Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.21
      1  1.21    simonb /* $NetBSD: kern_tc.c,v 1.21 2007/10/21 14:55:09 simonb Exp $ */
      2   1.2    kardel 
      3   1.1    simonb /*-
      4   1.1    simonb  * ----------------------------------------------------------------------------
      5   1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6   1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7   1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8   1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9   1.2    kardel  * ---------------------------------------------------------------------------
     10   1.1    simonb  */
     11   1.1    simonb 
     12   1.1    simonb #include <sys/cdefs.h>
     13   1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.21    simonb __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.21 2007/10/21 14:55:09 simonb Exp $");
     15   1.1    simonb 
     16   1.1    simonb #include "opt_ntp.h"
     17   1.1    simonb 
     18   1.1    simonb #include <sys/param.h>
     19   1.2    kardel #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20   1.1    simonb #include <sys/kernel.h>
     21   1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22   1.1    simonb #include <sys/sysctl.h>
     23   1.1    simonb #include <sys/syslog.h>
     24   1.1    simonb #include <sys/systm.h>
     25   1.1    simonb #include <sys/timepps.h>
     26   1.1    simonb #include <sys/timetc.h>
     27   1.1    simonb #include <sys/timex.h>
     28   1.2    kardel #include <sys/evcnt.h>
     29   1.2    kardel #include <sys/kauth.h>
     30   1.2    kardel 
     31   1.2    kardel /*
     32   1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     33   1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     34   1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     35   1.1    simonb  * forever when the time step is large.
     36   1.1    simonb  */
     37   1.1    simonb #define LARGE_STEP	200
     38   1.1    simonb 
     39   1.1    simonb /*
     40   1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     41   1.1    simonb  * in the air.  This allows the console and other early stuff to use
     42   1.1    simonb  * time services.
     43   1.1    simonb  */
     44   1.1    simonb 
     45   1.1    simonb static u_int
     46  1.16      yamt dummy_get_timecount(struct timecounter *tc)
     47   1.1    simonb {
     48   1.1    simonb 	static u_int now;
     49   1.1    simonb 
     50   1.1    simonb 	return (++now);
     51   1.1    simonb }
     52   1.1    simonb 
     53   1.1    simonb static struct timecounter dummy_timecounter = {
     54   1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     55   1.1    simonb };
     56   1.1    simonb 
     57   1.1    simonb struct timehands {
     58   1.1    simonb 	/* These fields must be initialized by the driver. */
     59   1.1    simonb 	struct timecounter	*th_counter;
     60   1.1    simonb 	int64_t			th_adjustment;
     61   1.1    simonb 	u_int64_t		th_scale;
     62   1.1    simonb 	u_int	 		th_offset_count;
     63   1.1    simonb 	struct bintime		th_offset;
     64   1.1    simonb 	struct timeval		th_microtime;
     65   1.1    simonb 	struct timespec		th_nanotime;
     66   1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     67   1.1    simonb 	volatile u_int		th_generation;
     68   1.1    simonb 	struct timehands	*th_next;
     69   1.1    simonb };
     70   1.1    simonb 
     71   1.1    simonb static struct timehands th0;
     72  1.10  christos static struct timehands th9 = { .th_next = &th0, };
     73  1.10  christos static struct timehands th8 = { .th_next = &th9, };
     74  1.10  christos static struct timehands th7 = { .th_next = &th8, };
     75  1.10  christos static struct timehands th6 = { .th_next = &th7, };
     76  1.10  christos static struct timehands th5 = { .th_next = &th6, };
     77  1.10  christos static struct timehands th4 = { .th_next = &th5, };
     78  1.10  christos static struct timehands th3 = { .th_next = &th4, };
     79  1.10  christos static struct timehands th2 = { .th_next = &th3, };
     80  1.10  christos static struct timehands th1 = { .th_next = &th2, };
     81   1.1    simonb static struct timehands th0 = {
     82  1.10  christos 	.th_counter = &dummy_timecounter,
     83  1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
     84  1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
     85  1.10  christos 	.th_generation = 1,
     86  1.10  christos 	.th_next = &th1,
     87   1.1    simonb };
     88   1.1    simonb 
     89   1.1    simonb static struct timehands *volatile timehands = &th0;
     90   1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     91   1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     92   1.1    simonb 
     93   1.1    simonb time_t time_second = 1;
     94   1.1    simonb time_t time_uptime = 1;
     95   1.1    simonb 
     96   1.4    kardel static struct bintime timebasebin;
     97   1.1    simonb 
     98   1.1    simonb static int timestepwarnings;
     99   1.2    kardel 
    100   1.2    kardel #ifdef __FreeBSD__
    101   1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    102   1.1    simonb     &timestepwarnings, 0, "");
    103   1.2    kardel #endif /* __FreeBSD__ */
    104   1.2    kardel 
    105   1.2    kardel /*
    106   1.2    kardel  * sysctl helper routine for kern.timercounter.current
    107   1.2    kardel  */
    108   1.2    kardel static int
    109   1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    110   1.2    kardel {
    111   1.2    kardel 	struct sysctlnode node;
    112   1.2    kardel 	int error;
    113   1.2    kardel 	char newname[MAX_TCNAMELEN];
    114   1.2    kardel 	struct timecounter *newtc, *tc;
    115   1.2    kardel 
    116   1.2    kardel 	tc = timecounter;
    117   1.2    kardel 
    118   1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    119   1.2    kardel 
    120   1.2    kardel 	node = *rnode;
    121   1.2    kardel 	node.sysctl_data = newname;
    122   1.2    kardel 	node.sysctl_size = sizeof(newname);
