Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.1.1.1.6.4
      1  1.1.1.1.6.4    yamt /* $NetBSD: kern_tc.c,v 1.1.1.1.6.4 2006/09/14 12:31:48 yamt Exp $ */
      2  1.1.1.1.6.1    yamt 
      3          1.1  simonb /*-
      4          1.1  simonb  * ----------------------------------------------------------------------------
      5          1.1  simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6          1.1  simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7          1.1  simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8          1.1  simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  1.1.1.1.6.1    yamt  * ---------------------------------------------------------------------------
     10          1.1  simonb  */
     11          1.1  simonb 
     12          1.1  simonb #include <sys/cdefs.h>
     13  1.1.1.1.6.1    yamt /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.1.1.1.6.4    yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.6.4 2006/09/14 12:31:48 yamt Exp $");
     15          1.1  simonb 
     16          1.1  simonb #include "opt_ntp.h"
     17          1.1  simonb 
     18          1.1  simonb #include <sys/param.h>
     19  1.1.1.1.6.1    yamt #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20          1.1  simonb #include <sys/kernel.h>
     21  1.1.1.1.6.1    yamt #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22          1.1  simonb #include <sys/sysctl.h>
     23          1.1  simonb #include <sys/syslog.h>
     24          1.1  simonb #include <sys/systm.h>
     25          1.1  simonb #include <sys/timepps.h>
     26          1.1  simonb #include <sys/timetc.h>
     27          1.1  simonb #include <sys/timex.h>
     28  1.1.1.1.6.1    yamt #include <sys/evcnt.h>
     29  1.1.1.1.6.1    yamt #include <sys/kauth.h>
     30  1.1.1.1.6.1    yamt 
     31  1.1.1.1.6.1    yamt /*
     32          1.1  simonb  * A large step happens on boot.  This constant detects such steps.
     33          1.1  simonb  * It is relatively small so that ntp_update_second gets called enough
     34          1.1  simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     35          1.1  simonb  * forever when the time step is large.
     36          1.1  simonb  */
     37          1.1  simonb #define LARGE_STEP	200
     38          1.1  simonb 
     39          1.1  simonb /*
     40          1.1  simonb  * Implement a dummy timecounter which we can use until we get a real one
     41          1.1  simonb  * in the air.  This allows the console and other early stuff to use
     42          1.1  simonb  * time services.
     43          1.1  simonb  */
     44          1.1  simonb 
     45          1.1  simonb static u_int
     46          1.1  simonb dummy_get_timecount(struct timecounter *tc)
     47          1.1  simonb {
     48          1.1  simonb 	static u_int now;
     49          1.1  simonb 
     50          1.1  simonb 	return (++now);
     51          1.1  simonb }
     52          1.1  simonb 
     53          1.1  simonb static struct timecounter dummy_timecounter = {
     54  1.1.1.1.6.3    yamt 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     55          1.1  simonb };
     56          1.1  simonb 
     57          1.1  simonb struct timehands {
     58          1.1  simonb 	/* These fields must be initialized by the driver. */
     59          1.1  simonb 	struct timecounter	*th_counter;
     60          1.1  simonb 	int64_t			th_adjustment;
     61          1.1  simonb 	u_int64_t		th_scale;
     62          1.1  simonb 	u_int	 		th_offset_count;
     63          1.1  simonb 	struct bintime		th_offset;
     64          1.1  simonb 	struct timeval		th_microtime;
     65          1.1  simonb 	struct timespec		th_nanotime;
     66          1.1  simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     67          1.1  simonb 	volatile u_int		th_generation;
     68          1.1  simonb 	struct timehands	*th_next;
     69          1.1  simonb };
     70          1.1  simonb 
     71          1.1  simonb static struct timehands th0;
     72  1.1.1.1.6.3    yamt static struct timehands th9 = { .th_next = &th0, };
     73  1.1.1.1.6.3    yamt static struct timehands th8 = { .th_next = &th9, };
     74  1.1.1.1.6.3    yamt static struct timehands th7 = { .th_next = &th8, };
     75  1.1.1.1.6.3    yamt static struct timehands th6 = { .th_next = &th7, };
     76  1.1.1.1.6.3    yamt static struct timehands th5 = { .th_next = &th6, };
     77  1.1.1.1.6.3    yamt static struct timehands th4 = { .th_next = &th5, };
     78  1.1.1.1.6.3    yamt static struct timehands th3 = { .th_next = &th4, };
     79  1.1.1.1.6.3    yamt static struct timehands th2 = { .th_next = &th3, };
     80  1.1.1.1.6.3    yamt static struct timehands th1 = { .th_next = &th2, };
     81          1.1  simonb static struct timehands th0 = {
     82  1.1.1.1.6.3    yamt 	.th_counter = &dummy_timecounter,
     83  1.1.1.1.6.3    yamt 	.th_scale = (uint64_t)-1 / 1000000,
