Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.23
      1  1.23        ad /* $NetBSD: kern_tc.c,v 1.23 2007/11/15 22:28:05 ad Exp $ */
      2   1.2    kardel 
      3   1.1    simonb /*-
      4   1.1    simonb  * ----------------------------------------------------------------------------
      5   1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6   1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7   1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8   1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9   1.2    kardel  * ---------------------------------------------------------------------------
     10   1.1    simonb  */
     11   1.1    simonb 
     12   1.1    simonb #include <sys/cdefs.h>
     13   1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.23        ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.23 2007/11/15 22:28:05 ad Exp $");
     15   1.1    simonb 
     16   1.1    simonb #include "opt_ntp.h"
     17   1.1    simonb 
     18   1.1    simonb #include <sys/param.h>
     19   1.2    kardel #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20   1.1    simonb #include <sys/kernel.h>
     21   1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22   1.1    simonb #include <sys/sysctl.h>
     23   1.1    simonb #include <sys/syslog.h>
     24   1.1    simonb #include <sys/systm.h>
     25   1.1    simonb #include <sys/timepps.h>
     26   1.1    simonb #include <sys/timetc.h>
     27   1.1    simonb #include <sys/timex.h>
     28   1.2    kardel #include <sys/evcnt.h>
     29   1.2    kardel #include <sys/kauth.h>
     30   1.2    kardel 
     31   1.2    kardel /*
     32   1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     33   1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     34   1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     35   1.1    simonb  * forever when the time step is large.
     36   1.1    simonb  */
     37   1.1    simonb #define LARGE_STEP	200
     38   1.1    simonb 
     39   1.1    simonb /*
     40   1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     41   1.1    simonb  * in the air.  This allows the console and other early stuff to use
     42   1.1    simonb  * time services.
     43   1.1    simonb  */
     44   1.1    simonb 
     45   1.1    simonb static u_int
     46  1.16      yamt dummy_get_timecount(struct timecounter *tc)
     47   1.1    simonb {
     48   1.1    simonb 	static u_int now;
     49   1.1    simonb 
     50   1.1    simonb 	return (++now);
     51   1.1    simonb }
     52   1.1    simonb 
     53   1.1    simonb static struct timecounter dummy_timecounter = {
     54   1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     55   1.1    simonb };
     56   1.1    simonb 
     57   1.1    simonb struct timehands {
     58   1.1    simonb 	/* These fields must be initialized by the driver. */
     59   1.1    simonb 	struct timecounter	*th_counter;
     60   1.1    simonb 	int64_t			th_adjustment;
     61   1.1    simonb 	u_int64_t		th_scale;
     62   1.1    simonb 	u_int	 		th_offset_count;
     63   1.1    simonb 	struct bintime		th_offset;
     64   1.1    simonb 	struct timeval		th_microtime;
     65   1.1    simonb 	struct timespec		th_nanotime;
     66   1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     67   1.1    simonb 	volatile u_int		th_generation;
     68   1.1    simonb 	struct timehands	*th_next;
     69   1.1    simonb };
     70   1.1    simonb 
     71   1.1    simonb static struct timehands th0;
     72  1.10  christos static struct timehands th9 = { .th_next = &th0, };
     73  1.10  christos static struct timehands th8 = { .th_next = &th9, };
     74  1.10  christos static struct timehands th7 = { .th_next = &th8, };
     75  1.10  christos static struct timehands th6 = { .th_next = &th7, };
     76  1.10  christos static struct timehands th5 = { .th_next = &th6, };
     77  1.10  christos static struct timehands th4 = { .th_next = &th5, };
     78  1.10  christos static struct timehands th3 = { .th_next = &th4, };
     79  1.10  christos static struct timehands th2 = { .th_next = &th3, };
     80  1.10  christos static struct timehands th1 = { .th_next = &th2, };
     81   1.1    simonb static struct timehands th0 = {
     82  1.10  christos 	.th_counter = &dummy_timecounter,
     83  1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
     84  1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
     85  1.10  christos 	.th_generation = 1,
     86  1.10  christos 	.th_next = &th1,
     87   1.1    simonb };
     88   1.1    simonb 
     89   1.1    simonb static struct timehands *volatile timehands = &th0;
     90   1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     91   1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     92   1.1    simonb 
     93   1.1    simonb time_t time_second = 1;
