Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.19.10.1
      1  1.19.10.1     skrll /* $NetBSD: kern_tc.c,v 1.19.10.1 2007/09/03 10:23:01 skrll Exp $ */
      2        1.2    kardel 
      3        1.1    simonb /*-
      4        1.1    simonb  * ----------------------------------------------------------------------------
      5        1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6        1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7        1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8        1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9        1.2    kardel  * ---------------------------------------------------------------------------
     10        1.1    simonb  */
     11        1.1    simonb 
     12        1.1    simonb #include <sys/cdefs.h>
     13        1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.19.10.1     skrll __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.19.10.1 2007/09/03 10:23:01 skrll Exp $");
     15        1.1    simonb 
     16        1.1    simonb #include "opt_ntp.h"
     17        1.1    simonb 
     18        1.1    simonb #include <sys/param.h>
     19        1.2    kardel #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20        1.1    simonb #include <sys/kernel.h>
     21        1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22        1.1    simonb #include <sys/sysctl.h>
     23        1.1    simonb #include <sys/syslog.h>
     24        1.1    simonb #include <sys/systm.h>
     25        1.1    simonb #include <sys/timepps.h>
     26        1.1    simonb #include <sys/timetc.h>
     27        1.1    simonb #include <sys/timex.h>
     28        1.2    kardel #include <sys/evcnt.h>
     29        1.2    kardel #include <sys/kauth.h>
     30        1.2    kardel 
     31        1.2    kardel /*
     32        1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     33        1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     34        1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     35        1.1    simonb  * forever when the time step is large.
     36        1.1    simonb  */
     37        1.1    simonb #define LARGE_STEP	200
     38        1.1    simonb 
     39        1.1    simonb /*
     40        1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     41        1.1    simonb  * in the air.  This allows the console and other early stuff to use
     42        1.1    simonb  * time services.
     43        1.1    simonb  */
     44        1.1    simonb 
     45        1.1    simonb static u_int
     46       1.16      yamt dummy_get_timecount(struct timecounter *tc)
     47        1.1    simonb {
     48        1.1    simonb 	static u_int now;
     49        1.1    simonb 
     50        1.1    simonb 	return (++now);
     51        1.1    simonb }
     52        1.1    simonb 
     53        1.1    simonb static struct timecounter dummy_timecounter = {
     54        1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     55        1.1    simonb };
     56        1.1    simonb 
     57        1.1    simonb struct timehands {
     58        1.1    simonb 	/* These fields must be initialized by the driver. */
     59        1.1    simonb 	struct timecounter	*th_counter;
     60        1.1    simonb 	int64_t			th_adjustment;
     61        1.1    simonb 	u_int64_t		th_scale;
     62        1.1    simonb 	u_int	 		th_offset_count;
     63        1.1    simonb 	struct bintime		th_offset;
     64        1.1    simonb 	struct timeval		th_microtime;
     65        1.1    simonb 	struct timespec		th_nanotime;
     66        1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     67        1.1    simonb 	volatile u_int		th_generation;
     68        1.1    simonb 	struct timehands	*th_next;
     69        1.1    simonb };
     70        1.1    simonb 
     71        1.1    simonb static struct timehands th0;
     72       1.10  christos static struct timehands th9 = { .th_next = &th0, };
     73       1.10  christos static struct timehands th8 = { .th_next = &th9, };
     74       1.10  christos static struct timehands th7 = { .th_next = &th8, };
     75       1.10  christos static struct timehands th6 = { .th_next = &th7, };
     76       1.10  christos static struct timehands th5 = { .th_next = &th6, };
     77       1.10  christos static struct timehands th4 = { .th_next = &th5, };
     78       1.10  christos static struct timehands th3 = { .th_next = &th4, };
     79       1.10  christos static struct timehands th2 = { .th_next = &th3, };
     80       1.10  christos static struct timehands th1 = { .th_next = &th2, };
     81        1.1    simonb static struct timehands th0 = {
     82       1.10  christos 	.th_counter = &dummy_timecounter,
     83       1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
     84       1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
     85       1.10  christos 	.th_generation = 1,
     86       1.10  christos 	.th_next = &th1,
     87        1.1    simonb };
     88        1.1    simonb 
     89        1.1    simonb static struct timehands *volatile timehands = &th0;
     90        1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     91        1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     92        1.1    simonb 
     93        1.1    simonb time_t time_second = 1;
     94        1.1    simonb time_t time_uptime = 1;
     95        1.1    simonb 
     96        1.4    kardel static struct bintime timebasebin;
     97        1.1    simonb 
     98        1.1    simonb static int timestepwarnings;
     99        1.2    kardel 
    100        1.2    kardel #ifdef __FreeBSD__
    101        1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    102        1.1    simonb     &timestepwarnings, 0, "");
    103        1.2    kardel #endif /* __FreeBSD__ */
    104        1.2    kardel 
    105        1.2    kardel /*
    106        1.2    kardel  * sysctl helper routine for kern.timercounter.current
    107        1.2    kardel  */
    108        1.2    kardel static int
    109        1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    110        1.2    kardel {
    111        1.2    kardel 	struct sysctlnode node;
    112        1.2    kardel 	int error;
    113        1.2    kardel 	char newname[MAX_TCNAMELEN];
    114        1.2    kardel 	struct timecounter *newtc, *tc;
    115        1.2    kardel 
    116        1.2    kardel 	tc = timecounter;
    117        1.2    kardel 
    118        1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    119        1.2    kardel 
    120        1.2    kardel 	node = *rnode;
    121        1.2    kardel 	node.sysctl_data = newname;
    122        1.2    kardel 	node.sysctl_size = sizeof(newname);
