kern_tc.c revision 1.11.4.2 1 1.11.4.2 rpaulo /* $NetBSD: kern_tc.c,v 1.11.4.2 2006/09/09 02:57:16 rpaulo Exp $ */
2 1.11.4.2 rpaulo
3 1.11.4.2 rpaulo /*-
4 1.11.4.2 rpaulo * ----------------------------------------------------------------------------
5 1.11.4.2 rpaulo * "THE BEER-WARE LICENSE" (Revision 42):
6 1.11.4.2 rpaulo * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.11.4.2 rpaulo * can do whatever you want with this stuff. If we meet some day, and you think
8 1.11.4.2 rpaulo * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.11.4.2 rpaulo * ---------------------------------------------------------------------------
10 1.11.4.2 rpaulo */
11 1.11.4.2 rpaulo
12 1.11.4.2 rpaulo #include <sys/cdefs.h>
13 1.11.4.2 rpaulo /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.11.4.2 rpaulo __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.11.4.2 2006/09/09 02:57:16 rpaulo Exp $");
15 1.11.4.2 rpaulo
16 1.11.4.2 rpaulo #include "opt_ntp.h"
17 1.11.4.2 rpaulo
18 1.11.4.2 rpaulo #include <sys/param.h>
19 1.11.4.2 rpaulo #ifdef __HAVE_TIMECOUNTER /* XXX */
20 1.11.4.2 rpaulo #include <sys/kernel.h>
21 1.11.4.2 rpaulo #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 1.11.4.2 rpaulo #include <sys/sysctl.h>
23 1.11.4.2 rpaulo #include <sys/syslog.h>
24 1.11.4.2 rpaulo #include <sys/systm.h>
25 1.11.4.2 rpaulo #include <sys/timepps.h>
26 1.11.4.2 rpaulo #include <sys/timetc.h>
27 1.11.4.2 rpaulo #include <sys/timex.h>
28 1.11.4.2 rpaulo #include <sys/evcnt.h>
29 1.11.4.2 rpaulo #include <sys/kauth.h>
30 1.11.4.2 rpaulo
31 1.11.4.2 rpaulo /*
32 1.11.4.2 rpaulo * A large step happens on boot. This constant detects such steps.
33 1.11.4.2 rpaulo * It is relatively small so that ntp_update_second gets called enough
34 1.11.4.2 rpaulo * in the typical 'missed a couple of seconds' case, but doesn't loop
35 1.11.4.2 rpaulo * forever when the time step is large.
36 1.11.4.2 rpaulo */
37 1.11.4.2 rpaulo #define LARGE_STEP 200
38 1.11.4.2 rpaulo
39 1.11.4.2 rpaulo /*
40 1.11.4.2 rpaulo * Implement a dummy timecounter which we can use until we get a real one
41 1.11.4.2 rpaulo * in the air. This allows the console and other early stuff to use
42 1.11.4.2 rpaulo * time services.
43 1.11.4.2 rpaulo */
44 1.11.4.2 rpaulo
45 1.11.4.2 rpaulo static u_int
46 1.11.4.2 rpaulo dummy_get_timecount(struct timecounter *tc)
47 1.11.4.2 rpaulo {
48 1.11.4.2 rpaulo static u_int now;
49 1.11.4.2 rpaulo
50 1.11.4.2 rpaulo return (++now);
51 1.11.4.2 rpaulo }
52 1.11.4.2 rpaulo
53 1.11.4.2 rpaulo static struct timecounter dummy_timecounter = {
54 1.11.4.2 rpaulo dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 1.11.4.2 rpaulo };
56 1.11.4.2 rpaulo
57 1.11.4.2 rpaulo struct timehands {
58 1.11.4.2 rpaulo /* These fields must be initialized by the driver. */
59 1.11.4.2 rpaulo struct timecounter *th_counter;
60 1.11.4.2 rpaulo int64_t th_adjustment;
61 1.11.4.2 rpaulo u_int64_t th_scale;
62 1.11.4.2 rpaulo u_int th_offset_count;
63 1.11.4.2 rpaulo struct bintime th_offset;
64 1.11.4.2 rpaulo struct timeval th_microtime;
65 1.11.4.2 rpaulo struct timespec th_nanotime;
66 1.11.4.2 rpaulo /* Fields not to be copied in tc_windup start with th_generation. */
67 1.11.4.2 rpaulo volatile u_int th_generation;
68 1.11.4.2 rpaulo struct timehands *th_next;
69 1.11.4.2 rpaulo };
70 1.11.4.2 rpaulo
71 1.11.4.2 rpaulo static struct timehands th0;
72 1.11.4.2 rpaulo static struct timehands th9 = { .th_next = &th0, };
73 1.11.4.2 rpaulo static struct timehands th8 = { .th_next = &th9, };
74 1.11.4.2 rpaulo static struct timehands th7 = { .th_next = &th8, };
75 1.11.4.2 rpaulo static struct timehands th6 = { .th_next = &th7, };
76 1.11.4.2 rpaulo static struct timehands th5 = { .th_next = &th6, };
77 1.11.4.2 rpaulo static struct timehands th4 = { .th_next = &th5, };
78 1.11.4.2 rpaulo static struct timehands th3 = { .th_next = &th4, };
79 1.11.4.2 rpaulo static struct timehands th2 = { .th_next = &th3, };
80 1.11.4.2 rpaulo static struct timehands th1 = { .th_next = &th2, };
81 1.11.4.2 rpaulo static struct timehands th0 = {
82 1.11.4.2 rpaulo .th_counter = &dummy_timecounter,
83 1.11.4.2 rpaulo .th_scale = (uint64_t)-1 / 1000000,
84 1.11.4.2 rpaulo .th_offset = { .sec = 1, .frac = 0 },
85 1.11.4.2 rpaulo .th_generation = 1,
86 1.11.4.2 rpaulo .th_next = &th1,
87 1.11.4.2 rpaulo };
88 1.11.4.2 rpaulo
89 1.11.4.2 rpaulo static struct timehands *volatile timehands = &th0;
90 1.11.4.2 rpaulo struct timecounter *timecounter = &dummy_timecounter;
91 1.11.4.2 rpaulo static struct timecounter *timecounters = &dummy_timecounter;
92 1.11.4.2 rpaulo
93 1.11.4.2 rpaulo time_t time_second = 1;
94 1.11.4.2 rpaulo time_t time_uptime = 1;
95 1.11.4.2 rpaulo
96 1.11.4.2 rpaulo static struct bintime timebasebin;
97 1.11.4.2 rpaulo
98 1.11.4.2 rpaulo static int timestepwarnings;
99 1.11.4.2 rpaulo
100 1.11.4.2 rpaulo #ifdef __FreeBSD__
101 1.11.4.2 rpaulo SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102 1.11.4.2 rpaulo ×tepwarnings, 0, "");
103 1.11.4.2 rpaulo #endif /* __FreeBSD__ */
104 1.11.4.2 rpaulo
105 1.11.4.2 rpaulo /*
106 1.11.4.2 rpaulo * sysctl helper routine for kern.timercounter.current
107 1.11.4.2 rpaulo */
108 1.11.4.2 rpaulo static int
109 1.11.4.2 rpaulo sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 1.11.4.2 rpaulo {
111 1.11.4.2 rpaulo struct sysctlnode node;
112 1.11.4.2 rpaulo int error;
113 1.11.4.2 rpaulo char newname[MAX_TCNAMELEN];
114 1.11.4.2 rpaulo struct timecounter *newtc, *tc;
115 1.11.4.2 rpaulo
116 1.11.4.2 rpaulo tc = timecounter;
117 1.11.4.2 rpaulo
118 1.11.4.2 rpaulo strlcpy(newname, tc->tc_name, sizeof(newname));
119 1.11.4.2 rpaulo
120 1.11.4.2 rpaulo node = *rnode;
