kern_tc.c revision 1.27.6.3 1 1.27.6.1 bouyer /* $NetBSD: kern_tc.c,v 1.27.6.3 2008/01/23 19:27:41 bouyer Exp $ */
2 1.2 kardel
3 1.1 simonb /*-
4 1.1 simonb * ----------------------------------------------------------------------------
5 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
6 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
8 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.2 kardel * ---------------------------------------------------------------------------
10 1.1 simonb */
11 1.1 simonb
12 1.1 simonb #include <sys/cdefs.h>
13 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.27.6.1 bouyer __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.27.6.3 2008/01/23 19:27:41 bouyer Exp $");
15 1.1 simonb
16 1.1 simonb #include "opt_ntp.h"
17 1.1 simonb
18 1.1 simonb #include <sys/param.h>
19 1.1 simonb #include <sys/kernel.h>
20 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
21 1.1 simonb #include <sys/sysctl.h>
22 1.1 simonb #include <sys/syslog.h>
23 1.1 simonb #include <sys/systm.h>
24 1.1 simonb #include <sys/timepps.h>
25 1.1 simonb #include <sys/timetc.h>
26 1.1 simonb #include <sys/timex.h>
27 1.2 kardel #include <sys/evcnt.h>
28 1.2 kardel #include <sys/kauth.h>
29 1.25 ad #include <sys/mutex.h>
30 1.27 ad #include <sys/atomic.h>
31 1.2 kardel
32 1.2 kardel /*
33 1.1 simonb * A large step happens on boot. This constant detects such steps.
34 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
35 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
36 1.1 simonb * forever when the time step is large.
37 1.1 simonb */
38 1.1 simonb #define LARGE_STEP 200
39 1.1 simonb
40 1.1 simonb /*
41 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
42 1.1 simonb * in the air. This allows the console and other early stuff to use
43 1.1 simonb * time services.
44 1.1 simonb */
45 1.1 simonb
46 1.1 simonb static u_int
47 1.16 yamt dummy_get_timecount(struct timecounter *tc)
48 1.1 simonb {
49 1.1 simonb static u_int now;
50 1.1 simonb
51 1.1 simonb return (++now);
52 1.1 simonb }
53 1.1 simonb
54 1.1 simonb static struct timecounter dummy_timecounter = {
55 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
56 1.1 simonb };
57 1.1 simonb
58 1.1 simonb struct timehands {
59 1.1 simonb /* These fields must be initialized by the driver. */
60 1.1 simonb struct timecounter *th_counter;
61 1.1 simonb int64_t th_adjustment;
62 1.1 simonb u_int64_t th_scale;
63 1.1 simonb u_int th_offset_count;
64 1.1 simonb struct bintime th_offset;
65 1.1 simonb struct timeval th_microtime;
66 1.1 simonb struct timespec th_nanotime;
67 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
68 1.1 simonb volatile u_int th_generation;
69 1.1 simonb struct timehands *th_next;
70 1.1 simonb };
71 1.1 simonb
72 1.1 simonb static struct timehands th0;
73 1.10 christos static struct timehands th9 = { .th_next = &th0, };
74 1.10 christos static struct timehands th8 = { .th_next = &th9, };
75 1.10 christos static struct timehands th7 = { .th_next = &th8, };
76 1.10 christos static struct timehands th6 = { .th_next = &th7, };
77 1.10 christos static struct timehands th5 = { .th_next = &th6, };
78 1.10 christos static struct timehands th4 = { .th_next = &th5, };
79 1.10 christos static struct timehands th3 = { .th_next = &th4, };
80 1.10 christos static struct timehands th2 = { .th_next = &th3, };
81 1.10 christos static struct timehands th1 = { .th_next = &th2, };
82 1.1 simonb static struct timehands th0 = {
83 1.10 christos .th_counter = &dummy_timecounter,
84 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
85 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
86 1.10 christos .th_generation = 1,
87 1.10 christos .th_next = &th1,
88 1.1 simonb };
89 1.1 simonb
90 1.1 simonb static struct timehands *volatile timehands = &th0;
91 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
92 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
93 1.1 simonb
94 1.1 simonb time_t time_second = 1;
95 1.1 simonb time_t time_uptime = 1;
96 1.1 simonb
97 1.4 kardel static struct bintime timebasebin;
98 1.1 simonb
99 1.1 simonb static int timestepwarnings;
100 1.2 kardel
101 1.25 ad extern kmutex_t time_lock;
102 1.27.6.2 bouyer static kmutex_t tc_windup_lock;
103 1.25 ad
104 1.2 kardel #ifdef __FreeBSD__
105 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106 1.1 simonb ×tepwarnings, 0, "");
107 1.2 kardel #endif /* __FreeBSD__ */
108 1.2 kardel
109 1.2 kardel /*
110 1.27.6.1 bouyer * sysctl helper routine for kern.timercounter.hardware
111 1.2 kardel */
112 1.2 kardel static int
113 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
114 1.2 kardel {
115 1.2 kardel struct sysctlnode node;
116 1.2 kardel int error;
117 1.2 kardel char newname[MAX_TCNAMELEN];
