kern_tc.c revision 1.21.2.1 1 1.21.2.1 mjf /* $NetBSD: kern_tc.c,v 1.21.2.1 2007/11/19 00:48:44 mjf Exp $ */
2 1.2 kardel
3 1.1 simonb /*-
4 1.1 simonb * ----------------------------------------------------------------------------
5 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
6 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
8 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.2 kardel * ---------------------------------------------------------------------------
10 1.1 simonb */
11 1.1 simonb
12 1.1 simonb #include <sys/cdefs.h>
13 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.21.2.1 mjf __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.21.2.1 2007/11/19 00:48:44 mjf Exp $");
15 1.1 simonb
16 1.1 simonb #include "opt_ntp.h"
17 1.1 simonb
18 1.1 simonb #include <sys/param.h>
19 1.2 kardel #ifdef __HAVE_TIMECOUNTER /* XXX */
20 1.1 simonb #include <sys/kernel.h>
21 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 1.1 simonb #include <sys/sysctl.h>
23 1.1 simonb #include <sys/syslog.h>
24 1.1 simonb #include <sys/systm.h>
25 1.1 simonb #include <sys/timepps.h>
26 1.1 simonb #include <sys/timetc.h>
27 1.1 simonb #include <sys/timex.h>
28 1.2 kardel #include <sys/evcnt.h>
29 1.2 kardel #include <sys/kauth.h>
30 1.21.2.1 mjf #include <sys/mutex.h>
31 1.2 kardel
32 1.2 kardel /*
33 1.1 simonb * A large step happens on boot. This constant detects such steps.
34 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
35 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
36 1.1 simonb * forever when the time step is large.
37 1.1 simonb */
38 1.1 simonb #define LARGE_STEP 200
39 1.1 simonb
40 1.1 simonb /*
41 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
42 1.1 simonb * in the air. This allows the console and other early stuff to use
43 1.1 simonb * time services.
44 1.1 simonb */
45 1.1 simonb
46 1.1 simonb static u_int
47 1.16 yamt dummy_get_timecount(struct timecounter *tc)
48 1.1 simonb {
49 1.1 simonb static u_int now;
50 1.1 simonb
51 1.1 simonb return (++now);
52 1.1 simonb }
53 1.1 simonb
54 1.1 simonb static struct timecounter dummy_timecounter = {
55 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
56 1.1 simonb };
57 1.1 simonb
58 1.1 simonb struct timehands {
59 1.1 simonb /* These fields must be initialized by the driver. */
60 1.1 simonb struct timecounter *th_counter;
61 1.1 simonb int64_t th_adjustment;
62 1.1 simonb u_int64_t th_scale;
63 1.1 simonb u_int th_offset_count;
64 1.1 simonb struct bintime th_offset;
65 1.1 simonb struct timeval th_microtime;
66 1.1 simonb struct timespec th_nanotime;
67 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
68 1.1 simonb volatile u_int th_generation;
69 1.1 simonb struct timehands *th_next;
70 1.1 simonb };
71 1.1 simonb
72 1.1 simonb static struct timehands th0;
73 1.10 christos static struct timehands th9 = { .th_next = &th0, };
74 1.10 christos static struct timehands th8 = { .th_next = &th9, };
75 1.10 christos static struct timehands th7 = { .th_next = &th8, };
76 1.10 christos static struct timehands th6 = { .th_next = &th7, };
77 1.10 christos static struct timehands th5 = { .th_next = &th6, };
78 1.10 christos static struct timehands th4 = { .th_next = &th5, };
79 1.10 christos static struct timehands th3 = { .th_next = &th4, };
80 1.10 christos static struct timehands th2 = { .th_next = &th3, };
81 1.10 christos static struct timehands th1 = { .th_next = &th2, };
82 1.1 simonb static struct timehands th0 = {
83 1.10 christos .th_counter = &dummy_timecounter,
84 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
85 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
86 1.10 christos .th_generation = 1,
87 1.10 christos .th_next = &th1,
88 1.1 simonb };
89 1.1 simonb