     94   1.1    simonb time_t time_uptime = 1;
     95   1.1    simonb 
     96   1.4    kardel static struct bintime timebasebin;
     97   1.1    simonb 
     98   1.1    simonb static int timestepwarnings;
     99   1.2    kardel 
    100   1.2    kardel #ifdef __FreeBSD__
    101   1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    102   1.1    simonb     &timestepwarnings, 0, "");
    103   1.2    kardel #endif /* __FreeBSD__ */
    104   1.2    kardel 
    105   1.2    kardel /*
    106   1.2    kardel  * sysctl helper routine for kern.timercounter.current
    107   1.2    kardel  */
    108   1.2    kardel static int
    109   1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    110   1.2    kardel {
    111   1.2    kardel 	struct sysctlnode node;
    112   1.2    kardel 	int error;
    113   1.2    kardel 	char newname[MAX_TCNAMELEN];
    114   1.2    kardel 	struct timecounter *newtc, *tc;
    115   1.2    kardel 
    116   1.2    kardel 	tc = timecounter;
    117   1.2    kardel 
    118   1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    119   1.2    kardel 
    120   1.2    kardel 	node = *rnode;
    121   1.2    kardel 	node.sysctl_data = newname;
    122   1.2    kardel 	node.sysctl_size = sizeof(newname);
    123   1.2    kardel 
    124   1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    125   1.2    kardel 
    126   1.2    kardel 	if (error ||
    127   1.2    kardel 	    newp == NULL ||
    128   1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    129   1.2    kardel 		return error;
    130   1.1    simonb 
    131   1.5        ad 	if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
    132  1.17      elad 	    KAUTH_GENERIC_ISSUSER, NULL)) != 0)
    133   1.2    kardel 		return (error);
    134   1.2    kardel 
    135  1.22        ad 	if (!cold)
    136  1.22        ad 		mutex_enter(&time_lock);
    137  1.23        ad 	error = EINVAL;
    138   1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    139   1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    140   1.2    kardel 			continue;
    141   1.2    kardel 		/* Warm up new timecounter. */
    142   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    143   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    144   1.2    kardel 		timecounter = newtc;
    145  1.22        ad 		error = 0;
    146  1.23        ad 		break;
    147  1.23        ad 	}
    148  1.22        ad 	if (!cold)
    149  1.22        ad 		mutex_exit(&time_lock);
    150  1.22        ad 	return error;
    151   1.2    kardel }
    152   1.2    kardel 
    153   1.2    kardel static int
    154   1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    155   1.2    kardel {
    156   1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    157   1.2    kardel 	char *where = oldp;
    158   1.2    kardel 	const char *spc;
    159   1.2    kardel 	struct timecounter *tc;
    160   1.2    kardel 	size_t needed, left, slen;
    161   1.2    kardel 	int error;
    162   1.2    kardel 
    163   1.2    kardel 	if (newp != NULL)
    164   1.2    kardel 		return (EPERM);
    165   1.2    kardel 	if (namelen != 0)
    166   1.2    kardel 		return (EINVAL);
    167   1.2    kardel 
    168   1.2    kardel 	spc = "";
    169   1.2    kardel 	error = 0;
    170   1.2    kardel 	needed = 0;
    171   1.2    kardel 	left = *oldlenp;
    172   1.2    kardel 
    173  1.22        ad 	mutex_enter(&time_lock);
    174   1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    175   1.2    kardel 		if (where == NULL) {
    176   1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    177   1.2    kardel 		} else {
    178   1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    179   1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    180   1.2    kardel 					tc->tc_frequency);
    181   1.2    kardel 			if (left < slen + 1)
    182   1.2    kardel 				break;
    183   1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    184  1.22        ad 			/* XXX copyout with held lock. */
    185   1.2    kardel 			error = copyout(buf, where, slen + 1);
    186   1.2    kardel 			spc = " ";
    187   1.2    kardel 			where += slen;
    188   1.2    kardel 			needed += slen;
    189   1.2    kardel 			left -= slen;
    190   1.2    kardel 		}
    191   1.2    kardel 	}
    192  1.22        ad 	mutex_exit(&time_lock);
    193   1.2    kardel 
    194   1.2    kardel 	*oldlenp = needed;
    195   1.2    kardel 	return (error);
    196   1.2    kardel }
    197   1.2    kardel 
    198   1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    199   1.2    kardel {
    200   1.2    kardel 	const struct sysctlnode *node;
    201   1.2    kardel 
    202   1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    203   1.2    kardel 		       CTLFLAG_PERMANENT,
