kern_tc.c revision 1.3.4.2 1 1.3.4.2 yamt /* $NetBSD: kern_tc.c,v 1.3.4.2 2006/06/21 15:09:38 yamt Exp $ */
2 1.3.4.2 yamt
3 1.3.4.2 yamt /*-
4 1.3.4.2 yamt * ----------------------------------------------------------------------------
5 1.3.4.2 yamt * "THE BEER-WARE LICENSE" (Revision 42):
6 1.3.4.2 yamt * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.3.4.2 yamt * can do whatever you want with this stuff. If we meet some day, and you think
8 1.3.4.2 yamt * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.3.4.2 yamt * ---------------------------------------------------------------------------
10 1.3.4.2 yamt */
11 1.3.4.2 yamt
12 1.3.4.2 yamt #include <sys/cdefs.h>
13 1.3.4.2 yamt /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.3.4.2 yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.3.4.2 2006/06/21 15:09:38 yamt Exp $");
15 1.3.4.2 yamt
16 1.3.4.2 yamt #include "opt_ntp.h"
17 1.3.4.2 yamt
18 1.3.4.2 yamt #include <sys/param.h>
19 1.3.4.2 yamt #ifdef __HAVE_TIMECOUNTER /* XXX */
20 1.3.4.2 yamt #include <sys/kernel.h>
21 1.3.4.2 yamt #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 1.3.4.2 yamt #include <sys/sysctl.h>
23 1.3.4.2 yamt #include <sys/syslog.h>
24 1.3.4.2 yamt #include <sys/systm.h>
25 1.3.4.2 yamt #include <sys/timepps.h>
26 1.3.4.2 yamt #include <sys/timetc.h>
27 1.3.4.2 yamt #include <sys/timex.h>
28 1.3.4.2 yamt #include <sys/evcnt.h>
29 1.3.4.2 yamt #include <sys/kauth.h>
30 1.3.4.2 yamt
31 1.3.4.2 yamt /*
32 1.3.4.2 yamt * maximum name length for TC names in sysctl interface
33 1.3.4.2 yamt */
34 1.3.4.2 yamt #define MAX_TCNAMELEN 64
35 1.3.4.2 yamt
36 1.3.4.2 yamt /*
37 1.3.4.2 yamt * A large step happens on boot. This constant detects such steps.
38 1.3.4.2 yamt * It is relatively small so that ntp_update_second gets called enough
39 1.3.4.2 yamt * in the typical 'missed a couple of seconds' case, but doesn't loop
40 1.3.4.2 yamt * forever when the time step is large.
41 1.3.4.2 yamt */
42 1.3.4.2 yamt #define LARGE_STEP 200
43 1.3.4.2 yamt
44 1.3.4.2 yamt /*
45 1.3.4.2 yamt * Implement a dummy timecounter which we can use until we get a real one
46 1.3.4.2 yamt * in the air. This allows the console and other early stuff to use
47 1.3.4.2 yamt * time services.
48 1.3.4.2 yamt */
49 1.3.4.2 yamt
50 1.3.4.2 yamt static u_int
51 1.3.4.2 yamt dummy_get_timecount(struct timecounter *tc)
52 1.3.4.2 yamt {
53 1.3.4.2 yamt static u_int now;
54 1.3.4.2 yamt
55 1.3.4.2 yamt return (++now);
56 1.3.4.2 yamt }
57 1.3.4.2 yamt
58 1.3.4.2 yamt static struct timecounter dummy_timecounter = {
59 1.3.4.2 yamt dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
60 1.3.4.2 yamt };
61 1.3.4.2 yamt
62 1.3.4.2 yamt struct timehands {
63 1.3.4.2 yamt /* These fields must be initialized by the driver. */
64 1.3.4.2 yamt struct timecounter *th_counter;
65 1.3.4.2 yamt int64_t th_adjustment;
66 1.3.4.2 yamt u_int64_t th_scale;
67 1.3.4.2 yamt u_int th_offset_count;
68 1.3.4.2 yamt struct bintime th_offset;
69 1.3.4.2 yamt struct timeval th_microtime;
70 1.3.4.2 yamt struct timespec th_nanotime;
71 1.3.4.2 yamt /* Fields not to be copied in tc_windup start with th_generation. */
72 1.3.4.2 yamt volatile u_int th_generation;
73 1.3.4.2 yamt struct timehands *th_next;
74 1.3.4.2 yamt };
75 1.3.4.2 yamt
76 1.3.4.2 yamt static struct timehands th0;
77 1.3.4.2 yamt static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
78 1.3.4.2 yamt static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
79 1.3.4.2 yamt static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
80 1.3.4.2 yamt static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
81 1.3.4.2 yamt static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
82 1.3.4.2 yamt static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
83 1.3.4.2 yamt static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
84 1.3.4.2 yamt static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
85 1.3.4.2 yamt static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
86 1.3.4.2 yamt static struct timehands th0 = {
87 1.3.4.2 yamt &dummy_timecounter,
88 1.3.4.2 yamt 0,
89 1.3.4.2 yamt (uint64_t)-1 / 1000000,
90 1.3.4.2 yamt 0,
91 1.3.4.2 yamt {1, 0},
92 1.3.4.2 yamt {0, 0},
93 1.3.4.2 yamt {0, 0},
94 1.3.4.2 yamt 1,
95 1.3.4.2 yamt &th1
96 1.3.4.2 yamt };
97 1.3.4.2 yamt
98 1.3.4.2 yamt static struct timehands *volatile timehands = &th0;
99 1.3.4.2 yamt struct timecounter *timecounter = &dummy_timecounter;
100 1.3.4.2 yamt static struct timecounter *timecounters = &dummy_timecounter;
101 1.3.4.2 yamt
102 1.3.4.2 yamt time_t time_second = 1;
103 1.3.4.2 yamt time_t time_uptime = 1;
104 1.3.4.2 yamt
105 1.3.4.2 yamt static struct bintime boottimebin;
106 1.3.4.2 yamt struct timeval boottime;
107 1.3.4.2 yamt #ifdef __FreeBSD__
108 1.3.4.2 yamt static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
109 1.3.4.2 yamt SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