90 1.1 simonb static struct timehands *volatile timehands = &th0;
91 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
92 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
93 1.1 simonb
94 1.1 simonb time_t time_second = 1;
95 1.1 simonb time_t time_uptime = 1;
96 1.1 simonb
97 1.4 kardel static struct bintime timebasebin;
98 1.1 simonb
99 1.1 simonb static int timestepwarnings;
100 1.2 kardel
101 1.21.2.1 mjf extern kmutex_t time_lock;
102 1.21.2.1 mjf
103 1.2 kardel #ifdef __FreeBSD__
104 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
105 1.1 simonb ×tepwarnings, 0, "");
106 1.2 kardel #endif /* __FreeBSD__ */
107 1.2 kardel
108 1.2 kardel /*
109 1.2 kardel * sysctl helper routine for kern.timercounter.current
110 1.2 kardel */
111 1.2 kardel static int
112 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
113 1.2 kardel {
114 1.2 kardel struct sysctlnode node;
115 1.2 kardel int error;
116 1.2 kardel char newname[MAX_TCNAMELEN];
117 1.2 kardel struct timecounter *newtc, *tc;
118 1.2 kardel
119 1.2 kardel tc = timecounter;
120 1.2 kardel
121 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
122 1.2 kardel
123 1.2 kardel node = *rnode;
124 1.2 kardel node.sysctl_data = newname;
125 1.2 kardel node.sysctl_size = sizeof(newname);
126 1.2 kardel
127 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
128 1.2 kardel
129 1.2 kardel if (error ||
130 1.2 kardel newp == NULL ||
131 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
132 1.2 kardel return error;
133 1.1 simonb
134 1.5 ad if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
135 1.17 elad KAUTH_GENERIC_ISSUSER, NULL)) != 0)
136 1.2 kardel return (error);
137 1.2 kardel
138 1.21.2.1 mjf if (!cold)
139 1.21.2.1 mjf mutex_enter(&time_lock);
140 1.21.2.1 mjf error = EINVAL;
141 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
142 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
143 1.2 kardel continue;
144 1.2 kardel /* Warm up new timecounter. */
145 1.2 kardel (void)newtc->tc_get_timecount(newtc);
146 1.2 kardel (void)newtc->tc_get_timecount(newtc);
147 1.2 kardel timecounter = newtc;
148 1.21.2.1 mjf error = 0;
149 1.21.2.1 mjf break;
150 1.2 kardel }
151 1.21.2.1 mjf if (!cold)
152 1.21.2.1 mjf mutex_exit(&time_lock);
153 1.21.2.1 mjf return error;
154 1.2 kardel }
155 1.2 kardel
156 1.2 kardel static int
157 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
158 1.2 kardel {
159 1.9 kardel char buf[MAX_TCNAMELEN+48];
160 1.2 kardel char *where = oldp;
161 1.2 kardel const char *spc;
162 1.2 kardel struct timecounter *tc;
163 1.2 kardel size_t needed, left, slen;
164 1.2 kardel int error;
165 1.2 kardel
166 1.2 kardel if (newp != NULL)
167 1.2 kardel return (EPERM);
168 1.2 kardel if (namelen != 0)
169 1.2 kardel return (EINVAL);
170 1.2 kardel
171 1.2 kardel spc = "";
172 1.2 kardel error = 0;
173 1.2 kardel needed = 0;
174 1.2 kardel left = *oldlenp;
175 1.2 kardel
176 1.21.2.1 mjf mutex_enter(&time_lock);
177 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
178 1.2 kardel if (where == NULL) {
179 1.2 kardel needed += sizeof(buf); /* be conservative */
180 1.2 kardel } else {
181 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
182 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
183 1.2 kardel tc->tc_frequency);
184 1.2 kardel if (left < slen + 1)
185 1.2 kardel break;
186 1.2 kardel /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
187 1.21.2.1 mjf /* XXX copyout with held lock. */
188 1.2 kardel error = copyout(buf, where, slen + 1);
189 1.2 kardel spc = " ";
190 1.2 kardel where += slen;
191 1.2 kardel needed += slen;
192 1.2 kardel left -= slen;
193 1.2 kardel }
194 1.2 kardel }
195 1.21.2.1 mjf mutex_exit(&time_lock);
196 1.2 kardel
197 1.2 kardel *oldlenp = needed;