    123   1.2    kardel 
    124   1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    125   1.2    kardel 
    126   1.2    kardel 	if (error ||
    127   1.2    kardel 	    newp == NULL ||
    128   1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    129   1.2    kardel 		return error;
    130   1.1    simonb 
    131   1.5        ad 	if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
    132  1.17      elad 	    KAUTH_GENERIC_ISSUSER, NULL)) != 0)
    133   1.2    kardel 		return (error);
    134   1.2    kardel 
    135   1.2    kardel 	/* XXX locking */
    136   1.2    kardel 
    137   1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    138   1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    139   1.2    kardel 			continue;
    140   1.2    kardel 
    141   1.2    kardel 		/* Warm up new timecounter. */
    142   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    143   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    144   1.2    kardel 
    145   1.2    kardel 		timecounter = newtc;
    146   1.2    kardel 
    147   1.2    kardel 		/* XXX unlock */
    148   1.2    kardel 
    149   1.2    kardel 		return (0);
    150   1.2    kardel 	}
    151   1.2    kardel 
    152   1.2    kardel 	/* XXX unlock */
    153   1.2    kardel 
    154   1.2    kardel 	return (EINVAL);
    155   1.2    kardel }
    156   1.2    kardel 
    157   1.2    kardel static int
    158   1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    159   1.2    kardel {
    160   1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    161   1.2    kardel 	char *where = oldp;
    162   1.2    kardel 	const char *spc;
    163   1.2    kardel 	struct timecounter *tc;
    164   1.2    kardel 	size_t needed, left, slen;
    165   1.2    kardel 	int error;
    166   1.2    kardel 
    167   1.2    kardel 	if (newp != NULL)
    168   1.2    kardel 		return (EPERM);
    169   1.2    kardel 	if (namelen != 0)
    170   1.2    kardel 		return (EINVAL);
    171   1.2    kardel 
    172   1.2    kardel 	spc = "";
    173   1.2    kardel 	error = 0;
    174   1.2    kardel 	needed = 0;
    175   1.2    kardel 	left = *oldlenp;
    176   1.2    kardel 
    177   1.2    kardel 	/* XXX locking */
    178   1.2    kardel 
    179   1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    180   1.2    kardel 		if (where == NULL) {
    181   1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    182   1.2    kardel 		} else {
    183   1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    184   1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    185   1.2    kardel 					tc->tc_frequency);
    186   1.2    kardel 			if (left < slen + 1)
    187   1.2    kardel 				break;
    188   1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    189   1.2    kardel 			error = copyout(buf, where, slen + 1);
    190   1.2    kardel 			spc = " ";
    191   1.2    kardel 			where += slen;
    192   1.2    kardel 			needed += slen;
    193   1.2    kardel 			left -= slen;
    194   1.2    kardel 		}
    195   1.2    kardel 	}
    196   1.2    kardel 
    197   1.2    kardel 	/* XXX unlock */
    198   1.2    kardel 
    199   1.2    kardel 	*oldlenp = needed;
    200   1.2    kardel 	return (error);
    201   1.2    kardel }
    202   1.2    kardel 
    203   1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    204   1.2    kardel {
    205   1.2    kardel 	const struct sysctlnode *node;
    206   1.2    kardel 
    207   1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    208   1.2    kardel 		       CTLFLAG_PERMANENT,
    209   1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    210   1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    211   1.2    kardel 		       NULL, 0, NULL, 0,
    212   1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213   1.2    kardel 
    214   1.2    kardel 	if (node != NULL) {
    215   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    216   1.2    kardel 			       CTLFLAG_PERMANENT,
    217   1.2    kardel 			       CTLTYPE_STRING, "choice",
    218   1.2    kardel 			       SYSCTL_DESCR("available counters"),
    219   1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    220   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    221   1.2    kardel 
    222   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    223   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    224   1.2    kardel 			       CTLTYPE_STRING, "hardware",
    225   1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    226   1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    227   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    228   1.2    kardel 
    229   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    230   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231   1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    232   1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    233   1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    234   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    235   1.2    kardel 	}
    236   1.2    kardel }
    237   1.2    kardel 
    238   1.2    kardel #define	TC_STATS(name)							\
    239   1.2    kardel static struct evcnt n##name =						\
    240   1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    241   1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    242   1.2    kardel 
    243   1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    244   1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    245   1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    246   1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    247   1.2    kardel TC_STATS(setclock);
    248   1.1    simonb 
    249   1.1    simonb #undef TC_STATS
    250   1.1    simonb 
    251   1.1    simonb static void tc_windup(void);
    252   1.1    simonb 
    253   1.1    simonb /*
    254   1.1    simonb  * Return the difference between the timehands' counter value now and what
    255   1.1    simonb  * was when we copied it to the timehands' offset_count.