110 1.3.4.2 yamt NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
111 1.3.4.2 yamt
112 1.3.4.2 yamt SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
113 1.3.4.2 yamt #endif /* __FreeBSD__ */
114 1.3.4.2 yamt
115 1.3.4.2 yamt static int timestepwarnings;
116 1.3.4.2 yamt
117 1.3.4.2 yamt #ifdef __FreeBSD__
118 1.3.4.2 yamt SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
119 1.3.4.2 yamt ×tepwarnings, 0, "");
120 1.3.4.2 yamt #endif /* __FreeBSD__ */
121 1.3.4.2 yamt
122 1.3.4.2 yamt /*
123 1.3.4.2 yamt * sysctl helper routine for kern.timercounter.current
124 1.3.4.2 yamt */
125 1.3.4.2 yamt static int
126 1.3.4.2 yamt sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
127 1.3.4.2 yamt {
128 1.3.4.2 yamt struct sysctlnode node;
129 1.3.4.2 yamt int error;
130 1.3.4.2 yamt char newname[MAX_TCNAMELEN];
131 1.3.4.2 yamt struct timecounter *newtc, *tc;
132 1.3.4.2 yamt
133 1.3.4.2 yamt tc = timecounter;
134 1.3.4.2 yamt
135 1.3.4.2 yamt strlcpy(newname, tc->tc_name, sizeof(newname));
136 1.3.4.2 yamt
137 1.3.4.2 yamt node = *rnode;
138 1.3.4.2 yamt node.sysctl_data = newname;
139 1.3.4.2 yamt node.sysctl_size = sizeof(newname);
140 1.3.4.2 yamt
141 1.3.4.2 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
142 1.3.4.2 yamt
143 1.3.4.2 yamt if (error ||
144 1.3.4.2 yamt newp == NULL ||
145 1.3.4.2 yamt strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
146 1.3.4.2 yamt return error;
147 1.3.4.2 yamt
148 1.3.4.2 yamt if (l && (error = kauth_authorize_generic(l->l_proc->p_cred,
149 1.3.4.2 yamt KAUTH_GENERIC_ISSUSER, &l->l_proc->p_acflag)) != 0)
150 1.3.4.2 yamt return (error);
151 1.3.4.2 yamt
152 1.3.4.2 yamt /* XXX locking */
153 1.3.4.2 yamt
154 1.3.4.2 yamt for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
155 1.3.4.2 yamt if (strcmp(newname, newtc->tc_name) != 0)
156 1.3.4.2 yamt continue;
157 1.3.4.2 yamt
158 1.3.4.2 yamt /* Warm up new timecounter. */
159 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
160 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
161 1.3.4.2 yamt
162 1.3.4.2 yamt timecounter = newtc;
163 1.3.4.2 yamt
164 1.3.4.2 yamt /* XXX unlock */
165 1.3.4.2 yamt
166 1.3.4.2 yamt return (0);
167 1.3.4.2 yamt }
168 1.3.4.2 yamt
169 1.3.4.2 yamt /* XXX unlock */
170 1.3.4.2 yamt
171 1.3.4.2 yamt return (EINVAL);
172 1.3.4.2 yamt }
173 1.3.4.2 yamt
174 1.3.4.2 yamt static int
175 1.3.4.2 yamt sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
176 1.3.4.2 yamt {
177 1.3.4.2 yamt char buf[48];
178 1.3.4.2 yamt char *where = oldp;
179 1.3.4.2 yamt const char *spc;
180 1.3.4.2 yamt struct timecounter *tc;
181 1.3.4.2 yamt size_t needed, left, slen;
182 1.3.4.2 yamt int error;
183 1.3.4.2 yamt
184 1.3.4.2 yamt if (newp != NULL)
185 1.3.4.2 yamt return (EPERM);
186 1.3.4.2 yamt if (namelen != 0)
187 1.3.4.2 yamt return (EINVAL);
188 1.3.4.2 yamt
189 1.3.4.2 yamt spc = "";
190 1.3.4.2 yamt error = 0;
191 1.3.4.2 yamt needed = 0;
192 1.3.4.2 yamt left = *oldlenp;
193 1.3.4.2 yamt
194 1.3.4.2 yamt /* XXX locking */
195 1.3.4.2 yamt
196 1.3.4.2 yamt for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
197 1.3.4.2 yamt if (where == NULL) {
198 1.3.4.2 yamt needed += sizeof(buf); /* be conservative */
199 1.3.4.2 yamt } else {
200 1.3.4.2 yamt slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
201 1.3.4.2 yamt " Hz)", spc, tc->tc_name, tc->tc_quality,
202 1.3.4.2 yamt tc->tc_frequency);
203 1.3.4.2 yamt if (left < slen + 1)
204 1.3.4.2 yamt break;
205 1.3.4.2 yamt /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
206 1.3.4.2 yamt error = copyout(buf, where, slen + 1);
207 1.3.4.2 yamt spc = " ";
208 1.3.4.2 yamt where += slen;
209 1.3.4.2 yamt needed += slen;
210 1.3.4.2 yamt left -= slen;
211 1.3.4.2 yamt }
212 1.3.4.2 yamt }
213 1.3.4.2 yamt
214 1.3.4.2 yamt /* XXX unlock */
215 1.3.4.2 yamt
216 1.3.4.2 yamt *oldlenp = needed;
217 1.3.4.2 yamt return (error);
218 1.3.4.2 yamt }
219 1.3.4.2 yamt
220 1.3.4.2 yamt SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
221 1.3.4.2 yamt {
222 1.3.4.2 yamt const struct sysctlnode *node;
223 1.3.4.2 yamt
224 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, &node,
225 1.3.4.2 yamt CTLFLAG_PERMANENT,
226 1.3.4.2 yamt CTLTYPE_NODE, "timecounter",
227 1.3.4.2 yamt SYSCTL_DESCR("time counter information"),
228 1.3.4.2 yamt NULL, 0, NULL, 0,
229 1.3.4.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
230 1.3.4.2 yamt
231 1.3.4.2 yamt if (node != NULL) {
232 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
233 1.3.4.2 yamt CTLFLAG_PERMANENT,
234 1.3.4.2 yamt CTLTYPE_STRING, "choice",
235 1.3.4.2 yamt SYSCTL_DESCR("available counters"),
236 1.3.4.2 yamt sysctl_kern_timecounter_choice, 0, NULL, 0,
237 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
238 1.3.4.2 yamt
239 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
240 1.3.4.2 yamt CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
241 1.3.4.2 yamt CTLTYPE_STRING, "hardware",
