648  1.1.1.1.2.2  simonb 	scale /= th->th_counter->tc_frequency;
    649  1.1.1.1.2.2  simonb 	th->th_scale = scale * 2;
    650  1.1.1.1.2.2  simonb 
    651  1.1.1.1.2.2  simonb 	/*
    652  1.1.1.1.2.2  simonb 	 * Now that the struct timehands is again consistent, set the new
    653  1.1.1.1.2.2  simonb 	 * generation number, making sure to not make it zero.
    654  1.1.1.1.2.2  simonb 	 */
    655  1.1.1.1.2.2  simonb 	if (++ogen == 0)
    656  1.1.1.1.2.2  simonb 		ogen = 1;
    657  1.1.1.1.2.2  simonb 	th->th_generation = ogen;
    658  1.1.1.1.2.2  simonb 
    659  1.1.1.1.2.2  simonb 	/* Go live with the new struct timehands. */
    660  1.1.1.1.2.2  simonb 	time_second = th->th_microtime.tv_sec;
    661  1.1.1.1.2.2  simonb 	time_uptime = th->th_offset.sec;
    662  1.1.1.1.2.2  simonb 	timehands = th;
    663  1.1.1.1.2.2  simonb }
    664  1.1.1.1.2.2  simonb 
    665  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    666  1.1.1.1.2.2  simonb /* Report or change the active timecounter hardware. */
    667  1.1.1.1.2.2  simonb static int
    668  1.1.1.1.2.2  simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    669  1.1.1.1.2.2  simonb {
    670  1.1.1.1.2.2  simonb 	char newname[32];
    671  1.1.1.1.2.2  simonb 	struct timecounter *newtc, *tc;
    672  1.1.1.1.2.2  simonb 	int error;
    673  1.1.1.1.2.2  simonb 
    674  1.1.1.1.2.2  simonb 	tc = timecounter;
    675  1.1.1.1.2.2  simonb 	strlcpy(newname, tc->tc_name, sizeof(newname));
    676  1.1.1.1.2.2  simonb 
    677  1.1.1.1.2.2  simonb 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    678  1.1.1.1.2.2  simonb 	if (error != 0 || req->newptr == NULL ||
    679  1.1.1.1.2.2  simonb 	    strcmp(newname, tc->tc_name) == 0)
    680  1.1.1.1.2.2  simonb 		return (error);
    681  1.1.1.1.2.6  kardel 
    682  1.1.1.1.2.2  simonb 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    683  1.1.1.1.2.2  simonb 		if (strcmp(newname, newtc->tc_name) != 0)
    684  1.1.1.1.2.2  simonb 			continue;
    685  1.1.1.1.2.2  simonb 
    686  1.1.1.1.2.2  simonb 		/* Warm up new timecounter. */
    687  1.1.1.1.2.2  simonb 		(void)newtc->tc_get_timecount(newtc);
    688  1.1.1.1.2.2  simonb 		(void)newtc->tc_get_timecount(newtc);
    689  1.1.1.1.2.2  simonb 
    690  1.1.1.1.2.2  simonb 		timecounter = newtc;
    691  1.1.1.1.2.2  simonb 		return (0);
    692  1.1.1.1.2.2  simonb 	}
    693  1.1.1.1.2.2  simonb 	return (EINVAL);
    694  1.1.1.1.2.2  simonb }
    695  1.1.1.1.2.2  simonb 
    696  1.1.1.1.2.2  simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    697  1.1.1.1.2.2  simonb     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    698  1.1.1.1.2.2  simonb 
    699  1.1.1.1.2.2  simonb 
    700  1.1.1.1.2.2  simonb /* Report or change the active timecounter hardware. */
    701  1.1.1.1.2.2  simonb static int
    702  1.1.1.1.2.2  simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    703  1.1.1.1.2.2  simonb {
    704  1.1.1.1.2.2  simonb 	char buf[32], *spc;
    705  1.1.1.1.2.2  simonb 	struct timecounter *tc;
    706  1.1.1.1.2.2  simonb 	int error;
    707  1.1.1.1.2.2  simonb 
    708  1.1.1.1.2.2  simonb 	spc = "";
    709  1.1.1.1.2.2  simonb 	error = 0;
    710  1.1.1.1.2.2  simonb 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    711  1.1.1.1.2.2  simonb 		sprintf(buf, "%s%s(%d)",
    712  1.1.1.1.2.2  simonb 		    spc, tc->tc_name, tc->tc_quality);
    713  1.1.1.1.2.2  simonb 		error = SYSCTL_OUT(req, buf, strlen(buf));
    714  1.1.1.1.2.2  simonb 		spc = " ";
    715  1.1.1.1.2.2  simonb 	}
    716  1.1.1.1.2.2  simonb 	return (error);
    717  1.1.1.1.2.2  simonb }
    718  1.1.1.1.2.2  simonb 
    719  1.1.1.1.2.2  simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    720  1.1.1.1.2.2  simonb     0, 0, sysctl_kern_timecounter_choice, "A", "");
    721  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    722  1.1.1.1.2.2  simonb 
    723  1.1.1.1.2.2  simonb /*
    724  1.1.1.1.2.2  simonb  * RFC 2783 PPS-API implementation.