121 1.11.4.2 rpaulo node.sysctl_data = newname;
122 1.11.4.2 rpaulo node.sysctl_size = sizeof(newname);
123 1.11.4.2 rpaulo
124 1.11.4.2 rpaulo error = sysctl_lookup(SYSCTLFN_CALL(&node));
125 1.11.4.2 rpaulo
126 1.11.4.2 rpaulo if (error ||
127 1.11.4.2 rpaulo newp == NULL ||
128 1.11.4.2 rpaulo strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 1.11.4.2 rpaulo return error;
130 1.11.4.2 rpaulo
131 1.11.4.2 rpaulo if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 1.11.4.2 rpaulo KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
133 1.11.4.2 rpaulo return (error);
134 1.11.4.2 rpaulo
135 1.11.4.2 rpaulo /* XXX locking */
136 1.11.4.2 rpaulo
137 1.11.4.2 rpaulo for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
138 1.11.4.2 rpaulo if (strcmp(newname, newtc->tc_name) != 0)
139 1.11.4.2 rpaulo continue;
140 1.11.4.2 rpaulo
141 1.11.4.2 rpaulo /* Warm up new timecounter. */
142 1.11.4.2 rpaulo (void)newtc->tc_get_timecount(newtc);
143 1.11.4.2 rpaulo (void)newtc->tc_get_timecount(newtc);
144 1.11.4.2 rpaulo
145 1.11.4.2 rpaulo timecounter = newtc;
146 1.11.4.2 rpaulo
147 1.11.4.2 rpaulo /* XXX unlock */
148 1.11.4.2 rpaulo
149 1.11.4.2 rpaulo return (0);
150 1.11.4.2 rpaulo }
151 1.11.4.2 rpaulo
152 1.11.4.2 rpaulo /* XXX unlock */
153 1.11.4.2 rpaulo
154 1.11.4.2 rpaulo return (EINVAL);
155 1.11.4.2 rpaulo }
156 1.11.4.2 rpaulo
157 1.11.4.2 rpaulo static int
158 1.11.4.2 rpaulo sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 1.11.4.2 rpaulo {
160 1.11.4.2 rpaulo char buf[MAX_TCNAMELEN+48];
161 1.11.4.2 rpaulo char *where = oldp;
162 1.11.4.2 rpaulo const char *spc;
163 1.11.4.2 rpaulo struct timecounter *tc;
164 1.11.4.2 rpaulo size_t needed, left, slen;
165 1.11.4.2 rpaulo int error;
166 1.11.4.2 rpaulo
167 1.11.4.2 rpaulo if (newp != NULL)
168 1.11.4.2 rpaulo return (EPERM);
169 1.11.4.2 rpaulo if (namelen != 0)
170 1.11.4.2 rpaulo return (EINVAL);
171 1.11.4.2 rpaulo
172 1.11.4.2 rpaulo spc = "";
173 1.11.4.2 rpaulo error = 0;
174 1.11.4.2 rpaulo needed = 0;
175 1.11.4.2 rpaulo left = *oldlenp;
176 1.11.4.2 rpaulo
177 1.11.4.2 rpaulo /* XXX locking */
178 1.11.4.2 rpaulo
179 1.11.4.2 rpaulo for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 1.11.4.2 rpaulo if (where == NULL) {
181 1.11.4.2 rpaulo needed += sizeof(buf); /* be conservative */
182 1.11.4.2 rpaulo } else {
183 1.11.4.2 rpaulo slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 1.11.4.2 rpaulo " Hz)", spc, tc->tc_name, tc->tc_quality,
185 1.11.4.2 rpaulo tc->tc_frequency);
186 1.11.4.2 rpaulo if (left < slen + 1)
187 1.11.4.2 rpaulo break;
188 1.11.4.2 rpaulo /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 1.11.4.2 rpaulo error = copyout(buf, where, slen + 1);
190 1.11.4.2 rpaulo spc = " ";
191 1.11.4.2 rpaulo where += slen;
192 1.11.4.2 rpaulo needed += slen;
193 1.11.4.2 rpaulo left -= slen;
194 1.11.4.2 rpaulo }
195 1.11.4.2 rpaulo }
196 1.11.4.2 rpaulo
197 1.11.4.2 rpaulo /* XXX unlock */
198 1.11.4.2 rpaulo
199 1.11.4.2 rpaulo *oldlenp = needed;
200 1.11.4.2 rpaulo return (error);
201 1.11.4.2 rpaulo }
202 1.11.4.2 rpaulo
203 1.11.4.2 rpaulo SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 1.11.4.2 rpaulo {
205 1.11.4.2 rpaulo const struct sysctlnode *node;
206 1.11.4.2 rpaulo
207 1.11.4.2 rpaulo sysctl_createv(clog, 0, NULL, &node,
208 1.11.4.2 rpaulo CTLFLAG_PERMANENT,
209 1.11.4.2 rpaulo CTLTYPE_NODE, "timecounter",
210 1.11.4.2 rpaulo SYSCTL_DESCR("time counter information"),
211 1.11.4.2 rpaulo NULL, 0, NULL, 0,
212 1.11.4.2 rpaulo CTL_KERN, CTL_CREATE, CTL_EOL);
213 1.11.4.2 rpaulo
214 1.11.4.2 rpaulo if (node != NULL) {
215 1.11.4.2 rpaulo sysctl_createv(clog, 0, NULL, NULL,
216 1.11.4.2 rpaulo CTLFLAG_PERMANENT,
217 1.11.4.2 rpaulo CTLTYPE_STRING, "choice",
218 1.11.4.2 rpaulo SYSCTL_DESCR("available counters"),
219 1.11.4.2 rpaulo sysctl_kern_timecounter_choice, 0, NULL, 0,
220 1.11.4.2 rpaulo CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221 1.11.4.2 rpaulo
222 1.11.4.2 rpaulo sysctl_createv(clog, 0, NULL, NULL,
223 1.11.4.2 rpaulo CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 1.11.4.2 rpaulo CTLTYPE_STRING, "hardware",
225 1.11.4.2 rpaulo SYSCTL_DESCR("currently active time counter"),
226 1.11.4.2 rpaulo sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 1.11.4.2 rpaulo CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228 1.11.4.2 rpaulo
229 1.11.4.2 rpaulo sysctl_createv(clog, 0, NULL, NULL,
230 1.11.4.2 rpaulo CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 1.11.4.2 rpaulo CTLTYPE_INT, "timestepwarnings",
232 1.11.4.2 rpaulo SYSCTL_DESCR("log time steps"),
233 1.11.4.2 rpaulo NULL, 0, ×tepwarnings, 0,
234 1.11.4.2 rpaulo CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 1.11.4.2 rpaulo }
236 1.11.4.2 rpaulo }
237 1.11.4.2 rpaulo
238 1.11.4.2 rpaulo #define TC_STATS(name) \
239 1.11.4.2 rpaulo static struct evcnt n##name = \
240 1.11.4.2 rpaulo EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 1.11.4.2 rpaulo EVCNT_ATTACH_STATIC(n##name)
242 1.11.4.2 rpaulo
243 1.11.4.2 rpaulo TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 1.11.4.2 rpaulo TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 1.11.4.2 rpaulo TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 1.11.4.2 rpaulo TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 1.11.4.2 rpaulo TC_STATS(setclock);
248 1.11.4.2 rpaulo
249 1.11.4.2 rpaulo #undef TC_STATS
250 1.11.4.2 rpaulo
251 1.11.4.2 rpaulo static void tc_windup(void);
252 1.11.4.2 rpaulo
253 1.11.4.2 rpaulo /*
254 1.11.4.2 rpaulo * Return the difference between the timehands' counter value now and what
255 1.11.4.2 rpaulo * was when we copied it to the timehands' offset_count.