242 1.3.4.2 yamt SYSCTL_DESCR("currently active time counter"),
243 1.3.4.2 yamt sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
244 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
245 1.3.4.2 yamt
246 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
247 1.3.4.2 yamt CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
248 1.3.4.2 yamt CTLTYPE_INT, "timestepwarnings",
249 1.3.4.2 yamt SYSCTL_DESCR("log time steps"),
250 1.3.4.2 yamt NULL, 0, ×tepwarnings, 0,
251 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
252 1.3.4.2 yamt }
253 1.3.4.2 yamt }
254 1.3.4.2 yamt
255 1.3.4.2 yamt #define TC_STATS(name) \
256 1.3.4.2 yamt static struct evcnt n##name = \
257 1.3.4.2 yamt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
258 1.3.4.2 yamt EVCNT_ATTACH_STATIC(n##name)
259 1.3.4.2 yamt
260 1.3.4.2 yamt TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
261 1.3.4.2 yamt TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
262 1.3.4.2 yamt TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
263 1.3.4.2 yamt TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
264 1.3.4.2 yamt TC_STATS(setclock);
265 1.3.4.2 yamt
266 1.3.4.2 yamt #undef TC_STATS
267 1.3.4.2 yamt
268 1.3.4.2 yamt static void tc_windup(void);
269 1.3.4.2 yamt
270 1.3.4.2 yamt #ifdef __FreeBSD__
271 1.3.4.2 yamt static int
272 1.3.4.2 yamt sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
273 1.3.4.2 yamt {
274 1.3.4.2 yamt #ifdef SCTL_MASK32
275 1.3.4.2 yamt int tv[2];
276 1.3.4.2 yamt
277 1.3.4.2 yamt if (req->flags & SCTL_MASK32) {
278 1.3.4.2 yamt tv[0] = boottime.tv_sec;
279 1.3.4.2 yamt tv[1] = boottime.tv_usec;
280 1.3.4.2 yamt return SYSCTL_OUT(req, tv, sizeof(tv));
281 1.3.4.2 yamt } else
282 1.3.4.2 yamt #endif
283 1.3.4.2 yamt return SYSCTL_OUT(req, &boottime, sizeof(boottime));
284 1.3.4.2 yamt }
285 1.3.4.2 yamt #endif /* __FreeBSD__ */
286 1.3.4.2 yamt
287 1.3.4.2 yamt /*
288 1.3.4.2 yamt * Return the difference between the timehands' counter value now and what
289 1.3.4.2 yamt * was when we copied it to the timehands' offset_count.
290 1.3.4.2 yamt */
291 1.3.4.2 yamt static __inline u_int
292 1.3.4.2 yamt tc_delta(struct timehands *th)
293 1.3.4.2 yamt {
294 1.3.4.2 yamt struct timecounter *tc;
295 1.3.4.2 yamt
296 1.3.4.2 yamt tc = th->th_counter;
297 1.3.4.2 yamt return ((tc->tc_get_timecount(tc) -
298 1.3.4.2 yamt th->th_offset_count) & tc->tc_counter_mask);
299 1.3.4.2 yamt }
300 1.3.4.2 yamt
301 1.3.4.2 yamt /*
302 1.3.4.2 yamt * Functions for reading the time. We have to loop until we are sure that
303 1.3.4.2 yamt * the timehands that we operated on was not updated under our feet. See
304 1.3.4.2 yamt * the comment in <sys/time.h> for a description of these 12 functions.
305 1.3.4.2 yamt */
306 1.3.4.2 yamt
307 1.3.4.2 yamt void
308 1.3.4.2 yamt binuptime(struct bintime *bt)
309 1.3.4.2 yamt {
310 1.3.4.2 yamt struct timehands *th;
311 1.3.4.2 yamt u_int gen;
312 1.3.4.2 yamt
313 1.3.4.2 yamt nbinuptime.ev_count++;
314 1.3.4.2 yamt do {
315 1.3.4.2 yamt th = timehands;
316 1.3.4.2 yamt gen = th->th_generation;
317 1.3.4.2 yamt *bt = th->th_offset;
318 1.3.4.2 yamt bintime_addx(bt, th->th_scale * tc_delta(th));
319 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
320 1.3.4.2 yamt }
321 1.3.4.2 yamt
322 1.3.4.2 yamt void
323 1.3.4.2 yamt nanouptime(struct timespec *tsp)
324 1.3.4.2 yamt {
325 1.3.4.2 yamt struct bintime bt;
326 1.3.4.2 yamt
327 1.3.4.2 yamt nnanouptime.ev_count++;
328 1.3.4.2 yamt binuptime(&bt);
329 1.3.4.2 yamt bintime2timespec(&bt, tsp);
330 1.3.4.2 yamt }
331 1.3.4.2 yamt
332 1.3.4.2 yamt void
333 1.3.4.2 yamt microuptime(struct timeval *tvp)
334 1.3.4.2 yamt {
335 1.3.4.2 yamt struct bintime bt;
336 1.3.4.2 yamt
337 1.3.4.2 yamt nmicrouptime.ev_count++;
338 1.3.4.2 yamt binuptime(&bt);
339 1.3.4.2 yamt bintime2timeval(&bt, tvp);
340 1.3.4.2 yamt }
341 1.3.4.2 yamt
342 1.3.4.2 yamt void
343 1.3.4.2 yamt bintime(struct bintime *bt)
344 1.3.4.2 yamt {
345 1.3.4.2 yamt
346 1.3.4.2 yamt nbintime.ev_count++;
347 1.3.4.2 yamt binuptime(bt);
348 1.3.4.2 yamt bintime_add(bt, &boottimebin);
349 1.3.4.2 yamt }
350 1.3.4.2 yamt
351 1.3.4.2 yamt void
352 1.3.4.2 yamt nanotime(struct timespec *tsp)
353 1.3.4.2 yamt {
354 1.3.4.2 yamt struct bintime bt;
355 1.3.4.2 yamt
356 1.3.4.2 yamt nnanotime.ev_count++;
357 1.3.4.2 yamt bintime(&bt);
358 1.3.4.2 yamt bintime2timespec(&bt, tsp);
359 1.3.4.2 yamt }
360 1.3.4.2 yamt
361 1.3.4.2 yamt void
362 1.3.4.2 yamt microtime(struct timeval *tvp)
363 1.3.4.2 yamt {
364 1.3.4.2 yamt struct bintime bt;
365 1.3.4.2 yamt
366 1.3.4.2 yamt nmicrotime.ev_count++;
367 1.3.4.2 yamt bintime(&bt);
368 1.3.4.2 yamt bintime2timeval(&bt, tvp);
369 1.3.4.2 yamt }
370 1.3.4.2 yamt
371 1.3.4.2 yamt void
372 1.3.4.2 yamt getbinuptime(struct bintime *bt)
373 1.3.4.2 yamt {
374 1.3.4.2 yamt struct timehands *th;
375 1.3.4.2 yamt u_int gen;
376 1.3.4.2 yamt
377 1.3.4.2 yamt ngetbinuptime.ev_count++;