198 1.2 kardel return (error);
199 1.2 kardel }
200 1.2 kardel
201 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
202 1.2 kardel {
203 1.2 kardel const struct sysctlnode *node;
204 1.2 kardel
205 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
206 1.2 kardel CTLFLAG_PERMANENT,
207 1.2 kardel CTLTYPE_NODE, "timecounter",
208 1.2 kardel SYSCTL_DESCR("time counter information"),
209 1.2 kardel NULL, 0, NULL, 0,
210 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
211 1.2 kardel
212 1.2 kardel if (node != NULL) {
213 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
214 1.2 kardel CTLFLAG_PERMANENT,
215 1.2 kardel CTLTYPE_STRING, "choice",
216 1.2 kardel SYSCTL_DESCR("available counters"),
217 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
218 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
219 1.2 kardel
220 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
221 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
222 1.2 kardel CTLTYPE_STRING, "hardware",
223 1.2 kardel SYSCTL_DESCR("currently active time counter"),
224 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
225 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
226 1.2 kardel
227 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
228 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
229 1.2 kardel CTLTYPE_INT, "timestepwarnings",
230 1.2 kardel SYSCTL_DESCR("log time steps"),
231 1.2 kardel NULL, 0, ×tepwarnings, 0,
232 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
233 1.2 kardel }
234 1.2 kardel }
235 1.2 kardel
236 1.2 kardel #define TC_STATS(name) \
237 1.2 kardel static struct evcnt n##name = \
238 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
239 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
240 1.2 kardel
241 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
242 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
243 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
244 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
245 1.2 kardel TC_STATS(setclock);
246 1.1 simonb
247 1.1 simonb #undef TC_STATS
248 1.1 simonb
249 1.1 simonb static void tc_windup(void);
250 1.1 simonb
251 1.1 simonb /*
252 1.1 simonb * Return the difference between the timehands' counter value now and what
253 1.1 simonb * was when we copied it to the timehands' offset_count.
254 1.1 simonb */
255 1.1 simonb static __inline u_int
256 1.1 simonb tc_delta(struct timehands *th)
257 1.1 simonb {
258 1.1 simonb struct timecounter *tc;
259 1.1 simonb
260 1.1 simonb tc = th->th_counter;
261 1.2 kardel return ((tc->tc_get_timecount(tc) -
262 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
263 1.1 simonb }
264 1.1 simonb
265 1.1 simonb /*
266 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
267 1.1 simonb * the timehands that we operated on was not updated under our feet. See
268 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
269 1.1 simonb */
270 1.1 simonb
271 1.1 simonb void
272 1.1 simonb binuptime(struct bintime *bt)
273 1.1 simonb {
274 1.1 simonb struct timehands *th;
275 1.1 simonb u_int gen;
276 1.1 simonb
277 1.2 kardel nbinuptime.ev_count++;
278 1.1 simonb do {
279 1.1 simonb th = timehands;
280 1.1 simonb gen = th->th_generation;
281 1.1 simonb *bt = th->th_offset;
282 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
283 1.1 simonb } while (gen == 0 || gen != th->th_generation);
284 1.1 simonb }
285 1.1 simonb
286 1.1 simonb void
287 1.1 simonb nanouptime(struct timespec *tsp)
288 1.1 simonb {
289 1.1 simonb struct bintime bt;
290 1.1 simonb
291 1.2 kardel nnanouptime.ev_count++;
292 1.1 simonb binuptime(&bt);
293 1.1 simonb bintime2timespec(&bt, tsp);
294 1.1 simonb }
295 1.1 simonb
296 1.1 simonb void
297 1.1 simonb microuptime(struct timeval *tvp)