    725  1.1.1.1.2.2  simonb  */
    726  1.1.1.1.2.2  simonb 
    727  1.1.1.1.2.2  simonb int
    728  1.1.1.1.2.2  simonb pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
    729  1.1.1.1.2.2  simonb {
    730  1.1.1.1.2.2  simonb 	pps_params_t *app;
    731  1.1.1.1.2.2  simonb 	struct pps_fetch_args *fapi;
    732  1.1.1.1.2.2  simonb #ifdef PPS_SYNC
    733  1.1.1.1.2.2  simonb 	struct pps_kcbind_args *kapi;
    734  1.1.1.1.2.2  simonb #endif
    735  1.1.1.1.2.2  simonb 
    736  1.1.1.1.2.4  simonb 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    737  1.1.1.1.2.2  simonb 	switch (cmd) {
    738  1.1.1.1.2.2  simonb 	case PPS_IOC_CREATE:
    739  1.1.1.1.2.2  simonb 		return (0);
    740  1.1.1.1.2.2  simonb 	case PPS_IOC_DESTROY:
    741  1.1.1.1.2.2  simonb 		return (0);
    742  1.1.1.1.2.2  simonb 	case PPS_IOC_SETPARAMS:
    743  1.1.1.1.2.2  simonb 		app = (pps_params_t *)data;
    744  1.1.1.1.2.2  simonb 		if (app->mode & ~pps->ppscap)
    745  1.1.1.1.2.2  simonb 			return (EINVAL);
    746  1.1.1.1.2.2  simonb 		pps->ppsparam = *app;
    747  1.1.1.1.2.2  simonb 		return (0);
    748  1.1.1.1.2.2  simonb 	case PPS_IOC_GETPARAMS:
    749  1.1.1.1.2.2  simonb 		app = (pps_params_t *)data;
    750  1.1.1.1.2.2  simonb 		*app = pps->ppsparam;
    751  1.1.1.1.2.2  simonb 		app->api_version = PPS_API_VERS_1;
    752  1.1.1.1.2.2  simonb 		return (0);
    753  1.1.1.1.2.2  simonb 	case PPS_IOC_GETCAP:
    754  1.1.1.1.2.2  simonb 		*(int*)data = pps->ppscap;
    755  1.1.1.1.2.2  simonb 		return (0);
    756  1.1.1.1.2.2  simonb 	case PPS_IOC_FETCH:
    757  1.1.1.1.2.2  simonb 		fapi = (struct pps_fetch_args *)data;
    758  1.1.1.1.2.2  simonb 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
    759  1.1.1.1.2.2  simonb 			return (EINVAL);
    760  1.1.1.1.2.2  simonb 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
    761  1.1.1.1.2.2  simonb 			return (EOPNOTSUPP);
    762  1.1.1.1.2.2  simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    763  1.1.1.1.2.2  simonb 		fapi->pps_info_buf = pps->ppsinfo;
    764  1.1.1.1.2.2  simonb 		return (0);
    765  1.1.1.1.2.2  simonb 	case PPS_IOC_KCBIND:
    766  1.1.1.1.2.2  simonb #ifdef PPS_SYNC
    767  1.1.1.1.2.2  simonb 		kapi = (struct pps_kcbind_args *)data;
    768  1.1.1.1.2.2  simonb 		/* XXX Only root should be able to do this */
    769  1.1.1.1.2.2  simonb 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
    770  1.1.1.1.2.2  simonb 			return (EINVAL);
    771  1.1.1.1.2.2  simonb 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
    772  1.1.1.1.2.2  simonb 			return (EINVAL);
    773  1.1.1.1.2.2  simonb 		if (kapi->edge & ~pps->ppscap)
    774  1.1.1.1.2.2  simonb 			return (EINVAL);
    775  1.1.1.1.2.2  simonb 		pps->kcmode = kapi->edge;
    776  1.1.1.1.2.2  simonb 		return (0);