378 1.3.4.2 yamt do {
379 1.3.4.2 yamt th = timehands;
380 1.3.4.2 yamt gen = th->th_generation;
381 1.3.4.2 yamt *bt = th->th_offset;
382 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
383 1.3.4.2 yamt }
384 1.3.4.2 yamt
385 1.3.4.2 yamt void
386 1.3.4.2 yamt getnanouptime(struct timespec *tsp)
387 1.3.4.2 yamt {
388 1.3.4.2 yamt struct timehands *th;
389 1.3.4.2 yamt u_int gen;
390 1.3.4.2 yamt
391 1.3.4.2 yamt ngetnanouptime.ev_count++;
392 1.3.4.2 yamt do {
393 1.3.4.2 yamt th = timehands;
394 1.3.4.2 yamt gen = th->th_generation;
395 1.3.4.2 yamt bintime2timespec(&th->th_offset, tsp);
396 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
397 1.3.4.2 yamt }
398 1.3.4.2 yamt
399 1.3.4.2 yamt void
400 1.3.4.2 yamt getmicrouptime(struct timeval *tvp)
401 1.3.4.2 yamt {
402 1.3.4.2 yamt struct timehands *th;
403 1.3.4.2 yamt u_int gen;
404 1.3.4.2 yamt
405 1.3.4.2 yamt ngetmicrouptime.ev_count++;
406 1.3.4.2 yamt do {
407 1.3.4.2 yamt th = timehands;
408 1.3.4.2 yamt gen = th->th_generation;
409 1.3.4.2 yamt bintime2timeval(&th->th_offset, tvp);
410 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
411 1.3.4.2 yamt }
412 1.3.4.2 yamt
413 1.3.4.2 yamt void
414 1.3.4.2 yamt getbintime(struct bintime *bt)
415 1.3.4.2 yamt {
416 1.3.4.2 yamt struct timehands *th;
417 1.3.4.2 yamt u_int gen;
418 1.3.4.2 yamt
419 1.3.4.2 yamt ngetbintime.ev_count++;
420 1.3.4.2 yamt do {
421 1.3.4.2 yamt th = timehands;
422 1.3.4.2 yamt gen = th->th_generation;
423 1.3.4.2 yamt *bt = th->th_offset;
424 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
425 1.3.4.2 yamt bintime_add(bt, &boottimebin);
426 1.3.4.2 yamt }
427 1.3.4.2 yamt
428 1.3.4.2 yamt void
429 1.3.4.2 yamt getnanotime(struct timespec *tsp)
430 1.3.4.2 yamt {
431 1.3.4.2 yamt struct timehands *th;
432 1.3.4.2 yamt u_int gen;
433 1.3.4.2 yamt
434 1.3.4.2 yamt ngetnanotime.ev_count++;
435 1.3.4.2 yamt do {
436 1.3.4.2 yamt th = timehands;
437 1.3.4.2 yamt gen = th->th_generation;
438 1.3.4.2 yamt *tsp = th->th_nanotime;
439 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
440 1.3.4.2 yamt }
441 1.3.4.2 yamt
442 1.3.4.2 yamt void
443 1.3.4.2 yamt getmicrotime(struct timeval *tvp)
444 1.3.4.2 yamt {
445 1.3.4.2 yamt struct timehands *th;
446 1.3.4.2 yamt u_int gen;
447 1.3.4.2 yamt
448 1.3.4.2 yamt ngetmicrotime.ev_count++;
449 1.3.4.2 yamt do {
450 1.3.4.2 yamt th = timehands;
451 1.3.4.2 yamt gen = th->th_generation;
452 1.3.4.2 yamt *tvp = th->th_microtime;
453 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
454 1.3.4.2 yamt }
455 1.3.4.2 yamt
456 1.3.4.2 yamt /*
457 1.3.4.2 yamt * Initialize a new timecounter and possibly use it.
458 1.3.4.2 yamt */
459 1.3.4.2 yamt void
460 1.3.4.2 yamt tc_init(struct timecounter *tc)
461 1.3.4.2 yamt {
462 1.3.4.2 yamt u_int u;
463 1.3.4.2 yamt
464 1.3.4.2 yamt u = tc->tc_frequency / tc->tc_counter_mask;
465 1.3.4.2 yamt /* XXX: We need some margin here, 10% is a guess */
466 1.3.4.2 yamt u *= 11;
467 1.3.4.2 yamt u /= 10;
468 1.3.4.2 yamt if (u > hz && tc->tc_quality >= 0) {
469 1.3.4.2 yamt tc->tc_quality = -2000;
470 1.3.4.2 yamt if (bootverbose) {
471 1.3.4.2 yamt printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
472 1.3.4.2 yamt tc->tc_name, (uintmax_t)tc->tc_frequency);
473 1.3.4.2 yamt printf(" -- Insufficient hz, needs at least %u\n", u);
474 1.3.4.2 yamt }
475 1.3.4.2 yamt } else if (tc->tc_quality >= 0 || bootverbose) {
476 1.3.4.2 yamt printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
477 1.3.4.2 yamt tc->tc_name, (uintmax_t)tc->tc_frequency,
478 1.3.4.2 yamt tc->tc_quality);
479 1.3.4.2 yamt }
480 1.3.4.2 yamt
481 1.3.4.2 yamt /* XXX locking */
482 1.3.4.2 yamt tc->tc_next = timecounters;
483 1.3.4.2 yamt timecounters = tc;
484 1.3.4.2 yamt /*
485 1.3.4.2 yamt * Never automatically use a timecounter with negative quality.
486 1.3.4.2 yamt * Even though we run on the dummy counter, switching here may be
487 1.3.4.2 yamt * worse since this timecounter may not be monotonous.
488 1.3.4.2 yamt */
489 1.3.4.2 yamt if (tc->tc_quality < 0)
490 1.3.4.2 yamt return;
491 1.3.4.2 yamt if (tc->tc_quality < timecounter->tc_quality)
492 1.3.4.2 yamt return;
493 1.3.4.2 yamt if (tc->tc_quality == timecounter->tc_quality &&
494 1.3.4.2 yamt tc->tc_frequency < timecounter->tc_frequency)
495 1.3.4.2 yamt return;
496 1.3.4.2 yamt (void)tc->tc_get_timecount(tc);
497 1.3.4.2 yamt (void)tc->tc_get_timecount(tc);
498 1.3.4.2 yamt timecounter = tc;
499 1.3.4.2 yamt tc_windup();
500 1.3.4.2 yamt }
501 1.3.4.2 yamt
502 1.3.4.2 yamt /* Report the frequency of the current timecounter. */
503 1.3.4.2 yamt u_int64_t
504 1.3.4.2 yamt tc_getfrequency(void)
505 1.3.4.2 yamt {
506 1.3.4.2 yamt
507 1.3.4.2 yamt return (timehands->th_counter->tc_frequency);
508 1.3.4.2 yamt }
509 1.3.4.2 yamt
510 1.3.4.2 yamt /*
511 1.3.4.2 yamt * Step our concept of UTC. This is done by modifying our estimate of
512 1.3.4.2 yamt * when we booted.