     84  1.1.1.1.6.3    yamt 	.th_offset = { .sec = 1, .frac = 0 },
     85  1.1.1.1.6.3    yamt 	.th_generation = 1,
     86  1.1.1.1.6.3    yamt 	.th_next = &th1,
     87          1.1  simonb };
     88          1.1  simonb 
     89          1.1  simonb static struct timehands *volatile timehands = &th0;
     90          1.1  simonb struct timecounter *timecounter = &dummy_timecounter;
     91          1.1  simonb static struct timecounter *timecounters = &dummy_timecounter;
     92          1.1  simonb 
     93          1.1  simonb time_t time_second = 1;
     94          1.1  simonb time_t time_uptime = 1;
     95          1.1  simonb 
     96  1.1.1.1.6.2    yamt static struct bintime timebasebin;
     97          1.1  simonb 
     98          1.1  simonb static int timestepwarnings;
     99  1.1.1.1.6.1    yamt 
    100  1.1.1.1.6.1    yamt #ifdef __FreeBSD__
    101          1.1  simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    102          1.1  simonb     &timestepwarnings, 0, "");
    103  1.1.1.1.6.1    yamt #endif /* __FreeBSD__ */
    104  1.1.1.1.6.1    yamt 
    105  1.1.1.1.6.1    yamt /*
    106  1.1.1.1.6.1    yamt  * sysctl helper routine for kern.timercounter.current
    107  1.1.1.1.6.1    yamt  */
    108  1.1.1.1.6.1    yamt static int
    109  1.1.1.1.6.1    yamt sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    110  1.1.1.1.6.1    yamt {
    111  1.1.1.1.6.1    yamt 	struct sysctlnode node;
    112  1.1.1.1.6.1    yamt 	int error;
    113  1.1.1.1.6.1    yamt 	char newname[MAX_TCNAMELEN];
    114  1.1.1.1.6.1    yamt 	struct timecounter *newtc, *tc;
    115  1.1.1.1.6.1    yamt 
    116  1.1.1.1.6.1    yamt 	tc = timecounter;
    117  1.1.1.1.6.1    yamt 
    118  1.1.1.1.6.1    yamt 	strlcpy(newname, tc->tc_name, sizeof(newname));
    119  1.1.1.1.6.1    yamt 
    120  1.1.1.1.6.1    yamt 	node = *rnode;
    121  1.1.1.1.6.1    yamt 	node.sysctl_data = newname;
    122  1.1.1.1.6.1    yamt 	node.sysctl_size = sizeof(newname);
    123  1.1.1.1.6.1    yamt 
    124  1.1.1.1.6.1    yamt 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    125  1.1.1.1.6.1    yamt 
    126  1.1.1.1.6.1    yamt 	if (error ||
    127  1.1.1.1.6.1    yamt 	    newp == NULL ||
    128  1.1.1.1.6.1    yamt 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    129  1.1.1.1.6.1    yamt 		return error;
    130  1.1.1.1.6.1    yamt 
    131  1.1.1.1.6.2    yamt 	if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
    132  1.1.1.1.6.2    yamt 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
    133  1.1.1.1.6.1    yamt 		return (error);
    134  1.1.1.1.6.1    yamt 
    135  1.1.1.1.6.1    yamt 	/* XXX locking */
    136  1.1.1.1.6.1    yamt 
    137  1.1.1.1.6.1    yamt 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    138  1.1.1.1.6.1    yamt 		if (strcmp(newname, newtc->tc_name) != 0)
    139  1.1.1.1.6.1    yamt 			continue;
    140  1.1.1.1.6.1    yamt 
    141  1.1.1.1.6.1    yamt 		/* Warm up new timecounter. */
    142  1.1.1.1.6.1    yamt 		(void)newtc->tc_get_timecount(newtc);
    143  1.1.1.1.6.1    yamt 		(void)newtc->tc_get_timecount(newtc);
    144  1.1.1.1.6.1    yamt 
    145  1.1.1.1.6.1    yamt 		timecounter = newtc;
    146  1.1.1.1.6.1    yamt 
    147  1.1.1.1.6.1    yamt 		/* XXX unlock */
    148  1.1.1.1.6.1    yamt 
    149  1.1.1.1.6.1    yamt 		return (0);
    150  1.1.1.1.6.1    yamt 	}
    151  1.1.1.1.6.1    yamt 
    152  1.1.1.1.6.1    yamt 	/* XXX unlock */
    153          1.1  simonb 
    154  1.1.1.1.6.1    yamt 	return (EINVAL);
    155  1.1.1.1.6.1    yamt }
    156  1.1.1.1.6.1    yamt 
    157  1.1.1.1.6.1    yamt static int
    158  1.1.1.1.6.1    yamt sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    159  1.1.1.1.6.1    yamt {
    160  1.1.1.1.6.3    yamt 	char buf[MAX_TCNAMELEN+48];
    161  1.1.1.1.6.1    yamt 	char *where = oldp;
    162  1.1.1.1.6.1    yamt 	const char *spc;
    163  1.1.1.1.6.1    yamt 	struct timecounter *tc;
    164  1.1.1.1.6.1    yamt 	size_t needed, left, slen;
    165  1.1.1.1.6.1    yamt 	int error;
    166  1.1.1.1.6.1    yamt 
    167  1.1.1.1.6.1    yamt 	if (newp != NULL)
    168  1.1.1.1.6.1    yamt 		return (EPERM);
    169  1.1.1.1.6.1    yamt 	if (namelen != 0)
    170  1.1.1.1.6.1    yamt 		return (EINVAL);
    171  1.1.1.1.6.1    yamt 
    172  1.1.1.1.6.1    yamt 	spc = "";
    173  1.1.1.1.6.1    yamt 	error = 0;
    174  1.1.1.1.6.1    yamt 	needed = 0;
    175  1.1.1.1.6.1    yamt 	left = *oldlenp;
    176  1.1.1.1.6.1    yamt 
    177  1.1.1.1.6.1    yamt 	/* XXX locking */
    178  1.1.1.1.6.1    yamt 
    179  1.1.1.1.6.1    yamt 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    180  1.1.1.1.6.1    yamt 		if (where == NULL) {
    181  1.1.1.1.6.1    yamt 			needed += sizeof(buf);  /* be conservative */
    182  1.1.1.1.6.1    yamt 		} else {