118 1.2 kardel struct timecounter *newtc, *tc;
119 1.2 kardel
120 1.2 kardel tc = timecounter;
121 1.2 kardel
122 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
123 1.2 kardel
124 1.2 kardel node = *rnode;
125 1.2 kardel node.sysctl_data = newname;
126 1.2 kardel node.sysctl_size = sizeof(newname);
127 1.2 kardel
128 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
129 1.2 kardel
130 1.2 kardel if (error ||
131 1.2 kardel newp == NULL ||
132 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
133 1.2 kardel return error;
134 1.1 simonb
135 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
136 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
137 1.26 elad NULL, NULL)) != 0)
138 1.2 kardel return (error);
139 1.2 kardel
140 1.22 ad if (!cold)
141 1.22 ad mutex_enter(&time_lock);
142 1.23 ad error = EINVAL;
143 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
144 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
145 1.2 kardel continue;
146 1.2 kardel /* Warm up new timecounter. */
147 1.2 kardel (void)newtc->tc_get_timecount(newtc);
148 1.2 kardel (void)newtc->tc_get_timecount(newtc);
149 1.2 kardel timecounter = newtc;
150 1.22 ad error = 0;
151 1.23 ad break;
152 1.23 ad }
153 1.22 ad if (!cold)
154 1.22 ad mutex_exit(&time_lock);
155 1.22 ad return error;
156 1.2 kardel }
157 1.2 kardel
158 1.2 kardel static int
159 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
160 1.2 kardel {
161 1.9 kardel char buf[MAX_TCNAMELEN+48];
162 1.2 kardel char *where = oldp;
163 1.2 kardel const char *spc;
164 1.2 kardel struct timecounter *tc;
165 1.2 kardel size_t needed, left, slen;
166 1.2 kardel int error;
167 1.2 kardel
168 1.2 kardel if (newp != NULL)
169 1.2 kardel return (EPERM);
170 1.2 kardel if (namelen != 0)
171 1.2 kardel return (EINVAL);
172 1.2 kardel
173 1.2 kardel spc = "";
174 1.2 kardel error = 0;
175 1.2 kardel needed = 0;
176 1.2 kardel left = *oldlenp;
177 1.2 kardel
178 1.22 ad mutex_enter(&time_lock);
179 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 1.2 kardel if (where == NULL) {
181 1.2 kardel needed += sizeof(buf); /* be conservative */
182 1.2 kardel } else {
183 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
185 1.2 kardel tc->tc_frequency);
186 1.2 kardel if (left < slen + 1)
187 1.2 kardel break;
188 1.2 kardel /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 1.22 ad /* XXX copyout with held lock. */
190 1.2 kardel error = copyout(buf, where, slen + 1);
191 1.2 kardel spc = " ";
192 1.2 kardel where += slen;
193 1.2 kardel needed += slen;
194 1.2 kardel left -= slen;
195 1.2 kardel }
196 1.2 kardel }
197 1.22 ad mutex_exit(&time_lock);
198 1.2 kardel
199 1.2 kardel *oldlenp = needed;
200 1.2 kardel return (error);
201 1.2 kardel }
202 1.2 kardel
203 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 1.2 kardel {
205 1.2 kardel const struct sysctlnode *node;
206 1.2 kardel
207 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
208 1.2 kardel CTLFLAG_PERMANENT,
209 1.2 kardel CTLTYPE_NODE, "timecounter",
210 1.2 kardel SYSCTL_DESCR("time counter information"),
211 1.2 kardel NULL, 0, NULL, 0,
212 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
213 1.2 kardel
214 1.2 kardel if (node != NULL) {
215 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
216 1.2 kardel CTLFLAG_PERMANENT,
217 1.2 kardel CTLTYPE_STRING, "choice",
218 1.2 kardel SYSCTL_DESCR("available counters"),
219 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
220 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221 1.2 kardel
222 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
223 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 1.2 kardel CTLTYPE_STRING, "hardware",
225 1.2 kardel SYSCTL_DESCR("currently active time counter"),
226 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228 1.2 kardel
229 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
230 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 1.2 kardel CTLTYPE_INT, "timestepwarnings",
232 1.2 kardel SYSCTL_DESCR("log time steps"),
233 1.2 kardel NULL, 0, ×tepwarnings, 0,
234 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 1.2 kardel }
236 1.2 kardel }
237 1.2 kardel
238 1.2 kardel #define TC_STATS(name) \
239 1.2 kardel static struct evcnt n##name = \
240 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
242 1.2 kardel
243 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 1.2 kardel TC_STATS(setclock);
248 1.1 simonb
249 1.1 simonb #undef TC_STATS
250 1.1 simonb
251 1.1 simonb static void tc_windup(void);
252 1.1 simonb
253 1.1 simonb /*
254 1.1 simonb * Return the difference between the timehands' counter value now and what
255 1.1 simonb * was when we copied it to the timehands' offset_count.