298 1.1 simonb {
299 1.1 simonb struct bintime bt;
300 1.1 simonb
301 1.2 kardel nmicrouptime.ev_count++;
302 1.1 simonb binuptime(&bt);
303 1.1 simonb bintime2timeval(&bt, tvp);
304 1.1 simonb }
305 1.1 simonb
306 1.1 simonb void
307 1.1 simonb bintime(struct bintime *bt)
308 1.1 simonb {
309 1.1 simonb
310 1.2 kardel nbintime.ev_count++;
311 1.1 simonb binuptime(bt);
312 1.4 kardel bintime_add(bt, &timebasebin);
313 1.1 simonb }
314 1.1 simonb
315 1.1 simonb void
316 1.1 simonb nanotime(struct timespec *tsp)
317 1.1 simonb {
318 1.1 simonb struct bintime bt;
319 1.1 simonb
320 1.2 kardel nnanotime.ev_count++;
321 1.1 simonb bintime(&bt);
322 1.1 simonb bintime2timespec(&bt, tsp);
323 1.1 simonb }
324 1.1 simonb
325 1.1 simonb void
326 1.1 simonb microtime(struct timeval *tvp)
327 1.1 simonb {
328 1.1 simonb struct bintime bt;
329 1.1 simonb
330 1.2 kardel nmicrotime.ev_count++;
331 1.1 simonb bintime(&bt);
332 1.1 simonb bintime2timeval(&bt, tvp);
333 1.1 simonb }
334 1.1 simonb
335 1.1 simonb void
336 1.1 simonb getbinuptime(struct bintime *bt)
337 1.1 simonb {
338 1.1 simonb struct timehands *th;
339 1.1 simonb u_int gen;
340 1.1 simonb
341 1.2 kardel ngetbinuptime.ev_count++;
342 1.1 simonb do {
343 1.1 simonb th = timehands;
344 1.1 simonb gen = th->th_generation;
345 1.1 simonb *bt = th->th_offset;
346 1.1 simonb } while (gen == 0 || gen != th->th_generation);
347 1.1 simonb }
348 1.1 simonb
349 1.1 simonb void
350 1.1 simonb getnanouptime(struct timespec *tsp)
351 1.1 simonb {
352 1.1 simonb struct timehands *th;
353 1.1 simonb u_int gen;
354 1.1 simonb
355 1.2 kardel ngetnanouptime.ev_count++;
356 1.1 simonb do {
357 1.1 simonb th = timehands;
358 1.1 simonb gen = th->th_generation;
359 1.1 simonb bintime2timespec(&th->th_offset, tsp);
360 1.1 simonb } while (gen == 0 || gen != th->th_generation);
361 1.1 simonb }
362 1.1 simonb
363 1.1 simonb void
364 1.1 simonb getmicrouptime(struct timeval *tvp)
365 1.1 simonb {
366 1.1 simonb struct timehands *th;
367 1.1 simonb u_int gen;
368 1.1 simonb
369 1.2 kardel ngetmicrouptime.ev_count++;
370 1.1 simonb do {
371 1.1 simonb th = timehands;
372 1.1 simonb gen = th->th_generation;
373 1.1 simonb bintime2timeval(&th->th_offset, tvp);
374 1.1 simonb } while (gen == 0 || gen != th->th_generation);
375 1.1 simonb }
376 1.1 simonb
377 1.1 simonb void
378 1.1 simonb getbintime(struct bintime *bt)
379 1.1 simonb {
380 1.1 simonb struct timehands *th;
381 1.1 simonb u_int gen;
382 1.1 simonb
383 1.2 kardel ngetbintime.ev_count++;
384 1.1 simonb do {
385 1.1 simonb th = timehands;
386 1.1 simonb gen = th->th_generation;
387 1.1 simonb *bt = th->th_offset;
388 1.1 simonb } while (gen == 0 || gen != th->th_generation);
389 1.4 kardel bintime_add(bt, &timebasebin);
390 1.1 simonb }
391 1.1 simonb
392 1.1 simonb void
393 1.1 simonb getnanotime(struct timespec *tsp)
394 1.1 simonb {
395 1.1 simonb struct timehands *th;
396 1.1 simonb u_int gen;
397 1.1 simonb
398 1.2 kardel ngetnanotime.ev_count++;
399 1.1 simonb do {
400 1.1 simonb th = timehands;
401 1.1 simonb gen = th->th_generation;
402 1.1 simonb *tsp = th->th_nanotime;
403 1.1 simonb } while (gen == 0 || gen != th->th_generation);
404 1.1 simonb }
405 1.1 simonb
406 1.1 simonb void
407 1.1 simonb getmicrotime(struct timeval *tvp)
408 1.1 simonb {
409 1.1 simonb struct timehands *th;
410 1.1 simonb u_int gen;
411 1.1 simonb
412 1.2 kardel ngetmicrotime.ev_count++;
413 1.1 simonb do {
414 1.1 simonb th = timehands;
415 1.1 simonb gen = th->th_generation;
416 1.1 simonb *tvp = th->th_microtime;
417 1.1 simonb } while (gen == 0 || gen != th->th_generation);
418 1.1 simonb }
419 1.1 simonb
420 1.1 simonb /*
421 1.1 simonb * Initialize a new timecounter and possibly use it.