    183  1.1.1.1.6.1    yamt 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    184  1.1.1.1.6.1    yamt 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    185  1.1.1.1.6.1    yamt 					tc->tc_frequency);
    186  1.1.1.1.6.1    yamt 			if (left < slen + 1)
    187  1.1.1.1.6.1    yamt 				break;
    188  1.1.1.1.6.1    yamt 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    189  1.1.1.1.6.1    yamt 			error = copyout(buf, where, slen + 1);
    190  1.1.1.1.6.1    yamt 			spc = " ";
    191  1.1.1.1.6.1    yamt 			where += slen;
    192  1.1.1.1.6.1    yamt 			needed += slen;
    193  1.1.1.1.6.1    yamt 			left -= slen;
    194  1.1.1.1.6.1    yamt 		}
    195  1.1.1.1.6.1    yamt 	}
    196  1.1.1.1.6.1    yamt 
    197  1.1.1.1.6.1    yamt 	/* XXX unlock */
    198  1.1.1.1.6.1    yamt 
    199  1.1.1.1.6.1    yamt 	*oldlenp = needed;
    200  1.1.1.1.6.1    yamt 	return (error);
    201  1.1.1.1.6.1    yamt }
    202  1.1.1.1.6.1    yamt 
    203  1.1.1.1.6.1    yamt SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    204  1.1.1.1.6.1    yamt {
    205  1.1.1.1.6.1    yamt 	const struct sysctlnode *node;
    206  1.1.1.1.6.1    yamt 
    207  1.1.1.1.6.1    yamt 	sysctl_createv(clog, 0, NULL, &node,
    208  1.1.1.1.6.1    yamt 		       CTLFLAG_PERMANENT,
    209  1.1.1.1.6.1    yamt 		       CTLTYPE_NODE, "timecounter",
    210  1.1.1.1.6.1    yamt 		       SYSCTL_DESCR("time counter information"),
    211  1.1.1.1.6.1    yamt 		       NULL, 0, NULL, 0,
    212  1.1.1.1.6.1    yamt 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213  1.1.1.1.6.1    yamt 
    214  1.1.1.1.6.1    yamt 	if (node != NULL) {
    215  1.1.1.1.6.1    yamt 		sysctl_createv(clog, 0, NULL, NULL,
    216  1.1.1.1.6.1    yamt 			       CTLFLAG_PERMANENT,
    217  1.1.1.1.6.1    yamt 			       CTLTYPE_STRING, "choice",
    218  1.1.1.1.6.1    yamt 			       SYSCTL_DESCR("available counters"),
    219  1.1.1.1.6.1    yamt 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    220  1.1.1.1.6.1    yamt 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    221  1.1.1.1.6.1    yamt 
    222  1.1.1.1.6.1    yamt 		sysctl_createv(clog, 0, NULL, NULL,
    223  1.1.1.1.6.1    yamt 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    224  1.1.1.1.6.1    yamt 			       CTLTYPE_STRING, "hardware",
    225  1.1.1.1.6.1    yamt 			       SYSCTL_DESCR("currently active time counter"),
    226  1.1.1.1.6.1    yamt 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    227  1.1.1.1.6.1    yamt 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    228  1.1.1.1.6.1    yamt 
    229  1.1.1.1.6.1    yamt 		sysctl_createv(clog, 0, NULL, NULL,
    230  1.1.1.1.6.1    yamt 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231  1.1.1.1.6.1    yamt 			       CTLTYPE_INT, "timestepwarnings",
    232  1.1.1.1.6.1    yamt 			       SYSCTL_DESCR("log time steps"),
    233  1.1.1.1.6.1    yamt 			       NULL, 0, &timestepwarnings, 0,
    234  1.1.1.1.6.1    yamt 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    235  1.1.1.1.6.1    yamt 	}
    236  1.1.1.1.6.1    yamt }
    237  1.1.1.1.6.1    yamt 
    238  1.1.1.1.6.1    yamt #define	TC_STATS(name)							\
    239  1.1.1.1.6.1    yamt static struct evcnt n##name =						\
    240  1.1.1.1.6.1    yamt     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    241  1.1.1.1.6.1    yamt EVCNT_ATTACH_STATIC(n##name)
    242  1.1.1.1.6.1    yamt 
    243  1.1.1.1.6.1    yamt TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    244  1.1.1.1.6.1    yamt TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    245  1.1.1.1.6.1    yamt TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    246  1.1.1.1.6.1    yamt TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    247  1.1.1.1.6.1    yamt TC_STATS(setclock);
    248          1.1  simonb 
    249          1.1  simonb #undef TC_STATS
    250          1.1  simonb 
    251          1.1  simonb static void tc_windup(void);
    252          1.1  simonb 
    253          1.1  simonb /*
    254          1.1  simonb  * Return the difference between the timehands' counter value now and what
    255          1.1  simonb  * was when we copied it to the timehands' offset_count.
    256          1.1  simonb  */
    257          1.1  simonb static __inline u_int
    258          1.1  simonb tc_delta(struct timehands *th)
    259          1.1  simonb {
    260          1.1  simonb 	struct timecounter *tc;
    261          1.1  simonb 
    262          1.1  simonb 	tc = th->th_counter;
    263  1.1.1.1.6.1    yamt 	return ((tc->tc_get_timecount(tc) -
    264  1.1.1.1.6.1    yamt 		 th->th_offset_count) & tc->tc_counter_mask);
    265          1.1  simonb }
    266          1.1  simonb 
    267          1.1  simonb /*
    268          1.1  simonb  * Functions for reading the time.  We have to loop until we are sure that
    269          1.1  simonb  * the timehands that we operated on was not updated under our feet.  See
    270          1.1  simonb  * the comment in <sys/time.h> for a description of these 12 functions.