    777  1.1.1.1.2.2  simonb #else
    778  1.1.1.1.2.2  simonb 		return (EOPNOTSUPP);
    779  1.1.1.1.2.2  simonb #endif
    780  1.1.1.1.2.2  simonb 	default:
    781  1.1.1.1.2.4  simonb 		return (EPASSTHROUGH);
    782  1.1.1.1.2.2  simonb 	}
    783  1.1.1.1.2.2  simonb }
    784  1.1.1.1.2.2  simonb 
    785  1.1.1.1.2.2  simonb void
    786  1.1.1.1.2.2  simonb pps_init(struct pps_state *pps)
    787  1.1.1.1.2.2  simonb {
    788  1.1.1.1.2.2  simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    789  1.1.1.1.2.2  simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    790  1.1.1.1.2.2  simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    791  1.1.1.1.2.2  simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    792  1.1.1.1.2.2  simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    793  1.1.1.1.2.2  simonb }
    794  1.1.1.1.2.2  simonb 
    795  1.1.1.1.2.2  simonb void
    796  1.1.1.1.2.2  simonb pps_capture(struct pps_state *pps)
    797  1.1.1.1.2.2  simonb {
    798  1.1.1.1.2.2  simonb 	struct timehands *th;
    799  1.1.1.1.2.2  simonb 
    800  1.1.1.1.2.4  simonb 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    801  1.1.1.1.2.2  simonb 	th = timehands;
    802  1.1.1.1.2.2  simonb 	pps->capgen = th->th_generation;
    803  1.1.1.1.2.2  simonb 	pps->capth = th;
    804  1.1.1.1.2.2  simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    805  1.1.1.1.2.2  simonb 	if (pps->capgen != th->th_generation)
    806  1.1.1.1.2.2  simonb 		pps->capgen = 0;
    807  1.1.1.1.2.2  simonb }
    808  1.1.1.1.2.2  simonb 
    809  1.1.1.1.2.2  simonb void
    810  1.1.1.1.2.2  simonb pps_event(struct pps_state *pps, int event)
    811  1.1.1.1.2.2  simonb {
    812  1.1.1.1.2.2  simonb 	struct bintime bt;
    813  1.1.1.1.2.2  simonb 	struct timespec ts, *tsp, *osp;
    814  1.1.1.1.2.2  simonb 	u_int tcount, *pcount;
    815  1.1.1.1.2.2  simonb 	int foff, fhard;
    816  1.1.1.1.2.2  simonb 	pps_seq_t *pseq;
    817  1.1.1.1.2.2  simonb 
    818  1.1.1.1.2.4  simonb 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    819  1.1.1.1.2.2  simonb 	/* If the timecounter was wound up underneath us, bail out. */
    820  1.1.1.1.2.2  simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    821  1.1.1.1.2.2  simonb 		return;
    822  1.1.1.1.2.2  simonb 
    823  1.1.1.1.2.2  simonb 	/* Things would be easier with arrays. */
    824  1.1.1.1.2.2  simonb 	if (event == PPS_CAPTUREASSERT) {
    825  1.1.1.1.2.2  simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    826  1.1.1.1.2.2  simonb 		osp = &pps->ppsparam.assert_offset;
    827  1.1.1.1.2.2  simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    828  1.1.1.1.2.2  simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    829  1.1.1.1.2.2  simonb 		pcount = &pps->ppscount[0];