513 1.3.4.2 yamt * XXX: not locked.
514 1.3.4.2 yamt */
515 1.3.4.2 yamt void
516 1.3.4.2 yamt tc_setclock(struct timespec *ts)
517 1.3.4.2 yamt {
518 1.3.4.2 yamt struct timespec ts2;
519 1.3.4.2 yamt struct bintime bt, bt2;
520 1.3.4.2 yamt
521 1.3.4.2 yamt nsetclock.ev_count++;
522 1.3.4.2 yamt binuptime(&bt2);
523 1.3.4.2 yamt timespec2bintime(ts, &bt);
524 1.3.4.2 yamt bintime_sub(&bt, &bt2);
525 1.3.4.2 yamt bintime_add(&bt2, &boottimebin);
526 1.3.4.2 yamt boottimebin = bt;
527 1.3.4.2 yamt bintime2timeval(&bt, &boottime);
528 1.3.4.2 yamt
529 1.3.4.2 yamt /* XXX fiddle all the little crinkly bits around the fiords... */
530 1.3.4.2 yamt tc_windup();
531 1.3.4.2 yamt if (timestepwarnings) {
532 1.3.4.2 yamt bintime2timespec(&bt2, &ts2);
533 1.3.4.2 yamt log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
534 1.3.4.2 yamt (intmax_t)ts2.tv_sec, ts2.tv_nsec,
535 1.3.4.2 yamt (intmax_t)ts->tv_sec, ts->tv_nsec);
536 1.3.4.2 yamt }
537 1.3.4.2 yamt }
538 1.3.4.2 yamt
539 1.3.4.2 yamt /*
540 1.3.4.2 yamt * Initialize the next struct timehands in the ring and make
541 1.3.4.2 yamt * it the active timehands. Along the way we might switch to a different
542 1.3.4.2 yamt * timecounter and/or do seconds processing in NTP. Slightly magic.
543 1.3.4.2 yamt */
544 1.3.4.2 yamt static void
545 1.3.4.2 yamt tc_windup(void)
546 1.3.4.2 yamt {
547 1.3.4.2 yamt struct bintime bt;
548 1.3.4.2 yamt struct timehands *th, *tho;
549 1.3.4.2 yamt u_int64_t scale;
550 1.3.4.2 yamt u_int delta, ncount, ogen;
551 1.3.4.2 yamt int i;
552 1.3.4.2 yamt time_t t;
553 1.3.4.2 yamt
554 1.3.4.2 yamt /*
555 1.3.4.2 yamt * Make the next timehands a copy of the current one, but do not
556 1.3.4.2 yamt * overwrite the generation or next pointer. While we update
557 1.3.4.2 yamt * the contents, the generation must be zero.
558 1.3.4.2 yamt */
559 1.3.4.2 yamt tho = timehands;
560 1.3.4.2 yamt th = tho->th_next;
561 1.3.4.2 yamt ogen = th->th_generation;
562 1.3.4.2 yamt th->th_generation = 0;
563 1.3.4.2 yamt bcopy(tho, th, offsetof(struct timehands, th_generation));
564 1.3.4.2 yamt
565 1.3.4.2 yamt /*
566 1.3.4.2 yamt * Capture a timecounter delta on the current timecounter and if
567 1.3.4.2 yamt * changing timecounters, a counter value from the new timecounter.
568 1.3.4.2 yamt * Update the offset fields accordingly.
569 1.3.4.2 yamt */
570 1.3.4.2 yamt delta = tc_delta(th);
571 1.3.4.2 yamt if (th->th_counter != timecounter)
572 1.3.4.2 yamt ncount = timecounter->tc_get_timecount(timecounter);
573 1.3.4.2 yamt else
574 1.3.4.2 yamt ncount = 0;
575 1.3.4.2 yamt th->th_offset_count += delta;
576 1.3.4.2 yamt th->th_offset_count &= th->th_counter->tc_counter_mask;
577 1.3.4.2 yamt bintime_addx(&th->th_offset, th->th_scale * delta);
578 1.3.4.2 yamt
579 1.3.4.2 yamt /*
580 1.3.4.2 yamt * Hardware latching timecounters may not generate interrupts on
581 1.3.4.2 yamt * PPS events, so instead we poll them. There is a finite risk that
582 1.3.4.2 yamt * the hardware might capture a count which is later than the one we
583 1.3.4.2 yamt * got above, and therefore possibly in the next NTP second which might
584 1.3.4.2 yamt * have a different rate than the current NTP second. It doesn't
585 1.3.4.2 yamt * matter in practice.
586 1.3.4.2 yamt */
587 1.3.4.2 yamt if (tho->th_counter->tc_poll_pps)
588 1.3.4.2 yamt tho->th_counter->tc_poll_pps(tho->th_counter);
589 1.3.4.2 yamt
590 1.3.4.2 yamt /*
591 1.3.4.2 yamt * Deal with NTP second processing. The for loop normally
592 1.3.4.2 yamt * iterates at most once, but in extreme situations it might
593 1.3.4.2 yamt * keep NTP sane if timeouts are not run for several seconds.
594 1.3.4.2 yamt * At boot, the time step can be large when the TOD hardware
595 1.3.4.2 yamt * has been read, so on really large steps, we call
596 1.3.4.2 yamt * ntp_update_second only twice. We need to call it twice in
597 1.3.4.2 yamt * case we missed a leap second.
598 1.3.4.2 yamt * If NTP is not compiled in ntp_update_second still calculates
599 1.3.4.2 yamt * the adjustment resulting from adjtime() calls.