    204   1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    205   1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    206   1.2    kardel 		       NULL, 0, NULL, 0,
    207   1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    208   1.2    kardel 
    209   1.2    kardel 	if (node != NULL) {
    210   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    211   1.2    kardel 			       CTLFLAG_PERMANENT,
    212   1.2    kardel 			       CTLTYPE_STRING, "choice",
    213   1.2    kardel 			       SYSCTL_DESCR("available counters"),
    214   1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    215   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    216   1.2    kardel 
    217   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    218   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    219   1.2    kardel 			       CTLTYPE_STRING, "hardware",
    220   1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    221   1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    222   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    223   1.2    kardel 
    224   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    225   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    226   1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    227   1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    228   1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    229   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    230   1.2    kardel 	}
    231   1.2    kardel }
    232   1.2    kardel 
    233   1.2    kardel #define	TC_STATS(name)							\
    234   1.2    kardel static struct evcnt n##name =						\
    235   1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    236   1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    237   1.2    kardel 
    238   1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    239   1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    240   1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    241   1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    242   1.2    kardel TC_STATS(setclock);
    243   1.1    simonb 
    244   1.1    simonb #undef TC_STATS
    245   1.1    simonb 
    246   1.1    simonb static void tc_windup(void);
    247   1.1    simonb 
    248   1.1    simonb /*
    249   1.1    simonb  * Return the difference between the timehands' counter value now and what
    250   1.1    simonb  * was when we copied it to the timehands' offset_count.
    251   1.1    simonb  */
    252   1.1    simonb static __inline u_int
    253   1.1    simonb tc_delta(struct timehands *th)
    254   1.1    simonb {
    255   1.1    simonb 	struct timecounter *tc;
    256   1.1    simonb 
    257   1.1    simonb 	tc = th->th_counter;
    258   1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    259   1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    260   1.1    simonb }
    261   1.1    simonb 
    262   1.1    simonb /*
    263   1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    264   1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    265  1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    266   1.1    simonb  */
    267   1.1    simonb 
    268   1.1    simonb void
    269   1.1    simonb binuptime(struct bintime *bt)
    270   1.1    simonb {
    271   1.1    simonb 	struct timehands *th;
    272   1.1    simonb 	u_int gen;
    273   1.1    simonb 
    274   1.2    kardel 	nbinuptime.ev_count++;
    275   1.1    simonb 	do {
    276   1.1    simonb 		th = timehands;
    277   1.1    simonb 		gen = th->th_generation;
    278  1.20        ad 		mb_read();
    279   1.1    simonb 		*bt = th->th_offset;
    280   1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    281  1.20        ad 		mb_read();
    282   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    283   1.1    simonb }
    284   1.1    simonb 
    285   1.1    simonb void
    286   1.1    simonb nanouptime(struct timespec *tsp)
    287   1.1    simonb {
    288   1.1    simonb 	struct bintime bt;
    289   1.1    simonb 
    290   1.2    kardel 	nnanouptime.ev_count++;
    291   1.1    simonb 	binuptime(&bt);
    292   1.1    simonb 	bintime2timespec(&bt, tsp);
    293   1.1    simonb }
    294   1.1    simonb 
    295   1.1    simonb void
    296   1.1    simonb microuptime(struct timeval *tvp)
    297   1.1    simonb {
    298   1.1    simonb 	struct bintime bt;
    299   1.1    simonb 
    300   1.2    kardel 	nmicrouptime.ev_count++;
    301   1.1    simonb 	binuptime(&bt);
    302   1.1    simonb 	bintime2timeval(&bt, tvp);
    303   1.1    simonb }
    304   1.1    simonb 
    305   1.1    simonb void
    306   1.1    simonb bintime(struct bintime *bt)
    307   1.1    simonb {
    308   1.1    simonb 
    309   1.2    kardel 	nbintime.ev_count++;