    830  1.1.1.1.2.2  simonb 		pseq = &pps->ppsinfo.assert_sequence;
    831  1.1.1.1.2.2  simonb 	} else {
    832  1.1.1.1.2.2  simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    833  1.1.1.1.2.2  simonb 		osp = &pps->ppsparam.clear_offset;
    834  1.1.1.1.2.2  simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    835  1.1.1.1.2.2  simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    836  1.1.1.1.2.2  simonb 		pcount = &pps->ppscount[1];
    837  1.1.1.1.2.2  simonb 		pseq = &pps->ppsinfo.clear_sequence;
    838  1.1.1.1.2.2  simonb 	}
    839  1.1.1.1.2.2  simonb 
    840  1.1.1.1.2.2  simonb 	/*
    841  1.1.1.1.2.2  simonb 	 * If the timecounter changed, we cannot compare the count values, so
    842  1.1.1.1.2.2  simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    843  1.1.1.1.2.2  simonb 	 */
    844  1.1.1.1.2.2  simonb 	if (pps->ppstc != pps->capth->th_counter) {
    845  1.1.1.1.2.2  simonb 		pps->ppstc = pps->capth->th_counter;
    846  1.1.1.1.2.2  simonb 		*pcount = pps->capcount;
    847  1.1.1.1.2.2  simonb 		pps->ppscount[2] = pps->capcount;
    848  1.1.1.1.2.2  simonb 		return;
    849  1.1.1.1.2.2  simonb 	}
    850  1.1.1.1.2.2  simonb 
    851  1.1.1.1.2.2  simonb 	/* Convert the count to a timespec. */
    852  1.1.1.1.2.2  simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    853  1.1.1.1.2.2  simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    854  1.1.1.1.2.2  simonb 	bt = pps->capth->th_offset;
    855  1.1.1.1.2.2  simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    856  1.1.1.1.2.2  simonb 	bintime_add(&bt, &boottimebin);
    857  1.1.1.1.2.2  simonb 	bintime2timespec(&bt, &ts);
    858  1.1.1.1.2.2  simonb 
    859  1.1.1.1.2.2  simonb 	/* If the timecounter was wound up underneath us, bail out. */
    860  1.1.1.1.2.2  simonb 	if (pps->capgen != pps->capth->th_generation)
    861  1.1.1.1.2.2  simonb 		return;
    862  1.1.1.1.2.2  simonb 
    863  1.1.1.1.2.2  simonb 	*pcount = pps->capcount;
    864  1.1.1.1.2.2  simonb 	(*pseq)++;
    865  1.1.1.1.2.2  simonb 	*tsp = ts;
    866  1.1.1.1.2.2  simonb 
    867  1.1.1.1.2.2  simonb 	if (foff) {
    868  1.1.1.1.2.4  simonb 		timespecadd(tsp, osp, tsp);
    869  1.1.1.1.2.2  simonb 		if (tsp->tv_nsec < 0) {
    870  1.1.1.1.2.2  simonb 			tsp->tv_nsec += 1000000000;
    871  1.1.1.1.2.2  simonb 			tsp->tv_sec -= 1;
    872  1.1.1.1.2.2  simonb 		}
    873  1.1.1.1.2.2  simonb 	}
    874  1.1.1.1.2.2  simonb #ifdef PPS_SYNC
    875  1.1.1.1.2.2  simonb 	if (fhard) {
    876  1.1.1.1.2.2  simonb 		u_int64_t scale;
    877  1.1.1.1.2.2  simonb 
    878  1.1.1.1.2.2  simonb 		/*
    879  1.1.1.1.2.2  simonb 		 * Feed the NTP PLL/FLL.
    880  1.1.1.1.2.2  simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    881  1.1.1.1.2.2  simonb 		 * elapsed since the previous event.
