kern_tc.c revision 1.24 1 1.24 ad /* $NetBSD: kern_tc.c,v 1.24 2007/11/15 23:16:55 ad Exp $ */
2 1.2 kardel
3 1.1 simonb /*-
4 1.1 simonb * ----------------------------------------------------------------------------
5 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
6 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
8 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.2 kardel * ---------------------------------------------------------------------------
10 1.1 simonb */
11 1.1 simonb
12 1.1 simonb #include <sys/cdefs.h>
13 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.24 ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.24 2007/11/15 23:16:55 ad Exp $");
15 1.1 simonb
16 1.1 simonb #include "opt_ntp.h"
17 1.1 simonb
18 1.1 simonb #include <sys/param.h>
19 1.2 kardel #ifdef __HAVE_TIMECOUNTER /* XXX */
20 1.1 simonb #include <sys/kernel.h>
21 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 1.1 simonb #include <sys/sysctl.h>
23 1.1 simonb #include <sys/syslog.h>
24 1.1 simonb #include <sys/systm.h>
25 1.1 simonb #include <sys/timepps.h>
26 1.1 simonb #include <sys/timetc.h>
27 1.1 simonb #include <sys/timex.h>
28 1.2 kardel #include <sys/evcnt.h>
29 1.2 kardel #include <sys/kauth.h>
30 1.2 kardel
31 1.2 kardel /*
32 1.1 simonb * A large step happens on boot. This constant detects such steps.
33 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
34 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
35 1.1 simonb * forever when the time step is large.
36 1.1 simonb */
37 1.1 simonb #define LARGE_STEP 200
38 1.1 simonb
39 1.1 simonb /*
40 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
41 1.1 simonb * in the air. This allows the console and other early stuff to use
42 1.1 simonb * time services.
43 1.1 simonb */
44 1.1 simonb
45 1.1 simonb static u_int
46 1.16 yamt dummy_get_timecount(struct timecounter *tc)
47 1.1 simonb {
48 1.1 simonb static u_int now;
49 1.1 simonb
50 1.1 simonb return (++now);
51 1.1 simonb }
52 1.1 simonb
53 1.1 simonb static struct timecounter dummy_timecounter = {
54 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 1.1 simonb };
56 1.1 simonb
57 1.1 simonb struct timehands {
58 1.1 simonb /* These fields must be initialized by the driver. */
59 1.1 simonb struct timecounter *th_counter;
60 1.1 simonb int64_t th_adjustment;
61 1.1 simonb u_int64_t th_scale;
62 1.1 simonb u_int th_offset_count;
63 1.1 simonb struct bintime th_offset;
64 1.1 simonb struct timeval th_microtime;
65 1.1 simonb struct timespec th_nanotime;
66 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
67 1.1 simonb volatile u_int th_generation;
68 1.1 simonb struct timehands *th_next;
69 1.1 simonb };
70 1.1 simonb
71 1.1 simonb static struct timehands th0;
72 1.10 christos static struct timehands th9 = { .th_next = &th0, };
73 1.10 christos static struct timehands th8 = { .th_next = &th9, };
74 1.10 christos static struct timehands th7 = { .th_next = &th8, };
75 1.10 christos static struct timehands th6 = { .th_next = &th7, };
76 1.10 christos static struct timehands th5 = { .th_next = &th6, };
77 1.10 christos static struct timehands th4 = { .th_next = &th5, };
78 1.10 christos static struct timehands th3 = { .th_next = &th4, };
79 1.10 christos static struct timehands th2 = { .th_next = &th3, };
80 1.10 christos static struct timehands th1 = { .th_next = &th2, };
81 1.1 simonb static struct timehands th0 = {
82 1.10 christos .th_counter = &dummy_timecounter,
83 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
84 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
85 1.10 christos .th_generation = 1,
86 1.10 christos .th_next = &th1,
87 1.1 simonb };
88 1.1 simonb
89 1.1 simonb static struct timehands *volatile timehands = &th0;
90 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
91 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
92 1.1 simonb
93 1.1 simonb time_t time_second = 1;
94 1.1 simonb time_t time_uptime = 1;
95 1.1 simonb
96 1.4 kardel static struct bintime timebasebin;
97 1.1 simonb
98 1.1 simonb static int timestepwarnings;
99 1.2 kardel
100 1.2 kardel #ifdef __FreeBSD__
101 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102 1.1 simonb ×tepwarnings, 0, "");
103 1.2 kardel #endif /* __FreeBSD__ */
104 1.2 kardel
105 1.2 kardel /*
106 1.2 kardel * sysctl helper routine for kern.timercounter.current
107 1.2 kardel */
108 1.2 kardel static int
109 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 1.2 kardel {
111 1.2 kardel struct sysctlnode node;
112 1.2 kardel int error;
113 1.2 kardel char newname[MAX_TCNAMELEN];
114 1.2 kardel struct timecounter *newtc, *tc;
115 1.2 kardel
116 1.2 kardel tc = timecounter;
117 1.2 kardel
118 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
119 1.2 kardel
120 1.2 kardel node = *rnode;
121 1.2 kardel node.sysctl_data = newname;
