Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.27
      1  1.27        ad /* $NetBSD: kern_tc.c,v 1.27 2007/11/30 23:05:44 ad Exp $ */
      2   1.2    kardel 
      3   1.1    simonb /*-
      4   1.1    simonb  * ----------------------------------------------------------------------------
      5   1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6   1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7   1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8   1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9   1.2    kardel  * ---------------------------------------------------------------------------
     10   1.1    simonb  */
     11   1.1    simonb 
     12   1.1    simonb #include <sys/cdefs.h>
     13   1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.27        ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.27 2007/11/30 23:05:44 ad Exp $");
     15   1.1    simonb 
     16   1.1    simonb #include "opt_ntp.h"
     17   1.1    simonb 
     18   1.1    simonb #include <sys/param.h>
     19   1.2    kardel #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20   1.1    simonb #include <sys/kernel.h>
     21   1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22   1.1    simonb #include <sys/sysctl.h>
     23   1.1    simonb #include <sys/syslog.h>
     24   1.1    simonb #include <sys/systm.h>
     25   1.1    simonb #include <sys/timepps.h>
     26   1.1    simonb #include <sys/timetc.h>
     27   1.1    simonb #include <sys/timex.h>
     28   1.2    kardel #include <sys/evcnt.h>
     29   1.2    kardel #include <sys/kauth.h>
     30  1.25        ad #include <sys/mutex.h>
     31  1.27        ad #include <sys/atomic.h>
     32   1.2    kardel 
     33   1.2    kardel /*
     34   1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     35   1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     36   1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     37   1.1    simonb  * forever when the time step is large.
     38   1.1    simonb  */
     39   1.1    simonb #define LARGE_STEP	200
     40   1.1    simonb 
     41   1.1    simonb /*
     42   1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     43   1.1    simonb  * in the air.  This allows the console and other early stuff to use
     44   1.1    simonb  * time services.
     45   1.1    simonb  */
     46   1.1    simonb 
     47   1.1    simonb static u_int
     48  1.16      yamt dummy_get_timecount(struct timecounter *tc)
     49   1.1    simonb {
     50   1.1    simonb 	static u_int now;
     51   1.1    simonb 
     52   1.1    simonb 	return (++now);
     53   1.1    simonb }
     54   1.1    simonb 
     55   1.1    simonb static struct timecounter dummy_timecounter = {
     56   1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     57   1.1    simonb };
     58   1.1    simonb 
     59   1.1    simonb struct timehands {
     60   1.1    simonb 	/* These fields must be initialized by the driver. */
     61   1.1    simonb 	struct timecounter	*th_counter;
     62   1.1    simonb 	int64_t			th_adjustment;
     63   1.1    simonb 	u_int64_t		th_scale;
     64   1.1    simonb 	u_int	 		th_offset_count;
     65   1.1    simonb 	struct bintime		th_offset;
     66   1.1    simonb 	struct timeval		th_microtime;
     67   1.1    simonb 	struct timespec		th_nanotime;
     68   1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     69   1.1    simonb 	volatile u_int		th_generation;
     70   1.1    simonb 	struct timehands	*th_next;
     71   1.1    simonb };
     72   1.1    simonb 
     73   1.1    simonb static struct timehands th0;
     74  1.10  christos static struct timehands th9 = { .th_next = &th0, };
     75  1.10  christos static struct timehands th8 = { .th_next = &th9, };
     76  1.10  christos static struct timehands th7 = { .th_next = &th8, };
     77  1.10  christos static struct timehands th6 = { .th_next = &th7, };
     78  1.10  christos static struct timehands th5 = { .th_next = &th6, };
     79  1.10  christos static struct timehands th4 = { .th_next = &th5, };
     80  1.10  christos static struct timehands th3 = { .th_next = &th4, };
     81  1.10  christos static struct timehands th2 = { .th_next = &th3, };
     82  1.10  christos static struct timehands th1 = { .th_next = &th2, };
     83   1.1    simonb static struct timehands th0 = {
     84  1.10  christos 	.th_counter = &dummy_timecounter,
     85  1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
     86  1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
     87  1.10  christos 	.th_generation = 1,
     88  1.10  christos 	.th_next = &th1,
     89   1.1    simonb };
     90   1.1    simonb 
     91   1.1    simonb static struct timehands *volatile timehands = &th0;