256 1.11.4.2 rpaulo */
257 1.11.4.2 rpaulo static __inline u_int
258 1.11.4.2 rpaulo tc_delta(struct timehands *th)
259 1.11.4.2 rpaulo {
260 1.11.4.2 rpaulo struct timecounter *tc;
261 1.11.4.2 rpaulo
262 1.11.4.2 rpaulo tc = th->th_counter;
263 1.11.4.2 rpaulo return ((tc->tc_get_timecount(tc) -
264 1.11.4.2 rpaulo th->th_offset_count) & tc->tc_counter_mask);
265 1.11.4.2 rpaulo }
266 1.11.4.2 rpaulo
267 1.11.4.2 rpaulo /*
268 1.11.4.2 rpaulo * Functions for reading the time. We have to loop until we are sure that
269 1.11.4.2 rpaulo * the timehands that we operated on was not updated under our feet. See
270 1.11.4.2 rpaulo * the comment in <sys/time.h> for a description of these 12 functions.
271 1.11.4.2 rpaulo */
272 1.11.4.2 rpaulo
273 1.11.4.2 rpaulo void
274 1.11.4.2 rpaulo binuptime(struct bintime *bt)
275 1.11.4.2 rpaulo {
276 1.11.4.2 rpaulo struct timehands *th;
277 1.11.4.2 rpaulo u_int gen;
278 1.11.4.2 rpaulo
279 1.11.4.2 rpaulo nbinuptime.ev_count++;
280 1.11.4.2 rpaulo do {
281 1.11.4.2 rpaulo th = timehands;
282 1.11.4.2 rpaulo gen = th->th_generation;
283 1.11.4.2 rpaulo *bt = th->th_offset;
284 1.11.4.2 rpaulo bintime_addx(bt, th->th_scale * tc_delta(th));
285 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
286 1.11.4.2 rpaulo }
287 1.11.4.2 rpaulo
288 1.11.4.2 rpaulo void
289 1.11.4.2 rpaulo nanouptime(struct timespec *tsp)
290 1.11.4.2 rpaulo {
291 1.11.4.2 rpaulo struct bintime bt;
292 1.11.4.2 rpaulo
293 1.11.4.2 rpaulo nnanouptime.ev_count++;
294 1.11.4.2 rpaulo binuptime(&bt);
295 1.11.4.2 rpaulo bintime2timespec(&bt, tsp);
296 1.11.4.2 rpaulo }
297 1.11.4.2 rpaulo
298 1.11.4.2 rpaulo void
299 1.11.4.2 rpaulo microuptime(struct timeval *tvp)
300 1.11.4.2 rpaulo {
301 1.11.4.2 rpaulo struct bintime bt;
302 1.11.4.2 rpaulo
303 1.11.4.2 rpaulo nmicrouptime.ev_count++;
304 1.11.4.2 rpaulo binuptime(&bt);
305 1.11.4.2 rpaulo bintime2timeval(&bt, tvp);
306 1.11.4.2 rpaulo }
307 1.11.4.2 rpaulo
308 1.11.4.2 rpaulo void
309 1.11.4.2 rpaulo bintime(struct bintime *bt)
310 1.11.4.2 rpaulo {
311 1.11.4.2 rpaulo
312 1.11.4.2 rpaulo nbintime.ev_count++;
313 1.11.4.2 rpaulo binuptime(bt);
314 1.11.4.2 rpaulo bintime_add(bt, &timebasebin);
315 1.11.4.2 rpaulo }
316 1.11.4.2 rpaulo
317 1.11.4.2 rpaulo void
318 1.11.4.2 rpaulo nanotime(struct timespec *tsp)
319 1.11.4.2 rpaulo {
320 1.11.4.2 rpaulo struct bintime bt;
321 1.11.4.2 rpaulo
322 1.11.4.2 rpaulo nnanotime.ev_count++;
323 1.11.4.2 rpaulo bintime(&bt);
324 1.11.4.2 rpaulo bintime2timespec(&bt, tsp);
325 1.11.4.2 rpaulo }
326 1.11.4.2 rpaulo
327 1.11.4.2 rpaulo void
328 1.11.4.2 rpaulo microtime(struct timeval *tvp)
329 1.11.4.2 rpaulo {
330 1.11.4.2 rpaulo struct bintime bt;
331 1.11.4.2 rpaulo
332 1.11.4.2 rpaulo nmicrotime.ev_count++;
333 1.11.4.2 rpaulo bintime(&bt);
334 1.11.4.2 rpaulo bintime2timeval(&bt, tvp);
335 1.11.4.2 rpaulo }
336 1.11.4.2 rpaulo
337 1.11.4.2 rpaulo void
338 1.11.4.2 rpaulo getbinuptime(struct bintime *bt)
339 1.11.4.2 rpaulo {
340 1.11.4.2 rpaulo struct timehands *th;
341 1.11.4.2 rpaulo u_int gen;
342 1.11.4.2 rpaulo
343 1.11.4.2 rpaulo ngetbinuptime.ev_count++;
344 1.11.4.2 rpaulo do {
345 1.11.4.2 rpaulo th = timehands;
346 1.11.4.2 rpaulo gen = th->th_generation;
347 1.11.4.2 rpaulo *bt = th->th_offset;
348 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
349 1.11.4.2 rpaulo }
350 1.11.4.2 rpaulo
351 1.11.4.2 rpaulo void
352 1.11.4.2 rpaulo getnanouptime(struct timespec *tsp)
353 1.11.4.2 rpaulo {
354 1.11.4.2 rpaulo struct timehands *th;
355 1.11.4.2 rpaulo u_int gen;
356 1.11.4.2 rpaulo
357 1.11.4.2 rpaulo ngetnanouptime.ev_count++;
358 1.11.4.2 rpaulo do {
359 1.11.4.2 rpaulo th = timehands;
360 1.11.4.2 rpaulo gen = th->th_generation;
361 1.11.4.2 rpaulo bintime2timespec(&th->th_offset, tsp);
362 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
363 1.11.4.2 rpaulo }
364 1.11.4.2 rpaulo
365 1.11.4.2 rpaulo void
366 1.11.4.2 rpaulo getmicrouptime(struct timeval *tvp)
367 1.11.4.2 rpaulo {
368 1.11.4.2 rpaulo struct timehands *th;
369 1.11.4.2 rpaulo u_int gen;
370 1.11.4.2 rpaulo
371 1.11.4.2 rpaulo ngetmicrouptime.ev_count++;
372 1.11.4.2 rpaulo do {
373 1.11.4.2 rpaulo th = timehands;
374 1.11.4.2 rpaulo gen = th->th_generation;
375 1.11.4.2 rpaulo bintime2timeval(&th->th_offset, tvp);