    256   1.1    simonb  */
    257   1.1    simonb static __inline u_int
    258   1.1    simonb tc_delta(struct timehands *th)
    259   1.1    simonb {
    260   1.1    simonb 	struct timecounter *tc;
    261   1.1    simonb 
    262   1.1    simonb 	tc = th->th_counter;
    263   1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    264   1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    265   1.1    simonb }
    266   1.1    simonb 
    267   1.1    simonb /*
    268   1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    269   1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    270  1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    271   1.1    simonb  */
    272   1.1    simonb 
    273   1.1    simonb void
    274   1.1    simonb binuptime(struct bintime *bt)
    275   1.1    simonb {
    276   1.1    simonb 	struct timehands *th;
    277   1.1    simonb 	u_int gen;
    278   1.1    simonb 
    279   1.2    kardel 	nbinuptime.ev_count++;
    280   1.1    simonb 	do {
    281   1.1    simonb 		th = timehands;
    282   1.1    simonb 		gen = th->th_generation;
    283  1.20        ad 		mb_read();
    284   1.1    simonb 		*bt = th->th_offset;
    285   1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    286  1.20        ad 		mb_read();
    287   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    288   1.1    simonb }
    289   1.1    simonb 
    290   1.1    simonb void
    291   1.1    simonb nanouptime(struct timespec *tsp)
    292   1.1    simonb {
    293   1.1    simonb 	struct bintime bt;
    294   1.1    simonb 
    295   1.2    kardel 	nnanouptime.ev_count++;
    296   1.1    simonb 	binuptime(&bt);
    297   1.1    simonb 	bintime2timespec(&bt, tsp);
    298   1.1    simonb }
    299   1.1    simonb 
    300   1.1    simonb void
    301   1.1    simonb microuptime(struct timeval *tvp)
    302   1.1    simonb {
    303   1.1    simonb 	struct bintime bt;
    304   1.1    simonb 
    305   1.2    kardel 	nmicrouptime.ev_count++;
    306   1.1    simonb 	binuptime(&bt);
    307   1.1    simonb 	bintime2timeval(&bt, tvp);
    308   1.1    simonb }
    309   1.1    simonb 
    310   1.1    simonb void
    311   1.1    simonb bintime(struct bintime *bt)
    312   1.1    simonb {
    313   1.1    simonb 
    314   1.2    kardel 	nbintime.ev_count++;
    315   1.1    simonb 	binuptime(bt);
    316   1.4    kardel 	bintime_add(bt, &timebasebin);
    317   1.1    simonb }
    318   1.1    simonb 
    319   1.1    simonb void
    320   1.1    simonb nanotime(struct timespec *tsp)
    321   1.1    simonb {
    322   1.1    simonb 	struct bintime bt;
    323   1.1    simonb 
    324   1.2    kardel 	nnanotime.ev_count++;
    325   1.1    simonb 	bintime(&bt);
    326   1.1    simonb 	bintime2timespec(&bt, tsp);
    327   1.1    simonb }
    328   1.1    simonb 
    329   1.1    simonb void
    330   1.1    simonb microtime(struct timeval *tvp)
    331   1.1    simonb {
    332   1.1    simonb 	struct bintime bt;
    333   1.1    simonb 
    334   1.2    kardel 	nmicrotime.ev_count++;
    335   1.1    simonb 	bintime(&bt);
    336   1.1    simonb 	bintime2timeval(&bt, tvp);
    337   1.1    simonb }
    338   1.1    simonb 
    339   1.1    simonb void
    340   1.1    simonb getbinuptime(struct bintime *bt)
    341   1.1    simonb {
    342   1.1    simonb 	struct timehands *th;
    343   1.1    simonb 	u_int gen;
    344   1.1    simonb 
    345   1.2    kardel 	ngetbinuptime.ev_count++;
    346   1.1    simonb 	do {
    347   1.1    simonb 		th = timehands;
    348   1.1    simonb 		gen = th->th_generation;
    349  1.20        ad 		mb_read();
    350   1.1    simonb 		*bt = th->th_offset;
    351  1.20        ad 		mb_read();
    352   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    353   1.1    simonb }
    354   1.1    simonb 
    355   1.1    simonb void
    356   1.1    simonb getnanouptime(struct timespec *tsp)
    357   1.1    simonb {
    358   1.1    simonb 	struct timehands *th;
    359   1.1    simonb 	u_int gen;
    360   1.1    simonb 
    361   1.2    kardel 	ngetnanouptime.ev_count++;
    362   1.1    simonb 	do {
    363   1.1    simonb 		th = timehands;
    364   1.1    simonb 		gen = th->th_generation;
    365  1.20        ad 		mb_read();
    366   1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    367  1.20        ad 		mb_read();