     92   1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     93   1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     94   1.1    simonb 
     95   1.1    simonb time_t time_second = 1;
     96   1.1    simonb time_t time_uptime = 1;
     97   1.1    simonb 
     98   1.4    kardel static struct bintime timebasebin;
     99   1.1    simonb 
    100   1.1    simonb static int timestepwarnings;
    101   1.2    kardel 
    102  1.25        ad extern kmutex_t time_lock;
    103  1.25        ad 
    104   1.2    kardel #ifdef __FreeBSD__
    105   1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    106   1.1    simonb     &timestepwarnings, 0, "");
    107   1.2    kardel #endif /* __FreeBSD__ */
    108   1.2    kardel 
    109   1.2    kardel /*
    110   1.2    kardel  * sysctl helper routine for kern.timercounter.current
    111   1.2    kardel  */
    112   1.2    kardel static int
    113   1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    114   1.2    kardel {
    115   1.2    kardel 	struct sysctlnode node;
    116   1.2    kardel 	int error;
    117   1.2    kardel 	char newname[MAX_TCNAMELEN];
    118   1.2    kardel 	struct timecounter *newtc, *tc;
    119   1.2    kardel 
    120   1.2    kardel 	tc = timecounter;
    121   1.2    kardel 
    122   1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    123   1.2    kardel 
    124   1.2    kardel 	node = *rnode;
    125   1.2    kardel 	node.sysctl_data = newname;
    126   1.2    kardel 	node.sysctl_size = sizeof(newname);
    127   1.2    kardel 
    128   1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    129   1.2    kardel 
    130   1.2    kardel 	if (error ||
    131   1.2    kardel 	    newp == NULL ||
    132   1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    133   1.2    kardel 		return error;
    134   1.1    simonb 
    135  1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    136  1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    137  1.26      elad 	    NULL, NULL)) != 0)
    138   1.2    kardel 		return (error);
    139   1.2    kardel 
    140  1.22        ad 	if (!cold)
    141  1.22        ad 		mutex_enter(&time_lock);
    142  1.23        ad 	error = EINVAL;
    143   1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    144   1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    145   1.2    kardel 			continue;
    146   1.2    kardel 		/* Warm up new timecounter. */
    147   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    148   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    149   1.2    kardel 		timecounter = newtc;
    150  1.22        ad 		error = 0;
    151  1.23        ad 		break;
    152  1.23        ad 	}
    153  1.22        ad 	if (!cold)
    154  1.22        ad 		mutex_exit(&time_lock);
    155  1.22        ad 	return error;
    156   1.2    kardel }
    157   1.2    kardel 
    158   1.2    kardel static int
    159   1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    160   1.2    kardel {
    161   1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    162   1.2    kardel 	char *where = oldp;
    163   1.2    kardel 	const char *spc;
    164   1.2    kardel 	struct timecounter *tc;
    165   1.2    kardel 	size_t needed, left, slen;
    166   1.2    kardel 	int error;
    167   1.2    kardel 
    168   1.2    kardel 	if (newp != NULL)
    169   1.2    kardel 		return (EPERM);
    170   1.2    kardel 	if (namelen != 0)
    171   1.2    kardel 		return (EINVAL);
    172   1.2    kardel 
    173   1.2    kardel 	spc = "";
    174   1.2    kardel 	error = 0;
    175   1.2    kardel 	needed = 0;
    176   1.2    kardel 	left = *oldlenp;
    177   1.2    kardel 
    178  1.22        ad 	mutex_enter(&time_lock);
    179   1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    180   1.2    kardel 		if (where == NULL) {
    181   1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    182   1.2    kardel 		} else {
    183   1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    184   1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    185   1.2    kardel 					tc->tc_frequency);
    186   1.2    kardel 			if (left < slen + 1)
    187   1.2    kardel 				break;
    188   1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    189  1.22        ad 			/* XXX copyout with held lock. */
    190   1.2    kardel 			error = copyout(buf, where, slen + 1);
    191   1.2    kardel 			spc = " ";
    192   1.2    kardel 			where += slen;
    193   1.2    kardel 			needed += slen;
    194   1.2    kardel 			left -= slen;
    195   1.2    kardel 		}
    196   1.2    kardel 	}
    197  1.22        ad 	mutex_exit(&time_lock);
    198   1.2    kardel 
    199   1.2    kardel 	*oldlenp = needed;
    200   1.2    kardel 	return (error);