376 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
377 1.11.4.2 rpaulo }
378 1.11.4.2 rpaulo
379 1.11.4.2 rpaulo void
380 1.11.4.2 rpaulo getbintime(struct bintime *bt)
381 1.11.4.2 rpaulo {
382 1.11.4.2 rpaulo struct timehands *th;
383 1.11.4.2 rpaulo u_int gen;
384 1.11.4.2 rpaulo
385 1.11.4.2 rpaulo ngetbintime.ev_count++;
386 1.11.4.2 rpaulo do {
387 1.11.4.2 rpaulo th = timehands;
388 1.11.4.2 rpaulo gen = th->th_generation;
389 1.11.4.2 rpaulo *bt = th->th_offset;
390 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
391 1.11.4.2 rpaulo bintime_add(bt, &timebasebin);
392 1.11.4.2 rpaulo }
393 1.11.4.2 rpaulo
394 1.11.4.2 rpaulo void
395 1.11.4.2 rpaulo getnanotime(struct timespec *tsp)
396 1.11.4.2 rpaulo {
397 1.11.4.2 rpaulo struct timehands *th;
398 1.11.4.2 rpaulo u_int gen;
399 1.11.4.2 rpaulo
400 1.11.4.2 rpaulo ngetnanotime.ev_count++;
401 1.11.4.2 rpaulo do {
402 1.11.4.2 rpaulo th = timehands;
403 1.11.4.2 rpaulo gen = th->th_generation;
404 1.11.4.2 rpaulo *tsp = th->th_nanotime;
405 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
406 1.11.4.2 rpaulo }
407 1.11.4.2 rpaulo
408 1.11.4.2 rpaulo void
409 1.11.4.2 rpaulo getmicrotime(struct timeval *tvp)
410 1.11.4.2 rpaulo {
411 1.11.4.2 rpaulo struct timehands *th;
412 1.11.4.2 rpaulo u_int gen;
413 1.11.4.2 rpaulo
414 1.11.4.2 rpaulo ngetmicrotime.ev_count++;
415 1.11.4.2 rpaulo do {
416 1.11.4.2 rpaulo th = timehands;
417 1.11.4.2 rpaulo gen = th->th_generation;
418 1.11.4.2 rpaulo *tvp = th->th_microtime;
419 1.11.4.2 rpaulo } while (gen == 0 || gen != th->th_generation);
420 1.11.4.2 rpaulo }
421 1.11.4.2 rpaulo
422 1.11.4.2 rpaulo /*
423 1.11.4.2 rpaulo * Initialize a new timecounter and possibly use it.
424 1.11.4.2 rpaulo */
425 1.11.4.2 rpaulo void
426 1.11.4.2 rpaulo tc_init(struct timecounter *tc)
427 1.11.4.2 rpaulo {
428 1.11.4.2 rpaulo u_int u;
429 1.11.4.2 rpaulo int s;
430 1.11.4.2 rpaulo
431 1.11.4.2 rpaulo u = tc->tc_frequency / tc->tc_counter_mask;
432 1.11.4.2 rpaulo /* XXX: We need some margin here, 10% is a guess */
433 1.11.4.2 rpaulo u *= 11;
434 1.11.4.2 rpaulo u /= 10;
435 1.11.4.2 rpaulo if (u > hz && tc->tc_quality >= 0) {
436 1.11.4.2 rpaulo tc->tc_quality = -2000;
437 1.11.4.2 rpaulo if (bootverbose) {
438 1.11.4.2 rpaulo printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
439 1.11.4.2 rpaulo tc->tc_name, (uintmax_t)tc->tc_frequency);
440 1.11.4.2 rpaulo printf(" -- Insufficient hz, needs at least %u\n", u);
441 1.11.4.2 rpaulo }
442 1.11.4.2 rpaulo } else if (tc->tc_quality >= 0 || bootverbose) {
443 1.11.4.2 rpaulo printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
444 1.11.4.2 rpaulo tc->tc_name, (uintmax_t)tc->tc_frequency,
445 1.11.4.2 rpaulo tc->tc_quality);
446 1.11.4.2 rpaulo }
447 1.11.4.2 rpaulo
448 1.11.4.2 rpaulo s = splclock();
449 1.11.4.2 rpaulo
450 1.11.4.2 rpaulo tc->tc_next = timecounters;
451 1.11.4.2 rpaulo timecounters = tc;
452 1.11.4.2 rpaulo /*
453 1.11.4.2 rpaulo * Never automatically use a timecounter with negative quality.
454 1.11.4.2 rpaulo * Even though we run on the dummy counter, switching here may be
455 1.11.4.2 rpaulo * worse since this timecounter may not be monotonous.
456 1.11.4.2 rpaulo */
457 1.11.4.2 rpaulo if (tc->tc_quality < 0)
458 1.11.4.2 rpaulo return;
459 1.11.4.2 rpaulo if (tc->tc_quality < timecounter->tc_quality)
460 1.11.4.2 rpaulo return;
461 1.11.4.2 rpaulo if (tc->tc_quality == timecounter->tc_quality &&
462 1.11.4.2 rpaulo tc->tc_frequency < timecounter->tc_frequency)
463 1.11.4.2 rpaulo return;
464 1.11.4.2 rpaulo (void)tc->tc_get_timecount(tc);
465 1.11.4.2 rpaulo (void)tc->tc_get_timecount(tc);
466 1.11.4.2 rpaulo timecounter = tc;
467 1.11.4.2 rpaulo tc_windup();
468 1.11.4.2 rpaulo
469 1.11.4.2 rpaulo splx(s);
470 1.11.4.2 rpaulo }
471 1.11.4.2 rpaulo
472 1.11.4.2 rpaulo /* Report the frequency of the current timecounter. */
473 1.11.4.2 rpaulo u_int64_t
474 1.11.4.2 rpaulo tc_getfrequency(void)
475 1.11.4.2 rpaulo {
476 1.11.4.2 rpaulo
477 1.11.4.2 rpaulo return (timehands->th_counter->tc_frequency);
478 1.11.4.2 rpaulo }
479 1.11.4.2 rpaulo
480 1.11.4.2 rpaulo /*
481 1.11.4.2 rpaulo * Step our concept of UTC. This is done by modifying our estimate of
482 1.11.4.2 rpaulo * when we booted.