    368   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    369   1.1    simonb }
    370   1.1    simonb 
    371   1.1    simonb void
    372   1.1    simonb getmicrouptime(struct timeval *tvp)
    373   1.1    simonb {
    374   1.1    simonb 	struct timehands *th;
    375   1.1    simonb 	u_int gen;
    376   1.1    simonb 
    377   1.2    kardel 	ngetmicrouptime.ev_count++;
    378   1.1    simonb 	do {
    379   1.1    simonb 		th = timehands;
    380   1.1    simonb 		gen = th->th_generation;
    381  1.20        ad 		mb_read();
    382   1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    383  1.20        ad 		mb_read();
    384   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    385   1.1    simonb }
    386   1.1    simonb 
    387   1.1    simonb void
    388   1.1    simonb getbintime(struct bintime *bt)
    389   1.1    simonb {
    390   1.1    simonb 	struct timehands *th;
    391   1.1    simonb 	u_int gen;
    392   1.1    simonb 
    393   1.2    kardel 	ngetbintime.ev_count++;
    394   1.1    simonb 	do {
    395   1.1    simonb 		th = timehands;
    396   1.1    simonb 		gen = th->th_generation;
    397  1.20        ad 		mb_read();
    398   1.1    simonb 		*bt = th->th_offset;
    399  1.20        ad 		mb_read();
    400   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    401   1.4    kardel 	bintime_add(bt, &timebasebin);
    402   1.1    simonb }
    403   1.1    simonb 
    404   1.1    simonb void
    405   1.1    simonb getnanotime(struct timespec *tsp)
    406   1.1    simonb {
    407   1.1    simonb 	struct timehands *th;
    408   1.1    simonb 	u_int gen;
    409   1.1    simonb 
    410   1.2    kardel 	ngetnanotime.ev_count++;
    411   1.1    simonb 	do {
    412   1.1    simonb 		th = timehands;
    413   1.1    simonb 		gen = th->th_generation;
    414  1.20        ad 		mb_read();
    415   1.1    simonb 		*tsp = th->th_nanotime;
    416  1.20        ad 		mb_read();
    417   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    418   1.1    simonb }
    419   1.1    simonb 
    420   1.1    simonb void
    421   1.1    simonb getmicrotime(struct timeval *tvp)
    422   1.1    simonb {
    423   1.1    simonb 	struct timehands *th;
    424   1.1    simonb 	u_int gen;
    425   1.1    simonb 
    426   1.2    kardel 	ngetmicrotime.ev_count++;
    427   1.1    simonb 	do {
    428   1.1    simonb 		th = timehands;
    429   1.1    simonb 		gen = th->th_generation;
    430  1.20        ad 		mb_read();
    431   1.1    simonb 		*tvp = th->th_microtime;
    432  1.20        ad 		mb_read();
    433   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    434   1.1    simonb }
    435   1.1    simonb 
    436   1.1    simonb /*
    437   1.1    simonb  * Initialize a new timecounter and possibly use it.
    438   1.1    simonb  */
    439   1.1    simonb void
    440   1.1    simonb tc_init(struct timecounter *tc)
    441   1.1    simonb {
    442   1.1    simonb 	u_int u;
    443  1.11    simonb 	int s;
    444   1.1    simonb 
    445   1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    446   1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    447   1.1    simonb 	u *= 11;
    448   1.1    simonb 	u /= 10;
    449   1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    450   1.1    simonb 		tc->tc_quality = -2000;
    451  1.18        ad 		aprint_verbose(
    452  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    453   1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    454  1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    455   1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    456  1.18        ad 		aprint_verbose(
    457  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    458  1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    459   1.7     bjh21 		    tc->tc_quality);
    460   1.1    simonb 	}
    461   1.1    simonb 
    462  1.11    simonb 	s = splclock();
    463  1.11    simonb 
    464   1.1    simonb 	tc->tc_next = timecounters;
    465   1.1    simonb 	timecounters = tc;
    466   1.1    simonb 	/*
    467   1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    468   1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    469   1.1    simonb 	 * worse since this timecounter may not be monotonous.