122 1.2 kardel node.sysctl_size = sizeof(newname);
123 1.2 kardel
124 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
125 1.2 kardel
126 1.2 kardel if (error ||
127 1.2 kardel newp == NULL ||
128 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 1.2 kardel return error;
130 1.1 simonb
131 1.5 ad if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 1.17 elad KAUTH_GENERIC_ISSUSER, NULL)) != 0)
133 1.2 kardel return (error);
134 1.2 kardel
135 1.22 ad if (!cold)
136 1.22 ad mutex_enter(&time_lock);
137 1.23 ad error = EINVAL;
138 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
139 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
140 1.2 kardel continue;
141 1.2 kardel /* Warm up new timecounter. */
142 1.2 kardel (void)newtc->tc_get_timecount(newtc);
143 1.2 kardel (void)newtc->tc_get_timecount(newtc);
144 1.2 kardel timecounter = newtc;
145 1.22 ad error = 0;
146 1.23 ad break;
147 1.23 ad }
148 1.22 ad if (!cold)
149 1.22 ad mutex_exit(&time_lock);
150 1.22 ad return error;
151 1.2 kardel }
152 1.2 kardel
153 1.2 kardel static int
154 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
155 1.2 kardel {
156 1.9 kardel char buf[MAX_TCNAMELEN+48];
157 1.2 kardel char *where = oldp;
158 1.2 kardel const char *spc;
159 1.2 kardel struct timecounter *tc;
160 1.2 kardel size_t needed, left, slen;
161 1.2 kardel int error;
162 1.2 kardel
163 1.2 kardel if (newp != NULL)
164 1.2 kardel return (EPERM);
165 1.2 kardel if (namelen != 0)
166 1.2 kardel return (EINVAL);
167 1.2 kardel
168 1.2 kardel spc = "";
169 1.2 kardel error = 0;
170 1.2 kardel needed = 0;
171 1.2 kardel left = *oldlenp;
172 1.2 kardel
173 1.22 ad mutex_enter(&time_lock);
174 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
175 1.2 kardel if (where == NULL) {
176 1.2 kardel needed += sizeof(buf); /* be conservative */
177 1.2 kardel } else {
178 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
179 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
180 1.2 kardel tc->tc_frequency);
181 1.2 kardel if (left < slen + 1)
182 1.2 kardel break;
183 1.2 kardel /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
184 1.22 ad /* XXX copyout with held lock. */
185 1.2 kardel error = copyout(buf, where, slen + 1);
186 1.2 kardel spc = " ";
187 1.2 kardel where += slen;
188 1.2 kardel needed += slen;
189 1.2 kardel left -= slen;
190 1.2 kardel }
191 1.2 kardel }
192 1.22 ad mutex_exit(&time_lock);
193 1.2 kardel
194 1.2 kardel *oldlenp = needed;
195 1.2 kardel return (error);
196 1.2 kardel }
197 1.2 kardel
198 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
199 1.2 kardel {
200 1.2 kardel const struct sysctlnode *node;
201 1.2 kardel
202 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
203 1.2 kardel CTLFLAG_PERMANENT,
204 1.2 kardel CTLTYPE_NODE, "timecounter",
205 1.2 kardel SYSCTL_DESCR("time counter information"),
206 1.2 kardel NULL, 0, NULL, 0,
207 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
208 1.2 kardel
209 1.2 kardel if (node != NULL) {
210 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
211 1.2 kardel CTLFLAG_PERMANENT,
212 1.2 kardel CTLTYPE_STRING, "choice",
213 1.2 kardel SYSCTL_DESCR("available counters"),
214 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
215 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
216 1.2 kardel
217 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
218 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
219 1.2 kardel CTLTYPE_STRING, "hardware",
220 1.2 kardel SYSCTL_DESCR("currently active time counter"),
221 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
222 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
223 1.2 kardel
224 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
225 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
226 1.2 kardel CTLTYPE_INT, "timestepwarnings",
227 1.2 kardel SYSCTL_DESCR("log time steps"),
228 1.2 kardel NULL, 0, ×tepwarnings, 0,
229 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
230 1.2 kardel }
231 1.2 kardel }
232 1.2 kardel
233 1.2 kardel #define TC_STATS(name) \
234 1.2 kardel static struct evcnt n##name = \
235 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
236 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
237 1.2 kardel
238 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
239 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
240 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
241 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
242 1.2 kardel TC_STATS(setclock);
243 1.1 simonb
244 1.1 simonb #undef TC_STATS
245 1.1 simonb
246 1.1 simonb static void tc_windup(void);
247 1.1 simonb
248 1.1 simonb /*
249 1.1 simonb * Return the difference between the timehands' counter value now and what
250 1.1 simonb * was when we copied it to the timehands' offset_count.