    271          1.1  simonb  */
    272          1.1  simonb 
    273          1.1  simonb void
    274          1.1  simonb binuptime(struct bintime *bt)
    275          1.1  simonb {
    276          1.1  simonb 	struct timehands *th;
    277          1.1  simonb 	u_int gen;
    278          1.1  simonb 
    279  1.1.1.1.6.1    yamt 	nbinuptime.ev_count++;
    280          1.1  simonb 	do {
    281          1.1  simonb 		th = timehands;
    282          1.1  simonb 		gen = th->th_generation;
    283          1.1  simonb 		*bt = th->th_offset;
    284          1.1  simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    285          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    286          1.1  simonb }
    287          1.1  simonb 
    288          1.1  simonb void
    289          1.1  simonb nanouptime(struct timespec *tsp)
    290          1.1  simonb {
    291          1.1  simonb 	struct bintime bt;
    292          1.1  simonb 
    293  1.1.1.1.6.1    yamt 	nnanouptime.ev_count++;
    294          1.1  simonb 	binuptime(&bt);
    295          1.1  simonb 	bintime2timespec(&bt, tsp);
    296          1.1  simonb }
    297          1.1  simonb 
    298          1.1  simonb void
    299          1.1  simonb microuptime(struct timeval *tvp)
    300          1.1  simonb {
    301          1.1  simonb 	struct bintime bt;
    302          1.1  simonb 
    303  1.1.1.1.6.1    yamt 	nmicrouptime.ev_count++;
    304          1.1  simonb 	binuptime(&bt);
    305          1.1  simonb 	bintime2timeval(&bt, tvp);
    306          1.1  simonb }
    307          1.1  simonb 
    308          1.1  simonb void
    309          1.1  simonb bintime(struct bintime *bt)
    310          1.1  simonb {
    311          1.1  simonb 
    312  1.1.1.1.6.1    yamt 	nbintime.ev_count++;
    313          1.1  simonb 	binuptime(bt);
    314  1.1.1.1.6.2    yamt 	bintime_add(bt, &timebasebin);
    315          1.1  simonb }
    316          1.1  simonb 
    317          1.1  simonb void
    318          1.1  simonb nanotime(struct timespec *tsp)
    319          1.1  simonb {
    320          1.1  simonb 	struct bintime bt;
    321          1.1  simonb 
    322  1.1.1.1.6.1    yamt 	nnanotime.ev_count++;
    323          1.1  simonb 	bintime(&bt);
    324          1.1  simonb 	bintime2timespec(&bt, tsp);
    325          1.1  simonb }
    326          1.1  simonb 
    327          1.1  simonb void
    328          1.1  simonb microtime(struct timeval *tvp)
    329          1.1  simonb {
    330          1.1  simonb 	struct bintime bt;
    331          1.1  simonb 
    332  1.1.1.1.6.1    yamt 	nmicrotime.ev_count++;
    333          1.1  simonb 	bintime(&bt);
    334          1.1  simonb 	bintime2timeval(&bt, tvp);
    335          1.1  simonb }
    336          1.1  simonb 
    337          1.1  simonb void
    338          1.1  simonb getbinuptime(struct bintime *bt)
    339          1.1  simonb {
    340          1.1  simonb 	struct timehands *th;
    341          1.1  simonb 	u_int gen;
    342          1.1  simonb 
    343  1.1.1.1.6.1    yamt 	ngetbinuptime.ev_count++;
    344          1.1  simonb 	do {
    345          1.1  simonb 		th = timehands;
    346          1.1  simonb 		gen = th->th_generation;
    347          1.1  simonb 		*bt = th->th_offset;
    348          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    349          1.1  simonb }
    350          1.1  simonb 
    351          1.1  simonb void
    352          1.1  simonb getnanouptime(struct timespec *tsp)
    353          1.1  simonb {
    354          1.1  simonb 	struct timehands *th;
    355          1.1  simonb 	u_int gen;
    356          1.1  simonb 
    357  1.1.1.1.6.1    yamt 	ngetnanouptime.ev_count++;
    358          1.1  simonb 	do {
    359          1.1  simonb 		th = timehands;
    360          1.1  simonb 		gen = th->th_generation;
    361          1.1  simonb 		bintime2timespec(&th->th_offset, tsp);
    362          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    363          1.1  simonb }
    364          1.1  simonb 
    365          1.1  simonb void
    366          1.1  simonb getmicrouptime(struct timeval *tvp)
    367          1.1  simonb {
    368          1.1  simonb 	struct timehands *th;
    369          1.1  simonb 	u_int gen;
    370          1.1  simonb 
    371  1.1.1.1.6.1    yamt 	ngetmicrouptime.ev_count++;
    372          1.1  simonb 	do {
    373          1.1  simonb 		th = timehands;
    374          1.1  simonb 		gen = th->th_generation;
    375          1.1  simonb 		bintime2timeval(&th->th_offset, tvp);
    376          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    377          1.1  simonb }
    378          1.1  simonb 
    379          1.1  simonb void
    380          1.1  simonb getbintime(struct bintime *bt)
    381          1.1  simonb {
    382          1.1  simonb 	struct timehands *th;
    383          1.1  simonb 	u_int gen;
    384          1.1  simonb 
    385  1.1.1.1.6.1    yamt 	ngetbintime.ev_count++;
    386          1.1  simonb 	do {
    387          1.1  simonb 		th = timehands;
    388          1.1  simonb 		gen = th->th_generation;
    389          1.1  simonb 		*bt = th->th_offset;
    390          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    391  1.1.1.1.6.2    yamt 	bintime_add(bt, &timebasebin);
    392          1.1  simonb }
    393          1.1  simonb 
    394          1.1  simonb void
    395          1.1  simonb getnanotime(struct timespec *tsp)
    396          1.1  simonb {
    397          1.1  simonb 	struct timehands *th;
    398          1.1  simonb 	u_int gen;
    399          1.1  simonb 
    400  1.1.1.1.6.1    yamt 	ngetnanotime.ev_count++;
    401          1.1  simonb 	do {
    402          1.1  simonb 		th = timehands;
    403          1.1  simonb 		gen = th->th_generation;
    404          1.1  simonb 		*tsp = th->th_nanotime;
    405          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    406          1.1  simonb }
    407          1.1  simonb 
    408          1.1  simonb void
    409          1.1  simonb getmicrotime(struct timeval *tvp)
    410          1.1  simonb {
    411          1.1  simonb 	struct timehands *th;
    412          1.1  simonb 	u_int gen;
    413          1.1  simonb 
    414  1.1.1.1.6.1    yamt 	ngetmicrotime.ev_count++;
    415          1.1  simonb 	do {
    416          1.1  simonb 		th = timehands;
    417          1.1  simonb 		gen = th->th_generation;
    418          1.1  simonb 		*tvp = th->th_microtime;
    419          1.1  simonb 	} while (gen == 0 || gen != th->th_generation);
    420          1.1  simonb }
    421          1.1  simonb 
    422          1.1  simonb /*
    423          1.1  simonb  * Initialize a new timecounter and possibly use it.
    424          1.1  simonb  */
    425          1.1  simonb void
    426          1.1  simonb tc_init(struct timecounter *tc)
    427          1.1  simonb {
    428          1.1  simonb 	u_int u;
    429  1.1.1.1.6.4    yamt 	int s;
    430          1.1  simonb 
    431          1.1  simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    432          1.1  simonb 	/* XXX: We need some margin here, 10% is a guess */
    433          1.1  simonb 	u *= 11;
    434          1.1  simonb 	u /= 10;
    435          1.1  simonb 	if (u > hz && tc->tc_quality >= 0) {
    436          1.1  simonb 		tc->tc_quality = -2000;
    437          1.1  simonb 		if (bootverbose) {
    438  1.1.1.1.6.1    yamt 			printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
    439          1.1  simonb 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    440          1.1  simonb 			printf(" -- Insufficient hz, needs at least %u\n", u);
    441          1.1  simonb 		}
    442          1.1  simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    443  1.1.1.1.6.1    yamt 		printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
    444          1.1  simonb 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
    445          1.1  simonb 		    tc->tc_quality);
    446          1.1  simonb 	}
    447          1.1  simonb 
    448  1.1.1.1.6.4    yamt 	s = splclock();
    449  1.1.1.1.6.4    yamt 
    450          1.1  simonb 	tc->tc_next = timecounters;
    451          1.1  simonb 	timecounters = tc;
    452          1.1  simonb 	/*
    453          1.1  simonb 	 * Never automatically use a timecounter with negative quality.