    470   1.1    simonb 	 */
    471   1.1    simonb 	if (tc->tc_quality < 0)
    472  1.12   tsutsui 		goto out;
    473   1.1    simonb 	if (tc->tc_quality < timecounter->tc_quality)
    474  1.12   tsutsui 		goto out;
    475   1.1    simonb 	if (tc->tc_quality == timecounter->tc_quality &&
    476   1.1    simonb 	    tc->tc_frequency < timecounter->tc_frequency)
    477  1.12   tsutsui 		goto out;
    478   1.1    simonb 	(void)tc->tc_get_timecount(tc);
    479   1.1    simonb 	(void)tc->tc_get_timecount(tc);
    480   1.1    simonb 	timecounter = tc;
    481   1.3    kardel 	tc_windup();
    482  1.11    simonb 
    483  1.12   tsutsui  out:
    484  1.11    simonb 	splx(s);
    485   1.1    simonb }
    486   1.1    simonb 
    487   1.1    simonb /* Report the frequency of the current timecounter. */
    488   1.1    simonb u_int64_t
    489   1.1    simonb tc_getfrequency(void)
    490   1.1    simonb {
    491   1.1    simonb 
    492   1.1    simonb 	return (timehands->th_counter->tc_frequency);
    493   1.1    simonb }
    494   1.1    simonb 
    495   1.1    simonb /*
    496   1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    497   1.1    simonb  * when we booted.
    498   1.1    simonb  * XXX: not locked.
    499   1.1    simonb  */
    500   1.1    simonb void
    501   1.1    simonb tc_setclock(struct timespec *ts)
    502   1.1    simonb {
    503   1.1    simonb 	struct timespec ts2;
    504   1.1    simonb 	struct bintime bt, bt2;
    505   1.1    simonb 
    506   1.2    kardel 	nsetclock.ev_count++;
    507   1.1    simonb 	binuptime(&bt2);
    508   1.1    simonb 	timespec2bintime(ts, &bt);
    509   1.1    simonb 	bintime_sub(&bt, &bt2);
    510   1.4    kardel 	bintime_add(&bt2, &timebasebin);
    511   1.4    kardel 	timebasebin = bt;
    512   1.1    simonb 
    513   1.1    simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    514   1.1    simonb 	tc_windup();
    515   1.1    simonb 	if (timestepwarnings) {
    516   1.1    simonb 		bintime2timespec(&bt2, &ts2);
    517   1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    518   1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    519   1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    520   1.1    simonb 	}
    521   1.1    simonb }
    522   1.1    simonb 
    523   1.1    simonb /*
    524   1.1    simonb  * Initialize the next struct timehands in the ring and make
    525   1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    526   1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    527   1.1    simonb  */
    528   1.1    simonb static void
    529   1.1    simonb tc_windup(void)
    530   1.1    simonb {
    531   1.1    simonb 	struct bintime bt;
    532   1.1    simonb 	struct timehands *th, *tho;
    533   1.1    simonb 	u_int64_t scale;
    534   1.1    simonb 	u_int delta, ncount, ogen;
    535  1.13    kardel 	int i, s_update;
    536   1.1    simonb 	time_t t;
    537   1.1    simonb 
    538  1.13    kardel 	s_update = 0;
    539  1.20        ad 
    540   1.1    simonb 	/*
    541   1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    542   1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    543  1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    544  1.20        ad 	 * visibility of the generation before proceeding.
    545   1.1    simonb 	 */
    546   1.1    simonb 	tho = timehands;
    547   1.1    simonb 	th = tho->th_next;
    548   1.1    simonb 	ogen = th->th_generation;
    549   1.1    simonb 	th->th_generation = 0;
    550  1.20        ad 	mb_write();
    551   1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    552   1.1    simonb 
    553   1.1    simonb 	/*
    554   1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    555   1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    556   1.1    simonb 	 * Update the offset fields accordingly.
    557   1.1    simonb 	 */
    558   1.1    simonb 	delta = tc_delta(th);
    559   1.1    simonb 	if (th->th_counter != timecounter)
    560   1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    561   1.1    simonb 	else
    562   1.1    simonb 		ncount = 0;
    563   1.1    simonb 	th->th_offset_count += delta;
    564   1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    565   1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    566   1.1    simonb 
    567   1.1    simonb 	/*
    568   1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    569   1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    570   1.1    simonb 	 * the hardware might capture a count which is later than the one we
    571   1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    572   1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    573   1.1    simonb 	 * matter in practice.
    574   1.1    simonb 	 */
    575   1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    576   1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    577   1.1    simonb 
    578   1.1    simonb 	/*
    579   1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    580   1.1    simonb 	 * iterates at most once, but in extreme situations it might
    581   1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    582   1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    583   1.1    simonb 	 * has been read, so on really large steps, we call
    584   1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    585   1.1    simonb 	 * case we missed a leap second.