251 1.1 simonb */
252 1.1 simonb static __inline u_int
253 1.1 simonb tc_delta(struct timehands *th)
254 1.1 simonb {
255 1.1 simonb struct timecounter *tc;
256 1.1 simonb
257 1.1 simonb tc = th->th_counter;
258 1.2 kardel return ((tc->tc_get_timecount(tc) -
259 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
260 1.1 simonb }
261 1.1 simonb
262 1.1 simonb /*
263 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
264 1.1 simonb * the timehands that we operated on was not updated under our feet. See
265 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
266 1.1 simonb */
267 1.1 simonb
268 1.1 simonb void
269 1.1 simonb binuptime(struct bintime *bt)
270 1.1 simonb {
271 1.1 simonb struct timehands *th;
272 1.1 simonb u_int gen;
273 1.1 simonb
274 1.2 kardel nbinuptime.ev_count++;
275 1.1 simonb do {
276 1.1 simonb th = timehands;
277 1.1 simonb gen = th->th_generation;
278 1.1 simonb *bt = th->th_offset;
279 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
280 1.1 simonb } while (gen == 0 || gen != th->th_generation);
281 1.1 simonb }
282 1.1 simonb
283 1.1 simonb void
284 1.1 simonb nanouptime(struct timespec *tsp)
285 1.1 simonb {
286 1.1 simonb struct bintime bt;
287 1.1 simonb
288 1.2 kardel nnanouptime.ev_count++;
289 1.1 simonb binuptime(&bt);
290 1.1 simonb bintime2timespec(&bt, tsp);
291 1.1 simonb }
292 1.1 simonb
293 1.1 simonb void
294 1.1 simonb microuptime(struct timeval *tvp)
295 1.1 simonb {
296 1.1 simonb struct bintime bt;
297 1.1 simonb
298 1.2 kardel nmicrouptime.ev_count++;
299 1.1 simonb binuptime(&bt);
300 1.1 simonb bintime2timeval(&bt, tvp);
301 1.1 simonb }
302 1.1 simonb
303 1.1 simonb void
304 1.1 simonb bintime(struct bintime *bt)
305 1.1 simonb {
306 1.1 simonb
307 1.2 kardel nbintime.ev_count++;
308 1.1 simonb binuptime(bt);
309 1.4 kardel bintime_add(bt, &timebasebin);
310 1.1 simonb }
311 1.1 simonb
312 1.1 simonb void
313 1.1 simonb nanotime(struct timespec *tsp)
314 1.1 simonb {
315 1.1 simonb struct bintime bt;
316 1.1 simonb
317 1.2 kardel nnanotime.ev_count++;
318 1.1 simonb bintime(&bt);
319 1.1 simonb bintime2timespec(&bt, tsp);
320 1.1 simonb }
321 1.1 simonb
322 1.1 simonb void
323 1.1 simonb microtime(struct timeval *tvp)
324 1.1 simonb {
325 1.1 simonb struct bintime bt;
326 1.1 simonb
327 1.2 kardel nmicrotime.ev_count++;
328 1.1 simonb bintime(&bt);
329 1.1 simonb bintime2timeval(&bt, tvp);
330 1.1 simonb }
331 1.1 simonb
332 1.1 simonb void
333 1.1 simonb getbinuptime(struct bintime *bt)
334 1.1 simonb {
335 1.1 simonb struct timehands *th;
336 1.1 simonb u_int gen;