483 1.11.4.2 rpaulo * XXX: not locked.
484 1.11.4.2 rpaulo */
485 1.11.4.2 rpaulo void
486 1.11.4.2 rpaulo tc_setclock(struct timespec *ts)
487 1.11.4.2 rpaulo {
488 1.11.4.2 rpaulo struct timespec ts2;
489 1.11.4.2 rpaulo struct bintime bt, bt2;
490 1.11.4.2 rpaulo
491 1.11.4.2 rpaulo nsetclock.ev_count++;
492 1.11.4.2 rpaulo binuptime(&bt2);
493 1.11.4.2 rpaulo timespec2bintime(ts, &bt);
494 1.11.4.2 rpaulo bintime_sub(&bt, &bt2);
495 1.11.4.2 rpaulo bintime_add(&bt2, &timebasebin);
496 1.11.4.2 rpaulo timebasebin = bt;
497 1.11.4.2 rpaulo
498 1.11.4.2 rpaulo /* XXX fiddle all the little crinkly bits around the fiords... */
499 1.11.4.2 rpaulo tc_windup();
500 1.11.4.2 rpaulo if (timestepwarnings) {
501 1.11.4.2 rpaulo bintime2timespec(&bt2, &ts2);
502 1.11.4.2 rpaulo log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
503 1.11.4.2 rpaulo (intmax_t)ts2.tv_sec, ts2.tv_nsec,
504 1.11.4.2 rpaulo (intmax_t)ts->tv_sec, ts->tv_nsec);
505 1.11.4.2 rpaulo }
506 1.11.4.2 rpaulo }
507 1.11.4.2 rpaulo
508 1.11.4.2 rpaulo /*
509 1.11.4.2 rpaulo * Initialize the next struct timehands in the ring and make
510 1.11.4.2 rpaulo * it the active timehands. Along the way we might switch to a different
511 1.11.4.2 rpaulo * timecounter and/or do seconds processing in NTP. Slightly magic.
512 1.11.4.2 rpaulo */
513 1.11.4.2 rpaulo static void
514 1.11.4.2 rpaulo tc_windup(void)
515 1.11.4.2 rpaulo {
516 1.11.4.2 rpaulo struct bintime bt;
517 1.11.4.2 rpaulo struct timehands *th, *tho;
518 1.11.4.2 rpaulo u_int64_t scale;
519 1.11.4.2 rpaulo u_int delta, ncount, ogen;
520 1.11.4.2 rpaulo int i;
521 1.11.4.2 rpaulo time_t t;
522 1.11.4.2 rpaulo
523 1.11.4.2 rpaulo /*
524 1.11.4.2 rpaulo * Make the next timehands a copy of the current one, but do not
525 1.11.4.2 rpaulo * overwrite the generation or next pointer. While we update
526 1.11.4.2 rpaulo * the contents, the generation must be zero.
527 1.11.4.2 rpaulo */
528 1.11.4.2 rpaulo tho = timehands;
529 1.11.4.2 rpaulo th = tho->th_next;
530 1.11.4.2 rpaulo ogen = th->th_generation;
531 1.11.4.2 rpaulo th->th_generation = 0;
532 1.11.4.2 rpaulo bcopy(tho, th, offsetof(struct timehands, th_generation));
533 1.11.4.2 rpaulo
534 1.11.4.2 rpaulo /*
535 1.11.4.2 rpaulo * Capture a timecounter delta on the current timecounter and if
536 1.11.4.2 rpaulo * changing timecounters, a counter value from the new timecounter.
537 1.11.4.2 rpaulo * Update the offset fields accordingly.
538 1.11.4.2 rpaulo */
539 1.11.4.2 rpaulo delta = tc_delta(th);
540 1.11.4.2 rpaulo if (th->th_counter != timecounter)
541 1.11.4.2 rpaulo ncount = timecounter->tc_get_timecount(timecounter);
542 1.11.4.2 rpaulo else
543 1.11.4.2 rpaulo ncount = 0;
544 1.11.4.2 rpaulo th->th_offset_count += delta;
545 1.11.4.2 rpaulo th->th_offset_count &= th->th_counter->tc_counter_mask;
546 1.11.4.2 rpaulo bintime_addx(&th->th_offset, th->th_scale * delta);
547 1.11.4.2 rpaulo
548 1.11.4.2 rpaulo /*
549 1.11.4.2 rpaulo * Hardware latching timecounters may not generate interrupts on
550 1.11.4.2 rpaulo * PPS events, so instead we poll them. There is a finite risk that
551 1.11.4.2 rpaulo * the hardware might capture a count which is later than the one we
552 1.11.4.2 rpaulo * got above, and therefore possibly in the next NTP second which might
553 1.11.4.2 rpaulo * have a different rate than the current NTP second. It doesn't
554 1.11.4.2 rpaulo * matter in practice.
555 1.11.4.2 rpaulo */
556 1.11.4.2 rpaulo if (tho->th_counter->tc_poll_pps)
557 1.11.4.2 rpaulo tho->th_counter->tc_poll_pps(tho->th_counter);
558 1.11.4.2 rpaulo
559 1.11.4.2 rpaulo /*
560 1.11.4.2 rpaulo * Deal with NTP second processing. The for loop normally
561 1.11.4.2 rpaulo * iterates at most once, but in extreme situations it might
562 1.11.4.2 rpaulo * keep NTP sane if timeouts are not run for several seconds.
563 1.11.4.2 rpaulo * At boot, the time step can be large when the TOD hardware
564 1.11.4.2 rpaulo * has been read, so on really large steps, we call
565 1.11.4.2 rpaulo * ntp_update_second only twice. We need to call it twice in
566 1.11.4.2 rpaulo * case we missed a leap second.
567 1.11.4.2 rpaulo * If NTP is not compiled in ntp_update_second still calculates
568 1.11.4.2 rpaulo * the adjustment resulting from adjtime() calls.