    586   1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    587   1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    588   1.1    simonb 	 */
    589   1.1    simonb 	bt = th->th_offset;
    590   1.4    kardel 	bintime_add(&bt, &timebasebin);
    591   1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    592   1.1    simonb 	if (i > LARGE_STEP)
    593   1.1    simonb 		i = 2;
    594   1.1    simonb 	for (; i > 0; i--) {
    595   1.1    simonb 		t = bt.sec;
    596   1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    597  1.13    kardel 		s_update = 1;
    598   1.1    simonb 		if (bt.sec != t)
    599   1.4    kardel 			timebasebin.sec += bt.sec - t;
    600   1.1    simonb 	}
    601   1.2    kardel 
    602   1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    603   1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    604   1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    605   1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    606   1.1    simonb 
    607   1.1    simonb 	/* Now is a good time to change timecounters. */
    608   1.1    simonb 	if (th->th_counter != timecounter) {
    609   1.1    simonb 		th->th_counter = timecounter;
    610   1.1    simonb 		th->th_offset_count = ncount;
    611  1.13    kardel 		s_update = 1;
    612   1.1    simonb 	}
    613   1.1    simonb 
    614   1.1    simonb 	/*-
    615   1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    616   1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    617   1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    618   1.1    simonb 	 * processing provides us with.
    619   1.1    simonb 	 *
    620   1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    621   1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    622   1.1    simonb 	 *
    623   1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    624   1.1    simonb 	 *
    625   1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    626   1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    627   1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    628   1.1    simonb 	 *
    629   1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    630   1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    631   1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    632   1.1    simonb  	 *
    633   1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    634   1.1    simonb 	 * to the goddess of code clarity.
    635   1.1    simonb 	 *
    636   1.1    simonb 	 */
    637  1.13    kardel 	if (s_update) {
    638  1.13    kardel 		scale = (u_int64_t)1 << 63;
    639  1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    640  1.13    kardel 		scale /= th->th_counter->tc_frequency;
    641  1.13    kardel 		th->th_scale = scale * 2;
    642  1.13    kardel 	}
    643   1.1    simonb 	/*
    644   1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    645  1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    646  1.20        ad 	 * changes are globally visible before changing.
    647   1.1    simonb 	 */
    648   1.1    simonb 	if (++ogen == 0)
    649   1.1    simonb 		ogen = 1;
    650  1.20        ad 	mb_write();
    651   1.1    simonb 	th->th_generation = ogen;
    652   1.1    simonb 
    653  1.20        ad 	/*
    654  1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    655  1.20        ad 	 * globally visible before changing.
    656  1.20        ad 	 */
    657   1.1    simonb 	time_second = th->th_microtime.tv_sec;
    658   1.1    simonb 	time_uptime = th->th_offset.sec;
    659  1.20        ad 	mb_write();
    660   1.1    simonb 	timehands = th;
    661   1.1    simonb }
    662   1.1    simonb 
    663   1.2    kardel #ifdef __FreeBSD__
    664   1.1    simonb /* Report or change the active timecounter hardware. */
    665   1.1    simonb static int
    666   1.1    simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    667   1.1    simonb {
    668   1.1    simonb 	char newname[32];
    669   1.1    simonb 	struct timecounter *newtc, *tc;
    670   1.1    simonb 	int error;
    671   1.1    simonb 
    672   1.1    simonb 	tc = timecounter;
    673   1.1    simonb 	strlcpy(newname, tc->tc_name, sizeof(newname));
    674   1.1    simonb 
    675   1.1    simonb 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    676   1.1    simonb 	if (error != 0 || req->newptr == NULL ||
    677   1.1    simonb 	    strcmp(newname, tc->tc_name) == 0)
    678   1.1    simonb 		return (error);
    679   1.2    kardel 
    680   1.1    simonb 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    681   1.1    simonb 		if (strcmp(newname, newtc->tc_name) != 0)
    682   1.1    simonb 			continue;
    683   1.1    simonb 
    684   1.1    simonb 		/* Warm up new timecounter. */
    685   1.1    simonb 		(void)newtc->tc_get_timecount(newtc);
    686   1.1    simonb 		(void)newtc->tc_get_timecount(newtc);
    687   1.1    simonb 
    688   1.1    simonb 		timecounter = newtc;
    689   1.1    simonb 		return (0);
    690   1.1    simonb 	}
    691   1.1    simonb 	return (EINVAL);
    692   1.1    simonb }
    693   1.1    simonb 
    694   1.1    simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    695   1.1    simonb     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    696   1.1    simonb 
    697   1.1    simonb 
    698   1.1    simonb /* Report or change the active timecounter hardware. */
    699   1.1    simonb static int
    700   1.1    simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    701   1.1    simonb {
    702   1.1    simonb 	char buf[32], *spc;
    703   1.1    simonb 	struct timecounter *tc;
    704   1.1    simonb 	int error;
    705   1.1    simonb 
    706   1.1    simonb 	spc = "";
    707   1.1    simonb 	error = 0;
    708   1.1    simonb 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    709   1.1    simonb 		sprintf(buf, "%s%s(%d)",
    710   1.1    simonb 		    spc, tc->tc_name, tc->tc_quality);
    711   1.1    simonb 		error = SYSCTL_OUT(req, buf, strlen(buf));
    712   1.1    simonb 		spc = " ";
    713   1.1    simonb 	}
    714   1.1    simonb 	return (error);
    715   1.1    simonb }
    716   1.1    simonb 
    717   1.1    simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    718   1.1    simonb     0, 0, sysctl_kern_timecounter_choice, "A", "");
    719   1.2    kardel #endif /* __FreeBSD__ */
    720   1.1    simonb 
    721   1.1    simonb /*
    722   1.1    simonb  * RFC 2783 PPS-API implementation.