422 1.1 simonb */
423 1.1 simonb void
424 1.1 simonb tc_init(struct timecounter *tc)
425 1.1 simonb {
426 1.1 simonb u_int u;
427 1.11 simonb int s;
428 1.1 simonb
429 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
430 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
431 1.1 simonb u *= 11;
432 1.1 simonb u /= 10;
433 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
434 1.1 simonb tc->tc_quality = -2000;
435 1.18 ad aprint_verbose(
436 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
437 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
438 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
439 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
440 1.18 ad aprint_verbose(
441 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
442 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
443 1.7 bjh21 tc->tc_quality);
444 1.1 simonb }
445 1.1 simonb
446 1.21.2.1 mjf mutex_enter(&time_lock);
447 1.21.2.1 mjf s = splsched();
448 1.1 simonb tc->tc_next = timecounters;
449 1.1 simonb timecounters = tc;
450 1.1 simonb /*
451 1.1 simonb * Never automatically use a timecounter with negative quality.
452 1.1 simonb * Even though we run on the dummy counter, switching here may be
453 1.1 simonb * worse since this timecounter may not be monotonous.
454 1.1 simonb */
455 1.21.2.1 mjf if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
456 1.21.2.1 mjf (tc->tc_quality == timecounter->tc_quality &&
457 1.21.2.1 mjf tc->tc_frequency > timecounter->tc_frequency))) {
458 1.21.2.1 mjf (void)tc->tc_get_timecount(tc);
459 1.21.2.1 mjf (void)tc->tc_get_timecount(tc);
460 1.21.2.1 mjf timecounter = tc;
461 1.21.2.1 mjf tc_windup();
462 1.21.2.1 mjf }
463 1.11 simonb splx(s);
464 1.21.2.1 mjf mutex_exit(&time_lock);
465 1.1 simonb }
466 1.1 simonb
467 1.1 simonb /* Report the frequency of the current timecounter. */
468 1.1 simonb u_int64_t
469 1.1 simonb tc_getfrequency(void)
470 1.1 simonb {
471 1.1 simonb
472 1.1 simonb return (timehands->th_counter->tc_frequency);
473 1.1 simonb }
474 1.1 simonb
475 1.1 simonb /*
476 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
477 1.1 simonb * when we booted.
478 1.1 simonb * XXX: not locked.
479 1.1 simonb */
480 1.1 simonb void
481 1.1 simonb tc_setclock(struct timespec *ts)
482 1.1 simonb {
483 1.1 simonb struct timespec ts2;
484 1.1 simonb struct bintime bt, bt2;
485 1.1 simonb
486 1.2 kardel nsetclock.ev_count++;
487 1.1 simonb binuptime(&bt2);
488 1.1 simonb timespec2bintime(ts, &bt);
489 1.1 simonb bintime_sub(&bt, &bt2);
490 1.4 kardel bintime_add(&bt2, &timebasebin);
491 1.4 kardel timebasebin = bt;
492 1.1 simonb
493 1.1 simonb /* XXX fiddle all the little crinkly bits around the fiords... */
494 1.1 simonb tc_windup();
495 1.1 simonb if (timestepwarnings) {
496 1.1 simonb bintime2timespec(&bt2, &ts2);
497 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
498 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
499 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
500 1.1 simonb }
501 1.1 simonb }
502 1.1 simonb
503 1.1 simonb /*
504 1.1 simonb * Initialize the next struct timehands in the ring and make
505 1.1 simonb * it the active timehands. Along the way we might switch to a different
506 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
507 1.1 simonb */
508 1.1 simonb static void
509 1.1 simonb tc_windup(void)
510 1.1 simonb {
511 1.1 simonb struct bintime bt;
512 1.1 simonb struct timehands *th, *tho;
513 1.1 simonb u_int64_t scale;
514 1.1 simonb u_int delta, ncount, ogen;
515 1.13 kardel int i, s_update;
516 1.1 simonb time_t t;
517 1.1 simonb
518 1.13 kardel s_update = 0;
519 1.20 ad
520 1.1 simonb /*
521 1.1 simonb * Make the next timehands a copy of the current one, but do not
522 1.1 simonb * overwrite the generation or next pointer. While we update
523 1.20 ad * the contents, the generation must be zero. Ensure global
524 1.20 ad * visibility of the generation before proceeding.
525 1.1 simonb */
526 1.1 simonb tho = timehands;
527 1.1 simonb th = tho->th_next;
528 1.1 simonb ogen = th->th_generation;
529 1.1 simonb th->th_generation = 0;
530 1.20 ad mb_write();
531 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
532 1.1 simonb
533 1.1 simonb /*
534 1.1 simonb * Capture a timecounter delta on the current timecounter and if
535 1.1 simonb * changing timecounters, a counter value from the new timecounter.