    201   1.2    kardel }
    202   1.2    kardel 
    203   1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    204   1.2    kardel {
    205   1.2    kardel 	const struct sysctlnode *node;
    206   1.2    kardel 
    207   1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    208   1.2    kardel 		       CTLFLAG_PERMANENT,
    209   1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    210   1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    211   1.2    kardel 		       NULL, 0, NULL, 0,
    212   1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213   1.2    kardel 
    214   1.2    kardel 	if (node != NULL) {
    215   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    216   1.2    kardel 			       CTLFLAG_PERMANENT,
    217   1.2    kardel 			       CTLTYPE_STRING, "choice",
    218   1.2    kardel 			       SYSCTL_DESCR("available counters"),
    219   1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    220   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    221   1.2    kardel 
    222   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    223   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    224   1.2    kardel 			       CTLTYPE_STRING, "hardware",
    225   1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    226   1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    227   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    228   1.2    kardel 
    229   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    230   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231   1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    232   1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    233   1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    234   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    235   1.2    kardel 	}
    236   1.2    kardel }
    237   1.2    kardel 
    238   1.2    kardel #define	TC_STATS(name)							\
    239   1.2    kardel static struct evcnt n##name =						\
    240   1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    241   1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    242   1.2    kardel 
    243   1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    244   1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    245   1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    246   1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    247   1.2    kardel TC_STATS(setclock);
    248   1.1    simonb 
    249   1.1    simonb #undef TC_STATS
    250   1.1    simonb 
    251   1.1    simonb static void tc_windup(void);
    252   1.1    simonb 
    253   1.1    simonb /*
    254   1.1    simonb  * Return the difference between the timehands' counter value now and what
    255   1.1    simonb  * was when we copied it to the timehands' offset_count.
    256   1.1    simonb  */
    257   1.1    simonb static __inline u_int
    258   1.1    simonb tc_delta(struct timehands *th)
    259   1.1    simonb {
    260   1.1    simonb 	struct timecounter *tc;
    261   1.1    simonb 
    262   1.1    simonb 	tc = th->th_counter;
    263   1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    264   1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    265   1.1    simonb }
    266   1.1    simonb 
    267   1.1    simonb /*
    268   1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    269   1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    270  1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    271   1.1    simonb  */
    272   1.1    simonb 
    273   1.1    simonb void
    274   1.1    simonb binuptime(struct bintime *bt)
    275   1.1    simonb {
    276   1.1    simonb 	struct timehands *th;
    277   1.1    simonb 	u_int gen;
    278   1.1    simonb 
    279   1.2    kardel 	nbinuptime.ev_count++;
    280   1.1    simonb 	do {
    281   1.1    simonb 		th = timehands;
    282   1.1    simonb 		gen = th->th_generation;
    283   1.1    simonb 		*bt = th->th_offset;
    284   1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    285   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    286   1.1    simonb }
    287   1.1    simonb 
    288   1.1    simonb void
    289   1.1    simonb nanouptime(struct timespec *tsp)
    290   1.1    simonb {
    291   1.1    simonb 	struct bintime bt;
    292   1.1    simonb 
    293   1.2    kardel 	nnanouptime.ev_count++;
    294   1.1    simonb 	binuptime(&bt);
    295   1.1    simonb 	bintime2timespec(&bt, tsp);
    296   1.1    simonb }
    297   1.1    simonb 
    298   1.1    simonb void
    299   1.1    simonb microuptime(struct timeval *tvp)
    300   1.1    simonb {
    301   1.1    simonb 	struct bintime bt;
    302   1.1    simonb 