    454          1.1  simonb 	 * Even though we run on the dummy counter, switching here may be
    455          1.1  simonb 	 * worse since this timecounter may not be monotonous.
    456          1.1  simonb 	 */
    457          1.1  simonb 	if (tc->tc_quality < 0)
    458  1.1.1.1.6.4    yamt 		goto out;
    459          1.1  simonb 	if (tc->tc_quality < timecounter->tc_quality)
    460  1.1.1.1.6.4    yamt 		goto out;
    461          1.1  simonb 	if (tc->tc_quality == timecounter->tc_quality &&
    462          1.1  simonb 	    tc->tc_frequency < timecounter->tc_frequency)
    463  1.1.1.1.6.4    yamt 		goto out;
    464          1.1  simonb 	(void)tc->tc_get_timecount(tc);
    465          1.1  simonb 	(void)tc->tc_get_timecount(tc);
    466          1.1  simonb 	timecounter = tc;
    467  1.1.1.1.6.1    yamt 	tc_windup();
    468  1.1.1.1.6.4    yamt 
    469  1.1.1.1.6.4    yamt  out:
    470  1.1.1.1.6.4    yamt 	splx(s);
    471          1.1  simonb }
    472          1.1  simonb 
    473          1.1  simonb /* Report the frequency of the current timecounter. */
    474          1.1  simonb u_int64_t
    475          1.1  simonb tc_getfrequency(void)
    476          1.1  simonb {
    477          1.1  simonb 
    478          1.1  simonb 	return (timehands->th_counter->tc_frequency);
    479          1.1  simonb }
    480          1.1  simonb 
    481          1.1  simonb /*
    482          1.1  simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    483          1.1  simonb  * when we booted.
    484          1.1  simonb  * XXX: not locked.
    485          1.1  simonb  */
    486          1.1  simonb void
    487          1.1  simonb tc_setclock(struct timespec *ts)
    488          1.1  simonb {
    489          1.1  simonb 	struct timespec ts2;
    490          1.1  simonb 	struct bintime bt, bt2;
    491          1.1  simonb 
    492  1.1.1.1.6.1    yamt 	nsetclock.ev_count++;
    493          1.1  simonb 	binuptime(&bt2);
    494          1.1  simonb 	timespec2bintime(ts, &bt);
    495          1.1  simonb 	bintime_sub(&bt, &bt2);
    496  1.1.1.1.6.2    yamt 	bintime_add(&bt2, &timebasebin);
    497  1.1.1.1.6.2    yamt 	timebasebin = bt;
    498          1.1  simonb 
    499          1.1  simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    500          1.1  simonb 	tc_windup();
    501          1.1  simonb 	if (timestepwarnings) {
    502          1.1  simonb 		bintime2timespec(&bt2, &ts2);
    503          1.1  simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    504          1.1  simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    505          1.1  simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    506          1.1  simonb 	}
    507          1.1  simonb }
    508          1.1  simonb 
    509          1.1  simonb /*
    510          1.1  simonb  * Initialize the next struct timehands in the ring and make
    511          1.1  simonb  * it the active timehands.  Along the way we might switch to a different
    512          1.1  simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    513          1.1  simonb  */
    514          1.1  simonb static void
    515          1.1  simonb tc_windup(void)
    516          1.1  simonb {
    517          1.1  simonb 	struct bintime bt;
    518          1.1  simonb 	struct timehands *th, *tho;
    519          1.1  simonb 	u_int64_t scale;
    520          1.1  simonb 	u_int delta, ncount, ogen;
    521          1.1  simonb 	int i;
    522          1.1  simonb 	time_t t;
    523          1.1  simonb 
    524          1.1  simonb 	/*
    525          1.1  simonb 	 * Make the next timehands a copy of the current one, but do not
    526          1.1  simonb 	 * overwrite the generation or next pointer.  While we update
    527          1.1  simonb 	 * the contents, the generation must be zero.
    528          1.1  simonb 	 */
    529          1.1  simonb 	tho = timehands;
    530          1.1  simonb 	th = tho->th_next;
    531          1.1  simonb 	ogen = th->th_generation;
    532          1.1  simonb 	th->th_generation = 0;
    533          1.1  simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    534          1.1  simonb 
    535          1.1  simonb 	/*
    536          1.1  simonb 	 * Capture a timecounter delta on the current timecounter and if
    537          1.1  simonb 	 * changing timecounters, a counter value from the new timecounter.
    538          1.1  simonb 	 * Update the offset fields accordingly.
    539          1.1  simonb 	 */
    540          1.1  simonb 	delta = tc_delta(th);
    541          1.1  simonb 	if (th->th_counter != timecounter)
    542          1.1  simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    543          1.1  simonb 	else
    544          1.1  simonb 		ncount = 0;
    545          1.1  simonb 	th->th_offset_count += delta;
    546          1.1  simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    547          1.1  simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    548          1.1  simonb 
    549          1.1  simonb 	/*
    550          1.1  simonb 	 * Hardware latching timecounters may not generate interrupts on
    551          1.1  simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    552          1.1  simonb 	 * the hardware might capture a count which is later than the one we
    553          1.1  simonb 	 * got above, and therefore possibly in the next NTP second which might
    554          1.1  simonb 	 * have a different rate than the current NTP second.  It doesn't
    555          1.1  simonb 	 * matter in practice.