569 1.11.4.2 rpaulo */
570 1.11.4.2 rpaulo bt = th->th_offset;
571 1.11.4.2 rpaulo bintime_add(&bt, &timebasebin);
572 1.11.4.2 rpaulo i = bt.sec - tho->th_microtime.tv_sec;
573 1.11.4.2 rpaulo if (i > LARGE_STEP)
574 1.11.4.2 rpaulo i = 2;
575 1.11.4.2 rpaulo for (; i > 0; i--) {
576 1.11.4.2 rpaulo t = bt.sec;
577 1.11.4.2 rpaulo ntp_update_second(&th->th_adjustment, &bt.sec);
578 1.11.4.2 rpaulo if (bt.sec != t)
579 1.11.4.2 rpaulo timebasebin.sec += bt.sec - t;
580 1.11.4.2 rpaulo }
581 1.11.4.2 rpaulo
582 1.11.4.2 rpaulo /* Update the UTC timestamps used by the get*() functions. */
583 1.11.4.2 rpaulo /* XXX shouldn't do this here. Should force non-`get' versions. */
584 1.11.4.2 rpaulo bintime2timeval(&bt, &th->th_microtime);
585 1.11.4.2 rpaulo bintime2timespec(&bt, &th->th_nanotime);
586 1.11.4.2 rpaulo
587 1.11.4.2 rpaulo /* Now is a good time to change timecounters. */
588 1.11.4.2 rpaulo if (th->th_counter != timecounter) {
589 1.11.4.2 rpaulo th->th_counter = timecounter;
590 1.11.4.2 rpaulo th->th_offset_count = ncount;
591 1.11.4.2 rpaulo
592 1.11.4.2 rpaulo printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
593 1.11.4.2 rpaulo timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
594 1.11.4.2 rpaulo timecounter->tc_quality);
595 1.11.4.2 rpaulo }
596 1.11.4.2 rpaulo
597 1.11.4.2 rpaulo /*-
598 1.11.4.2 rpaulo * Recalculate the scaling factor. We want the number of 1/2^64
599 1.11.4.2 rpaulo * fractions of a second per period of the hardware counter, taking
600 1.11.4.2 rpaulo * into account the th_adjustment factor which the NTP PLL/adjtime(2)
601 1.11.4.2 rpaulo * processing provides us with.
602 1.11.4.2 rpaulo *
603 1.11.4.2 rpaulo * The th_adjustment is nanoseconds per second with 32 bit binary
604 1.11.4.2 rpaulo * fraction and we want 64 bit binary fraction of second:
605 1.11.4.2 rpaulo *
606 1.11.4.2 rpaulo * x = a * 2^32 / 10^9 = a * 4.294967296
607 1.11.4.2 rpaulo *
608 1.11.4.2 rpaulo * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
609 1.11.4.2 rpaulo * we can only multiply by about 850 without overflowing, but that
610 1.11.4.2 rpaulo * leaves suitably precise fractions for multiply before divide.
611 1.11.4.2 rpaulo *
612 1.11.4.2 rpaulo * Divide before multiply with a fraction of 2199/512 results in a
613 1.11.4.2 rpaulo * systematic undercompensation of 10PPM of th_adjustment. On a
614 1.11.4.2 rpaulo * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
615 1.11.4.2 rpaulo *
616 1.11.4.2 rpaulo * We happily sacrifice the lowest of the 64 bits of our result
617 1.11.4.2 rpaulo * to the goddess of code clarity.
618 1.11.4.2 rpaulo *
619 1.11.4.2 rpaulo */
620 1.11.4.2 rpaulo scale = (u_int64_t)1 << 63;
621 1.11.4.2 rpaulo scale += (th->th_adjustment / 1024) * 2199;
622 1.11.4.2 rpaulo scale /= th->th_counter->tc_frequency;
623 1.11.4.2 rpaulo th->th_scale = scale * 2;
624 1.11.4.2 rpaulo
625 1.11.4.2 rpaulo /*
626 1.11.4.2 rpaulo * Now that the struct timehands is again consistent, set the new
627 1.11.4.2 rpaulo * generation number, making sure to not make it zero.
628 1.11.4.2 rpaulo */
629 1.11.4.2 rpaulo if (++ogen == 0)
630 1.11.4.2 rpaulo ogen = 1;
631 1.11.4.2 rpaulo th->th_generation = ogen;
632 1.11.4.2 rpaulo
633 1.11.4.2 rpaulo /* Go live with the new struct timehands. */
634 1.11.4.2 rpaulo time_second = th->th_microtime.tv_sec;
635 1.11.4.2 rpaulo time_uptime = th->th_offset.sec;
636 1.11.4.2 rpaulo timehands = th;
637 1.11.4.2 rpaulo }
638 1.11.4.2 rpaulo
639 1.11.4.2 rpaulo #ifdef __FreeBSD__
640 1.11.4.2 rpaulo /* Report or change the active timecounter hardware. */
641 1.11.4.2 rpaulo static int
642 1.11.4.2 rpaulo sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
643 1.11.4.2 rpaulo {
644 1.11.4.2 rpaulo char newname[32];
645 1.11.4.2 rpaulo struct timecounter *newtc, *tc;
646 1.11.4.2 rpaulo int error;
647 1.11.4.2 rpaulo
648 1.11.4.2 rpaulo tc = timecounter;
649 1.11.4.2 rpaulo strlcpy(newname, tc->tc_name, sizeof(newname));
650 1.11.4.2 rpaulo
651 1.11.4.2 rpaulo error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
652 1.11.4.2 rpaulo if (error != 0 || req->newptr == NULL ||
653 1.11.4.2 rpaulo strcmp(newname, tc->tc_name) == 0)
654 1.11.4.2 rpaulo return (error);
655 1.11.4.2 rpaulo
656 1.11.4.2 rpaulo for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
657 1.11.4.2 rpaulo if (strcmp(newname, newtc->tc_name) != 0)
658 1.11.4.2 rpaulo continue;
659 1.11.4.2 rpaulo
660 1.11.4.2 rpaulo /* Warm up new timecounter. */
661 1.11.4.2 rpaulo (void)newtc->tc_get_timecount(newtc);
662 1.11.4.2 rpaulo (void)newtc->tc_get_timecount(newtc);
663 1.11.4.2 rpaulo
664 1.11.4.2 rpaulo timecounter = newtc;
665 1.11.4.2 rpaulo return (0);
666 1.11.4.2 rpaulo }
667 1.11.4.2 rpaulo return (EINVAL);
668 1.11.4.2 rpaulo }
669 1.11.4.2 rpaulo
670 1.11.4.2 rpaulo SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
671 1.11.4.2 rpaulo 0, 0, sysctl_kern_timecounter_hardware, "A", "");
672 1.11.4.2 rpaulo
673 1.11.4.2 rpaulo
674 1.11.4.2 rpaulo /* Report or change the active timecounter hardware. */
675 1.11.4.2 rpaulo static int
676 1.11.4.2 rpaulo sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
677 1.11.4.2 rpaulo {
678 1.11.4.2 rpaulo char buf[32], *spc;
679 1.11.4.2 rpaulo struct timecounter *tc;
680 1.11.4.2 rpaulo int error;
681 1.11.4.2 rpaulo
682 1.11.4.2 rpaulo spc = "";
683 1.11.4.2 rpaulo error = 0;
684 1.11.4.2 rpaulo for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
685 1.11.4.2 rpaulo sprintf(buf, "%s%s(%d)",
686 1.11.4.2 rpaulo spc, tc->tc_name, tc->tc_quality);
687 1.11.4.2 rpaulo error = SYSCTL_OUT(req, buf, strlen(buf));
688 1.11.4.2 rpaulo spc = " ";
689 1.11.4.2 rpaulo }
690 1.11.4.2 rpaulo return (error);
691 1.11.4.2 rpaulo }
692 1.11.4.2 rpaulo
693 1.11.4.2 rpaulo SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
694 1.11.4.2 rpaulo 0, 0, sysctl_kern_timecounter_choice, "A", "");
695 1.11.4.2 rpaulo #endif /* __FreeBSD__ */
696 1.11.4.2 rpaulo
697 1.11.4.2 rpaulo /*
698 1.11.4.2 rpaulo * RFC 2783 PPS-API implementation.