    123        1.2    kardel 
    124        1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    125        1.2    kardel 
    126        1.2    kardel 	if (error ||
    127        1.2    kardel 	    newp == NULL ||
    128        1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    129        1.2    kardel 		return error;
    130        1.1    simonb 
    131        1.5        ad 	if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
    132       1.17      elad 	    KAUTH_GENERIC_ISSUSER, NULL)) != 0)
    133        1.2    kardel 		return (error);
    134        1.2    kardel 
    135        1.2    kardel 	/* XXX locking */
    136        1.2    kardel 
    137        1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    138        1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    139        1.2    kardel 			continue;
    140        1.2    kardel 
    141        1.2    kardel 		/* Warm up new timecounter. */
    142        1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    143        1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    144        1.2    kardel 
    145        1.2    kardel 		timecounter = newtc;
    146        1.2    kardel 
    147        1.2    kardel 		/* XXX unlock */
    148        1.2    kardel 
    149        1.2    kardel 		return (0);
    150        1.2    kardel 	}
    151        1.2    kardel 
    152        1.2    kardel 	/* XXX unlock */
    153        1.2    kardel 
    154        1.2    kardel 	return (EINVAL);
    155        1.2    kardel }
    156        1.2    kardel 
    157        1.2    kardel static int
    158        1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    159        1.2    kardel {
    160        1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    161        1.2    kardel 	char *where = oldp;
    162        1.2    kardel 	const char *spc;
    163        1.2    kardel 	struct timecounter *tc;
    164        1.2    kardel 	size_t needed, left, slen;
    165        1.2    kardel 	int error;
    166        1.2    kardel 
    167        1.2    kardel 	if (newp != NULL)
    168        1.2    kardel 		return (EPERM);
    169        1.2    kardel 	if (namelen != 0)
    170        1.2    kardel 		return (EINVAL);
    171        1.2    kardel 
    172        1.2    kardel 	spc = "";
    173        1.2    kardel 	error = 0;
    174        1.2    kardel 	needed = 0;
    175        1.2    kardel 	left = *oldlenp;
    176        1.2    kardel 
    177        1.2    kardel 	/* XXX locking */
    178        1.2    kardel 
    179        1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    180        1.2    kardel 		if (where == NULL) {
    181        1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    182        1.2    kardel 		} else {
    183        1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    184        1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    185        1.2    kardel 					tc->tc_frequency);
    186        1.2    kardel 			if (left < slen + 1)
    187        1.2    kardel 				break;
    188        1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    189        1.2    kardel 			error = copyout(buf, where, slen + 1);
    190        1.2    kardel 			spc = " ";
    191        1.2    kardel 			where += slen;
    192        1.2    kardel 			needed += slen;
    193        1.2    kardel 			left -= slen;
    194        1.2    kardel 		}
    195        1.2    kardel 	}
    196        1.2    kardel 
    197        1.2    kardel 	/* XXX unlock */
    198        1.2    kardel 
    199        1.2    kardel 	*oldlenp = needed;
    200        1.2    kardel 	return (error);
    201        1.2    kardel }
    202        1.2    kardel 
    203        1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    204        1.2    kardel {
    205        1.2    kardel 	const struct sysctlnode *node;
    206        1.2    kardel 
    207        1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    208        1.2    kardel 		       CTLFLAG_PERMANENT,
    209        1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    210        1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    211        1.2    kardel 		       NULL, 0, NULL, 0,
    212        1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213        1.2    kardel 
    214        1.2    kardel 	if (node != NULL) {
    215        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    216        1.2    kardel 			       CTLFLAG_PERMANENT,
    217        1.2    kardel 			       CTLTYPE_STRING, "choice",
    218        1.2    kardel 			       SYSCTL_DESCR("available counters"),
    219        1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    220        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    221        1.2    kardel 
    222        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    223        1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    224        1.2    kardel 			       CTLTYPE_STRING, "hardware",
    225        1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    226        1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    227        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    228        1.2    kardel 
    229        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    230        1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231        1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    232        1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    233        1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    234        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    235        1.2    kardel 	}
    236        1.2    kardel }
    237        1.2    kardel 
    238        1.2    kardel #define	TC_STATS(name)							\
    239        1.2    kardel static struct evcnt n##name =						\
    240        1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    241        1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    242        1.2    kardel 
    243        1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    244        1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    245        1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    246        1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    247        1.2    kardel TC_STATS(setclock);
    248        1.1    simonb 
    249        1.1    simonb #undef TC_STATS
    250        1.1    simonb 
    251        1.1    simonb static void tc_windup(void);
    252        1.1    simonb 
    253        1.1    simonb /*
    254        1.1    simonb  * Return the difference between the timehands' counter value now and what
    255        1.1    simonb  * was when we copied it to the timehands' offset_count.