    310   1.1    simonb 	binuptime(bt);
    311   1.4    kardel 	bintime_add(bt, &timebasebin);
    312   1.1    simonb }
    313   1.1    simonb 
    314   1.1    simonb void
    315   1.1    simonb nanotime(struct timespec *tsp)
    316   1.1    simonb {
    317   1.1    simonb 	struct bintime bt;
    318   1.1    simonb 
    319   1.2    kardel 	nnanotime.ev_count++;
    320   1.1    simonb 	bintime(&bt);
    321   1.1    simonb 	bintime2timespec(&bt, tsp);
    322   1.1    simonb }
    323   1.1    simonb 
    324   1.1    simonb void
    325   1.1    simonb microtime(struct timeval *tvp)
    326   1.1    simonb {
    327   1.1    simonb 	struct bintime bt;
    328   1.1    simonb 
    329   1.2    kardel 	nmicrotime.ev_count++;
    330   1.1    simonb 	bintime(&bt);
    331   1.1    simonb 	bintime2timeval(&bt, tvp);
    332   1.1    simonb }
    333   1.1    simonb 
    334   1.1    simonb void
    335   1.1    simonb getbinuptime(struct bintime *bt)
    336   1.1    simonb {
    337   1.1    simonb 	struct timehands *th;
    338   1.1    simonb 	u_int gen;
    339   1.1    simonb 
    340   1.2    kardel 	ngetbinuptime.ev_count++;
    341   1.1    simonb 	do {
    342   1.1    simonb 		th = timehands;
    343   1.1    simonb 		gen = th->th_generation;
    344  1.20        ad 		mb_read();
    345   1.1    simonb 		*bt = th->th_offset;
    346  1.20        ad 		mb_read();
    347   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    348   1.1    simonb }
    349   1.1    simonb 
    350   1.1    simonb void
    351   1.1    simonb getnanouptime(struct timespec *tsp)
    352   1.1    simonb {
    353   1.1    simonb 	struct timehands *th;
    354   1.1    simonb 	u_int gen;
    355   1.1    simonb 
    356   1.2    kardel 	ngetnanouptime.ev_count++;
    357   1.1    simonb 	do {
    358   1.1    simonb 		th = timehands;
    359   1.1    simonb 		gen = th->th_generation;
    360  1.20        ad 		mb_read();
    361   1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    362  1.20        ad 		mb_read();
    363   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    364   1.1    simonb }
    365   1.1    simonb 
    366   1.1    simonb void
    367   1.1    simonb getmicrouptime(struct timeval *tvp)
    368   1.1    simonb {
    369   1.1    simonb 	struct timehands *th;
    370   1.1    simonb 	u_int gen;
    371   1.1    simonb 
    372   1.2    kardel 	ngetmicrouptime.ev_count++;
    373   1.1    simonb 	do {
    374   1.1    simonb 		th = timehands;
    375   1.1    simonb 		gen = th->th_generation;
    376  1.20        ad 		mb_read();
    377   1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    378  1.20        ad 		mb_read();
    379   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    380   1.1    simonb }
    381   1.1    simonb 
    382   1.1    simonb void
    383   1.1    simonb getbintime(struct bintime *bt)
    384   1.1    simonb {
    385   1.1    simonb 	struct timehands *th;
    386   1.1    simonb 	u_int gen;
    387   1.1    simonb 
    388   1.2    kardel 	ngetbintime.ev_count++;
    389   1.1    simonb 	do {
    390   1.1    simonb 		th = timehands;
    391   1.1    simonb 		gen = th->th_generation;
    392  1.20        ad 		mb_read();
    393   1.1    simonb 		*bt = th->th_offset;
    394  1.20        ad 		mb_read();
    395   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    396   1.4    kardel 	bintime_add(bt, &timebasebin);
    397   1.1    simonb }
    398   1.1    simonb 
    399   1.1    simonb void
    400   1.1    simonb getnanotime(struct timespec *tsp)
    401   1.1    simonb {
    402   1.1    simonb 	struct timehands *th;
    403   1.1    simonb 	u_int gen;
    404   1.1    simonb 
    405   1.2    kardel 	ngetnanotime.ev_count++;
    406   1.1    simonb 	do {
    407   1.1    simonb 		th = timehands;
    408   1.1    simonb 		gen = th->th_generation;
    409  1.20        ad 		mb_read();
    410   1.1    simonb 		*tsp = th->th_nanotime;
    411  1.20        ad 		mb_read();
    412   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    413   1.1    simonb }
    414   1.1    simonb 
    415   1.1    simonb void
    416   1.1    simonb getmicrotime(struct timeval *tvp)
    417   1.1    simonb {
    418   1.1    simonb 	struct timehands *th;
    419   1.1    simonb 	u_int gen;
    420   1.1    simonb 
    421   1.2    kardel 	ngetmicrotime.ev_count++;
    422   1.1    simonb 	do {
    423   1.1    simonb 		th = timehands;
    424   1.1    simonb 		gen = th->th_generation;
    425  1.20        ad 		mb_read();
    426   1.1    simonb 		*tvp = th->th_microtime;
    427  1.20        ad 		mb_read();
    428   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    429   1.1    simonb }
    430   1.1    simonb 
    431   1.1    simonb /*
    432   1.1    simonb  * Initialize a new timecounter and possibly use it.