699 1.11.4.2 rpaulo */
700 1.11.4.2 rpaulo
701 1.11.4.2 rpaulo int
702 1.11.4.2 rpaulo pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
703 1.11.4.2 rpaulo {
704 1.11.4.2 rpaulo pps_params_t *app;
705 1.11.4.2 rpaulo pps_info_t *pipi;
706 1.11.4.2 rpaulo #ifdef PPS_SYNC
707 1.11.4.2 rpaulo int *epi;
708 1.11.4.2 rpaulo #endif
709 1.11.4.2 rpaulo
710 1.11.4.2 rpaulo KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
711 1.11.4.2 rpaulo switch (cmd) {
712 1.11.4.2 rpaulo case PPS_IOC_CREATE:
713 1.11.4.2 rpaulo return (0);
714 1.11.4.2 rpaulo case PPS_IOC_DESTROY:
715 1.11.4.2 rpaulo return (0);
716 1.11.4.2 rpaulo case PPS_IOC_SETPARAMS:
717 1.11.4.2 rpaulo app = (pps_params_t *)data;
718 1.11.4.2 rpaulo if (app->mode & ~pps->ppscap)
719 1.11.4.2 rpaulo return (EINVAL);
720 1.11.4.2 rpaulo pps->ppsparam = *app;
721 1.11.4.2 rpaulo return (0);
722 1.11.4.2 rpaulo case PPS_IOC_GETPARAMS:
723 1.11.4.2 rpaulo app = (pps_params_t *)data;
724 1.11.4.2 rpaulo *app = pps->ppsparam;
725 1.11.4.2 rpaulo app->api_version = PPS_API_VERS_1;
726 1.11.4.2 rpaulo return (0);
727 1.11.4.2 rpaulo case PPS_IOC_GETCAP:
728 1.11.4.2 rpaulo *(int*)data = pps->ppscap;
729 1.11.4.2 rpaulo return (0);
730 1.11.4.2 rpaulo case PPS_IOC_FETCH:
731 1.11.4.2 rpaulo pipi = (pps_info_t *)data;
732 1.11.4.2 rpaulo pps->ppsinfo.current_mode = pps->ppsparam.mode;
733 1.11.4.2 rpaulo *pipi = pps->ppsinfo;
734 1.11.4.2 rpaulo return (0);
735 1.11.4.2 rpaulo case PPS_IOC_KCBIND:
736 1.11.4.2 rpaulo #ifdef PPS_SYNC
737 1.11.4.2 rpaulo epi = (int *)data;
738 1.11.4.2 rpaulo /* XXX Only root should be able to do this */
739 1.11.4.2 rpaulo if (*epi & ~pps->ppscap)
740 1.11.4.2 rpaulo return (EINVAL);
741 1.11.4.2 rpaulo pps->kcmode = *epi;
742 1.11.4.2 rpaulo return (0);
743 1.11.4.2 rpaulo #else
744 1.11.4.2 rpaulo return (EOPNOTSUPP);
745 1.11.4.2 rpaulo #endif
746 1.11.4.2 rpaulo default:
747 1.11.4.2 rpaulo return (EPASSTHROUGH);
748 1.11.4.2 rpaulo }
749 1.11.4.2 rpaulo }
750 1.11.4.2 rpaulo
751 1.11.4.2 rpaulo void
752 1.11.4.2 rpaulo pps_init(struct pps_state *pps)
753 1.11.4.2 rpaulo {
754 1.11.4.2 rpaulo pps->ppscap |= PPS_TSFMT_TSPEC;
755 1.11.4.2 rpaulo if (pps->ppscap & PPS_CAPTUREASSERT)
756 1.11.4.2 rpaulo pps->ppscap |= PPS_OFFSETASSERT;
757 1.11.4.2 rpaulo if (pps->ppscap & PPS_CAPTURECLEAR)
758 1.11.4.2 rpaulo pps->ppscap |= PPS_OFFSETCLEAR;
759 1.11.4.2 rpaulo }
760 1.11.4.2 rpaulo
761 1.11.4.2 rpaulo void
762 1.11.4.2 rpaulo pps_capture(struct pps_state *pps)
763 1.11.4.2 rpaulo {
764 1.11.4.2 rpaulo struct timehands *th;
765 1.11.4.2 rpaulo
766 1.11.4.2 rpaulo KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
767 1.11.4.2 rpaulo th = timehands;
768 1.11.4.2 rpaulo pps->capgen = th->th_generation;
769 1.11.4.2 rpaulo pps->capth = th;
770 1.11.4.2 rpaulo pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
771 1.11.4.2 rpaulo if (pps->capgen != th->th_generation)
772 1.11.4.2 rpaulo pps->capgen = 0;
773 1.11.4.2 rpaulo }
774 1.11.4.2 rpaulo
775 1.11.4.2 rpaulo void
776 1.11.4.2 rpaulo pps_event(struct pps_state *pps, int event)
777 1.11.4.2 rpaulo {
778 1.11.4.2 rpaulo struct bintime bt;
779 1.11.4.2 rpaulo struct timespec ts, *tsp, *osp;
780 1.11.4.2 rpaulo u_int tcount, *pcount;
781 1.11.4.2 rpaulo int foff, fhard;
782 1.11.4.2 rpaulo pps_seq_t *pseq;
783 1.11.4.2 rpaulo
784 1.11.4.2 rpaulo KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
785 1.11.4.2 rpaulo /* If the timecounter was wound up underneath us, bail out. */
786 1.11.4.2 rpaulo if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
787 1.11.4.2 rpaulo return;
788 1.11.4.2 rpaulo
789 1.11.4.2 rpaulo /* Things would be easier with arrays. */
790 1.11.4.2 rpaulo if (event == PPS_CAPTUREASSERT) {
791 1.11.4.2 rpaulo tsp = &pps->ppsinfo.assert_timestamp;
792 1.11.4.2 rpaulo osp = &pps->ppsparam.assert_offset;
793 1.11.4.2 rpaulo foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
794 1.11.4.2 rpaulo fhard = pps->kcmode & PPS_CAPTUREASSERT;
795 1.11.4.2 rpaulo pcount = &pps->ppscount[0];
796 1.11.4.2 rpaulo pseq = &pps->ppsinfo.assert_sequence;
797 1.11.4.2 rpaulo } else {
798 1.11.4.2 rpaulo tsp = &pps->ppsinfo.clear_timestamp;
799 1.11.4.2 rpaulo osp = &pps->ppsparam.clear_offset;
800 1.11.4.2 rpaulo foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
801 1.11.4.2 rpaulo fhard = pps->kcmode & PPS_CAPTURECLEAR;
802 1.11.4.2 rpaulo pcount = &pps->ppscount[1];
803 1.11.4.2 rpaulo pseq = &pps->ppsinfo.clear_sequence;
804 1.11.4.2 rpaulo }
805 1.11.4.2 rpaulo
806 1.11.4.2 rpaulo /*
807 1.11.4.2 rpaulo * If the timecounter changed, we cannot compare the count values, so
808 1.11.4.2 rpaulo * we have to drop the rest of the PPS-stuff until the next event.