    256        1.1    simonb  */
    257        1.1    simonb static __inline u_int
    258        1.1    simonb tc_delta(struct timehands *th)
    259        1.1    simonb {
    260        1.1    simonb 	struct timecounter *tc;
    261        1.1    simonb 
    262        1.1    simonb 	tc = th->th_counter;
    263        1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    264        1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    265        1.1    simonb }
    266        1.1    simonb 
    267        1.1    simonb /*
    268        1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    269        1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    270        1.1    simonb  * the comment in <sys/time.h> for a description of these 12 functions.
    271        1.1    simonb  */
    272        1.1    simonb 
    273        1.1    simonb void
    274        1.1    simonb binuptime(struct bintime *bt)
    275        1.1    simonb {
    276        1.1    simonb 	struct timehands *th;
    277        1.1    simonb 	u_int gen;
    278        1.1    simonb 
    279        1.2    kardel 	nbinuptime.ev_count++;
    280        1.1    simonb 	do {
    281        1.1    simonb 		th = timehands;
    282        1.1    simonb 		gen = th->th_generation;
    283  1.19.10.1     skrll 		mb_read();
    284        1.1    simonb 		*bt = th->th_offset;
    285        1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    286  1.19.10.1     skrll 		mb_read();
    287        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    288        1.1    simonb }
    289        1.1    simonb 
    290        1.1    simonb void
    291        1.1    simonb nanouptime(struct timespec *tsp)
    292        1.1    simonb {
    293        1.1    simonb 	struct bintime bt;
    294        1.1    simonb 
    295        1.2    kardel 	nnanouptime.ev_count++;
    296        1.1    simonb 	binuptime(&bt);
    297        1.1    simonb 	bintime2timespec(&bt, tsp);
    298        1.1    simonb }
    299        1.1    simonb 
    300        1.1    simonb void
    301        1.1    simonb microuptime(struct timeval *tvp)
    302        1.1    simonb {
    303        1.1    simonb 	struct bintime bt;
    304        1.1    simonb 
    305        1.2    kardel 	nmicrouptime.ev_count++;
    306        1.1    simonb 	binuptime(&bt);
    307        1.1    simonb 	bintime2timeval(&bt, tvp);
    308        1.1    simonb }
    309        1.1    simonb 
    310        1.1    simonb void
    311        1.1    simonb bintime(struct bintime *bt)
    312        1.1    simonb {
    313        1.1    simonb 
    314        1.2    kardel 	nbintime.ev_count++;
    315        1.1    simonb 	binuptime(bt);
    316        1.4    kardel 	bintime_add(bt, &timebasebin);
    317        1.1    simonb }
    318        1.1    simonb 
    319        1.1    simonb void
    320        1.1    simonb nanotime(struct timespec *tsp)
    321        1.1    simonb {
    322        1.1    simonb 	struct bintime bt;
    323        1.1    simonb 
    324        1.2    kardel 	nnanotime.ev_count++;
    325        1.1    simonb 	bintime(&bt);
    326        1.1    simonb 	bintime2timespec(&bt, tsp);
    327        1.1    simonb }
    328        1.1    simonb 
    329        1.1    simonb void
    330        1.1    simonb microtime(struct timeval *tvp)
    331        1.1    simonb {
    332        1.1    simonb 	struct bintime bt;
    333        1.1    simonb 
    334        1.2    kardel 	nmicrotime.ev_count++;
    335        1.1    simonb 	bintime(&bt);
    336        1.1    simonb 	bintime2timeval(&bt, tvp);
    337        1.1    simonb }
    338        1.1    simonb 
    339        1.1    simonb void
    340        1.1    simonb getbinuptime(struct bintime *bt)
    341        1.1    simonb {
    342        1.1    simonb 	struct timehands *th;
    343        1.1    simonb 	u_int gen;
    344        1.1    simonb 
    345        1.2    kardel 	ngetbinuptime.ev_count++;
    346        1.1    simonb 	do {
    347        1.1    simonb 		th = timehands;
    348        1.1    simonb 		gen = th->th_generation;
    349  1.19.10.1     skrll 		mb_read();
    350        1.1    simonb 		*bt = th->th_offset;
    351  1.19.10.1     skrll 		mb_read();
    352        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    353        1.1    simonb }
    354        1.1    simonb 
    355        1.1    simonb void
    356        1.1    simonb getnanouptime(struct timespec *tsp)
    357        1.1    simonb {
    358        1.1    simonb 	struct timehands *th;
    359        1.1    simonb 	u_int gen;
    360        1.1    simonb 
    361        1.2    kardel 	ngetnanouptime.ev_count++;
    362        1.1    simonb 	do {
    363        1.1    simonb 		th = timehands;
    364        1.1    simonb 		gen = th->th_generation;
    365  1.19.10.1     skrll 		mb_read();