337 1.1 simonb
338 1.2 kardel ngetbinuptime.ev_count++;
339 1.1 simonb do {
340 1.1 simonb th = timehands;
341 1.1 simonb gen = th->th_generation;
342 1.1 simonb *bt = th->th_offset;
343 1.1 simonb } while (gen == 0 || gen != th->th_generation);
344 1.1 simonb }
345 1.1 simonb
346 1.1 simonb void
347 1.1 simonb getnanouptime(struct timespec *tsp)
348 1.1 simonb {
349 1.1 simonb struct timehands *th;
350 1.1 simonb u_int gen;
351 1.1 simonb
352 1.2 kardel ngetnanouptime.ev_count++;
353 1.1 simonb do {
354 1.1 simonb th = timehands;
355 1.1 simonb gen = th->th_generation;
356 1.1 simonb bintime2timespec(&th->th_offset, tsp);
357 1.1 simonb } while (gen == 0 || gen != th->th_generation);
358 1.1 simonb }
359 1.1 simonb
360 1.1 simonb void
361 1.1 simonb getmicrouptime(struct timeval *tvp)
362 1.1 simonb {
363 1.1 simonb struct timehands *th;
364 1.1 simonb u_int gen;
365 1.1 simonb
366 1.2 kardel ngetmicrouptime.ev_count++;
367 1.1 simonb do {
368 1.1 simonb th = timehands;
369 1.1 simonb gen = th->th_generation;
370 1.1 simonb bintime2timeval(&th->th_offset, tvp);
371 1.1 simonb } while (gen == 0 || gen != th->th_generation);
372 1.1 simonb }
373 1.1 simonb
374 1.1 simonb void
375 1.1 simonb getbintime(struct bintime *bt)
376 1.1 simonb {
377 1.1 simonb struct timehands *th;
378 1.1 simonb u_int gen;
379 1.1 simonb
380 1.2 kardel ngetbintime.ev_count++;
381 1.1 simonb do {
382 1.1 simonb th = timehands;
383 1.1 simonb gen = th->th_generation;
384 1.1 simonb *bt = th->th_offset;
385 1.1 simonb } while (gen == 0 || gen != th->th_generation);
386 1.4 kardel bintime_add(bt, &timebasebin);
387 1.1 simonb }
388 1.1 simonb
389 1.1 simonb void
390 1.1 simonb getnanotime(struct timespec *tsp)
391 1.1 simonb {
392 1.1 simonb struct timehands *th;
393 1.1 simonb u_int gen;
394 1.1 simonb
395 1.2 kardel ngetnanotime.ev_count++;
396 1.1 simonb do {
397 1.1 simonb th = timehands;
398 1.1 simonb gen = th->th_generation;
399 1.1 simonb *tsp = th->th_nanotime;
400 1.1 simonb } while (gen == 0 || gen != th->th_generation);
401 1.1 simonb }
402 1.1 simonb
403 1.1 simonb void
404 1.1 simonb getmicrotime(struct timeval *tvp)
405 1.1 simonb {
406 1.1 simonb struct timehands *th;
407 1.1 simonb u_int gen;
408 1.1 simonb
409 1.2 kardel ngetmicrotime.ev_count++;
410 1.1 simonb do {
411 1.1 simonb th = timehands;
412 1.1 simonb gen = th->th_generation;
413 1.1 simonb *tvp = th->th_microtime;
414 1.1 simonb } while (gen == 0 || gen != th->th_generation);
415 1.1 simonb }
416 1.1 simonb
417 1.1 simonb /*
418 1.1 simonb * Initialize a new timecounter and possibly use it.