256 1.1 simonb */
257 1.1 simonb static __inline u_int
258 1.1 simonb tc_delta(struct timehands *th)
259 1.1 simonb {
260 1.1 simonb struct timecounter *tc;
261 1.1 simonb
262 1.1 simonb tc = th->th_counter;
263 1.2 kardel return ((tc->tc_get_timecount(tc) -
264 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
265 1.1 simonb }
266 1.1 simonb
267 1.1 simonb /*
268 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
269 1.1 simonb * the timehands that we operated on was not updated under our feet. See
270 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
271 1.1 simonb */
272 1.1 simonb
273 1.1 simonb void
274 1.1 simonb binuptime(struct bintime *bt)
275 1.1 simonb {
276 1.1 simonb struct timehands *th;
277 1.1 simonb u_int gen;
278 1.1 simonb
279 1.2 kardel nbinuptime.ev_count++;
280 1.1 simonb do {
281 1.1 simonb th = timehands;
282 1.1 simonb gen = th->th_generation;
283 1.1 simonb *bt = th->th_offset;
284 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
285 1.1 simonb } while (gen == 0 || gen != th->th_generation);
286 1.1 simonb }
287 1.1 simonb
288 1.1 simonb void
289 1.1 simonb nanouptime(struct timespec *tsp)
290 1.1 simonb {
291 1.1 simonb struct bintime bt;
292 1.1 simonb
293 1.2 kardel nnanouptime.ev_count++;
294 1.1 simonb binuptime(&bt);
295 1.1 simonb bintime2timespec(&bt, tsp);
296 1.1 simonb }
297 1.1 simonb
298 1.1 simonb void
299 1.1 simonb microuptime(struct timeval *tvp)
300 1.1 simonb {
301 1.1 simonb struct bintime bt;
302 1.1 simonb
303 1.2 kardel nmicrouptime.ev_count++;
304 1.1 simonb binuptime(&bt);
305 1.1 simonb bintime2timeval(&bt, tvp);
306 1.1 simonb }
307 1.1 simonb
308 1.1 simonb void
309 1.1 simonb bintime(struct bintime *bt)
310 1.1 simonb {
311 1.1 simonb
312 1.2 kardel nbintime.ev_count++;
313 1.1 simonb binuptime(bt);
314 1.4 kardel bintime_add(bt, &timebasebin);
315 1.1 simonb }
316 1.1 simonb
317 1.1 simonb void
318 1.1 simonb nanotime(struct timespec *tsp)
319 1.1 simonb {
320 1.1 simonb struct bintime bt;
321 1.1 simonb
322 1.2 kardel nnanotime.ev_count++;
323 1.1 simonb bintime(&bt);
324 1.1 simonb bintime2timespec(&bt, tsp);
325 1.1 simonb }
326 1.1 simonb
327 1.1 simonb void
328 1.1 simonb microtime(struct timeval *tvp)
329 1.1 simonb {
330 1.1 simonb struct bintime bt;
331 1.1 simonb
332 1.2 kardel nmicrotime.ev_count++;
333 1.1 simonb bintime(&bt);
334 1.1 simonb bintime2timeval(&bt, tvp);
335 1.1 simonb }
336 1.1 simonb
337 1.1 simonb void
338 1.1 simonb getbinuptime(struct bintime *bt)
339 1.1 simonb {
340 1.1 simonb struct timehands *th;
341 1.1 simonb u_int gen;
342 1.1 simonb
343 1.2 kardel ngetbinuptime.ev_count++;
344 1.1 simonb do {
345 1.1 simonb th = timehands;
346 1.1 simonb gen = th->th_generation;
347 1.1 simonb *bt = th->th_offset;
348 1.1 simonb } while (gen == 0 || gen != th->th_generation);
349 1.1 simonb }
350 1.1 simonb
351 1.1 simonb void
352 1.1 simonb getnanouptime(struct timespec *tsp)
353 1.1 simonb {
354 1.1 simonb struct timehands *th;
355 1.1 simonb u_int gen;
356 1.1 simonb
357 1.2 kardel ngetnanouptime.ev_count++;
358 1.1 simonb do {
359 1.1 simonb th = timehands;
360 1.1 simonb gen = th->th_generation;
361 1.1 simonb bintime2timespec(&th->th_offset, tsp);
362 1.1 simonb } while (gen == 0 || gen != th->th_generation);
363 1.1 simonb }
364 1.1 simonb
365 1.1 simonb void
366 1.1 simonb getmicrouptime(struct timeval *tvp)
367 1.1 simonb {
368 1.1 simonb struct timehands *th;
369 1.1 simonb u_int gen;
370 1.1 simonb
371 1.2 kardel ngetmicrouptime.ev_count++;