    556          1.1  simonb 	 */
    557          1.1  simonb 	if (tho->th_counter->tc_poll_pps)
    558          1.1  simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    559          1.1  simonb 
    560          1.1  simonb 	/*
    561          1.1  simonb 	 * Deal with NTP second processing.  The for loop normally
    562          1.1  simonb 	 * iterates at most once, but in extreme situations it might
    563          1.1  simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    564          1.1  simonb 	 * At boot, the time step can be large when the TOD hardware
    565          1.1  simonb 	 * has been read, so on really large steps, we call
    566          1.1  simonb 	 * ntp_update_second only twice.  We need to call it twice in
    567          1.1  simonb 	 * case we missed a leap second.
    568  1.1.1.1.6.1    yamt 	 * If NTP is not compiled in ntp_update_second still calculates
    569  1.1.1.1.6.1    yamt 	 * the adjustment resulting from adjtime() calls.
    570          1.1  simonb 	 */
    571          1.1  simonb 	bt = th->th_offset;
    572  1.1.1.1.6.2    yamt 	bintime_add(&bt, &timebasebin);
    573          1.1  simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    574          1.1  simonb 	if (i > LARGE_STEP)
    575          1.1  simonb 		i = 2;
    576          1.1  simonb 	for (; i > 0; i--) {
    577          1.1  simonb 		t = bt.sec;
    578          1.1  simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    579          1.1  simonb 		if (bt.sec != t)
    580  1.1.1.1.6.2    yamt 			timebasebin.sec += bt.sec - t;
    581          1.1  simonb 	}
    582  1.1.1.1.6.1    yamt 
    583          1.1  simonb 	/* Update the UTC timestamps used by the get*() functions. */
    584          1.1  simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    585          1.1  simonb 	bintime2timeval(&bt, &th->th_microtime);
    586          1.1  simonb 	bintime2timespec(&bt, &th->th_nanotime);
    587          1.1  simonb 
    588          1.1  simonb 	/* Now is a good time to change timecounters. */
    589          1.1  simonb 	if (th->th_counter != timecounter) {
    590          1.1  simonb 		th->th_counter = timecounter;
    591          1.1  simonb 		th->th_offset_count = ncount;
    592  1.1.1.1.6.1    yamt 
    593  1.1.1.1.6.1    yamt 		printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
    594  1.1.1.1.6.1    yamt 		    timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
    595  1.1.1.1.6.1    yamt 		    timecounter->tc_quality);
    596          1.1  simonb 	}
    597          1.1  simonb 
    598          1.1  simonb 	/*-
    599          1.1  simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    600          1.1  simonb 	 * fractions of a second per period of the hardware counter, taking
    601          1.1  simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    602          1.1  simonb 	 * processing provides us with.
    603          1.1  simonb 	 *
    604          1.1  simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    605          1.1  simonb 	 * fraction and we want 64 bit binary fraction of second:
    606          1.1  simonb 	 *
    607          1.1  simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    608          1.1  simonb 	 *
    609          1.1  simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    610          1.1  simonb 	 * we can only multiply by about 850 without overflowing, but that
    611          1.1  simonb 	 * leaves suitably precise fractions for multiply before divide.
    612          1.1  simonb 	 *
    613          1.1  simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    614          1.1  simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    615          1.1  simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    616          1.1  simonb  	 *
    617          1.1  simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    618          1.1  simonb 	 * to the goddess of code clarity.
    619          1.1  simonb 	 *
    620          1.1  simonb 	 */
    621          1.1  simonb 	scale = (u_int64_t)1 << 63;
    622          1.1  simonb 	scale += (th->th_adjustment / 1024) * 2199;
    623          1.1  simonb 	scale /= th->th_counter->tc_frequency;
    624          1.1  simonb 	th->th_scale = scale * 2;
    625          1.1  simonb 
    626          1.1  simonb 	/*
    627          1.1  simonb 	 * Now that the struct timehands is again consistent, set the new
    628          1.1  simonb 	 * generation number, making sure to not make it zero.
    629          1.1  simonb 	 */
    630          1.1  simonb 	if (++ogen == 0)
    631          1.1  simonb 		ogen = 1;
    632          1.1  simonb 	th->th_generation = ogen;
    633          1.1  simonb 
    634          1.1  simonb 	/* Go live with the new struct timehands. */
    635          1.1  simonb 	time_second = th->th_microtime.tv_sec;
    636          1.1  simonb 	time_uptime = th->th_offset.sec;
    637          1.1  simonb 	timehands = th;
    638          1.1  simonb }
    639          1.1  simonb 
    640  1.1.1.1.6.1    yamt #ifdef __FreeBSD__
    641          1.1  simonb /* Report or change the active timecounter hardware. */
    642          1.1  simonb static int
    643          1.1  simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    644          1.1  simonb {
    645          1.1  simonb 	char newname[32];
    646          1.1  simonb 	struct timecounter *newtc, *tc;
    647          1.1  simonb 	int error;
    648          1.1  simonb 
    649          1.1  simonb 	tc = timecounter;
    650          1.1  simonb 	strlcpy(newname, tc->tc_name, sizeof(newname));
    651          1.1  simonb 
    652          1.1  simonb 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    653          1.1  simonb 	if (error != 0 || req->newptr == NULL ||
    654          1.1  simonb 	    strcmp(newname, tc->tc_name) == 0)
    655          1.1  simonb 		return (error);
    656  1.1.1.1.6.1    yamt 
    657          1.1  simonb 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    658          1.1  simonb 		if (strcmp(newname, newtc->tc_name) != 0)
    659          1.1  simonb 			continue;
    660          1.1  simonb 
    661          1.1  simonb 		/* Warm up new timecounter. */
    662          1.1  simonb 		(void)newtc->tc_get_timecount(newtc);
    663          1.1  simonb 		(void)newtc->tc_get_timecount(newtc);
    664          1.1  simonb 
    665          1.1  simonb 		timecounter = newtc;
    666          1.1  simonb 		return (0);
    667          1.1  simonb 	}
    668          1.1  simonb 	return (EINVAL);
    669          1.1  simonb }
    670          1.1  simonb 
    671          1.1  simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    672          1.1  simonb     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    673          1.1  simonb 
    674          1.1  simonb 
    675          1.1  simonb /* Report or change the active timecounter hardware. */
    676          1.1  simonb static int
    677          1.1  simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    678          1.1  simonb {
    679          1.1  simonb 	char buf[32], *spc;
    680          1.1  simonb 	struct timecounter *tc;
    681          1.1  simonb 	int error;
    682          1.1  simonb 
    683          1.1  simonb 	spc = "";
    684          1.1  simonb 	error = 0;
    685          1.1  simonb 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    686          1.1  simonb 		sprintf(buf, "%s%s(%d)",
    687          1.1  simonb 		    spc, tc->tc_name, tc->tc_quality);
    688          1.1  simonb 		error = SYSCTL_OUT(req, buf, strlen(buf));
    689          1.1  simonb 		spc = " ";
    690          1.1  simonb 	}
    691          1.1  simonb 	return (error);
    692          1.1  simonb }
    693          1.1  simonb 
    694          1.1  simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    695          1.1  simonb     0, 0, sysctl_kern_timecounter_choice, "A", "");
    696  1.1.1.1.6.1    yamt #endif /* __FreeBSD__ */
    697          1.1  simonb 
    698          1.1  simonb /*
    699          1.1  simonb  * RFC 2783 PPS-API implementation.