419 1.1 simonb */
420 1.1 simonb void
421 1.1 simonb tc_init(struct timecounter *tc)
422 1.1 simonb {
423 1.1 simonb u_int u;
424 1.11 simonb int s;
425 1.1 simonb
426 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
427 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
428 1.1 simonb u *= 11;
429 1.1 simonb u /= 10;
430 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
431 1.1 simonb tc->tc_quality = -2000;
432 1.18 ad aprint_verbose(
433 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
434 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
435 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
436 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
437 1.18 ad aprint_verbose(
438 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
439 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
440 1.7 bjh21 tc->tc_quality);
441 1.1 simonb }
442 1.1 simonb
443 1.22 ad mutex_enter(&time_lock);
444 1.22 ad s = splsched();
445 1.1 simonb tc->tc_next = timecounters;
446 1.1 simonb timecounters = tc;
447 1.1 simonb /*
448 1.1 simonb * Never automatically use a timecounter with negative quality.
449 1.1 simonb * Even though we run on the dummy counter, switching here may be
450 1.1 simonb * worse since this timecounter may not be monotonous.
451 1.1 simonb */
452 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
453 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
454 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
455 1.22 ad (void)tc->tc_get_timecount(tc);
456 1.22 ad (void)tc->tc_get_timecount(tc);
457 1.22 ad timecounter = tc;
458 1.22 ad tc_windup();
459 1.22 ad }
460 1.11 simonb splx(s);
461 1.22 ad mutex_exit(&time_lock);
462 1.1 simonb }
463 1.1 simonb
464 1.1 simonb /* Report the frequency of the current timecounter. */
465 1.1 simonb u_int64_t
466 1.1 simonb tc_getfrequency(void)
467 1.1 simonb {
468 1.1 simonb
469 1.1 simonb return (timehands->th_counter->tc_frequency);
470 1.1 simonb }
471 1.1 simonb
472 1.1 simonb /*
473 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
474 1.1 simonb * when we booted.
475 1.1 simonb * XXX: not locked.
476 1.1 simonb */
477 1.1 simonb void
478 1.1 simonb tc_setclock(struct timespec *ts)
479 1.1 simonb {
480 1.1 simonb struct timespec ts2;
481 1.1 simonb struct bintime bt, bt2;
482 1.1 simonb
483 1.2 kardel nsetclock.ev_count++;
484 1.1 simonb binuptime(&bt2);
485 1.1 simonb timespec2bintime(ts, &bt);
486 1.1 simonb bintime_sub(&bt, &bt2);
487 1.4 kardel bintime_add(&bt2, &timebasebin);
488 1.4 kardel timebasebin = bt;
489 1.1 simonb
490 1.1 simonb /* XXX fiddle all the little crinkly bits around the fiords... */
491 1.1 simonb tc_windup();
492 1.1 simonb if (timestepwarnings) {
493 1.1 simonb bintime2timespec(&bt2, &ts2);
494 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
495 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
496 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
497 1.1 simonb }
498 1.1 simonb }
499 1.1 simonb
500 1.1 simonb /*
501 1.1 simonb * Initialize the next struct timehands in the ring and make
502 1.1 simonb * it the active timehands. Along the way we might switch to a different
503 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
504 1.1 simonb */
505 1.1 simonb static void
506 1.1 simonb tc_windup(void)
507 1.1 simonb {
508 1.1 simonb struct bintime bt;
509 1.1 simonb struct timehands *th, *tho;
510 1.1 simonb u_int64_t scale;
511 1.1 simonb u_int delta, ncount, ogen;
512 1.13 kardel int i, s_update;
513 1.1 simonb time_t t;
514 1.1 simonb
515 1.13 kardel s_update = 0;
516 1.20 ad
517 1.1 simonb /*
518 1.1 simonb * Make the next timehands a copy of the current one, but do not
519 1.1 simonb * overwrite the generation or next pointer. While we update
520 1.20 ad * the contents, the generation must be zero. Ensure global
521 1.20 ad * visibility of the generation before proceeding.
522 1.1 simonb */
523 1.1 simonb tho = timehands;
524 1.1 simonb th = tho->th_next;
525 1.1 simonb ogen = th->th_generation;
526 1.1 simonb th->th_generation = 0;
527 1.20 ad mb_write();
528 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
529 1.1 simonb
530 1.1 simonb /*
531 1.1 simonb * Capture a timecounter delta on the current timecounter and if
532 1.1 simonb * changing timecounters, a counter value from the new timecounter.
533 1.1 simonb * Update the offset fields accordingly.