    303   1.2    kardel 	nmicrouptime.ev_count++;
    304   1.1    simonb 	binuptime(&bt);
    305   1.1    simonb 	bintime2timeval(&bt, tvp);
    306   1.1    simonb }
    307   1.1    simonb 
    308   1.1    simonb void
    309   1.1    simonb bintime(struct bintime *bt)
    310   1.1    simonb {
    311   1.1    simonb 
    312   1.2    kardel 	nbintime.ev_count++;
    313   1.1    simonb 	binuptime(bt);
    314   1.4    kardel 	bintime_add(bt, &timebasebin);
    315   1.1    simonb }
    316   1.1    simonb 
    317   1.1    simonb void
    318   1.1    simonb nanotime(struct timespec *tsp)
    319   1.1    simonb {
    320   1.1    simonb 	struct bintime bt;
    321   1.1    simonb 
    322   1.2    kardel 	nnanotime.ev_count++;
    323   1.1    simonb 	bintime(&bt);
    324   1.1    simonb 	bintime2timespec(&bt, tsp);
    325   1.1    simonb }
    326   1.1    simonb 
    327   1.1    simonb void
    328   1.1    simonb microtime(struct timeval *tvp)
    329   1.1    simonb {
    330   1.1    simonb 	struct bintime bt;
    331   1.1    simonb 
    332   1.2    kardel 	nmicrotime.ev_count++;
    333   1.1    simonb 	bintime(&bt);
    334   1.1    simonb 	bintime2timeval(&bt, tvp);
    335   1.1    simonb }
    336   1.1    simonb 
    337   1.1    simonb void
    338   1.1    simonb getbinuptime(struct bintime *bt)
    339   1.1    simonb {
    340   1.1    simonb 	struct timehands *th;
    341   1.1    simonb 	u_int gen;
    342   1.1    simonb 
    343   1.2    kardel 	ngetbinuptime.ev_count++;
    344   1.1    simonb 	do {
    345   1.1    simonb 		th = timehands;
    346   1.1    simonb 		gen = th->th_generation;
    347   1.1    simonb 		*bt = th->th_offset;
    348   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    349   1.1    simonb }
    350   1.1    simonb 
    351   1.1    simonb void
    352   1.1    simonb getnanouptime(struct timespec *tsp)
    353   1.1    simonb {
    354   1.1    simonb 	struct timehands *th;
    355   1.1    simonb 	u_int gen;
    356   1.1    simonb 
    357   1.2    kardel 	ngetnanouptime.ev_count++;
    358   1.1    simonb 	do {
    359   1.1    simonb 		th = timehands;
    360   1.1    simonb 		gen = th->th_generation;
    361   1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    362   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    363   1.1    simonb }
    364   1.1    simonb 
    365   1.1    simonb void
    366   1.1    simonb getmicrouptime(struct timeval *tvp)
    367   1.1    simonb {
    368   1.1    simonb 	struct timehands *th;
    369   1.1    simonb 	u_int gen;
    370   1.1    simonb 
    371   1.2    kardel 	ngetmicrouptime.ev_count++;
    372   1.1    simonb 	do {
    373   1.1    simonb 		th = timehands;
    374   1.1    simonb 		gen = th->th_generation;
    375   1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    376   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    377   1.1    simonb }
    378   1.1    simonb 
    379   1.1    simonb void
    380   1.1    simonb getbintime(struct bintime *bt)
    381   1.1    simonb {
    382   1.1    simonb 	struct timehands *th;
    383   1.1    simonb 	u_int gen;
    384   1.1    simonb 
    385   1.2    kardel 	ngetbintime.ev_count++;
    386   1.1    simonb 	do {
    387   1.1    simonb 		th = timehands;
    388   1.1    simonb 		gen = th->th_generation;
    389   1.1    simonb 		*bt = th->th_offset;
    390   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    391   1.4    kardel 	bintime_add(bt, &timebasebin);
    392   1.1    simonb }
    393   1.1    simonb 
    394   1.1    simonb void
    395   1.1    simonb getnanotime(struct timespec *tsp)
    396   1.1    simonb {
    397   1.1    simonb 	struct timehands *th;
    398   1.1    simonb 	u_int gen;
    399   1.1    simonb 
    400   1.2    kardel 	ngetnanotime.ev_count++;
    401   1.1    simonb 	do {
    402   1.1    simonb 		th = timehands;
    403   1.1    simonb 		gen = th->th_generation;
    404   1.1    simonb 		*tsp = th->th_nanotime;
    405   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    406   1.1    simonb }
    407   1.1    simonb 
    408   1.1    simonb void
    409   1.1    simonb getmicrotime(struct timeval *tvp)
    410   1.1    simonb {
    411   1.1    simonb 	struct timehands *th;
    412   1.1    simonb 	u_int gen;
    413   1.1    simonb 
    414   1.2    kardel 	ngetmicrotime.ev_count++;
    415   1.1    simonb 	do {
    416   1.1    simonb 		th = timehands;
    417   1.1    simonb 		gen = th->th_generation;
    418   1.1    simonb 		*tvp = th->th_microtime;
    419   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    420   1.1    simonb }
    421   1.1    simonb 
    422   1.1    simonb /*
    423   1.1    simonb  * Initialize a new timecounter and possibly use it.