    366        1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    367  1.19.10.1     skrll 		mb_read();
    368        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    369        1.1    simonb }
    370        1.1    simonb 
    371        1.1    simonb void
    372        1.1    simonb getmicrouptime(struct timeval *tvp)
    373        1.1    simonb {
    374        1.1    simonb 	struct timehands *th;
    375        1.1    simonb 	u_int gen;
    376        1.1    simonb 
    377        1.2    kardel 	ngetmicrouptime.ev_count++;
    378        1.1    simonb 	do {
    379        1.1    simonb 		th = timehands;
    380        1.1    simonb 		gen = th->th_generation;
    381  1.19.10.1     skrll 		mb_read();
    382        1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    383  1.19.10.1     skrll 		mb_read();
    384        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    385        1.1    simonb }
    386        1.1    simonb 
    387        1.1    simonb void
    388        1.1    simonb getbintime(struct bintime *bt)
    389        1.1    simonb {
    390        1.1    simonb 	struct timehands *th;
    391        1.1    simonb 	u_int gen;
    392        1.1    simonb 
    393        1.2    kardel 	ngetbintime.ev_count++;
    394        1.1    simonb 	do {
    395        1.1    simonb 		th = timehands;
    396        1.1    simonb 		gen = th->th_generation;
    397  1.19.10.1     skrll 		mb_read();
    398        1.1    simonb 		*bt = th->th_offset;
    399  1.19.10.1     skrll 		mb_read();
    400        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    401        1.4    kardel 	bintime_add(bt, &timebasebin);
    402        1.1    simonb }
    403        1.1    simonb 
    404        1.1    simonb void
    405        1.1    simonb getnanotime(struct timespec *tsp)
    406        1.1    simonb {
    407        1.1    simonb 	struct timehands *th;
    408        1.1    simonb 	u_int gen;
    409        1.1    simonb 
    410        1.2    kardel 	ngetnanotime.ev_count++;
    411        1.1    simonb 	do {
    412        1.1    simonb 		th = timehands;
    413        1.1    simonb 		gen = th->th_generation;
    414  1.19.10.1     skrll 		mb_read();
    415        1.1    simonb 		*tsp = th->th_nanotime;
    416  1.19.10.1     skrll 		mb_read();
    417        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    418        1.1    simonb }
    419        1.1    simonb 
    420        1.1    simonb void
    421        1.1    simonb getmicrotime(struct timeval *tvp)
    422        1.1    simonb {
    423        1.1    simonb 	struct timehands *th;
    424        1.1    simonb 	u_int gen;
    425        1.1    simonb 
    426        1.2    kardel 	ngetmicrotime.ev_count++;
    427        1.1    simonb 	do {
    428        1.1    simonb 		th = timehands;
    429        1.1    simonb 		gen = th->th_generation;
    430  1.19.10.1     skrll 		mb_read();
    431        1.1    simonb 		*tvp = th->th_microtime;
    432  1.19.10.1     skrll 		mb_read();
    433        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    434        1.1    simonb }
    435        1.1    simonb 
    436        1.1    simonb /*
    437        1.1    simonb  * Initialize a new timecounter and possibly use it.
    438        1.1    simonb  */
    439        1.1    simonb void
    440        1.1    simonb tc_init(struct timecounter *tc)
    441        1.1    simonb {
    442        1.1    simonb 	u_int u;
    443       1.11    simonb 	int s;
    444        1.1    simonb 
    445        1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    446        1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    447        1.1    simonb 	u *= 11;
    448        1.1    simonb 	u /= 10;
    449        1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    450        1.1    simonb 		tc->tc_quality = -2000;
    451       1.18        ad 		aprint_verbose(
    452       1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    453        1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    454       1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    455        1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    456       1.18        ad 		aprint_verbose(
    457       1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    458       1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    459        1.7     bjh21 		    tc->tc_quality);
    460        1.1    simonb 	}
    461        1.1    simonb 
    462       1.11    simonb 	s = splclock();
    463       1.11    simonb 
    464        1.1    simonb 	tc->tc_next = timecounters;
    465        1.1    simonb 	timecounters = tc;
    466        1.1    simonb 	/*
    467        1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    468        1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    469        1.1    simonb 	 * worse since this timecounter may not be monotonous.