372 1.1 simonb do {
373 1.1 simonb th = timehands;
374 1.1 simonb gen = th->th_generation;
375 1.1 simonb bintime2timeval(&th->th_offset, tvp);
376 1.1 simonb } while (gen == 0 || gen != th->th_generation);
377 1.1 simonb }
378 1.1 simonb
379 1.1 simonb void
380 1.1 simonb getbintime(struct bintime *bt)
381 1.1 simonb {
382 1.1 simonb struct timehands *th;
383 1.1 simonb u_int gen;
384 1.1 simonb
385 1.2 kardel ngetbintime.ev_count++;
386 1.1 simonb do {
387 1.1 simonb th = timehands;
388 1.1 simonb gen = th->th_generation;
389 1.1 simonb *bt = th->th_offset;
390 1.1 simonb } while (gen == 0 || gen != th->th_generation);
391 1.4 kardel bintime_add(bt, &timebasebin);
392 1.1 simonb }
393 1.1 simonb
394 1.1 simonb void
395 1.1 simonb getnanotime(struct timespec *tsp)
396 1.1 simonb {
397 1.1 simonb struct timehands *th;
398 1.1 simonb u_int gen;
399 1.1 simonb
400 1.2 kardel ngetnanotime.ev_count++;
401 1.1 simonb do {
402 1.1 simonb th = timehands;
403 1.1 simonb gen = th->th_generation;
404 1.1 simonb *tsp = th->th_nanotime;
405 1.1 simonb } while (gen == 0 || gen != th->th_generation);
406 1.1 simonb }
407 1.1 simonb
408 1.1 simonb void
409 1.1 simonb getmicrotime(struct timeval *tvp)
410 1.1 simonb {
411 1.1 simonb struct timehands *th;
412 1.1 simonb u_int gen;
413 1.1 simonb
414 1.2 kardel ngetmicrotime.ev_count++;
415 1.1 simonb do {
416 1.1 simonb th = timehands;
417 1.1 simonb gen = th->th_generation;
418 1.1 simonb *tvp = th->th_microtime;
419 1.1 simonb } while (gen == 0 || gen != th->th_generation);
420 1.1 simonb }
421 1.1 simonb
422 1.1 simonb /*
423 1.1 simonb * Initialize a new timecounter and possibly use it.
424 1.1 simonb */
425 1.1 simonb void
426 1.1 simonb tc_init(struct timecounter *tc)
427 1.1 simonb {
428 1.1 simonb u_int u;
429 1.1 simonb
430 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
431 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
432 1.1 simonb u *= 11;
433 1.1 simonb u /= 10;
434 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
435 1.1 simonb tc->tc_quality = -2000;
436 1.18 ad aprint_verbose(
437 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
438 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
439 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
440 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
441 1.18 ad aprint_verbose(
442 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
443 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
444 1.7 bjh21 tc->tc_quality);
445 1.1 simonb }
446 1.1 simonb
447 1.22 ad mutex_enter(&time_lock);
448 1.27.6.2 bouyer mutex_spin_enter(&tc_windup_lock);
449 1.1 simonb tc->tc_next = timecounters;
450 1.1 simonb timecounters = tc;
451 1.1 simonb /*
452 1.1 simonb * Never automatically use a timecounter with negative quality.
453 1.1 simonb * Even though we run on the dummy counter, switching here may be
454 1.1 simonb * worse since this timecounter may not be monotonous.
455 1.1 simonb */
456 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
457 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
458 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
459 1.22 ad (void)tc->tc_get_timecount(tc);
460 1.22 ad (void)tc->tc_get_timecount(tc);
461 1.22 ad timecounter = tc;
462 1.22 ad tc_windup();
463 1.22 ad }
464 1.27.6.2 bouyer mutex_spin_exit(&tc_windup_lock);
465 1.22 ad mutex_exit(&time_lock);
466 1.1 simonb }
467 1.1 simonb
468 1.27.6.2 bouyer /*
469 1.27.6.2 bouyer * Stop using a timecounter and remove it from the timecounters list.