600 1.3.4.2 yamt */
601 1.3.4.2 yamt bt = th->th_offset;
602 1.3.4.2 yamt bintime_add(&bt, &boottimebin);
603 1.3.4.2 yamt i = bt.sec - tho->th_microtime.tv_sec;
604 1.3.4.2 yamt if (i > LARGE_STEP)
605 1.3.4.2 yamt i = 2;
606 1.3.4.2 yamt for (; i > 0; i--) {
607 1.3.4.2 yamt t = bt.sec;
608 1.3.4.2 yamt ntp_update_second(&th->th_adjustment, &bt.sec);
609 1.3.4.2 yamt if (bt.sec != t)
610 1.3.4.2 yamt boottimebin.sec += bt.sec - t;
611 1.3.4.2 yamt }
612 1.3.4.2 yamt
613 1.3.4.2 yamt /* Update the UTC timestamps used by the get*() functions. */
614 1.3.4.2 yamt /* XXX shouldn't do this here. Should force non-`get' versions. */
615 1.3.4.2 yamt bintime2timeval(&bt, &th->th_microtime);
616 1.3.4.2 yamt bintime2timespec(&bt, &th->th_nanotime);
617 1.3.4.2 yamt
618 1.3.4.2 yamt /* Now is a good time to change timecounters. */
619 1.3.4.2 yamt if (th->th_counter != timecounter) {
620 1.3.4.2 yamt th->th_counter = timecounter;
621 1.3.4.2 yamt th->th_offset_count = ncount;
622 1.3.4.2 yamt
623 1.3.4.2 yamt printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
624 1.3.4.2 yamt timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
625 1.3.4.2 yamt timecounter->tc_quality);
626 1.3.4.2 yamt }
627 1.3.4.2 yamt
628 1.3.4.2 yamt /*-
629 1.3.4.2 yamt * Recalculate the scaling factor. We want the number of 1/2^64
630 1.3.4.2 yamt * fractions of a second per period of the hardware counter, taking
631 1.3.4.2 yamt * into account the th_adjustment factor which the NTP PLL/adjtime(2)
632 1.3.4.2 yamt * processing provides us with.
633 1.3.4.2 yamt *
634 1.3.4.2 yamt * The th_adjustment is nanoseconds per second with 32 bit binary
635 1.3.4.2 yamt * fraction and we want 64 bit binary fraction of second:
636 1.3.4.2 yamt *
637 1.3.4.2 yamt * x = a * 2^32 / 10^9 = a * 4.294967296
638 1.3.4.2 yamt *
639 1.3.4.2 yamt * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
640 1.3.4.2 yamt * we can only multiply by about 850 without overflowing, but that
641 1.3.4.2 yamt * leaves suitably precise fractions for multiply before divide.
642 1.3.4.2 yamt *
643 1.3.4.2 yamt * Divide before multiply with a fraction of 2199/512 results in a
644 1.3.4.2 yamt * systematic undercompensation of 10PPM of th_adjustment. On a
645 1.3.4.2 yamt * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
646 1.3.4.2 yamt *
647 1.3.4.2 yamt * We happily sacrifice the lowest of the 64 bits of our result
648 1.3.4.2 yamt * to the goddess of code clarity.
649 1.3.4.2 yamt *
650 1.3.4.2 yamt */
651 1.3.4.2 yamt scale = (u_int64_t)1 << 63;
652 1.3.4.2 yamt scale += (th->th_adjustment / 1024) * 2199;
653 1.3.4.2 yamt scale /= th->th_counter->tc_frequency;
654 1.3.4.2 yamt th->th_scale = scale * 2;
655 1.3.4.2 yamt
656 1.3.4.2 yamt /*
657 1.3.4.2 yamt * Now that the struct timehands is again consistent, set the new
658 1.3.4.2 yamt * generation number, making sure to not make it zero.
659 1.3.4.2 yamt */
660 1.3.4.2 yamt if (++ogen == 0)
661 1.3.4.2 yamt ogen = 1;
662 1.3.4.2 yamt th->th_generation = ogen;
663 1.3.4.2 yamt
664 1.3.4.2 yamt /* Go live with the new struct timehands. */
665 1.3.4.2 yamt time_second = th->th_microtime.tv_sec;
666 1.3.4.2 yamt time_uptime = th->th_offset.sec;
667 1.3.4.2 yamt timehands = th;
668 1.3.4.2 yamt }
669 1.3.4.2 yamt
670 1.3.4.2 yamt #ifdef __FreeBSD__
671 1.3.4.2 yamt /* Report or change the active timecounter hardware. */
672 1.3.4.2 yamt static int
673 1.3.4.2 yamt sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
674 1.3.4.2 yamt {
675 1.3.4.2 yamt char newname[32];
676 1.3.4.2 yamt struct timecounter *newtc, *tc;
677 1.3.4.2 yamt int error;
678 1.3.4.2 yamt
679 1.3.4.2 yamt tc = timecounter;
680 1.3.4.2 yamt strlcpy(newname, tc->tc_name, sizeof(newname));
681 1.3.4.2 yamt
682 1.3.4.2 yamt error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
683 1.3.4.2 yamt if (error != 0 || req->newptr == NULL ||
684 1.3.4.2 yamt strcmp(newname, tc->tc_name) == 0)
685 1.3.4.2 yamt return (error);
686 1.3.4.2 yamt
687 1.3.4.2 yamt for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
688 1.3.4.2 yamt if (strcmp(newname, newtc->tc_name) != 0)
689 1.3.4.2 yamt continue;
690 1.3.4.2 yamt
691 1.3.4.2 yamt /* Warm up new timecounter. */
692 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
693 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
694 1.3.4.2 yamt
695 1.3.4.2 yamt timecounter = newtc;
696 1.3.4.2 yamt return (0);
697 1.3.4.2 yamt }
698 1.3.4.2 yamt return (EINVAL);
699 1.3.4.2 yamt }
700 1.3.4.2 yamt
701 1.3.4.2 yamt SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
702 1.3.4.2 yamt 0, 0, sysctl_kern_timecounter_hardware, "A", "");
703 1.3.4.2 yamt
704 1.3.4.2 yamt
705 1.3.4.2 yamt /* Report or change the active timecounter hardware. */
706 1.3.4.2 yamt static int
707 1.3.4.2 yamt sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
708 1.3.4.2 yamt {
709 1.3.4.2 yamt char buf[32], *spc;
710 1.3.4.2 yamt struct timecounter *tc;
711 1.3.4.2 yamt int error;
712 1.3.4.2 yamt
713 1.3.4.2 yamt spc = "";
714 1.3.4.2 yamt error = 0;
715 1.3.4.2 yamt for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
716 1.3.4.2 yamt sprintf(buf, "%s%s(%d)",
717 1.3.4.2 yamt spc, tc->tc_name, tc->tc_quality);
718 1.3.4.2 yamt error = SYSCTL_OUT(req, buf, strlen(buf));
719 1.3.4.2 yamt spc = " ";
720 1.3.4.2 yamt }
721 1.3.4.2 yamt return (error);
722 1.3.4.2 yamt }
723 1.3.4.2 yamt
724 1.3.4.2 yamt SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
725 1.3.4.2 yamt 0, 0, sysctl_kern_timecounter_choice, "A", "");
726 1.3.4.2 yamt #endif /* __FreeBSD__ */
727 1.3.4.2 yamt
728 1.3.4.2 yamt /*
729 1.3.4.2 yamt * RFC 2783 PPS-API implementation.