534 1.1 simonb */
535 1.1 simonb delta = tc_delta(th);
536 1.1 simonb if (th->th_counter != timecounter)
537 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
538 1.1 simonb else
539 1.1 simonb ncount = 0;
540 1.1 simonb th->th_offset_count += delta;
541 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
542 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
543 1.1 simonb
544 1.1 simonb /*
545 1.1 simonb * Hardware latching timecounters may not generate interrupts on
546 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
547 1.1 simonb * the hardware might capture a count which is later than the one we
548 1.1 simonb * got above, and therefore possibly in the next NTP second which might
549 1.1 simonb * have a different rate than the current NTP second. It doesn't
550 1.1 simonb * matter in practice.
551 1.1 simonb */
552 1.1 simonb if (tho->th_counter->tc_poll_pps)
553 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
554 1.1 simonb
555 1.1 simonb /*
556 1.1 simonb * Deal with NTP second processing. The for loop normally
557 1.1 simonb * iterates at most once, but in extreme situations it might
558 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
559 1.1 simonb * At boot, the time step can be large when the TOD hardware
560 1.1 simonb * has been read, so on really large steps, we call
561 1.1 simonb * ntp_update_second only twice. We need to call it twice in
562 1.1 simonb * case we missed a leap second.
563 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
564 1.2 kardel * the adjustment resulting from adjtime() calls.
565 1.1 simonb */
566 1.1 simonb bt = th->th_offset;
567 1.4 kardel bintime_add(&bt, &timebasebin);
568 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
569 1.1 simonb if (i > LARGE_STEP)
570 1.1 simonb i = 2;
571 1.1 simonb for (; i > 0; i--) {
572 1.1 simonb t = bt.sec;
573 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
574 1.13 kardel s_update = 1;
575 1.1 simonb if (bt.sec != t)
576 1.4 kardel timebasebin.sec += bt.sec - t;
577 1.1 simonb }
578 1.2 kardel
579 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
580 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
581 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
582 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
583 1.1 simonb
584 1.1 simonb /* Now is a good time to change timecounters. */
585 1.1 simonb if (th->th_counter != timecounter) {
586 1.1 simonb th->th_counter = timecounter;
587 1.1 simonb th->th_offset_count = ncount;
588 1.13 kardel s_update = 1;
589 1.1 simonb }
590 1.1 simonb
591 1.1 simonb /*-
592 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
593 1.1 simonb * fractions of a second per period of the hardware counter, taking
594 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
595 1.1 simonb * processing provides us with.
596 1.1 simonb *
597 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
598 1.1 simonb * fraction and we want 64 bit binary fraction of second:
599 1.1 simonb *
600 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
601 1.1 simonb *
602 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
603 1.1 simonb * we can only multiply by about 850 without overflowing, but that
604 1.1 simonb * leaves suitably precise fractions for multiply before divide.
605 1.1 simonb *
606 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
607 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
608 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
609 1.1 simonb *
610 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
611 1.1 simonb * to the goddess of code clarity.
612 1.1 simonb *
613 1.1 simonb */
614 1.13 kardel if (s_update) {
615 1.13 kardel scale = (u_int64_t)1 << 63;
616 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
617 1.13 kardel scale /= th->th_counter->tc_frequency;
618 1.13 kardel th->th_scale = scale * 2;
619 1.13 kardel }
620 1.1 simonb /*
621 1.1 simonb * Now that the struct timehands is again consistent, set the new
622 1.20 ad * generation number, making sure to not make it zero. Ensure
623 1.20 ad * changes are globally visible before changing.
624 1.1 simonb */
625 1.1 simonb if (++ogen == 0)
626 1.1 simonb ogen = 1;
627 1.20 ad mb_write();
628 1.1 simonb th->th_generation = ogen;
629 1.1 simonb
630 1.20 ad /*
631 1.20 ad * Go live with the new struct timehands. Ensure changes are
632 1.20 ad * globally visible before changing.
633 1.20 ad */
634 1.1 simonb time_second = th->th_microtime.tv_sec;
635 1.1 simonb time_uptime = th->th_offset.sec;
636 1.20 ad mb_write();
637 1.1 simonb timehands = th;
638 1.24 ad
639 1.24 ad /*
640 1.24 ad * Force users of the old timehand to move on. This is
641 1.24 ad * necessary for MP systems; we need to ensure that the
642 1.24 ad * consumers will move away from the old timehand before
643 1.24 ad * we begin updating it again when we eventually wrap
644 1.24 ad * around.