    723   1.1    simonb  */
    724   1.1    simonb 
    725   1.1    simonb int
    726  1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    727   1.1    simonb {
    728   1.1    simonb 	pps_params_t *app;
    729   1.2    kardel 	pps_info_t *pipi;
    730   1.1    simonb #ifdef PPS_SYNC
    731   1.2    kardel 	int *epi;
    732   1.1    simonb #endif
    733   1.1    simonb 
    734   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    735   1.1    simonb 	switch (cmd) {
    736   1.1    simonb 	case PPS_IOC_CREATE:
    737   1.1    simonb 		return (0);
    738   1.1    simonb 	case PPS_IOC_DESTROY:
    739   1.1    simonb 		return (0);
    740   1.1    simonb 	case PPS_IOC_SETPARAMS:
    741   1.1    simonb 		app = (pps_params_t *)data;
    742   1.1    simonb 		if (app->mode & ~pps->ppscap)
    743   1.1    simonb 			return (EINVAL);
    744   1.1    simonb 		pps->ppsparam = *app;
    745   1.1    simonb 		return (0);
    746   1.1    simonb 	case PPS_IOC_GETPARAMS:
    747   1.1    simonb 		app = (pps_params_t *)data;
    748   1.1    simonb 		*app = pps->ppsparam;
    749   1.1    simonb 		app->api_version = PPS_API_VERS_1;
    750   1.1    simonb 		return (0);
    751   1.1    simonb 	case PPS_IOC_GETCAP:
    752   1.1    simonb 		*(int*)data = pps->ppscap;
    753   1.1    simonb 		return (0);
    754   1.1    simonb 	case PPS_IOC_FETCH:
    755   1.2    kardel 		pipi = (pps_info_t *)data;
    756   1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    757   1.2    kardel 		*pipi = pps->ppsinfo;
    758   1.1    simonb 		return (0);
    759   1.1    simonb 	case PPS_IOC_KCBIND:
    760   1.1    simonb #ifdef PPS_SYNC
    761   1.2    kardel 		epi = (int *)data;
    762   1.1    simonb 		/* XXX Only root should be able to do this */
    763   1.2    kardel 		if (*epi & ~pps->ppscap)
    764   1.1    simonb 			return (EINVAL);
    765   1.2    kardel 		pps->kcmode = *epi;
    766   1.1    simonb 		return (0);
    767   1.1    simonb #else
    768   1.1    simonb 		return (EOPNOTSUPP);
    769   1.1    simonb #endif
    770   1.1    simonb 	default:
    771   1.2    kardel 		return (EPASSTHROUGH);
    772   1.1    simonb 	}
    773   1.1    simonb }
    774   1.1    simonb 
    775   1.1    simonb void
    776   1.1    simonb pps_init(struct pps_state *pps)
    777   1.1    simonb {
    778   1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    779   1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    780   1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    781   1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    782   1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    783   1.1    simonb }
    784   1.1    simonb 
    785   1.1    simonb void
    786   1.1    simonb pps_capture(struct pps_state *pps)
    787   1.1    simonb {
    788   1.1    simonb 	struct timehands *th;
    789   1.1    simonb 
    790   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    791   1.1    simonb 	th = timehands;
    792   1.1    simonb 	pps->capgen = th->th_generation;
    793   1.1    simonb 	pps->capth = th;
    794   1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    795   1.1    simonb 	if (pps->capgen != th->th_generation)
    796   1.1    simonb 		pps->capgen = 0;
    797   1.1    simonb }
    798   1.1    simonb 
    799   1.1    simonb void
    800   1.1    simonb pps_event(struct pps_state *pps, int event)
    801   1.1    simonb {
    802   1.1    simonb 	struct bintime bt;
    803   1.1    simonb 	struct timespec ts, *tsp, *osp;
    804   1.1    simonb 	u_int tcount, *pcount;
    805   1.1    simonb 	int foff, fhard;
    806   1.1    simonb 	pps_seq_t *pseq;
    807   1.1    simonb 
    808   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    809   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    810   1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    811   1.1    simonb 		return;
    812   1.1    simonb 
    813   1.1    simonb 	/* Things would be easier with arrays. */
    814   1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    815   1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    816   1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    817   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    818   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    819   1.1    simonb 		pcount = &pps->ppscount[0];
    820   1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    821   1.1    simonb 	} else {
    822   1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    823   1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    824   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    825   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    826   1.1    simonb 		pcount = &pps->ppscount[1];
    827   1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    828   1.1    simonb 	}
    829   1.1    simonb 
    830   1.1    simonb 	/*