730 1.3.4.2 yamt */
731 1.3.4.2 yamt
732 1.3.4.2 yamt int
733 1.3.4.2 yamt pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
734 1.3.4.2 yamt {
735 1.3.4.2 yamt pps_params_t *app;
736 1.3.4.2 yamt pps_info_t *pipi;
737 1.3.4.2 yamt #ifdef PPS_SYNC
738 1.3.4.2 yamt int *epi;
739 1.3.4.2 yamt #endif
740 1.3.4.2 yamt
741 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
742 1.3.4.2 yamt switch (cmd) {
743 1.3.4.2 yamt case PPS_IOC_CREATE:
744 1.3.4.2 yamt return (0);
745 1.3.4.2 yamt case PPS_IOC_DESTROY:
746 1.3.4.2 yamt return (0);
747 1.3.4.2 yamt case PPS_IOC_SETPARAMS:
748 1.3.4.2 yamt app = (pps_params_t *)data;
749 1.3.4.2 yamt if (app->mode & ~pps->ppscap)
750 1.3.4.2 yamt return (EINVAL);
751 1.3.4.2 yamt pps->ppsparam = *app;
752 1.3.4.2 yamt return (0);
753 1.3.4.2 yamt case PPS_IOC_GETPARAMS:
754 1.3.4.2 yamt app = (pps_params_t *)data;
755 1.3.4.2 yamt *app = pps->ppsparam;
756 1.3.4.2 yamt app->api_version = PPS_API_VERS_1;
757 1.3.4.2 yamt return (0);
758 1.3.4.2 yamt case PPS_IOC_GETCAP:
759 1.3.4.2 yamt *(int*)data = pps->ppscap;
760 1.3.4.2 yamt return (0);
761 1.3.4.2 yamt case PPS_IOC_FETCH:
762 1.3.4.2 yamt pipi = (pps_info_t *)data;
763 1.3.4.2 yamt pps->ppsinfo.current_mode = pps->ppsparam.mode;
764 1.3.4.2 yamt *pipi = pps->ppsinfo;
765 1.3.4.2 yamt return (0);
766 1.3.4.2 yamt case PPS_IOC_KCBIND:
767 1.3.4.2 yamt #ifdef PPS_SYNC
768 1.3.4.2 yamt epi = (int *)data;
769 1.3.4.2 yamt /* XXX Only root should be able to do this */
770 1.3.4.2 yamt if (*epi & ~pps->ppscap)
771 1.3.4.2 yamt return (EINVAL);
772 1.3.4.2 yamt pps->kcmode = *epi;
773 1.3.4.2 yamt return (0);
774 1.3.4.2 yamt #else
775 1.3.4.2 yamt return (EOPNOTSUPP);
776 1.3.4.2 yamt #endif
777 1.3.4.2 yamt default:
778 1.3.4.2 yamt return (EPASSTHROUGH);
779 1.3.4.2 yamt }
780 1.3.4.2 yamt }
781 1.3.4.2 yamt
782 1.3.4.2 yamt void
783 1.3.4.2 yamt pps_init(struct pps_state *pps)
784 1.3.4.2 yamt {
785 1.3.4.2 yamt pps->ppscap |= PPS_TSFMT_TSPEC;
786 1.3.4.2 yamt if (pps->ppscap & PPS_CAPTUREASSERT)
787 1.3.4.2 yamt pps->ppscap |= PPS_OFFSETASSERT;
788 1.3.4.2 yamt if (pps->ppscap & PPS_CAPTURECLEAR)
789 1.3.4.2 yamt pps->ppscap |= PPS_OFFSETCLEAR;
790 1.3.4.2 yamt }
791 1.3.4.2 yamt
792 1.3.4.2 yamt void
793 1.3.4.2 yamt pps_capture(struct pps_state *pps)
794 1.3.4.2 yamt {
795 1.3.4.2 yamt struct timehands *th;
796 1.3.4.2 yamt
797 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
798 1.3.4.2 yamt th = timehands;
799 1.3.4.2 yamt pps->capgen = th->th_generation;
800 1.3.4.2 yamt pps->capth = th;
801 1.3.4.2 yamt pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
802 1.3.4.2 yamt if (pps->capgen != th->th_generation)
803 1.3.4.2 yamt pps->capgen = 0;
804 1.3.4.2 yamt }
805 1.3.4.2 yamt
806 1.3.4.2 yamt void
807 1.3.4.2 yamt pps_event(struct pps_state *pps, int event)
808 1.3.4.2 yamt {
809 1.3.4.2 yamt struct bintime bt;
810 1.3.4.2 yamt struct timespec ts, *tsp, *osp;
811 1.3.4.2 yamt u_int tcount, *pcount;
812 1.3.4.2 yamt int foff, fhard;
813 1.3.4.2 yamt pps_seq_t *pseq;
814 1.3.4.2 yamt
815 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
816 1.3.4.2 yamt /* If the timecounter was wound up underneath us, bail out. */
817 1.3.4.2 yamt if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
818 1.3.4.2 yamt return;
819 1.3.4.2 yamt
820 1.3.4.2 yamt /* Things would be easier with arrays. */
821 1.3.4.2 yamt if (event == PPS_CAPTUREASSERT) {
822 1.3.4.2 yamt tsp = &pps->ppsinfo.assert_timestamp;
823 1.3.4.2 yamt osp = &pps->ppsparam.assert_offset;
824 1.3.4.2 yamt foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
825 1.3.4.2 yamt fhard = pps->kcmode & PPS_CAPTUREASSERT;
826 1.3.4.2 yamt pcount = &pps->ppscount[0];
827 1.3.4.2 yamt pseq = &pps->ppsinfo.assert_sequence;
828 1.3.4.2 yamt } else {
829 1.3.4.2 yamt tsp = &pps->ppsinfo.clear_timestamp;
830 1.3.4.2 yamt osp = &pps->ppsparam.clear_offset;
831 1.3.4.2 yamt foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
832 1.3.4.2 yamt fhard = pps->kcmode & PPS_CAPTURECLEAR;
833 1.3.4.2 yamt pcount = &pps->ppscount[1];
834 1.3.4.2 yamt pseq = &pps->ppsinfo.clear_sequence;
835 1.3.4.2 yamt }
836 1.3.4.2 yamt
837 1.3.4.2 yamt /*
838 1.3.4.2 yamt * If the timecounter changed, we cannot compare the count values, so
839 1.3.4.2 yamt * we have to drop the rest of the PPS-stuff until the next event.