    424   1.1    simonb  */
    425   1.1    simonb void
    426   1.1    simonb tc_init(struct timecounter *tc)
    427   1.1    simonb {
    428   1.1    simonb 	u_int u;
    429  1.11    simonb 	int s;
    430   1.1    simonb 
    431   1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    432   1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    433   1.1    simonb 	u *= 11;
    434   1.1    simonb 	u /= 10;
    435   1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    436   1.1    simonb 		tc->tc_quality = -2000;
    437  1.18        ad 		aprint_verbose(
    438  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    439   1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    440  1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    441   1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    442  1.18        ad 		aprint_verbose(
    443  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    444  1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    445   1.7     bjh21 		    tc->tc_quality);
    446   1.1    simonb 	}
    447   1.1    simonb 
    448  1.22        ad 	mutex_enter(&time_lock);
    449  1.22        ad 	s = splsched();
    450   1.1    simonb 	tc->tc_next = timecounters;
    451   1.1    simonb 	timecounters = tc;
    452   1.1    simonb 	/*
    453   1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    454   1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    455   1.1    simonb 	 * worse since this timecounter may not be monotonous.
    456   1.1    simonb 	 */
    457  1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    458  1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    459  1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    460  1.22        ad 		(void)tc->tc_get_timecount(tc);
    461  1.22        ad 		(void)tc->tc_get_timecount(tc);
    462  1.22        ad 		timecounter = tc;
    463  1.22        ad 		tc_windup();
    464  1.22        ad 	}
    465  1.11    simonb 	splx(s);
    466  1.22        ad 	mutex_exit(&time_lock);
    467   1.1    simonb }
    468   1.1    simonb 
    469   1.1    simonb /* Report the frequency of the current timecounter. */
    470   1.1    simonb u_int64_t
    471   1.1    simonb tc_getfrequency(void)
    472   1.1    simonb {
    473   1.1    simonb 
    474   1.1    simonb 	return (timehands->th_counter->tc_frequency);
    475   1.1    simonb }
    476   1.1    simonb 
    477   1.1    simonb /*
    478   1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    479   1.1    simonb  * when we booted.
    480   1.1    simonb  * XXX: not locked.
    481   1.1    simonb  */
    482   1.1    simonb void
    483   1.1    simonb tc_setclock(struct timespec *ts)
    484   1.1    simonb {
    485   1.1    simonb 	struct timespec ts2;
    486   1.1    simonb 	struct bintime bt, bt2;
    487   1.1    simonb 
    488   1.2    kardel 	nsetclock.ev_count++;
    489   1.1    simonb 	binuptime(&bt2);
    490   1.1    simonb 	timespec2bintime(ts, &bt);
    491   1.1    simonb 	bintime_sub(&bt, &bt2);
    492   1.4    kardel 	bintime_add(&bt2, &timebasebin);
    493   1.4    kardel 	timebasebin = bt;
    494   1.1    simonb 
    495   1.1    simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    496   1.1    simonb 	tc_windup();
    497   1.1    simonb 	if (timestepwarnings) {
    498   1.1    simonb 		bintime2timespec(&bt2, &ts2);
    499   1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    500   1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    501   1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    502   1.1    simonb 	}
    503   1.1    simonb }
    504   1.1    simonb 
    505   1.1    simonb /*
    506   1.1    simonb  * Initialize the next struct timehands in the ring and make
    507   1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    508   1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    509   1.1    simonb  */
    510   1.1    simonb static void
    511   1.1    simonb tc_windup(void)
    512   1.1    simonb {
    513   1.1    simonb 	struct bintime bt;
    514   1.1    simonb 	struct timehands *th, *tho;
    515   1.1    simonb 	u_int64_t scale;
    516   1.1    simonb 	u_int delta, ncount, ogen;
    517  1.13    kardel 	int i, s_update;
    518   1.1    simonb 	time_t t;
    519   1.1    simonb 
    520  1.13    kardel 	s_update = 0;
    521  1.20        ad 
    522   1.1    simonb 	/*
    523   1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    524   1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    525  1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    526  1.20        ad 	 * visibility of the generation before proceeding.
    527   1.1    simonb 	 */
    528   1.1    simonb 	tho = timehands;
    529   1.1    simonb 	th = tho->th_next;
    530   1.1    simonb 	ogen = th->th_generation;
    531   1.1    simonb 	th->th_generation = 0;
    532  1.27        ad 	membar_producer();
    533   1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    534   1.1    simonb 
    535   1.1    simonb 	/*
    536   1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    537   1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    538   1.1    simonb 	 * Update the offset fields accordingly.