    433   1.1    simonb  */
    434   1.1    simonb void
    435   1.1    simonb tc_init(struct timecounter *tc)
    436   1.1    simonb {
    437   1.1    simonb 	u_int u;
    438  1.11    simonb 	int s;
    439   1.1    simonb 
    440   1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    441   1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    442   1.1    simonb 	u *= 11;
    443   1.1    simonb 	u /= 10;
    444   1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    445   1.1    simonb 		tc->tc_quality = -2000;
    446  1.18        ad 		aprint_verbose(
    447  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    448   1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    449  1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    450   1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    451  1.18        ad 		aprint_verbose(
    452  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    453  1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    454   1.7     bjh21 		    tc->tc_quality);
    455   1.1    simonb 	}
    456   1.1    simonb 
    457  1.22        ad 	mutex_enter(&time_lock);
    458  1.22        ad 	s = splsched();
    459   1.1    simonb 	tc->tc_next = timecounters;
    460   1.1    simonb 	timecounters = tc;
    461   1.1    simonb 	/*
    462   1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    463   1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    464   1.1    simonb 	 * worse since this timecounter may not be monotonous.
    465   1.1    simonb 	 */
    466  1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    467  1.22        ad 	    tc->tc_frequency > timecounter->tc_frequency)) {
    468  1.22        ad 		(void)tc->tc_get_timecount(tc);
    469  1.22        ad 		(void)tc->tc_get_timecount(tc);
    470  1.22        ad 		timecounter = tc;
    471  1.22        ad 		tc_windup();
    472  1.22        ad 	}
    473  1.11    simonb 	splx(s);
    474  1.22        ad 	mutex_exit(&time_lock);
    475   1.1    simonb }
    476   1.1    simonb 
    477   1.1    simonb /* Report the frequency of the current timecounter. */
    478   1.1    simonb u_int64_t
    479   1.1    simonb tc_getfrequency(void)
    480   1.1    simonb {
    481   1.1    simonb 
    482   1.1    simonb 	return (timehands->th_counter->tc_frequency);
    483   1.1    simonb }
    484   1.1    simonb 
    485   1.1    simonb /*
    486   1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    487   1.1    simonb  * when we booted.
    488   1.1    simonb  * XXX: not locked.
    489   1.1    simonb  */
    490   1.1    simonb void
    491   1.1    simonb tc_setclock(struct timespec *ts)
    492   1.1    simonb {
    493   1.1    simonb 	struct timespec ts2;
    494   1.1    simonb 	struct bintime bt, bt2;
    495   1.1    simonb 
    496   1.2    kardel 	nsetclock.ev_count++;
    497   1.1    simonb 	binuptime(&bt2);
    498   1.1    simonb 	timespec2bintime(ts, &bt);
    499   1.1    simonb 	bintime_sub(&bt, &bt2);
    500   1.4    kardel 	bintime_add(&bt2, &timebasebin);
    501   1.4    kardel 	timebasebin = bt;
    502   1.1    simonb 
    503   1.1    simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    504   1.1    simonb 	tc_windup();
    505   1.1    simonb 	if (timestepwarnings) {
    506   1.1    simonb 		bintime2timespec(&bt2, &ts2);
    507   1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    508   1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    509   1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    510   1.1    simonb 	}
    511   1.1    simonb }
    512   1.1    simonb 
    513   1.1    simonb /*
    514   1.1    simonb  * Initialize the next struct timehands in the ring and make
    515   1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    516   1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    517   1.1    simonb  */
    518   1.1    simonb static void
    519   1.1    simonb tc_windup(void)
    520   1.1    simonb {
    521   1.1    simonb 	struct bintime bt;
    522   1.1    simonb 	struct timehands *th, *tho;
    523   1.1    simonb 	u_int64_t scale;
    524   1.1    simonb 	u_int delta, ncount, ogen;
    525  1.13    kardel 	int i, s_update;
    526   1.1    simonb 	time_t t;
    527   1.1    simonb 
    528  1.13    kardel 	s_update = 0;
    529  1.20        ad 
    530   1.1    simonb 	/*
    531   1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    532   1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    533  1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    534  1.20        ad 	 * visibility of the generation before proceeding.