470 1.27.6.2 bouyer */
471 1.27.6.2 bouyer int
472 1.27.6.2 bouyer tc_detach(struct timecounter *target)
473 1.27.6.2 bouyer {
474 1.27.6.2 bouyer struct timecounter *best, *tc;
475 1.27.6.2 bouyer struct timecounter **tcp = NULL;
476 1.27.6.2 bouyer int rc = 0;
477 1.27.6.2 bouyer
478 1.27.6.2 bouyer mutex_enter(&time_lock);
479 1.27.6.2 bouyer for (tcp = &timecounters, tc = timecounters;
480 1.27.6.2 bouyer tc != NULL;
481 1.27.6.2 bouyer tcp = &tc->tc_next, tc = tc->tc_next) {
482 1.27.6.2 bouyer if (tc == target)
483 1.27.6.2 bouyer break;
484 1.27.6.2 bouyer }
485 1.27.6.2 bouyer if (tc == NULL) {
486 1.27.6.2 bouyer rc = ESRCH;
487 1.27.6.2 bouyer goto out;
488 1.27.6.2 bouyer }
489 1.27.6.2 bouyer *tcp = tc->tc_next;
490 1.27.6.2 bouyer
491 1.27.6.2 bouyer if (timecounter != target)
492 1.27.6.2 bouyer goto out;
493 1.27.6.2 bouyer
494 1.27.6.2 bouyer for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
495 1.27.6.2 bouyer if (tc->tc_quality > best->tc_quality)
496 1.27.6.2 bouyer best = tc;
497 1.27.6.2 bouyer else if (tc->tc_quality < best->tc_quality)
498 1.27.6.2 bouyer continue;
499 1.27.6.2 bouyer else if (tc->tc_frequency > best->tc_frequency)
500 1.27.6.2 bouyer best = tc;
501 1.27.6.2 bouyer }
502 1.27.6.2 bouyer mutex_spin_enter(&tc_windup_lock);
503 1.27.6.2 bouyer (void)best->tc_get_timecount(best);
504 1.27.6.2 bouyer (void)best->tc_get_timecount(best);
505 1.27.6.2 bouyer timecounter = best;
506 1.27.6.2 bouyer tc_windup();
507 1.27.6.2 bouyer mutex_spin_exit(&tc_windup_lock);
508 1.27.6.2 bouyer out:
509 1.27.6.2 bouyer mutex_exit(&time_lock);
510 1.27.6.2 bouyer return rc;
511 1.27.6.2 bouyer }
512 1.27.6.2 bouyer
513 1.1 simonb /* Report the frequency of the current timecounter. */
514 1.1 simonb u_int64_t
515 1.1 simonb tc_getfrequency(void)
516 1.1 simonb {
517 1.1 simonb
518 1.1 simonb return (timehands->th_counter->tc_frequency);
519 1.1 simonb }
520 1.1 simonb
521 1.1 simonb /*
522 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
523 1.1 simonb * when we booted.
524 1.1 simonb */
525 1.1 simonb void
526 1.1 simonb tc_setclock(struct timespec *ts)
527 1.1 simonb {
528 1.1 simonb struct timespec ts2;
529 1.1 simonb struct bintime bt, bt2;
530 1.1 simonb
531 1.27.6.2 bouyer mutex_spin_enter(&tc_windup_lock);
532 1.2 kardel nsetclock.ev_count++;
533 1.1 simonb binuptime(&bt2);
534 1.1 simonb timespec2bintime(ts, &bt);
535 1.1 simonb bintime_sub(&bt, &bt2);
536 1.4 kardel bintime_add(&bt2, &timebasebin);
537 1.4 kardel timebasebin = bt;
538 1.1 simonb tc_windup();
539 1.27.6.2 bouyer mutex_spin_exit(&tc_windup_lock);
540 1.27.6.2 bouyer
541 1.1 simonb if (timestepwarnings) {
542 1.1 simonb bintime2timespec(&bt2, &ts2);
543 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
544 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
545 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
546 1.1 simonb }
547 1.1 simonb }
548 1.1 simonb
549 1.1 simonb /*
550 1.1 simonb * Initialize the next struct timehands in the ring and make
551 1.1 simonb * it the active timehands. Along the way we might switch to a different
552 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
553 1.1 simonb */
554 1.1 simonb static void
555 1.1 simonb tc_windup(void)
556 1.1 simonb {
557 1.1 simonb struct bintime bt;
558 1.1 simonb struct timehands *th, *tho;
559 1.1 simonb u_int64_t scale;
560 1.1 simonb u_int delta, ncount, ogen;
561 1.13 kardel int i, s_update;
562 1.1 simonb time_t t;
563 1.1 simonb
564 1.27.6.2 bouyer KASSERT(mutex_owned(&tc_windup_lock));
565 1.27.6.2 bouyer
566 1.13 kardel s_update = 0;
567 1.20 ad
568 1.1 simonb /*
569 1.1 simonb * Make the next timehands a copy of the current one, but do not
570 1.1 simonb * overwrite the generation or next pointer. While we update
571 1.20 ad * the contents, the generation must be zero. Ensure global
572 1.20 ad * visibility of the generation before proceeding.