    470        1.1    simonb 	 */
    471        1.1    simonb 	if (tc->tc_quality < 0)
    472       1.12   tsutsui 		goto out;
    473        1.1    simonb 	if (tc->tc_quality < timecounter->tc_quality)
    474       1.12   tsutsui 		goto out;
    475        1.1    simonb 	if (tc->tc_quality == timecounter->tc_quality &&
    476        1.1    simonb 	    tc->tc_frequency < timecounter->tc_frequency)
    477       1.12   tsutsui 		goto out;
    478        1.1    simonb 	(void)tc->tc_get_timecount(tc);
    479        1.1    simonb 	(void)tc->tc_get_timecount(tc);
    480        1.1    simonb 	timecounter = tc;
    481        1.3    kardel 	tc_windup();
    482       1.11    simonb 
    483       1.12   tsutsui  out:
    484       1.11    simonb 	splx(s);
    485        1.1    simonb }
    486        1.1    simonb 
    487        1.1    simonb /* Report the frequency of the current timecounter. */
    488        1.1    simonb u_int64_t
    489        1.1    simonb tc_getfrequency(void)
    490        1.1    simonb {
    491        1.1    simonb 
    492        1.1    simonb 	return (timehands->th_counter->tc_frequency);
    493        1.1    simonb }
    494        1.1    simonb 
    495        1.1    simonb /*
    496        1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    497        1.1    simonb  * when we booted.
    498        1.1    simonb  * XXX: not locked.
    499        1.1    simonb  */
    500        1.1    simonb void
    501        1.1    simonb tc_setclock(struct timespec *ts)
    502        1.1    simonb {
    503        1.1    simonb 	struct timespec ts2;
    504        1.1    simonb 	struct bintime bt, bt2;
    505        1.1    simonb 
    506        1.2    kardel 	nsetclock.ev_count++;
    507        1.1    simonb 	binuptime(&bt2);
    508        1.1    simonb 	timespec2bintime(ts, &bt);
    509        1.1    simonb 	bintime_sub(&bt, &bt2);
    510        1.4    kardel 	bintime_add(&bt2, &timebasebin);
    511        1.4    kardel 	timebasebin = bt;
    512        1.1    simonb 
    513        1.1    simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    514        1.1    simonb 	tc_windup();
    515        1.1    simonb 	if (timestepwarnings) {
    516        1.1    simonb 		bintime2timespec(&bt2, &ts2);
    517        1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    518        1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    519        1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    520        1.1    simonb 	}
    521        1.1    simonb }
    522        1.1    simonb 
    523        1.1    simonb /*
    524        1.1    simonb  * Initialize the next struct timehands in the ring and make
    525        1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    526        1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    527        1.1    simonb  */
    528        1.1    simonb static void
    529        1.1    simonb tc_windup(void)
    530        1.1    simonb {
    531        1.1    simonb 	struct bintime bt;
    532        1.1    simonb 	struct timehands *th, *tho;
    533        1.1    simonb 	u_int64_t scale;
    534        1.1    simonb 	u_int delta, ncount, ogen;
    535       1.13    kardel 	int i, s_update;
    536        1.1    simonb 	time_t t;
    537        1.1    simonb 
    538       1.13    kardel 	s_update = 0;
    539  1.19.10.1     skrll 
    540        1.1    simonb 	/*
    541        1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    542        1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    543  1.19.10.1     skrll 	 * the contents, the generation must be zero.  Ensure global
    544  1.19.10.1     skrll 	 * visibility of the generation before proceeding.
    545        1.1    simonb 	 */
    546        1.1    simonb 	tho = timehands;
    547        1.1    simonb 	th = tho->th_next;
    548        1.1    simonb 	ogen = th->th_generation;
    549        1.1    simonb 	th->th_generation = 0;
    550  1.19.10.1     skrll 	mb_write();
    551        1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    552        1.1    simonb 
    553        1.1    simonb 	/*
    554        1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    555        1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    556        1.1    simonb 	 * Update the offset fields accordingly.
    557        1.1    simonb 	 */
    558        1.1    simonb 	delta = tc_delta(th);
    559        1.1    simonb 	if (th->th_counter != timecounter)
    560        1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    561        1.1    simonb 	else
    562        1.1    simonb 		ncount = 0;
    563        1.1    simonb 	th->th_offset_count += delta;
    564        1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    565        1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    566        1.1    simonb 
    567        1.1    simonb 	/*
    568        1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    569        1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    570        1.1    simonb 	 * the hardware might capture a count which is later than the one we
    571        1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    572        1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    573        1.1    simonb 	 * matter in practice.
    574        1.1    simonb 	 */
    575        1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    576        1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    577        1.1    simonb 
    578        1.1    simonb 	/*
    579        1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    580        1.1    simonb 	 * iterates at most once, but in extreme situations it might
    581        1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    582        1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    583        1.1    simonb 	 * has been read, so on really large steps, we call
    584        1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    585        1.1    simonb 	 * case we missed a leap second.