    539   1.1    simonb 	 */
    540   1.1    simonb 	delta = tc_delta(th);
    541   1.1    simonb 	if (th->th_counter != timecounter)
    542   1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    543   1.1    simonb 	else
    544   1.1    simonb 		ncount = 0;
    545   1.1    simonb 	th->th_offset_count += delta;
    546   1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    547   1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    548   1.1    simonb 
    549   1.1    simonb 	/*
    550   1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    551   1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    552   1.1    simonb 	 * the hardware might capture a count which is later than the one we
    553   1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    554   1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    555   1.1    simonb 	 * matter in practice.
    556   1.1    simonb 	 */
    557   1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    558   1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    559   1.1    simonb 
    560   1.1    simonb 	/*
    561   1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    562   1.1    simonb 	 * iterates at most once, but in extreme situations it might
    563   1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    564   1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    565   1.1    simonb 	 * has been read, so on really large steps, we call
    566   1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    567   1.1    simonb 	 * case we missed a leap second.
    568   1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    569   1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    570   1.1    simonb 	 */
    571   1.1    simonb 	bt = th->th_offset;
    572   1.4    kardel 	bintime_add(&bt, &timebasebin);
    573   1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    574   1.1    simonb 	if (i > LARGE_STEP)
    575   1.1    simonb 		i = 2;
    576   1.1    simonb 	for (; i > 0; i--) {
    577   1.1    simonb 		t = bt.sec;
    578   1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    579  1.13    kardel 		s_update = 1;
    580   1.1    simonb 		if (bt.sec != t)
    581   1.4    kardel 			timebasebin.sec += bt.sec - t;
    582   1.1    simonb 	}
    583   1.2    kardel 
    584   1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    585   1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    586   1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    587   1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    588   1.1    simonb 
    589   1.1    simonb 	/* Now is a good time to change timecounters. */
    590   1.1    simonb 	if (th->th_counter != timecounter) {
    591   1.1    simonb 		th->th_counter = timecounter;
    592   1.1    simonb 		th->th_offset_count = ncount;
    593  1.13    kardel 		s_update = 1;
    594   1.1    simonb 	}
    595   1.1    simonb 
    596   1.1    simonb 	/*-
    597   1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    598   1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    599   1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    600   1.1    simonb 	 * processing provides us with.
    601   1.1    simonb 	 *
    602   1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    603   1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    604   1.1    simonb 	 *
    605   1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    606   1.1    simonb 	 *
    607   1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    608   1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    609   1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    610   1.1    simonb 	 *
    611   1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    612   1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    613   1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    614   1.1    simonb  	 *
    615   1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    616   1.1    simonb 	 * to the goddess of code clarity.
    617   1.1    simonb 	 *
    618   1.1    simonb 	 */
    619  1.13    kardel 	if (s_update) {
    620  1.13    kardel 		scale = (u_int64_t)1 << 63;
    621  1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    622  1.13    kardel 		scale /= th->th_counter->tc_frequency;
    623  1.13    kardel 		th->th_scale = scale * 2;
    624  1.13    kardel 	}
    625   1.1    simonb 	/*
    626   1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    627  1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    628  1.20        ad 	 * changes are globally visible before changing.
    629   1.1    simonb 	 */
    630   1.1    simonb 	if (++ogen == 0)
    631   1.1    simonb 		ogen = 1;
    632  1.27        ad 	membar_producer();
    633   1.1    simonb 	th->th_generation = ogen;
    634   1.1    simonb 
    635  1.20        ad 	/*
    636  1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    637  1.20        ad 	 * globally visible before changing.
    638  1.20        ad 	 */
    639   1.1    simonb 	time_second = th->th_microtime.tv_sec;
    640   1.1    simonb 	time_uptime = th->th_offset.sec;
    641  1.27        ad 	membar_producer();
    642   1.1    simonb 	timehands = th;
    643  1.24        ad 
    644  1.24        ad 	/*
    645  1.24        ad 	 * Force users of the old timehand to move on.  This is
    646  1.24        ad 	 * necessary for MP systems; we need to ensure that the
    647  1.24        ad 	 * consumers will move away from the old timehand before
    648  1.24        ad 	 * we begin updating it again when we eventually wrap
    649  1.24        ad 	 * around.
    650  1.24        ad 	 */
    651  1.24        ad 	if (++tho->th_generation == 0)
    652  1.24        ad 		tho->th_generation = 1;
    653   1.1    simonb }
    654   1.1    simonb 
    655   1.1    simonb /*
    656   1.1    simonb  * RFC 2783 PPS-API implementation.