573 1.1 simonb */
574 1.1 simonb tho = timehands;
575 1.1 simonb th = tho->th_next;
576 1.1 simonb ogen = th->th_generation;
577 1.1 simonb th->th_generation = 0;
578 1.27 ad membar_producer();
579 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
580 1.1 simonb
581 1.1 simonb /*
582 1.1 simonb * Capture a timecounter delta on the current timecounter and if
583 1.1 simonb * changing timecounters, a counter value from the new timecounter.
584 1.1 simonb * Update the offset fields accordingly.
585 1.1 simonb */
586 1.1 simonb delta = tc_delta(th);
587 1.1 simonb if (th->th_counter != timecounter)
588 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
589 1.1 simonb else
590 1.1 simonb ncount = 0;
591 1.1 simonb th->th_offset_count += delta;
592 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
593 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
594 1.1 simonb
595 1.1 simonb /*
596 1.1 simonb * Hardware latching timecounters may not generate interrupts on
597 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
598 1.1 simonb * the hardware might capture a count which is later than the one we
599 1.1 simonb * got above, and therefore possibly in the next NTP second which might
600 1.1 simonb * have a different rate than the current NTP second. It doesn't
601 1.1 simonb * matter in practice.
602 1.1 simonb */
603 1.1 simonb if (tho->th_counter->tc_poll_pps)
604 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
605 1.1 simonb
606 1.1 simonb /*
607 1.1 simonb * Deal with NTP second processing. The for loop normally
608 1.1 simonb * iterates at most once, but in extreme situations it might
609 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
610 1.1 simonb * At boot, the time step can be large when the TOD hardware
611 1.1 simonb * has been read, so on really large steps, we call
612 1.1 simonb * ntp_update_second only twice. We need to call it twice in
613 1.1 simonb * case we missed a leap second.
614 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
615 1.2 kardel * the adjustment resulting from adjtime() calls.
616 1.1 simonb */
617 1.1 simonb bt = th->th_offset;
618 1.4 kardel bintime_add(&bt, &timebasebin);
619 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
620 1.1 simonb if (i > LARGE_STEP)
621 1.1 simonb i = 2;
622 1.1 simonb for (; i > 0; i--) {
623 1.1 simonb t = bt.sec;
624 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
625 1.13 kardel s_update = 1;
626 1.1 simonb if (bt.sec != t)
627 1.4 kardel timebasebin.sec += bt.sec - t;
628 1.1 simonb }
629 1.2 kardel
630 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
631 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
632 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
633 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
634 1.1 simonb
635 1.1 simonb /* Now is a good time to change timecounters. */
636 1.1 simonb if (th->th_counter != timecounter) {
637 1.1 simonb th->th_counter = timecounter;
638 1.1 simonb th->th_offset_count = ncount;
639 1.13 kardel s_update = 1;
640 1.1 simonb }
641 1.1 simonb
642 1.1 simonb /*-
643 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
644 1.1 simonb * fractions of a second per period of the hardware counter, taking
645 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
646 1.1 simonb * processing provides us with.
647 1.1 simonb *
648 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
649 1.1 simonb * fraction and we want 64 bit binary fraction of second:
650 1.1 simonb *
651 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
652 1.1 simonb *
653 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
654 1.1 simonb * we can only multiply by about 850 without overflowing, but that
655 1.1 simonb * leaves suitably precise fractions for multiply before divide.
656 1.1 simonb *
657 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
658 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
659 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
660 1.1 simonb *
661 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
662 1.1 simonb * to the goddess of code clarity.
663 1.1 simonb *
664 1.1 simonb */
665 1.13 kardel if (s_update) {
666 1.13 kardel scale = (u_int64_t)1 << 63;
667 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
668 1.13 kardel scale /= th->th_counter->tc_frequency;
669 1.13 kardel th->th_scale = scale * 2;
670 1.13 kardel }
671 1.1 simonb /*
672 1.1 simonb * Now that the struct timehands is again consistent, set the new
673 1.20 ad * generation number, making sure to not make it zero. Ensure
674 1.20 ad * changes are globally visible before changing.
675 1.1 simonb */
676 1.1 simonb if (++ogen == 0)
677 1.1 simonb ogen = 1;
678 1.27 ad membar_producer();
679 1.1 simonb th->th_generation = ogen;
680 1.1 simonb
681 1.20 ad /*
682 1.20 ad * Go live with the new struct timehands. Ensure changes are
683 1.20 ad * globally visible before changing.