    586        1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    587        1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    588        1.1    simonb 	 */
    589        1.1    simonb 	bt = th->th_offset;
    590        1.4    kardel 	bintime_add(&bt, &timebasebin);
    591        1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    592        1.1    simonb 	if (i > LARGE_STEP)
    593        1.1    simonb 		i = 2;
    594        1.1    simonb 	for (; i > 0; i--) {
    595        1.1    simonb 		t = bt.sec;
    596        1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    597       1.13    kardel 		s_update = 1;
    598        1.1    simonb 		if (bt.sec != t)
    599        1.4    kardel 			timebasebin.sec += bt.sec - t;
    600        1.1    simonb 	}
    601        1.2    kardel 
    602        1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    603        1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    604        1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    605        1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    606        1.1    simonb 
    607        1.1    simonb 	/* Now is a good time to change timecounters. */
    608        1.1    simonb 	if (th->th_counter != timecounter) {
    609        1.1    simonb 		th->th_counter = timecounter;
    610        1.1    simonb 		th->th_offset_count = ncount;
    611       1.13    kardel 		s_update = 1;
    612        1.1    simonb 	}
    613        1.1    simonb 
    614        1.1    simonb 	/*-
    615        1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    616        1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    617        1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    618        1.1    simonb 	 * processing provides us with.
    619        1.1    simonb 	 *
    620        1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    621        1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    622        1.1    simonb 	 *
    623        1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    624        1.1    simonb 	 *
    625        1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    626        1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    627        1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    628        1.1    simonb 	 *
    629        1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    630        1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    631        1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    632        1.1    simonb  	 *
    633        1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    634        1.1    simonb 	 * to the goddess of code clarity.
    635        1.1    simonb 	 *
    636        1.1    simonb 	 */
    637       1.13    kardel 	if (s_update) {
    638       1.13    kardel 		scale = (u_int64_t)1 << 63;
    639       1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    640       1.13    kardel 		scale /= th->th_counter->tc_frequency;
    641       1.13    kardel 		th->th_scale = scale * 2;
    642       1.13    kardel 	}
    643        1.1    simonb 	/*
    644        1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    645  1.19.10.1     skrll 	 * generation number, making sure to not make it zero.  Ensure
    646  1.19.10.1     skrll 	 * changes are globally visible before changing.
    647        1.1    simonb 	 */
    648        1.1    simonb 	if (++ogen == 0)
    649        1.1    simonb 		ogen = 1;
    650  1.19.10.1     skrll 	mb_write();
    651        1.1    simonb 	th->th_generation = ogen;
    652        1.1    simonb 
    653  1.19.10.1     skrll 	/*
    654  1.19.10.1     skrll 	 * Go live with the new struct timehands.  Ensure changes are
    655  1.19.10.1     skrll 	 * globally visible before changing.
    656  1.19.10.1     skrll 	 */
    657        1.1    simonb 	time_second = th->th_microtime.tv_sec;
    658        1.1    simonb 	time_uptime = th->th_offset.sec;
    659  1.19.10.1     skrll 	mb_write();
    660        1.1    simonb 	timehands = th;
    661        1.1    simonb }
    662        1.1    simonb 
    663        1.2    kardel #ifdef __FreeBSD__
    664        1.1    simonb /* Report or change the active timecounter hardware. */
    665        1.1    simonb static int
    666        1.1    simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    667        1.1    simonb {
    668        1.1    simonb 	char newname[32];
    669        1.1    simonb 	struct timecounter *newtc, *tc;
    670        1.1    simonb 	int error;
    671        1.1    simonb 
    672        1.1    simonb 	tc = timecounter;
    673        1.1    simonb 	strlcpy(newname, tc->tc_name, sizeof(newname));
    674        1.1    simonb 
    675        1.1    simonb 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    676        1.1    simonb 	if (error != 0 || req->newptr == NULL ||
    677        1.1    simonb 	    strcmp(newname, tc->tc_name) == 0)
    678        1.1    simonb 		return (error);
    679        1.2    kardel 
    680        1.1    simonb 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    681        1.1    simonb 		if (strcmp(newname, newtc->tc_name) != 0)
    682        1.1    simonb 			continue;
    683        1.1    simonb 
    684        1.1    simonb 		/* Warm up new timecounter. */
    685        1.1    simonb 		(void)newtc->tc_get_timecount(newtc);
    686        1.1    simonb 		(void)newtc->tc_get_timecount(newtc);
    687        1.1    simonb 
    688        1.1    simonb 		timecounter = newtc;
    689        1.1    simonb 		return (0);
    690        1.1    simonb 	}
    691        1.1    simonb 	return (EINVAL);
    692        1.1    simonb }
    693        1.1    simonb 
    694        1.1    simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    695        1.1    simonb     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    696        1.1    simonb 
    697        1.1    simonb 
    698        1.1    simonb /* Report or change the active timecounter hardware. */
    699        1.1    simonb static int
    700        1.1    simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    701        1.1    simonb {
    702        1.1    simonb 	char buf[32], *spc;
    703        1.1    simonb 	struct timecounter *tc;
    704        1.1    simonb 	int error;
    705        1.1    simonb 
    706        1.1    simonb 	spc = "";
    707        1.1    simonb 	error = 0;
    708        1.1    simonb 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    709        1.1    simonb 		sprintf(buf, "%s%s(%d)",
    710        1.1    simonb 		    spc, tc->tc_name, tc->tc_quality);
    711        1.1    simonb 		error = SYSCTL_OUT(req, buf, strlen(buf));
    712        1.1    simonb 		spc = " ";
    713        1.1    simonb 	}
    714        1.1    simonb 	return (error);
    715        1.1    simonb }
    716        1.1    simonb 
    717        1.1    simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    718        1.1    simonb     0, 0, sysctl_kern_timecounter_choice, "A", "");
    719        1.2    kardel #endif /* __FreeBSD__ */
    720        1.1    simonb 
    721        1.1    simonb /*
    722        1.1    simonb  * RFC 2783 PPS-API implementation.