    831   1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    832   1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    833   1.1    simonb 	 */
    834   1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    835   1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    836   1.1    simonb 		*pcount = pps->capcount;
    837   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    838   1.1    simonb 		return;
    839   1.1    simonb 	}
    840   1.1    simonb 
    841   1.1    simonb 	/* Convert the count to a timespec. */
    842   1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    843   1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    844   1.1    simonb 	bt = pps->capth->th_offset;
    845   1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    846   1.4    kardel 	bintime_add(&bt, &timebasebin);
    847   1.1    simonb 	bintime2timespec(&bt, &ts);
    848   1.1    simonb 
    849   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    850   1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    851   1.1    simonb 		return;
    852   1.1    simonb 
    853   1.1    simonb 	*pcount = pps->capcount;
    854   1.1    simonb 	(*pseq)++;
    855   1.1    simonb 	*tsp = ts;
    856   1.1    simonb 
    857   1.1    simonb 	if (foff) {
    858   1.2    kardel 		timespecadd(tsp, osp, tsp);
    859   1.1    simonb 		if (tsp->tv_nsec < 0) {
    860   1.1    simonb 			tsp->tv_nsec += 1000000000;
    861   1.1    simonb 			tsp->tv_sec -= 1;
    862   1.1    simonb 		}
    863   1.1    simonb 	}
    864   1.1    simonb #ifdef PPS_SYNC
    865   1.1    simonb 	if (fhard) {
    866   1.1    simonb 		u_int64_t scale;
    867   1.1    simonb 
    868   1.1    simonb 		/*
    869   1.1    simonb 		 * Feed the NTP PLL/FLL.
    870   1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    871   1.1    simonb 		 * elapsed since the previous event.
    872   1.1    simonb 		 */
    873   1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    874   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    875   1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    876   1.1    simonb 		scale = (u_int64_t)1 << 63;
    877   1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    878   1.1    simonb 		scale *= 2;
    879   1.1    simonb 		bt.sec = 0;
    880   1.1    simonb 		bt.frac = 0;
    881   1.1    simonb 		bintime_addx(&bt, scale * tcount);
    882   1.1    simonb 		bintime2timespec(&bt, &ts);
    883   1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    884   1.1    simonb 	}
    885   1.1    simonb #endif
    886   1.1    simonb }
    887   1.1    simonb 
    888   1.1    simonb /*
    889   1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    890   1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    891   1.1    simonb  * used by the get*() family of functions, so their precision depends on
    892   1.1    simonb  * the update frequency.
    893   1.1    simonb  */
    894   1.1    simonb 
    895   1.1    simonb static int tc_tick;
    896   1.2    kardel #ifdef __FreeBSD__
    897   1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    898   1.2    kardel #endif /* __FreeBSD__ */
    899   1.1    simonb 
    900   1.1    simonb void
    901   1.1    simonb tc_ticktock(void)
    902   1.1    simonb {
    903   1.1    simonb 	static int count;
    904   1.1    simonb 
    905   1.1    simonb 	if (++count < tc_tick)
    906   1.1    simonb 		return;
    907   1.1    simonb 	count = 0;
    908   1.1    simonb 	tc_windup();
    909   1.1    simonb }
    910   1.1    simonb 
    911   1.2    kardel void
    912   1.2    kardel inittimecounter(void)
    913   1.1    simonb {
    914   1.1    simonb 	u_int p;
    915   1.1    simonb 
    916   1.1    simonb 	/*
    917   1.1    simonb 	 * Set the initial timeout to
    918   1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    919   1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    920   1.1    simonb 	 * to smaller than its inital value, since that value is the
    921   1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    922   1.1    simonb 	 * should use the non-"get"* functions.
    923   1.1    simonb 	 */
    924   1.1    simonb 	if (hz > 1000)
    925   1.1    simonb 		tc_tick = (hz + 500) / 1000;
    926   1.1    simonb 	else
    927   1.1    simonb 		tc_tick = 1;
    928   1.1    simonb 	p = (tc_tick * 1000000) / hz;
    929  1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    930  1.18        ad 	    p / 1000, p % 1000);
    931   1.1    simonb 
    932   1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    933   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    934   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    935   1.1    simonb }
    936   1.1    simonb 
    937   1.2    kardel #ifdef __FreeBSD__
    938   1.1    simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    939   1.2    kardel #endif /* __FreeBSD__ */
    940   1.2    kardel #endif /* __HAVE_TIMECOUNTER */
    941