536 1.1 simonb * Update the offset fields accordingly.
537 1.1 simonb */
538 1.1 simonb delta = tc_delta(th);
539 1.1 simonb if (th->th_counter != timecounter)
540 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
541 1.1 simonb else
542 1.1 simonb ncount = 0;
543 1.1 simonb th->th_offset_count += delta;
544 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
545 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
546 1.1 simonb
547 1.1 simonb /*
548 1.1 simonb * Hardware latching timecounters may not generate interrupts on
549 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
550 1.1 simonb * the hardware might capture a count which is later than the one we
551 1.1 simonb * got above, and therefore possibly in the next NTP second which might
552 1.1 simonb * have a different rate than the current NTP second. It doesn't
553 1.1 simonb * matter in practice.
554 1.1 simonb */
555 1.1 simonb if (tho->th_counter->tc_poll_pps)
556 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
557 1.1 simonb
558 1.1 simonb /*
559 1.1 simonb * Deal with NTP second processing. The for loop normally
560 1.1 simonb * iterates at most once, but in extreme situations it might
561 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
562 1.1 simonb * At boot, the time step can be large when the TOD hardware
563 1.1 simonb * has been read, so on really large steps, we call
564 1.1 simonb * ntp_update_second only twice. We need to call it twice in
565 1.1 simonb * case we missed a leap second.
566 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
567 1.2 kardel * the adjustment resulting from adjtime() calls.
568 1.1 simonb */
569 1.1 simonb bt = th->th_offset;
570 1.4 kardel bintime_add(&bt, &timebasebin);
571 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
572 1.1 simonb if (i > LARGE_STEP)
573 1.1 simonb i = 2;
574 1.1 simonb for (; i > 0; i--) {
575 1.1 simonb t = bt.sec;
576 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
577 1.13 kardel s_update = 1;
578 1.1 simonb if (bt.sec != t)
579 1.4 kardel timebasebin.sec += bt.sec - t;
580 1.1 simonb }
581 1.2 kardel
582 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
583 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
584 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
585 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
586 1.1 simonb
587 1.1 simonb /* Now is a good time to change timecounters. */
588 1.1 simonb if (th->th_counter != timecounter) {
589 1.1 simonb th->th_counter = timecounter;
590 1.1 simonb th->th_offset_count = ncount;
591 1.13 kardel s_update = 1;
592 1.1 simonb }
593 1.1 simonb
594 1.1 simonb /*-
595 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
596 1.1 simonb * fractions of a second per period of the hardware counter, taking
597 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
598 1.1 simonb * processing provides us with.
599 1.1 simonb *
600 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
601 1.1 simonb * fraction and we want 64 bit binary fraction of second:
602 1.1 simonb *
603 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
604 1.1 simonb *
605 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
606 1.1 simonb * we can only multiply by about 850 without overflowing, but that
607 1.1 simonb * leaves suitably precise fractions for multiply before divide.
608 1.1 simonb *
609 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
610 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
611 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
612 1.1 simonb *
613 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
614 1.1 simonb * to the goddess of code clarity.
615 1.1 simonb *
616 1.1 simonb */
617 1.13 kardel if (s_update) {
618 1.13 kardel scale = (u_int64_t)1 << 63;
619 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
620 1.13 kardel scale /= th->th_counter->tc_frequency;
621 1.13 kardel th->th_scale = scale * 2;
622 1.13 kardel }
623 1.1 simonb /*
624 1.1 simonb * Now that the struct timehands is again consistent, set the new
625 1.20 ad * generation number, making sure to not make it zero. Ensure
626 1.20 ad * changes are globally visible before changing.
627 1.1 simonb */
628 1.1 simonb if (++ogen == 0)
629 1.1 simonb ogen = 1;
630 1.20 ad mb_write();
631 1.1 simonb th->th_generation = ogen;
632 1.1 simonb
633 1.20 ad /*
634 1.20 ad * Go live with the new struct timehands. Ensure changes are
635 1.20 ad * globally visible before changing.
636 1.20 ad */
637 1.1 simonb time_second = th->th_microtime.tv_sec;
638 1.1 simonb time_uptime = th->th_offset.sec;
639 1.20 ad mb_write();
640 1.1 simonb timehands = th;
641 1.1 simonb
642 1.21.2.1 mjf /*
643 1.21.2.1 mjf * Force users of the old timehand to move on. This is
644 1.21.2.1 mjf * necessary for MP systems; we need to ensure that the
645 1.21.2.1 mjf * consumers will move away from the old timehand before
646 1.21.2.1 mjf * we begin updating it again when we eventually wrap
647 1.21.2.1 mjf * around.