    723        1.1    simonb  */
    724        1.1    simonb 
    725        1.1    simonb int
    726       1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    727        1.1    simonb {
    728        1.1    simonb 	pps_params_t *app;
    729        1.2    kardel 	pps_info_t *pipi;
    730        1.1    simonb #ifdef PPS_SYNC
    731        1.2    kardel 	int *epi;
    732        1.1    simonb #endif
    733        1.1    simonb 
    734        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    735        1.1    simonb 	switch (cmd) {
    736        1.1    simonb 	case PPS_IOC_CREATE:
    737        1.1    simonb 		return (0);
    738        1.1    simonb 	case PPS_IOC_DESTROY:
    739        1.1    simonb 		return (0);
    740        1.1    simonb 	case PPS_IOC_SETPARAMS:
    741        1.1    simonb 		app = (pps_params_t *)data;
    742        1.1    simonb 		if (app->mode & ~pps->ppscap)
    743        1.1    simonb 			return (EINVAL);
    744        1.1    simonb 		pps->ppsparam = *app;
    745        1.1    simonb 		return (0);
    746        1.1    simonb 	case PPS_IOC_GETPARAMS:
    747        1.1    simonb 		app = (pps_params_t *)data;
    748        1.1    simonb 		*app = pps->ppsparam;
    749        1.1    simonb 		app->api_version = PPS_API_VERS_1;
    750        1.1    simonb 		return (0);
    751        1.1    simonb 	case PPS_IOC_GETCAP:
    752        1.1    simonb 		*(int*)data = pps->ppscap;
    753        1.1    simonb 		return (0);
    754        1.1    simonb 	case PPS_IOC_FETCH:
    755        1.2    kardel 		pipi = (pps_info_t *)data;
    756        1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    757        1.2    kardel 		*pipi = pps->ppsinfo;
    758        1.1    simonb 		return (0);
    759        1.1    simonb 	case PPS_IOC_KCBIND:
    760        1.1    simonb #ifdef PPS_SYNC
    761        1.2    kardel 		epi = (int *)data;
    762        1.1    simonb 		/* XXX Only root should be able to do this */
    763        1.2    kardel 		if (*epi & ~pps->ppscap)
    764        1.1    simonb 			return (EINVAL);
    765        1.2    kardel 		pps->kcmode = *epi;
    766        1.1    simonb 		return (0);
    767        1.1    simonb #else
    768        1.1    simonb 		return (EOPNOTSUPP);
    769        1.1    simonb #endif
    770        1.1    simonb 	default:
    771        1.2    kardel 		return (EPASSTHROUGH);
    772        1.1    simonb 	}
    773        1.1    simonb }
    774        1.1    simonb 
    775        1.1    simonb void
    776        1.1    simonb pps_init(struct pps_state *pps)
    777        1.1    simonb {
    778        1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    779        1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    780        1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    781        1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    782        1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    783        1.1    simonb }
    784        1.1    simonb 
    785        1.1    simonb void
    786        1.1    simonb pps_capture(struct pps_state *pps)
    787        1.1    simonb {
    788        1.1    simonb 	struct timehands *th;
    789        1.1    simonb 
    790        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    791        1.1    simonb 	th = timehands;
    792        1.1    simonb 	pps->capgen = th->th_generation;
    793        1.1    simonb 	pps->capth = th;
    794        1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    795        1.1    simonb 	if (pps->capgen != th->th_generation)
    796        1.1    simonb 		pps->capgen = 0;
    797        1.1    simonb }
    798        1.1    simonb 
    799        1.1    simonb void
    800        1.1    simonb pps_event(struct pps_state *pps, int event)
    801        1.1    simonb {
    802        1.1    simonb 	struct bintime bt;
    803        1.1    simonb 	struct timespec ts, *tsp, *osp;
    804        1.1    simonb 	u_int tcount, *pcount;
    805        1.1    simonb 	int foff, fhard;
    806        1.1    simonb 	pps_seq_t *pseq;
    807        1.1    simonb 
    808        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    809        1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    810        1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    811        1.1    simonb 		return;
    812        1.1    simonb 
    813        1.1    simonb 	/* Things would be easier with arrays. */
    814        1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    815        1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    816        1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    817        1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    818        1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    819        1.1    simonb 		pcount = &pps->ppscount[0];
    820        1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    821        1.1    simonb 	} else {
    822        1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    823        1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    824        1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    825        1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    826        1.1    simonb 		pcount = &pps->ppscount[1];
    827        1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    828        1.1    simonb 	}
    829        1.1    simonb 
    830        1.1    simonb 	/*