    882  1.1.1.1.2.2  simonb 		 */
    883  1.1.1.1.2.2  simonb 		tcount = pps->capcount - pps->ppscount[2];
    884  1.1.1.1.2.2  simonb 		pps->ppscount[2] = pps->capcount;
    885  1.1.1.1.2.2  simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    886  1.1.1.1.2.2  simonb 		scale = (u_int64_t)1 << 63;
    887  1.1.1.1.2.2  simonb 		scale /= pps->capth->th_counter->tc_frequency;
    888  1.1.1.1.2.2  simonb 		scale *= 2;
    889  1.1.1.1.2.2  simonb 		bt.sec = 0;
    890  1.1.1.1.2.2  simonb 		bt.frac = 0;
    891  1.1.1.1.2.2  simonb 		bintime_addx(&bt, scale * tcount);
    892  1.1.1.1.2.2  simonb 		bintime2timespec(&bt, &ts);
    893  1.1.1.1.2.2  simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    894  1.1.1.1.2.2  simonb 	}
    895  1.1.1.1.2.2  simonb #endif
    896  1.1.1.1.2.2  simonb }
    897  1.1.1.1.2.2  simonb 
    898  1.1.1.1.2.2  simonb /*
    899  1.1.1.1.2.2  simonb  * Timecounters need to be updated every so often to prevent the hardware
    900  1.1.1.1.2.2  simonb  * counter from overflowing.  Updating also recalculates the cached values
    901  1.1.1.1.2.2  simonb  * used by the get*() family of functions, so their precision depends on
    902  1.1.1.1.2.2  simonb  * the update frequency.
    903  1.1.1.1.2.2  simonb  */
    904  1.1.1.1.2.2  simonb 
    905  1.1.1.1.2.2  simonb static int tc_tick;
    906  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    907  1.1.1.1.2.2  simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    908  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    909  1.1.1.1.2.2  simonb 
    910  1.1.1.1.2.2  simonb void
    911  1.1.1.1.2.2  simonb tc_ticktock(void)
    912  1.1.1.1.2.2  simonb {
    913  1.1.1.1.2.2  simonb 	static int count;
    914  1.1.1.1.2.2  simonb 
    915  1.1.1.1.2.2  simonb 	if (++count < tc_tick)
    916  1.1.1.1.2.2  simonb 		return;
    917  1.1.1.1.2.2  simonb 	count = 0;
    918  1.1.1.1.2.2  simonb 	tc_windup();
    919  1.1.1.1.2.2  simonb }
    920  1.1.1.1.2.2  simonb 
    921  1.1.1.1.2.4  simonb void
    922  1.1.1.1.2.4  simonb inittimecounter(void)
    923  1.1.1.1.2.2  simonb {
    924  1.1.1.1.2.2  simonb 	u_int p;
    925  1.1.1.1.2.2  simonb 
    926  1.1.1.1.2.2  simonb 	/*
    927  1.1.1.1.2.2  simonb 	 * Set the initial timeout to
    928  1.1.1.1.2.2  simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    929  1.1.1.1.2.2  simonb 	 * People should probably not use the sysctl to set the timeout
    930  1.1.1.1.2.2  simonb 	 * to smaller than its inital value, since that value is the
    931  1.1.1.1.2.2  simonb 	 * smallest reasonable one.  If they want better timestamps they
    932  1.1.1.1.2.2  simonb 	 * should use the non-"get"* functions.
    933  1.1.1.1.2.2  simonb 	 */
    934  1.1.1.1.2.2  simonb 	if (hz > 1000)
    935  1.1.1.1.2.2  simonb 		tc_tick = (hz + 500) / 1000;
    936  1.1.1.1.2.2  simonb 	else
    937  1.1.1.1.2.2  simonb 		tc_tick = 1;
    938  1.1.1.1.2.2  simonb 	p = (tc_tick * 1000000) / hz;
    939  1.1.1.1.2.6  kardel 	printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
    940  1.1.1.1.2.2  simonb 
    941  1.1.1.1.2.2  simonb 	/* warm up new timecounter (again) and get rolling. */
    942  1.1.1.1.2.2  simonb 	(void)timecounter->tc_get_timecount(timecounter);
    943  1.1.1.1.2.2  simonb 	(void)timecounter->tc_get_timecount(timecounter);
    944  1.1.1.1.2.2  simonb }
    945  1.1.1.1.2.2  simonb 
    946  1.1.1.1.2.4  simonb #ifdef __FreeBSD__
    947  1.1.1.1.2.2  simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    948  1.1.1.1.2.4  simonb #endif /* __FreeBSD__ */
    949  1.1.1.1.2.4  simonb #endif /* __HAVE_TIMECOUNTER */
    950