648 1.21.2.1 mjf */
649 1.21.2.1 mjf if (++tho->th_generation == 0)
650 1.21.2.1 mjf tho->th_generation = 1;
651 1.1 simonb }
652 1.1 simonb
653 1.1 simonb /*
654 1.1 simonb * RFC 2783 PPS-API implementation.
655 1.1 simonb */
656 1.1 simonb
657 1.1 simonb int
658 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
659 1.1 simonb {
660 1.1 simonb pps_params_t *app;
661 1.2 kardel pps_info_t *pipi;
662 1.1 simonb #ifdef PPS_SYNC
663 1.2 kardel int *epi;
664 1.1 simonb #endif
665 1.1 simonb
666 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
667 1.1 simonb switch (cmd) {
668 1.1 simonb case PPS_IOC_CREATE:
669 1.1 simonb return (0);
670 1.1 simonb case PPS_IOC_DESTROY:
671 1.1 simonb return (0);
672 1.1 simonb case PPS_IOC_SETPARAMS:
673 1.1 simonb app = (pps_params_t *)data;
674 1.1 simonb if (app->mode & ~pps->ppscap)
675 1.1 simonb return (EINVAL);
676 1.1 simonb pps->ppsparam = *app;
677 1.1 simonb return (0);
678 1.1 simonb case PPS_IOC_GETPARAMS:
679 1.1 simonb app = (pps_params_t *)data;
680 1.1 simonb *app = pps->ppsparam;
681 1.1 simonb app->api_version = PPS_API_VERS_1;
682 1.1 simonb return (0);
683 1.1 simonb case PPS_IOC_GETCAP:
684 1.1 simonb *(int*)data = pps->ppscap;
685 1.1 simonb return (0);
686 1.1 simonb case PPS_IOC_FETCH:
687 1.2 kardel pipi = (pps_info_t *)data;
688 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
689 1.2 kardel *pipi = pps->ppsinfo;
690 1.1 simonb return (0);
691 1.1 simonb case PPS_IOC_KCBIND:
692 1.1 simonb #ifdef PPS_SYNC
693 1.2 kardel epi = (int *)data;
694 1.1 simonb /* XXX Only root should be able to do this */
695 1.2 kardel if (*epi & ~pps->ppscap)
696 1.1 simonb return (EINVAL);
697 1.2 kardel pps->kcmode = *epi;
698 1.1 simonb return (0);
699 1.1 simonb #else
700 1.1 simonb return (EOPNOTSUPP);
701 1.1 simonb #endif
702 1.1 simonb default:
703 1.2 kardel return (EPASSTHROUGH);
704 1.1 simonb }
705 1.1 simonb }
706 1.1 simonb
707 1.1 simonb void
708 1.1 simonb pps_init(struct pps_state *pps)
709 1.1 simonb {
710 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
711 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
712 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
713 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
714 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
715 1.1 simonb }
716 1.1 simonb
717 1.1 simonb void
718 1.1 simonb pps_capture(struct pps_state *pps)
719 1.1 simonb {
720 1.1 simonb struct timehands *th;
721 1.1 simonb
722 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
723 1.1 simonb th = timehands;
724 1.1 simonb pps->capgen = th->th_generation;
725 1.1 simonb pps->capth = th;
726 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
727 1.1 simonb if (pps->capgen != th->th_generation)
728 1.1 simonb pps->capgen = 0;
729 1.1 simonb }
730 1.1 simonb
731 1.1 simonb void
732 1.1 simonb pps_event(struct pps_state *pps, int event)
733 1.1 simonb {
734 1.1 simonb struct bintime bt;
735 1.1 simonb struct timespec ts, *tsp, *osp;
736 1.1 simonb u_int tcount, *pcount;
737 1.1 simonb int foff, fhard;
738 1.1 simonb pps_seq_t *pseq;
739 1.1 simonb
740 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
741 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
742 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
743 1.1 simonb return;
744 1.1 simonb
745 1.1 simonb /* Things would be easier with arrays. */
746 1.1 simonb if (event == PPS_CAPTUREASSERT) {
747 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
748 1.1 simonb osp = &pps->ppsparam.assert_offset;
749 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
750 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
751 1.1 simonb pcount = &pps->ppscount[0];
752 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
753 1.1 simonb } else {
754 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
755 1.1 simonb osp = &pps->ppsparam.clear_offset;
756 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
757 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