    657   1.1    simonb  */
    658   1.1    simonb 
    659   1.1    simonb int
    660  1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    661   1.1    simonb {
    662   1.1    simonb 	pps_params_t *app;
    663   1.2    kardel 	pps_info_t *pipi;
    664   1.1    simonb #ifdef PPS_SYNC
    665   1.2    kardel 	int *epi;
    666   1.1    simonb #endif
    667   1.1    simonb 
    668   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    669   1.1    simonb 	switch (cmd) {
    670   1.1    simonb 	case PPS_IOC_CREATE:
    671   1.1    simonb 		return (0);
    672   1.1    simonb 	case PPS_IOC_DESTROY:
    673   1.1    simonb 		return (0);
    674   1.1    simonb 	case PPS_IOC_SETPARAMS:
    675   1.1    simonb 		app = (pps_params_t *)data;
    676   1.1    simonb 		if (app->mode & ~pps->ppscap)
    677   1.1    simonb 			return (EINVAL);
    678   1.1    simonb 		pps->ppsparam = *app;
    679   1.1    simonb 		return (0);
    680   1.1    simonb 	case PPS_IOC_GETPARAMS:
    681   1.1    simonb 		app = (pps_params_t *)data;
    682   1.1    simonb 		*app = pps->ppsparam;
    683   1.1    simonb 		app->api_version = PPS_API_VERS_1;
    684   1.1    simonb 		return (0);
    685   1.1    simonb 	case PPS_IOC_GETCAP:
    686   1.1    simonb 		*(int*)data = pps->ppscap;
    687   1.1    simonb 		return (0);
    688   1.1    simonb 	case PPS_IOC_FETCH:
    689   1.2    kardel 		pipi = (pps_info_t *)data;
    690   1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    691   1.2    kardel 		*pipi = pps->ppsinfo;
    692   1.1    simonb 		return (0);
    693   1.1    simonb 	case PPS_IOC_KCBIND:
    694   1.1    simonb #ifdef PPS_SYNC
    695   1.2    kardel 		epi = (int *)data;
    696   1.1    simonb 		/* XXX Only root should be able to do this */
    697   1.2    kardel 		if (*epi & ~pps->ppscap)
    698   1.1    simonb 			return (EINVAL);
    699   1.2    kardel 		pps->kcmode = *epi;
    700   1.1    simonb 		return (0);
    701   1.1    simonb #else
    702   1.1    simonb 		return (EOPNOTSUPP);
    703   1.1    simonb #endif
    704   1.1    simonb 	default:
    705   1.2    kardel 		return (EPASSTHROUGH);
    706   1.1    simonb 	}
    707   1.1    simonb }
    708   1.1    simonb 
    709   1.1    simonb void
    710   1.1    simonb pps_init(struct pps_state *pps)
    711   1.1    simonb {
    712   1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    713   1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    714   1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    715   1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    716   1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    717   1.1    simonb }
    718   1.1    simonb 
    719   1.1    simonb void
    720   1.1    simonb pps_capture(struct pps_state *pps)
    721   1.1    simonb {
    722   1.1    simonb 	struct timehands *th;
    723   1.1    simonb 
    724   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    725   1.1    simonb 	th = timehands;
    726   1.1    simonb 	pps->capgen = th->th_generation;
    727   1.1    simonb 	pps->capth = th;
    728   1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    729   1.1    simonb 	if (pps->capgen != th->th_generation)
    730   1.1    simonb 		pps->capgen = 0;
    731   1.1    simonb }
    732   1.1    simonb 
    733   1.1    simonb void
    734   1.1    simonb pps_event(struct pps_state *pps, int event)
    735   1.1    simonb {
    736   1.1    simonb 	struct bintime bt;
    737   1.1    simonb 	struct timespec ts, *tsp, *osp;
    738   1.1    simonb 	u_int tcount, *pcount;
    739   1.1    simonb 	int foff, fhard;
    740   1.1    simonb 	pps_seq_t *pseq;
    741   1.1    simonb 
    742   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    743   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    744   1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    745   1.1    simonb 		return;
    746   1.1    simonb 
    747   1.1    simonb 	/* Things would be easier with arrays. */
    748   1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    749   1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    750   1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    751   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    752   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    753   1.1    simonb 		pcount = &pps->ppscount[0];
    754   1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    755   1.1    simonb 	} else {
    756   1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    757   1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    758   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    759   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    760   1.1    simonb 		pcount = &pps->ppscount[1];