    831        1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    832        1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    833        1.1    simonb 	 */
    834        1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    835        1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    836        1.1    simonb 		*pcount = pps->capcount;
    837        1.1    simonb 		pps->ppscount[2] = pps->capcount;
    838        1.1    simonb 		return;
    839        1.1    simonb 	}
    840        1.1    simonb 
    841        1.1    simonb 	/* Convert the count to a timespec. */
    842        1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    843        1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    844        1.1    simonb 	bt = pps->capth->th_offset;
    845        1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    846        1.4    kardel 	bintime_add(&bt, &timebasebin);
    847        1.1    simonb 	bintime2timespec(&bt, &ts);
    848        1.1    simonb 
    849        1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    850        1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    851        1.1    simonb 		return;
    852        1.1    simonb 
    853        1.1    simonb 	*pcount = pps->capcount;
    854        1.1    simonb 	(*pseq)++;
    855        1.1    simonb 	*tsp = ts;
    856        1.1    simonb 
    857        1.1    simonb 	if (foff) {
    858        1.2    kardel 		timespecadd(tsp, osp, tsp);
    859        1.1    simonb 		if (tsp->tv_nsec < 0) {
    860        1.1    simonb 			tsp->tv_nsec += 1000000000;
    861        1.1    simonb 			tsp->tv_sec -= 1;
    862        1.1    simonb 		}
    863        1.1    simonb 	}
    864        1.1    simonb #ifdef PPS_SYNC
    865        1.1    simonb 	if (fhard) {
    866        1.1    simonb 		u_int64_t scale;
    867        1.1    simonb 
    868        1.1    simonb 		/*
    869        1.1    simonb 		 * Feed the NTP PLL/FLL.
    870        1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    871        1.1    simonb 		 * elapsed since the previous event.
    872        1.1    simonb 		 */
    873        1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    874        1.1    simonb 		pps->ppscount[2] = pps->capcount;
    875        1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    876        1.1    simonb 		scale = (u_int64_t)1 << 63;
    877        1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    878        1.1    simonb 		scale *= 2;
    879        1.1    simonb 		bt.sec = 0;
    880        1.1    simonb 		bt.frac = 0;
    881        1.1    simonb 		bintime_addx(&bt, scale * tcount);
    882        1.1    simonb 		bintime2timespec(&bt, &ts);
    883        1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    884        1.1    simonb 	}
    885        1.1    simonb #endif
    886        1.1    simonb }
    887        1.1    simonb 
    888        1.1    simonb /*
    889        1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    890        1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    891        1.1    simonb  * used by the get*() family of functions, so their precision depends on
    892        1.1    simonb  * the update frequency.
    893        1.1    simonb  */
    894        1.1    simonb 
    895        1.1    simonb static int tc_tick;
    896        1.2    kardel #ifdef __FreeBSD__
    897        1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    898        1.2    kardel #endif /* __FreeBSD__ */
    899        1.1    simonb 
    900        1.1    simonb void
    901        1.1    simonb tc_ticktock(void)
    902        1.1    simonb {
    903        1.1    simonb 	static int count;
    904        1.1    simonb 
    905        1.1    simonb 	if (++count < tc_tick)
    906        1.1    simonb 		return;
    907        1.1    simonb 	count = 0;
    908        1.1    simonb 	tc_windup();
    909        1.1    simonb }
    910        1.1    simonb 
    911        1.2    kardel void
    912        1.2    kardel inittimecounter(void)
    913        1.1    simonb {
    914        1.1    simonb 	u_int p;
    915        1.1    simonb 
    916        1.1    simonb 	/*
    917        1.1    simonb 	 * Set the initial timeout to
    918        1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    919        1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    920        1.1    simonb 	 * to smaller than its inital value, since that value is the
    921        1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    922        1.1    simonb 	 * should use the non-"get"* functions.
    923        1.1    simonb 	 */
    924        1.1    simonb 	if (hz > 1000)
    925        1.1    simonb 		tc_tick = (hz + 500) / 1000;
    926        1.1    simonb 	else
    927        1.1    simonb 		tc_tick = 1;
    928        1.1    simonb 	p = (tc_tick * 1000000) / hz;
    929       1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    930       1.18        ad 	    p / 1000, p % 1000);
    931        1.1    simonb 
    932        1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    933        1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    934        1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    935        1.1    simonb }
    936        1.1    simonb 
    937        1.2    kardel #ifdef __FreeBSD__
    938        1.1    simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    939        1.2    kardel #endif /* __FreeBSD__ */
    940        1.2    kardel #endif /* __HAVE_TIMECOUNTER */
    941