684 1.20 ad */
685 1.1 simonb time_second = th->th_microtime.tv_sec;
686 1.1 simonb time_uptime = th->th_offset.sec;
687 1.27 ad membar_producer();
688 1.1 simonb timehands = th;
689 1.24 ad
690 1.24 ad /*
691 1.24 ad * Force users of the old timehand to move on. This is
692 1.24 ad * necessary for MP systems; we need to ensure that the
693 1.24 ad * consumers will move away from the old timehand before
694 1.24 ad * we begin updating it again when we eventually wrap
695 1.24 ad * around.
696 1.24 ad */
697 1.24 ad if (++tho->th_generation == 0)
698 1.24 ad tho->th_generation = 1;
699 1.1 simonb }
700 1.1 simonb
701 1.1 simonb /*
702 1.1 simonb * RFC 2783 PPS-API implementation.
703 1.1 simonb */
704 1.1 simonb
705 1.1 simonb int
706 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
707 1.1 simonb {
708 1.1 simonb pps_params_t *app;
709 1.2 kardel pps_info_t *pipi;
710 1.1 simonb #ifdef PPS_SYNC
711 1.2 kardel int *epi;
712 1.1 simonb #endif
713 1.1 simonb
714 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
715 1.1 simonb switch (cmd) {
716 1.1 simonb case PPS_IOC_CREATE:
717 1.1 simonb return (0);
718 1.1 simonb case PPS_IOC_DESTROY:
719 1.1 simonb return (0);
720 1.1 simonb case PPS_IOC_SETPARAMS:
721 1.1 simonb app = (pps_params_t *)data;
722 1.1 simonb if (app->mode & ~pps->ppscap)
723 1.1 simonb return (EINVAL);
724 1.1 simonb pps->ppsparam = *app;
725 1.1 simonb return (0);
726 1.1 simonb case PPS_IOC_GETPARAMS:
727 1.1 simonb app = (pps_params_t *)data;
728 1.1 simonb *app = pps->ppsparam;
729 1.1 simonb app->api_version = PPS_API_VERS_1;
730 1.1 simonb return (0);
731 1.1 simonb case PPS_IOC_GETCAP:
732 1.1 simonb *(int*)data = pps->ppscap;
733 1.1 simonb return (0);
734 1.1 simonb case PPS_IOC_FETCH:
735 1.2 kardel pipi = (pps_info_t *)data;
736 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
737 1.2 kardel *pipi = pps->ppsinfo;
738 1.1 simonb return (0);
739 1.1 simonb case PPS_IOC_KCBIND:
740 1.1 simonb #ifdef PPS_SYNC
741 1.2 kardel epi = (int *)data;
742 1.1 simonb /* XXX Only root should be able to do this */
743 1.2 kardel if (*epi & ~pps->ppscap)
744 1.1 simonb return (EINVAL);
745 1.2 kardel pps->kcmode = *epi;
746 1.1 simonb return (0);
747 1.1 simonb #else
748 1.1 simonb return (EOPNOTSUPP);
749 1.1 simonb #endif
750 1.1 simonb default:
751 1.2 kardel return (EPASSTHROUGH);
752 1.1 simonb }
753 1.1 simonb }
754 1.1 simonb
755 1.1 simonb void
756 1.1 simonb pps_init(struct pps_state *pps)
757 1.1 simonb {
758 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
759 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
760 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
761 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
762 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
763 1.1 simonb }
764 1.1 simonb
765 1.1 simonb void
766 1.1 simonb pps_capture(struct pps_state *pps)
767 1.1 simonb {
768 1.1 simonb struct timehands *th;
769 1.1 simonb
770 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
771 1.1 simonb th = timehands;
772 1.1 simonb pps->capgen = th->th_generation;
773 1.1 simonb pps->capth = th;
774 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
775 1.1 simonb if (pps->capgen != th->th_generation)
776 1.1 simonb pps->capgen = 0;
777 1.1 simonb }
778 1.1 simonb
779 1.1 simonb void
780 1.1 simonb pps_event(struct pps_state *pps, int event)
781 1.1 simonb {
782 1.1 simonb struct bintime bt;
783 1.1 simonb struct timespec ts, *tsp, *osp;
784 1.1 simonb u_int tcount, *pcount;
785 1.1 simonb int foff, fhard;
786 1.1 simonb pps_seq_t *pseq;
787 1.1 simonb
788 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
789 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
790 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
791 1.1 simonb return;
792 1.1 simonb
793 1.1 simonb /* Things would be easier with arrays. */
794 1.1 simonb if (event == PPS_CAPTUREASSERT) {
795 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
796 1.1 simonb osp = &pps->ppsparam.assert_offset;
797 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
798 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
799 1.1 simonb pcount = &pps->ppscount[0];
800 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
801 1.1 simonb } else {
802 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