    761   1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    762   1.1    simonb 	}
    763   1.1    simonb 
    764   1.1    simonb 	/*
    765   1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    766   1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    767   1.1    simonb 	 */
    768   1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    769   1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    770   1.1    simonb 		*pcount = pps->capcount;
    771   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    772   1.1    simonb 		return;
    773   1.1    simonb 	}
    774   1.1    simonb 
    775   1.1    simonb 	/* Convert the count to a timespec. */
    776   1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    777   1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    778   1.1    simonb 	bt = pps->capth->th_offset;
    779   1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    780   1.4    kardel 	bintime_add(&bt, &timebasebin);
    781   1.1    simonb 	bintime2timespec(&bt, &ts);
    782   1.1    simonb 
    783   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    784   1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    785   1.1    simonb 		return;
    786   1.1    simonb 
    787   1.1    simonb 	*pcount = pps->capcount;
    788   1.1    simonb 	(*pseq)++;
    789   1.1    simonb 	*tsp = ts;
    790   1.1    simonb 
    791   1.1    simonb 	if (foff) {
    792   1.2    kardel 		timespecadd(tsp, osp, tsp);
    793   1.1    simonb 		if (tsp->tv_nsec < 0) {
    794   1.1    simonb 			tsp->tv_nsec += 1000000000;
    795   1.1    simonb 			tsp->tv_sec -= 1;
    796   1.1    simonb 		}
    797   1.1    simonb 	}
    798   1.1    simonb #ifdef PPS_SYNC
    799   1.1    simonb 	if (fhard) {
    800   1.1    simonb 		u_int64_t scale;
    801   1.1    simonb 
    802   1.1    simonb 		/*
    803   1.1    simonb 		 * Feed the NTP PLL/FLL.
    804   1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    805   1.1    simonb 		 * elapsed since the previous event.
    806   1.1    simonb 		 */
    807   1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    808   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    809   1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    810   1.1    simonb 		scale = (u_int64_t)1 << 63;
    811   1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    812   1.1    simonb 		scale *= 2;
    813   1.1    simonb 		bt.sec = 0;
    814   1.1    simonb 		bt.frac = 0;
    815   1.1    simonb 		bintime_addx(&bt, scale * tcount);
    816   1.1    simonb 		bintime2timespec(&bt, &ts);
    817   1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    818   1.1    simonb 	}
    819   1.1    simonb #endif
    820   1.1    simonb }
    821   1.1    simonb 
    822   1.1    simonb /*
    823   1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    824   1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    825   1.1    simonb  * used by the get*() family of functions, so their precision depends on
    826   1.1    simonb  * the update frequency.
    827   1.1    simonb  */
    828   1.1    simonb 
    829   1.1    simonb static int tc_tick;
    830   1.1    simonb 
    831   1.1    simonb void
    832   1.1    simonb tc_ticktock(void)
    833   1.1    simonb {
    834   1.1    simonb 	static int count;
    835   1.1    simonb 
    836   1.1    simonb 	if (++count < tc_tick)
    837   1.1    simonb 		return;
    838   1.1    simonb 	count = 0;
    839   1.1    simonb 	tc_windup();
    840   1.1    simonb }
    841   1.1    simonb 
    842   1.2    kardel void
    843   1.2    kardel inittimecounter(void)
    844   1.1    simonb {
    845   1.1    simonb 	u_int p;
    846   1.1    simonb 
    847   1.1    simonb 	/*
    848   1.1    simonb 	 * Set the initial timeout to
    849   1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    850   1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    851   1.1    simonb 	 * to smaller than its inital value, since that value is the
    852   1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    853   1.1    simonb 	 * should use the non-"get"* functions.
    854   1.1    simonb 	 */
    855   1.1    simonb 	if (hz > 1000)
    856   1.1    simonb 		tc_tick = (hz + 500) / 1000;
    857   1.1    simonb 	else
    858   1.1    simonb 		tc_tick = 1;
    859   1.1    simonb 	p = (tc_tick * 1000000) / hz;
    860  1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    861  1.18        ad 	    p / 1000, p % 1000);
    862   1.1    simonb 
    863   1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    864   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    865   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    866   1.1    simonb }
    867   1.1    simonb 
    868   1.2    kardel #endif /* __HAVE_TIMECOUNTER */
    869