    535   1.1    simonb 	 */
    536   1.1    simonb 	tho = timehands;
    537   1.1    simonb 	th = tho->th_next;
    538   1.1    simonb 	ogen = th->th_generation;
    539   1.1    simonb 	th->th_generation = 0;
    540  1.20        ad 	mb_write();
    541   1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    542   1.1    simonb 
    543   1.1    simonb 	/*
    544   1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    545   1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    546   1.1    simonb 	 * Update the offset fields accordingly.
    547   1.1    simonb 	 */
    548   1.1    simonb 	delta = tc_delta(th);
    549   1.1    simonb 	if (th->th_counter != timecounter)
    550   1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    551   1.1    simonb 	else
    552   1.1    simonb 		ncount = 0;
    553   1.1    simonb 	th->th_offset_count += delta;
    554   1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    555   1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    556   1.1    simonb 
    557   1.1    simonb 	/*
    558   1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    559   1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    560   1.1    simonb 	 * the hardware might capture a count which is later than the one we
    561   1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    562   1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    563   1.1    simonb 	 * matter in practice.
    564   1.1    simonb 	 */
    565   1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    566   1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    567   1.1    simonb 
    568   1.1    simonb 	/*
    569   1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    570   1.1    simonb 	 * iterates at most once, but in extreme situations it might
    571   1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    572   1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    573   1.1    simonb 	 * has been read, so on really large steps, we call
    574   1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    575   1.1    simonb 	 * case we missed a leap second.
    576   1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    577   1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    578   1.1    simonb 	 */
    579   1.1    simonb 	bt = th->th_offset;
    580   1.4    kardel 	bintime_add(&bt, &timebasebin);
    581   1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    582   1.1    simonb 	if (i > LARGE_STEP)
    583   1.1    simonb 		i = 2;
    584   1.1    simonb 	for (; i > 0; i--) {
    585   1.1    simonb 		t = bt.sec;
    586   1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    587  1.13    kardel 		s_update = 1;
    588   1.1    simonb 		if (bt.sec != t)
    589   1.4    kardel 			timebasebin.sec += bt.sec - t;
    590   1.1    simonb 	}
    591   1.2    kardel 
    592   1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    593   1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    594   1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    595   1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    596   1.1    simonb 
    597   1.1    simonb 	/* Now is a good time to change timecounters. */
    598   1.1    simonb 	if (th->th_counter != timecounter) {
    599   1.1    simonb 		th->th_counter = timecounter;
    600   1.1    simonb 		th->th_offset_count = ncount;
    601  1.13    kardel 		s_update = 1;
    602   1.1    simonb 	}
    603   1.1    simonb 
    604   1.1    simonb 	/*-
    605   1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    606   1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    607   1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    608   1.1    simonb 	 * processing provides us with.
    609   1.1    simonb 	 *
    610   1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    611   1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    612   1.1    simonb 	 *
    613   1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    614   1.1    simonb 	 *
    615   1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    616   1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    617   1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    618   1.1    simonb 	 *
    619   1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    620   1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    621   1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    622   1.1    simonb  	 *
    623   1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    624   1.1    simonb 	 * to the goddess of code clarity.
    625   1.1    simonb 	 *
    626   1.1    simonb 	 */
    627  1.13    kardel 	if (s_update) {
    628  1.13    kardel 		scale = (u_int64_t)1 << 63;
    629  1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    630  1.13    kardel 		scale /= th->th_counter->tc_frequency;
    631  1.13    kardel 		th->th_scale = scale * 2;
    632  1.13    kardel 	}
    633   1.1    simonb 	/*
    634   1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    635  1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    636  1.20        ad 	 * changes are globally visible before changing.
    637   1.1    simonb 	 */
    638   1.1    simonb 	if (++ogen == 0)
    639   1.1    simonb 		ogen = 1;
    640  1.20        ad 	mb_write();
    641   1.1    simonb 	th->th_generation = ogen;
    642   1.1    simonb 
    643  1.20        ad 	/*
    644  1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    645  1.20        ad 	 * globally visible before changing.
    646  1.20        ad 	 */
    647   1.1    simonb 	time_second = th->th_microtime.tv_sec;
    648   1.1    simonb 	time_uptime = th->th_offset.sec;
    649  1.20        ad 	mb_write();
    650   1.1    simonb 	timehands = th;
    651   1.1    simonb }
    652   1.1    simonb 
    653   1.1    simonb /*
    654   1.1    simonb  * RFC 2783 PPS-API implementation.