803 1.1 simonb osp = &pps->ppsparam.clear_offset;
804 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
805 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
806 1.1 simonb pcount = &pps->ppscount[1];
807 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
808 1.1 simonb }
809 1.1 simonb
810 1.1 simonb /*
811 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
812 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
813 1.1 simonb */
814 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
815 1.1 simonb pps->ppstc = pps->capth->th_counter;
816 1.1 simonb *pcount = pps->capcount;
817 1.1 simonb pps->ppscount[2] = pps->capcount;
818 1.1 simonb return;
819 1.1 simonb }
820 1.1 simonb
821 1.1 simonb /* Convert the count to a timespec. */
822 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
823 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
824 1.1 simonb bt = pps->capth->th_offset;
825 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
826 1.4 kardel bintime_add(&bt, &timebasebin);
827 1.1 simonb bintime2timespec(&bt, &ts);
828 1.1 simonb
829 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
830 1.1 simonb if (pps->capgen != pps->capth->th_generation)
831 1.1 simonb return;
832 1.1 simonb
833 1.1 simonb *pcount = pps->capcount;
834 1.1 simonb (*pseq)++;
835 1.1 simonb *tsp = ts;
836 1.1 simonb
837 1.1 simonb if (foff) {
838 1.2 kardel timespecadd(tsp, osp, tsp);
839 1.1 simonb if (tsp->tv_nsec < 0) {
840 1.1 simonb tsp->tv_nsec += 1000000000;
841 1.1 simonb tsp->tv_sec -= 1;
842 1.1 simonb }
843 1.1 simonb }
844 1.1 simonb #ifdef PPS_SYNC
845 1.1 simonb if (fhard) {
846 1.1 simonb u_int64_t scale;
847 1.1 simonb
848 1.1 simonb /*
849 1.1 simonb * Feed the NTP PLL/FLL.
850 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
851 1.1 simonb * elapsed since the previous event.
852 1.1 simonb */
853 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
854 1.1 simonb pps->ppscount[2] = pps->capcount;
855 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
856 1.1 simonb scale = (u_int64_t)1 << 63;
857 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
858 1.1 simonb scale *= 2;
859 1.1 simonb bt.sec = 0;
860 1.1 simonb bt.frac = 0;
861 1.1 simonb bintime_addx(&bt, scale * tcount);
862 1.1 simonb bintime2timespec(&bt, &ts);
863 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
864 1.1 simonb }
865 1.1 simonb #endif
866 1.1 simonb }
867 1.1 simonb
868 1.1 simonb /*
869 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
870 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
871 1.1 simonb * used by the get*() family of functions, so their precision depends on
872 1.1 simonb * the update frequency.
873 1.1 simonb */
874 1.1 simonb
875 1.1 simonb static int tc_tick;
876 1.1 simonb
877 1.1 simonb void
878 1.1 simonb tc_ticktock(void)
879 1.1 simonb {
880 1.1 simonb static int count;
881 1.1 simonb
882 1.1 simonb if (++count < tc_tick)
883 1.1 simonb return;
884 1.1 simonb count = 0;
885 1.27.6.2 bouyer mutex_spin_enter(&tc_windup_lock);
886 1.1 simonb tc_windup();
887 1.27.6.2 bouyer mutex_spin_exit(&tc_windup_lock);
888 1.1 simonb }
889 1.1 simonb
890 1.2 kardel void
891 1.2 kardel inittimecounter(void)
892 1.1 simonb {
893 1.1 simonb u_int p;
894 1.1 simonb
895 1.27.6.2 bouyer mutex_init(&tc_windup_lock, MUTEX_DEFAULT, IPL_SCHED);
896 1.27.6.2 bouyer
897 1.1 simonb /*
898 1.1 simonb * Set the initial timeout to
899 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
900 1.1 simonb * People should probably not use the sysctl to set the timeout
901 1.1 simonb * to smaller than its inital value, since that value is the
902 1.1 simonb * smallest reasonable one. If they want better timestamps they
903 1.1 simonb * should use the non-"get"* functions.
904 1.1 simonb */
905 1.1 simonb if (hz > 1000)
906 1.1 simonb tc_tick = (hz + 500) / 1000;
907 1.1 simonb else
908 1.1 simonb tc_tick = 1;
909 1.1 simonb p = (tc_tick * 1000000) / hz;
910 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
911 1.18 ad p / 1000, p % 1000);
912 1.1 simonb
913 1.1 simonb /* warm up new timecounter (again) and get rolling. */
914 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
915 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
916 1.1 simonb }
917