809 1.11.4.2 rpaulo */
810 1.11.4.2 rpaulo if (pps->ppstc != pps->capth->th_counter) {
811 1.11.4.2 rpaulo pps->ppstc = pps->capth->th_counter;
812 1.11.4.2 rpaulo *pcount = pps->capcount;
813 1.11.4.2 rpaulo pps->ppscount[2] = pps->capcount;
814 1.11.4.2 rpaulo return;
815 1.11.4.2 rpaulo }
816 1.11.4.2 rpaulo
817 1.11.4.2 rpaulo /* Convert the count to a timespec. */
818 1.11.4.2 rpaulo tcount = pps->capcount - pps->capth->th_offset_count;
819 1.11.4.2 rpaulo tcount &= pps->capth->th_counter->tc_counter_mask;
820 1.11.4.2 rpaulo bt = pps->capth->th_offset;
821 1.11.4.2 rpaulo bintime_addx(&bt, pps->capth->th_scale * tcount);
822 1.11.4.2 rpaulo bintime_add(&bt, &timebasebin);
823 1.11.4.2 rpaulo bintime2timespec(&bt, &ts);
824 1.11.4.2 rpaulo
825 1.11.4.2 rpaulo /* If the timecounter was wound up underneath us, bail out. */
826 1.11.4.2 rpaulo if (pps->capgen != pps->capth->th_generation)
827 1.11.4.2 rpaulo return;
828 1.11.4.2 rpaulo
829 1.11.4.2 rpaulo *pcount = pps->capcount;
830 1.11.4.2 rpaulo (*pseq)++;
831 1.11.4.2 rpaulo *tsp = ts;
832 1.11.4.2 rpaulo
833 1.11.4.2 rpaulo if (foff) {
834 1.11.4.2 rpaulo timespecadd(tsp, osp, tsp);
835 1.11.4.2 rpaulo if (tsp->tv_nsec < 0) {
836 1.11.4.2 rpaulo tsp->tv_nsec += 1000000000;
837 1.11.4.2 rpaulo tsp->tv_sec -= 1;
838 1.11.4.2 rpaulo }
839 1.11.4.2 rpaulo }
840 1.11.4.2 rpaulo #ifdef PPS_SYNC
841 1.11.4.2 rpaulo if (fhard) {
842 1.11.4.2 rpaulo u_int64_t scale;
843 1.11.4.2 rpaulo
844 1.11.4.2 rpaulo /*
845 1.11.4.2 rpaulo * Feed the NTP PLL/FLL.
846 1.11.4.2 rpaulo * The FLL wants to know how many (hardware) nanoseconds
847 1.11.4.2 rpaulo * elapsed since the previous event.
848 1.11.4.2 rpaulo */
849 1.11.4.2 rpaulo tcount = pps->capcount - pps->ppscount[2];
850 1.11.4.2 rpaulo pps->ppscount[2] = pps->capcount;
851 1.11.4.2 rpaulo tcount &= pps->capth->th_counter->tc_counter_mask;
852 1.11.4.2 rpaulo scale = (u_int64_t)1 << 63;
853 1.11.4.2 rpaulo scale /= pps->capth->th_counter->tc_frequency;
854 1.11.4.2 rpaulo scale *= 2;
855 1.11.4.2 rpaulo bt.sec = 0;
856 1.11.4.2 rpaulo bt.frac = 0;
857 1.11.4.2 rpaulo bintime_addx(&bt, scale * tcount);
858 1.11.4.2 rpaulo bintime2timespec(&bt, &ts);
859 1.11.4.2 rpaulo hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
860 1.11.4.2 rpaulo }
861 1.11.4.2 rpaulo #endif
862 1.11.4.2 rpaulo }
863 1.11.4.2 rpaulo
864 1.11.4.2 rpaulo /*
865 1.11.4.2 rpaulo * Timecounters need to be updated every so often to prevent the hardware
866 1.11.4.2 rpaulo * counter from overflowing. Updating also recalculates the cached values
867 1.11.4.2 rpaulo * used by the get*() family of functions, so their precision depends on
868 1.11.4.2 rpaulo * the update frequency.
869 1.11.4.2 rpaulo */
870 1.11.4.2 rpaulo
871 1.11.4.2 rpaulo static int tc_tick;
872 1.11.4.2 rpaulo #ifdef __FreeBSD__
873 1.11.4.2 rpaulo SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
874 1.11.4.2 rpaulo #endif /* __FreeBSD__ */
875 1.11.4.2 rpaulo
876 1.11.4.2 rpaulo void
877 1.11.4.2 rpaulo tc_ticktock(void)
878 1.11.4.2 rpaulo {
879 1.11.4.2 rpaulo static int count;
880 1.11.4.2 rpaulo
881 1.11.4.2 rpaulo if (++count < tc_tick)
882 1.11.4.2 rpaulo return;
883 1.11.4.2 rpaulo count = 0;
884 1.11.4.2 rpaulo tc_windup();
885 1.11.4.2 rpaulo }
886 1.11.4.2 rpaulo
887 1.11.4.2 rpaulo void
888 1.11.4.2 rpaulo inittimecounter(void)
889 1.11.4.2 rpaulo {
890 1.11.4.2 rpaulo u_int p;
891 1.11.4.2 rpaulo
892 1.11.4.2 rpaulo /*
893 1.11.4.2 rpaulo * Set the initial timeout to
894 1.11.4.2 rpaulo * max(1, <approx. number of hardclock ticks in a millisecond>).
895 1.11.4.2 rpaulo * People should probably not use the sysctl to set the timeout
896 1.11.4.2 rpaulo * to smaller than its inital value, since that value is the
897 1.11.4.2 rpaulo * smallest reasonable one. If they want better timestamps they
898 1.11.4.2 rpaulo * should use the non-"get"* functions.
899 1.11.4.2 rpaulo */
900 1.11.4.2 rpaulo if (hz > 1000)
901 1.11.4.2 rpaulo tc_tick = (hz + 500) / 1000;
902 1.11.4.2 rpaulo else
903 1.11.4.2 rpaulo tc_tick = 1;
904 1.11.4.2 rpaulo p = (tc_tick * 1000000) / hz;
905 1.11.4.2 rpaulo printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
906 1.11.4.2 rpaulo
907 1.11.4.2 rpaulo /* warm up new timecounter (again) and get rolling. */
908 1.11.4.2 rpaulo (void)timecounter->tc_get_timecount(timecounter);
909 1.11.4.2 rpaulo (void)timecounter->tc_get_timecount(timecounter);
910 1.11.4.2 rpaulo }
911 1.11.4.2 rpaulo
912 1.11.4.2 rpaulo #ifdef __FreeBSD__
913 1.11.4.2 rpaulo SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
914 1.11.4.2 rpaulo #endif /* __FreeBSD__ */
915 1.11.4.2 rpaulo #endif /* __HAVE_TIMECOUNTER */
916