645 1.24 ad */
646 1.24 ad if (++tho->th_generation == 0)
647 1.24 ad tho->th_generation = 1;
648 1.1 simonb }
649 1.1 simonb
650 1.1 simonb /*
651 1.1 simonb * RFC 2783 PPS-API implementation.
652 1.1 simonb */
653 1.1 simonb
654 1.1 simonb int
655 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
656 1.1 simonb {
657 1.1 simonb pps_params_t *app;
658 1.2 kardel pps_info_t *pipi;
659 1.1 simonb #ifdef PPS_SYNC
660 1.2 kardel int *epi;
661 1.1 simonb #endif
662 1.1 simonb
663 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
664 1.1 simonb switch (cmd) {
665 1.1 simonb case PPS_IOC_CREATE:
666 1.1 simonb return (0);
667 1.1 simonb case PPS_IOC_DESTROY:
668 1.1 simonb return (0);
669 1.1 simonb case PPS_IOC_SETPARAMS:
670 1.1 simonb app = (pps_params_t *)data;
671 1.1 simonb if (app->mode & ~pps->ppscap)
672 1.1 simonb return (EINVAL);
673 1.1 simonb pps->ppsparam = *app;
674 1.1 simonb return (0);
675 1.1 simonb case PPS_IOC_GETPARAMS:
676 1.1 simonb app = (pps_params_t *)data;
677 1.1 simonb *app = pps->ppsparam;
678 1.1 simonb app->api_version = PPS_API_VERS_1;
679 1.1 simonb return (0);
680 1.1 simonb case PPS_IOC_GETCAP:
681 1.1 simonb *(int*)data = pps->ppscap;
682 1.1 simonb return (0);
683 1.1 simonb case PPS_IOC_FETCH:
684 1.2 kardel pipi = (pps_info_t *)data;
685 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
686 1.2 kardel *pipi = pps->ppsinfo;
687 1.1 simonb return (0);
688 1.1 simonb case PPS_IOC_KCBIND:
689 1.1 simonb #ifdef PPS_SYNC
690 1.2 kardel epi = (int *)data;
691 1.1 simonb /* XXX Only root should be able to do this */
692 1.2 kardel if (*epi & ~pps->ppscap)
693 1.1 simonb return (EINVAL);
694 1.2 kardel pps->kcmode = *epi;
695 1.1 simonb return (0);
696 1.1 simonb #else
697 1.1 simonb return (EOPNOTSUPP);
698 1.1 simonb #endif
699 1.1 simonb default:
700 1.2 kardel return (EPASSTHROUGH);
701 1.1 simonb }
702 1.1 simonb }
703 1.1 simonb
704 1.1 simonb void
705 1.1 simonb pps_init(struct pps_state *pps)
706 1.1 simonb {
707 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
708 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
709 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
710 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
711 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
712 1.1 simonb }
713 1.1 simonb
714 1.1 simonb void
715 1.1 simonb pps_capture(struct pps_state *pps)
716 1.1 simonb {
717 1.1 simonb struct timehands *th;
718 1.1 simonb
719 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
720 1.1 simonb th = timehands;
721 1.1 simonb pps->capgen = th->th_generation;
722 1.1 simonb pps->capth = th;
723 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
724 1.1 simonb if (pps->capgen != th->th_generation)
725 1.1 simonb pps->capgen = 0;
726 1.1 simonb }
727 1.1 simonb
728 1.1 simonb void
729 1.1 simonb pps_event(struct pps_state *pps, int event)
730 1.1 simonb {
731 1.1 simonb struct bintime bt;
732 1.1 simonb struct timespec ts, *tsp, *osp;
733 1.1 simonb u_int tcount, *pcount;
734 1.1 simonb int foff, fhard;
735 1.1 simonb pps_seq_t *pseq;
736 1.1 simonb
737 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
738 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
739 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
740 1.1 simonb return;
741 1.1 simonb
742 1.1 simonb /* Things would be easier with arrays. */
743 1.1 simonb if (event == PPS_CAPTUREASSERT) {
744 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
745 1.1 simonb osp = &pps->ppsparam.assert_offset;
746 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
747 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
748 1.1 simonb pcount = &pps->ppscount[0];
749 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
750 1.1 simonb } else {
751 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
752 1.1 simonb osp = &pps->ppsparam.clear_offset;
753 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
754 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