    700          1.1  simonb  */
    701          1.1  simonb 
    702          1.1  simonb int
    703          1.1  simonb pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
    704          1.1  simonb {
    705          1.1  simonb 	pps_params_t *app;
    706  1.1.1.1.6.1    yamt 	pps_info_t *pipi;
    707          1.1  simonb #ifdef PPS_SYNC
    708  1.1.1.1.6.1    yamt 	int *epi;
    709          1.1  simonb #endif
    710          1.1  simonb 
    711  1.1.1.1.6.1    yamt 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    712          1.1  simonb 	switch (cmd) {
    713          1.1  simonb 	case PPS_IOC_CREATE:
    714          1.1  simonb 		return (0);
    715          1.1  simonb 	case PPS_IOC_DESTROY:
    716          1.1  simonb 		return (0);
    717          1.1  simonb 	case PPS_IOC_SETPARAMS:
    718          1.1  simonb 		app = (pps_params_t *)data;
    719          1.1  simonb 		if (app->mode & ~pps->ppscap)
    720          1.1  simonb 			return (EINVAL);
    721          1.1  simonb 		pps->ppsparam = *app;
    722          1.1  simonb 		return (0);
    723          1.1  simonb 	case PPS_IOC_GETPARAMS:
    724          1.1  simonb 		app = (pps_params_t *)data;
    725          1.1  simonb 		*app = pps->ppsparam;
    726          1.1  simonb 		app->api_version = PPS_API_VERS_1;
    727          1.1  simonb 		return (0);
    728          1.1  simonb 	case PPS_IOC_GETCAP:
    729          1.1  simonb 		*(int*)data = pps->ppscap;
    730          1.1  simonb 		return (0);
    731          1.1  simonb 	case PPS_IOC_FETCH:
    732  1.1.1.1.6.1    yamt 		pipi = (pps_info_t *)data;
    733          1.1  simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    734  1.1.1.1.6.1    yamt 		*pipi = pps->ppsinfo;
    735          1.1  simonb 		return (0);
    736          1.1  simonb 	case PPS_IOC_KCBIND:
    737          1.1  simonb #ifdef PPS_SYNC
    738  1.1.1.1.6.1    yamt 		epi = (int *)data;
    739          1.1  simonb 		/* XXX Only root should be able to do this */
    740  1.1.1.1.6.1    yamt 		if (*epi & ~pps->ppscap)
    741          1.1  simonb 			return (EINVAL);
    742  1.1.1.1.6.1    yamt 		pps->kcmode = *epi;
    743          1.1  simonb 		return (0);
    744          1.1  simonb #else
    745          1.1  simonb 		return (EOPNOTSUPP);
    746          1.1  simonb #endif
    747          1.1  simonb 	default:
    748  1.1.1.1.6.1    yamt 		return (EPASSTHROUGH);
    749          1.1  simonb 	}
    750          1.1  simonb }
    751          1.1  simonb 
    752          1.1  simonb void
    753          1.1  simonb pps_init(struct pps_state *pps)
    754          1.1  simonb {
    755          1.1  simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    756          1.1  simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    757          1.1  simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    758          1.1  simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    759          1.1  simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    760          1.1  simonb }
    761          1.1  simonb 
    762          1.1  simonb void
    763          1.1  simonb pps_capture(struct pps_state *pps)
    764          1.1  simonb {
    765          1.1  simonb 	struct timehands *th;
    766          1.1  simonb 
    767  1.1.1.1.6.1    yamt 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    768          1.1  simonb 	th = timehands;
    769          1.1  simonb 	pps->capgen = th->th_generation;
    770          1.1  simonb 	pps->capth = th;
    771          1.1  simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    772          1.1  simonb 	if (pps->capgen != th->th_generation)
    773          1.1  simonb 		pps->capgen = 0;
    774          1.1  simonb }
    775          1.1  simonb 
    776          1.1  simonb void
    777          1.1  simonb pps_event(struct pps_state *pps, int event)
    778          1.1  simonb {
    779          1.1  simonb 	struct bintime bt;
    780          1.1  simonb 	struct timespec ts, *tsp, *osp;
    781          1.1  simonb 	u_int tcount, *pcount;
    782          1.1  simonb 	int foff, fhard;
    783          1.1  simonb 	pps_seq_t *pseq;
    784          1.1  simonb 
    785  1.1.1.1.6.1    yamt 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    786          1.1  simonb 	/* If the timecounter was wound up underneath us, bail out. */
    787          1.1  simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    788          1.1  simonb 		return;
    789          1.1  simonb 
    790          1.1  simonb 	/* Things would be easier with arrays. */
    791          1.1  simonb 	if (event == PPS_CAPTUREASSERT) {
    792          1.1  simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    793          1.1  simonb 		osp = &pps->ppsparam.assert_offset;
    794          1.1  simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    795          1.1  simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    796          1.1  simonb 		pcount = &pps->ppscount[0];
    797          1.1  simonb 		pseq = &pps->ppsinfo.assert_sequence;
    798          1.1  simonb 	} else {
    799          1.1  simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    800          1.1  simonb 		osp = &pps->ppsparam.clear_offset;
    801          1.1  simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    802          1.1  simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    803          1.1  simonb 		pcount = &pps->ppscount[1];
    804          1.1  simonb 		pseq = &pps->ppsinfo.clear_sequence;
    805          1.1  simonb 	}
    806          1.1  simonb 
    807          1.1  simonb 	/*
    808          1.1  simonb 	 * If the timecounter changed, we cannot compare the count values, so