840 1.3.4.2 yamt */
841 1.3.4.2 yamt if (pps->ppstc != pps->capth->th_counter) {
842 1.3.4.2 yamt pps->ppstc = pps->capth->th_counter;
843 1.3.4.2 yamt *pcount = pps->capcount;
844 1.3.4.2 yamt pps->ppscount[2] = pps->capcount;
845 1.3.4.2 yamt return;
846 1.3.4.2 yamt }
847 1.3.4.2 yamt
848 1.3.4.2 yamt /* Convert the count to a timespec. */
849 1.3.4.2 yamt tcount = pps->capcount - pps->capth->th_offset_count;
850 1.3.4.2 yamt tcount &= pps->capth->th_counter->tc_counter_mask;
851 1.3.4.2 yamt bt = pps->capth->th_offset;
852 1.3.4.2 yamt bintime_addx(&bt, pps->capth->th_scale * tcount);
853 1.3.4.2 yamt bintime_add(&bt, &boottimebin);
854 1.3.4.2 yamt bintime2timespec(&bt, &ts);
855 1.3.4.2 yamt
856 1.3.4.2 yamt /* If the timecounter was wound up underneath us, bail out. */
857 1.3.4.2 yamt if (pps->capgen != pps->capth->th_generation)
858 1.3.4.2 yamt return;
859 1.3.4.2 yamt
860 1.3.4.2 yamt *pcount = pps->capcount;
861 1.3.4.2 yamt (*pseq)++;
862 1.3.4.2 yamt *tsp = ts;
863 1.3.4.2 yamt
864 1.3.4.2 yamt if (foff) {
865 1.3.4.2 yamt timespecadd(tsp, osp, tsp);
866 1.3.4.2 yamt if (tsp->tv_nsec < 0) {
867 1.3.4.2 yamt tsp->tv_nsec += 1000000000;
868 1.3.4.2 yamt tsp->tv_sec -= 1;
869 1.3.4.2 yamt }
870 1.3.4.2 yamt }
871 1.3.4.2 yamt #ifdef PPS_SYNC
872 1.3.4.2 yamt if (fhard) {
873 1.3.4.2 yamt u_int64_t scale;
874 1.3.4.2 yamt
875 1.3.4.2 yamt /*
876 1.3.4.2 yamt * Feed the NTP PLL/FLL.
877 1.3.4.2 yamt * The FLL wants to know how many (hardware) nanoseconds
878 1.3.4.2 yamt * elapsed since the previous event.
879 1.3.4.2 yamt */
880 1.3.4.2 yamt tcount = pps->capcount - pps->ppscount[2];
881 1.3.4.2 yamt pps->ppscount[2] = pps->capcount;
882 1.3.4.2 yamt tcount &= pps->capth->th_counter->tc_counter_mask;
883 1.3.4.2 yamt scale = (u_int64_t)1 << 63;
884 1.3.4.2 yamt scale /= pps->capth->th_counter->tc_frequency;
885 1.3.4.2 yamt scale *= 2;
886 1.3.4.2 yamt bt.sec = 0;
887 1.3.4.2 yamt bt.frac = 0;
888 1.3.4.2 yamt bintime_addx(&bt, scale * tcount);
889 1.3.4.2 yamt bintime2timespec(&bt, &ts);
890 1.3.4.2 yamt hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
891 1.3.4.2 yamt }
892 1.3.4.2 yamt #endif
893 1.3.4.2 yamt }
894 1.3.4.2 yamt
895 1.3.4.2 yamt /*
896 1.3.4.2 yamt * Timecounters need to be updated every so often to prevent the hardware
897 1.3.4.2 yamt * counter from overflowing. Updating also recalculates the cached values
898 1.3.4.2 yamt * used by the get*() family of functions, so their precision depends on
899 1.3.4.2 yamt * the update frequency.
900 1.3.4.2 yamt */
901 1.3.4.2 yamt
902 1.3.4.2 yamt static int tc_tick;
903 1.3.4.2 yamt #ifdef __FreeBSD__
904 1.3.4.2 yamt SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
905 1.3.4.2 yamt #endif /* __FreeBSD__ */
906 1.3.4.2 yamt
907 1.3.4.2 yamt void
908 1.3.4.2 yamt tc_ticktock(void)
909 1.3.4.2 yamt {
910 1.3.4.2 yamt static int count;
911 1.3.4.2 yamt
912 1.3.4.2 yamt if (++count < tc_tick)
913 1.3.4.2 yamt return;
914 1.3.4.2 yamt count = 0;
915 1.3.4.2 yamt tc_windup();
916 1.3.4.2 yamt }
917 1.3.4.2 yamt
918 1.3.4.2 yamt void
919 1.3.4.2 yamt inittimecounter(void)
920 1.3.4.2 yamt {
921 1.3.4.2 yamt u_int p;
922 1.3.4.2 yamt
923 1.3.4.2 yamt /*
924 1.3.4.2 yamt * Set the initial timeout to
925 1.3.4.2 yamt * max(1, <approx. number of hardclock ticks in a millisecond>).
926 1.3.4.2 yamt * People should probably not use the sysctl to set the timeout
927 1.3.4.2 yamt * to smaller than its inital value, since that value is the
928 1.3.4.2 yamt * smallest reasonable one. If they want better timestamps they
929 1.3.4.2 yamt * should use the non-"get"* functions.
930 1.3.4.2 yamt */
931 1.3.4.2 yamt if (hz > 1000)
932 1.3.4.2 yamt tc_tick = (hz + 500) / 1000;
933 1.3.4.2 yamt else
934 1.3.4.2 yamt tc_tick = 1;
935 1.3.4.2 yamt p = (tc_tick * 1000000) / hz;
936 1.3.4.2 yamt printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
937 1.3.4.2 yamt
938 1.3.4.2 yamt /* warm up new timecounter (again) and get rolling. */
939 1.3.4.2 yamt (void)timecounter->tc_get_timecount(timecounter);
940 1.3.4.2 yamt (void)timecounter->tc_get_timecount(timecounter);
941 1.3.4.2 yamt }
942 1.3.4.2 yamt
943 1.3.4.2 yamt #ifdef __FreeBSD__
944 1.3.4.2 yamt SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
945 1.3.4.2 yamt #endif /* __FreeBSD__ */
946 1.3.4.2 yamt #endif /* __HAVE_TIMECOUNTER */
947