758 1.1 simonb pcount = &pps->ppscount[1];
759 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
760 1.1 simonb }
761 1.1 simonb
762 1.1 simonb /*
763 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
764 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
765 1.1 simonb */
766 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
767 1.1 simonb pps->ppstc = pps->capth->th_counter;
768 1.1 simonb *pcount = pps->capcount;
769 1.1 simonb pps->ppscount[2] = pps->capcount;
770 1.1 simonb return;
771 1.1 simonb }
772 1.1 simonb
773 1.1 simonb /* Convert the count to a timespec. */
774 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
775 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
776 1.1 simonb bt = pps->capth->th_offset;
777 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
778 1.4 kardel bintime_add(&bt, &timebasebin);
779 1.1 simonb bintime2timespec(&bt, &ts);
780 1.1 simonb
781 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
782 1.1 simonb if (pps->capgen != pps->capth->th_generation)
783 1.1 simonb return;
784 1.1 simonb
785 1.1 simonb *pcount = pps->capcount;
786 1.1 simonb (*pseq)++;
787 1.1 simonb *tsp = ts;
788 1.1 simonb
789 1.1 simonb if (foff) {
790 1.2 kardel timespecadd(tsp, osp, tsp);
791 1.1 simonb if (tsp->tv_nsec < 0) {
792 1.1 simonb tsp->tv_nsec += 1000000000;
793 1.1 simonb tsp->tv_sec -= 1;
794 1.1 simonb }
795 1.1 simonb }
796 1.1 simonb #ifdef PPS_SYNC
797 1.1 simonb if (fhard) {
798 1.1 simonb u_int64_t scale;
799 1.1 simonb
800 1.1 simonb /*
801 1.1 simonb * Feed the NTP PLL/FLL.
802 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
803 1.1 simonb * elapsed since the previous event.
804 1.1 simonb */
805 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
806 1.1 simonb pps->ppscount[2] = pps->capcount;
807 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
808 1.1 simonb scale = (u_int64_t)1 << 63;
809 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
810 1.1 simonb scale *= 2;
811 1.1 simonb bt.sec = 0;
812 1.1 simonb bt.frac = 0;
813 1.1 simonb bintime_addx(&bt, scale * tcount);
814 1.1 simonb bintime2timespec(&bt, &ts);
815 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
816 1.1 simonb }
817 1.1 simonb #endif
818 1.1 simonb }
819 1.1 simonb
820 1.1 simonb /*
821 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
822 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
823 1.1 simonb * used by the get*() family of functions, so their precision depends on
824 1.1 simonb * the update frequency.
825 1.1 simonb */
826 1.1 simonb
827 1.1 simonb static int tc_tick;
828 1.1 simonb
829 1.1 simonb void
830 1.1 simonb tc_ticktock(void)
831 1.1 simonb {
832 1.1 simonb static int count;
833 1.1 simonb
834 1.1 simonb if (++count < tc_tick)
835 1.1 simonb return;
836 1.1 simonb count = 0;
837 1.1 simonb tc_windup();
838 1.1 simonb }
839 1.1 simonb
840 1.2 kardel void
841 1.2 kardel inittimecounter(void)
842 1.1 simonb {
843 1.1 simonb u_int p;
844 1.1 simonb
845 1.1 simonb /*
846 1.1 simonb * Set the initial timeout to
847 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
848 1.1 simonb * People should probably not use the sysctl to set the timeout
849 1.1 simonb * to smaller than its inital value, since that value is the
850 1.1 simonb * smallest reasonable one. If they want better timestamps they
851 1.1 simonb * should use the non-"get"* functions.
852 1.1 simonb */
853 1.1 simonb if (hz > 1000)
854 1.1 simonb tc_tick = (hz + 500) / 1000;
855 1.1 simonb else
856 1.1 simonb tc_tick = 1;
857 1.1 simonb p = (tc_tick * 1000000) / hz;
858 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
859 1.18 ad p / 1000, p % 1000);
860 1.1 simonb
861 1.1 simonb /* warm up new timecounter (again) and get rolling. */
862 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
863 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
864 1.1 simonb }
865 1.1 simonb
866 1.2 kardel #endif /* __HAVE_TIMECOUNTER */
867