    809          1.1  simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    810          1.1  simonb 	 */
    811          1.1  simonb 	if (pps->ppstc != pps->capth->th_counter) {
    812          1.1  simonb 		pps->ppstc = pps->capth->th_counter;
    813          1.1  simonb 		*pcount = pps->capcount;
    814          1.1  simonb 		pps->ppscount[2] = pps->capcount;
    815          1.1  simonb 		return;
    816          1.1  simonb 	}
    817          1.1  simonb 
    818          1.1  simonb 	/* Convert the count to a timespec. */
    819          1.1  simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    820          1.1  simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    821          1.1  simonb 	bt = pps->capth->th_offset;
    822          1.1  simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    823  1.1.1.1.6.2    yamt 	bintime_add(&bt, &timebasebin);
    824          1.1  simonb 	bintime2timespec(&bt, &ts);
    825          1.1  simonb 
    826          1.1  simonb 	/* If the timecounter was wound up underneath us, bail out. */
    827          1.1  simonb 	if (pps->capgen != pps->capth->th_generation)
    828          1.1  simonb 		return;
    829          1.1  simonb 
    830          1.1  simonb 	*pcount = pps->capcount;
    831          1.1  simonb 	(*pseq)++;
    832          1.1  simonb 	*tsp = ts;
    833          1.1  simonb 
    834          1.1  simonb 	if (foff) {
    835  1.1.1.1.6.1    yamt 		timespecadd(tsp, osp, tsp);
    836          1.1  simonb 		if (tsp->tv_nsec < 0) {
    837          1.1  simonb 			tsp->tv_nsec += 1000000000;
    838          1.1  simonb 			tsp->tv_sec -= 1;
    839          1.1  simonb 		}
    840          1.1  simonb 	}
    841          1.1  simonb #ifdef PPS_SYNC
    842          1.1  simonb 	if (fhard) {
    843          1.1  simonb 		u_int64_t scale;
    844          1.1  simonb 
    845          1.1  simonb 		/*
    846          1.1  simonb 		 * Feed the NTP PLL/FLL.
    847          1.1  simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    848          1.1  simonb 		 * elapsed since the previous event.
    849          1.1  simonb 		 */
    850          1.1  simonb 		tcount = pps->capcount - pps->ppscount[2];
    851          1.1  simonb 		pps->ppscount[2] = pps->capcount;
    852          1.1  simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    853          1.1  simonb 		scale = (u_int64_t)1 << 63;
    854          1.1  simonb 		scale /= pps->capth->th_counter->tc_frequency;
    855          1.1  simonb 		scale *= 2;
    856          1.1  simonb 		bt.sec = 0;
    857          1.1  simonb 		bt.frac = 0;
    858          1.1  simonb 		bintime_addx(&bt, scale * tcount);
    859          1.1  simonb 		bintime2timespec(&bt, &ts);
    860          1.1  simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    861          1.1  simonb 	}
    862          1.1  simonb #endif
    863          1.1  simonb }
    864          1.1  simonb 
    865          1.1  simonb /*
    866          1.1  simonb  * Timecounters need to be updated every so often to prevent the hardware
    867          1.1  simonb  * counter from overflowing.  Updating also recalculates the cached values
    868          1.1  simonb  * used by the get*() family of functions, so their precision depends on
    869          1.1  simonb  * the update frequency.
    870          1.1  simonb  */
    871          1.1  simonb 
    872          1.1  simonb static int tc_tick;
    873  1.1.1.1.6.1    yamt #ifdef __FreeBSD__
    874          1.1  simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    875  1.1.1.1.6.1    yamt #endif /* __FreeBSD__ */
    876          1.1  simonb 
    877          1.1  simonb void
    878          1.1  simonb tc_ticktock(void)
    879          1.1  simonb {
    880          1.1  simonb 	static int count;
    881          1.1  simonb 
    882          1.1  simonb 	if (++count < tc_tick)
    883          1.1  simonb 		return;
    884          1.1  simonb 	count = 0;
    885          1.1  simonb 	tc_windup();
    886          1.1  simonb }
    887          1.1  simonb 
    888  1.1.1.1.6.1    yamt void
    889  1.1.1.1.6.1    yamt inittimecounter(void)
    890          1.1  simonb {
    891          1.1  simonb 	u_int p;
    892          1.1  simonb 
    893          1.1  simonb 	/*
    894          1.1  simonb 	 * Set the initial timeout to
    895          1.1  simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    896          1.1  simonb 	 * People should probably not use the sysctl to set the timeout
    897          1.1  simonb 	 * to smaller than its inital value, since that value is the
    898          1.1  simonb 	 * smallest reasonable one.  If they want better timestamps they
    899          1.1  simonb 	 * should use the non-"get"* functions.
    900          1.1  simonb 	 */
    901          1.1  simonb 	if (hz > 1000)
    902          1.1  simonb 		tc_tick = (hz + 500) / 1000;
    903          1.1  simonb 	else
    904          1.1  simonb 		tc_tick = 1;
    905          1.1  simonb 	p = (tc_tick * 1000000) / hz;
    906  1.1.1.1.6.1    yamt 	printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
    907          1.1  simonb 
    908          1.1  simonb 	/* warm up new timecounter (again) and get rolling. */
    909          1.1  simonb 	(void)timecounter->tc_get_timecount(timecounter);
    910          1.1  simonb 	(void)timecounter->tc_get_timecount(timecounter);
    911          1.1  simonb }
    912          1.1  simonb 
    913  1.1.1.1.6.1    yamt #ifdef __FreeBSD__
    914          1.1  simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    915  1.1.1.1.6.1    yamt #endif /* __FreeBSD__ */
    916  1.1.1.1.6.1    yamt #endif /* __HAVE_TIMECOUNTER */
    917