755 1.1 simonb pcount = &pps->ppscount[1];
756 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
757 1.1 simonb }
758 1.1 simonb
759 1.1 simonb /*
760 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
761 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
762 1.1 simonb */
763 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
764 1.1 simonb pps->ppstc = pps->capth->th_counter;
765 1.1 simonb *pcount = pps->capcount;
766 1.1 simonb pps->ppscount[2] = pps->capcount;
767 1.1 simonb return;
768 1.1 simonb }
769 1.1 simonb
770 1.1 simonb /* Convert the count to a timespec. */
771 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
772 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
773 1.1 simonb bt = pps->capth->th_offset;
774 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
775 1.4 kardel bintime_add(&bt, &timebasebin);
776 1.1 simonb bintime2timespec(&bt, &ts);
777 1.1 simonb
778 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
779 1.1 simonb if (pps->capgen != pps->capth->th_generation)
780 1.1 simonb return;
781 1.1 simonb
782 1.1 simonb *pcount = pps->capcount;
783 1.1 simonb (*pseq)++;
784 1.1 simonb *tsp = ts;
785 1.1 simonb
786 1.1 simonb if (foff) {
787 1.2 kardel timespecadd(tsp, osp, tsp);
788 1.1 simonb if (tsp->tv_nsec < 0) {
789 1.1 simonb tsp->tv_nsec += 1000000000;
790 1.1 simonb tsp->tv_sec -= 1;
791 1.1 simonb }
792 1.1 simonb }
793 1.1 simonb #ifdef PPS_SYNC
794 1.1 simonb if (fhard) {
795 1.1 simonb u_int64_t scale;
796 1.1 simonb
797 1.1 simonb /*
798 1.1 simonb * Feed the NTP PLL/FLL.
799 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
800 1.1 simonb * elapsed since the previous event.
801 1.1 simonb */
802 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
803 1.1 simonb pps->ppscount[2] = pps->capcount;
804 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
805 1.1 simonb scale = (u_int64_t)1 << 63;
806 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
807 1.1 simonb scale *= 2;
808 1.1 simonb bt.sec = 0;
809 1.1 simonb bt.frac = 0;
810 1.1 simonb bintime_addx(&bt, scale * tcount);
811 1.1 simonb bintime2timespec(&bt, &ts);
812 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
813 1.1 simonb }
814 1.1 simonb #endif
815 1.1 simonb }
816 1.1 simonb
817 1.1 simonb /*
818 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
819 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
820 1.1 simonb * used by the get*() family of functions, so their precision depends on
821 1.1 simonb * the update frequency.
822 1.1 simonb */
823 1.1 simonb
824 1.1 simonb static int tc_tick;
825 1.1 simonb
826 1.1 simonb void
827 1.1 simonb tc_ticktock(void)
828 1.1 simonb {
829 1.1 simonb static int count;
830 1.1 simonb
831 1.1 simonb if (++count < tc_tick)
832 1.1 simonb return;
833 1.1 simonb count = 0;
834 1.1 simonb tc_windup();
835 1.1 simonb }
836 1.1 simonb
837 1.2 kardel void
838 1.2 kardel inittimecounter(void)
839 1.1 simonb {
840 1.1 simonb u_int p;
841 1.1 simonb
842 1.1 simonb /*
843 1.1 simonb * Set the initial timeout to
844 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
845 1.1 simonb * People should probably not use the sysctl to set the timeout
846 1.1 simonb * to smaller than its inital value, since that value is the
847 1.1 simonb * smallest reasonable one. If they want better timestamps they
848 1.1 simonb * should use the non-"get"* functions.
849 1.1 simonb */
850 1.1 simonb if (hz > 1000)
851 1.1 simonb tc_tick = (hz + 500) / 1000;
852 1.1 simonb else
853 1.1 simonb tc_tick = 1;
854 1.1 simonb p = (tc_tick * 1000000) / hz;
855 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
856 1.18 ad p / 1000, p % 1000);
857 1.1 simonb
858 1.1 simonb /* warm up new timecounter (again) and get rolling. */
859 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
860 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
861 1.1 simonb }
862 1.1 simonb
863 1.2 kardel #endif /* __HAVE_TIMECOUNTER */
864