    655   1.1    simonb  */
    656   1.1    simonb 
    657   1.1    simonb int
    658  1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    659   1.1    simonb {
    660   1.1    simonb 	pps_params_t *app;
    661   1.2    kardel 	pps_info_t *pipi;
    662   1.1    simonb #ifdef PPS_SYNC
    663   1.2    kardel 	int *epi;
    664   1.1    simonb #endif
    665   1.1    simonb 
    666   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    667   1.1    simonb 	switch (cmd) {
    668   1.1    simonb 	case PPS_IOC_CREATE:
    669   1.1    simonb 		return (0);
    670   1.1    simonb 	case PPS_IOC_DESTROY:
    671   1.1    simonb 		return (0);
    672   1.1    simonb 	case PPS_IOC_SETPARAMS:
    673   1.1    simonb 		app = (pps_params_t *)data;
    674   1.1    simonb 		if (app->mode & ~pps->ppscap)
    675   1.1    simonb 			return (EINVAL);
    676   1.1    simonb 		pps->ppsparam = *app;
    677   1.1    simonb 		return (0);
    678   1.1    simonb 	case PPS_IOC_GETPARAMS:
    679   1.1    simonb 		app = (pps_params_t *)data;
    680   1.1    simonb 		*app = pps->ppsparam;
    681   1.1    simonb 		app->api_version = PPS_API_VERS_1;
    682   1.1    simonb 		return (0);
    683   1.1    simonb 	case PPS_IOC_GETCAP:
    684   1.1    simonb 		*(int*)data = pps->ppscap;
    685   1.1    simonb 		return (0);
    686   1.1    simonb 	case PPS_IOC_FETCH:
    687   1.2    kardel 		pipi = (pps_info_t *)data;
    688   1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    689   1.2    kardel 		*pipi = pps->ppsinfo;
    690   1.1    simonb 		return (0);
    691   1.1    simonb 	case PPS_IOC_KCBIND:
    692   1.1    simonb #ifdef PPS_SYNC
    693   1.2    kardel 		epi = (int *)data;
    694   1.1    simonb 		/* XXX Only root should be able to do this */
    695   1.2    kardel 		if (*epi & ~pps->ppscap)
    696   1.1    simonb 			return (EINVAL);
    697   1.2    kardel 		pps->kcmode = *epi;
    698   1.1    simonb 		return (0);
    699   1.1    simonb #else
    700   1.1    simonb 		return (EOPNOTSUPP);
    701   1.1    simonb #endif
    702   1.1    simonb 	default:
    703   1.2    kardel 		return (EPASSTHROUGH);
    704   1.1    simonb 	}
    705   1.1    simonb }
    706   1.1    simonb 
    707   1.1    simonb void
    708   1.1    simonb pps_init(struct pps_state *pps)
    709   1.1    simonb {
    710   1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    711   1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    712   1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    713   1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    714   1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    715   1.1    simonb }
    716   1.1    simonb 
    717   1.1    simonb void
    718   1.1    simonb pps_capture(struct pps_state *pps)
    719   1.1    simonb {
    720   1.1    simonb 	struct timehands *th;
    721   1.1    simonb 
    722   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    723   1.1    simonb 	th = timehands;
    724   1.1    simonb 	pps->capgen = th->th_generation;
    725   1.1    simonb 	pps->capth = th;
    726   1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    727   1.1    simonb 	if (pps->capgen != th->th_generation)
    728   1.1    simonb 		pps->capgen = 0;
    729   1.1    simonb }
    730   1.1    simonb 
    731   1.1    simonb void
    732   1.1    simonb pps_event(struct pps_state *pps, int event)
    733   1.1    simonb {
    734   1.1    simonb 	struct bintime bt;
    735   1.1    simonb 	struct timespec ts, *tsp, *osp;
    736   1.1    simonb 	u_int tcount, *pcount;
    737   1.1    simonb 	int foff, fhard;
    738   1.1    simonb 	pps_seq_t *pseq;
    739   1.1    simonb 
    740   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    741   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    742   1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    743   1.1    simonb 		return;
    744   1.1    simonb 
    745   1.1    simonb 	/* Things would be easier with arrays. */
    746   1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    747   1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    748   1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    749   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    750   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    751   1.1    simonb 		pcount = &pps->ppscount[0];
    752   1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    753   1.1    simonb 	} else {
    754   1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    755   1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    756   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    757   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    758   1.1    simonb 		pcount = &pps->ppscount[1];
    759   1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    760   1.1    simonb 	}
    761   1.1    simonb 
    762   1.1    simonb 	/*
    763   1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    764   1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    765   1.1    simonb 	 */
    766   1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    767   1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    768   1.1    simonb 		*pcount = pps->capcount;
    769   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    770   1.1    simonb 		return;
    771   1.1    simonb 	}
    772   1.1    simonb 
    773   1.1    simonb 	/* Convert the count to a timespec. */
    774   1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    775   1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    776   1.1    simonb 	bt = pps->capth->th_offset;
    777   1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    778   1.4    kardel 	bintime_add(&bt, &timebasebin);
    779   1.1    simonb 	bintime2timespec(&bt, &ts);
    780   1.1    simonb 
    781   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    782   1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    783   1.1    simonb 		return;
    784   1.1    simonb 
    785   1.1    simonb 	*pcount = pps->capcount;
    786   1.1    simonb 	(*pseq)++;
    787   1.1    simonb 	*tsp = ts;
    788   1.1    simonb 
    789   1.1    simonb 	if (foff) {
    790   1.2    kardel 		timespecadd(tsp, osp, tsp);
    791   1.1    simonb 		if (tsp->tv_nsec < 0) {
    792   1.1    simonb 			tsp->tv_nsec += 1000000000;
    793   1.1    simonb 			tsp->tv_sec -= 1;
    794   1.1    simonb 		}
    795   1.1    simonb 	}
    796   1.1    simonb #ifdef PPS_SYNC
    797   1.1    simonb 	if (fhard) {
    798   1.1    simonb 		u_int64_t scale;
    799   1.1    simonb 
    800   1.1    simonb 		/*
    801   1.1    simonb 		 * Feed the NTP PLL/FLL.
    802   1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    803   1.1    simonb 		 * elapsed since the previous event.
    804   1.1    simonb 		 */
    805   1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    806   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    807   1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    808   1.1    simonb 		scale = (u_int64_t)1 << 63;
    809   1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    810   1.1    simonb 		scale *= 2;
    811   1.1    simonb 		bt.sec = 0;
    812   1.1    simonb 		bt.frac = 0;
    813   1.1    simonb 		bintime_addx(&bt, scale * tcount);
    814   1.1    simonb 		bintime2timespec(&bt, &ts);
    815   1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    816   1.1    simonb 	}
    817   1.1    simonb #endif
    818   1.1    simonb }
    819   1.1    simonb 
    820   1.1    simonb /*
    821   1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    822   1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    823   1.1    simonb  * used by the get*() family of functions, so their precision depends on
    824   1.1    simonb  * the update frequency.
    825   1.1    simonb  */
    826   1.1    simonb 
    827   1.1    simonb static int tc_tick;
    828   1.1    simonb 
    829   1.1    simonb void
    830   1.1    simonb tc_ticktock(void)
    831   1.1    simonb {
    832   1.1    simonb 	static int count;
    833   1.1    simonb 
    834   1.1    simonb 	if (++count < tc_tick)
    835   1.1    simonb 		return;
    836   1.1    simonb 	count = 0;
    837   1.1    simonb 	tc_windup();
    838   1.1    simonb }
    839   1.1    simonb 
    840   1.2    kardel void
    841   1.2    kardel inittimecounter(void)
    842   1.1    simonb {
    843   1.1    simonb 	u_int p;
    844   1.1    simonb 
    845   1.1    simonb 	/*
    846   1.1    simonb 	 * Set the initial timeout to
    847   1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    848   1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    849   1.1    simonb 	 * to smaller than its inital value, since that value is the
    850   1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    851   1.1    simonb 	 * should use the non-"get"* functions.
    852   1.1    simonb 	 */
    853   1.1    simonb 	if (hz > 1000)
    854   1.1    simonb 		tc_tick = (hz + 500) / 1000;
    855   1.1    simonb 	else
    856   1.1    simonb 		tc_tick = 1;
    857   1.1    simonb 	p = (tc_tick * 1000000) / hz;
    858  1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    859  1.18        ad 	    p / 1000, p % 1000);
    860   1.1    simonb 
    861   1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    862   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    863   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    864   1.1    simonb }
    865   1.1    simonb 
    866   1.2    kardel #endif /* __HAVE_TIMECOUNTER */
    867