kern_tc.c revision 1.3.4.6 1 1.3.4.6 yamt /* $NetBSD: kern_tc.c,v 1.3.4.6 2007/10/27 11:35:30 yamt Exp $ */
2 1.3.4.2 yamt
3 1.3.4.2 yamt /*-
4 1.3.4.2 yamt * ----------------------------------------------------------------------------
5 1.3.4.2 yamt * "THE BEER-WARE LICENSE" (Revision 42):
6 1.3.4.2 yamt * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.3.4.2 yamt * can do whatever you want with this stuff. If we meet some day, and you think
8 1.3.4.2 yamt * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.3.4.2 yamt * ---------------------------------------------------------------------------
10 1.3.4.2 yamt */
11 1.3.4.2 yamt
12 1.3.4.2 yamt #include <sys/cdefs.h>
13 1.3.4.2 yamt /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.3.4.6 yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.3.4.6 2007/10/27 11:35:30 yamt Exp $");
15 1.3.4.2 yamt
16 1.3.4.2 yamt #include "opt_ntp.h"
17 1.3.4.2 yamt
18 1.3.4.2 yamt #include <sys/param.h>
19 1.3.4.2 yamt #ifdef __HAVE_TIMECOUNTER /* XXX */
20 1.3.4.2 yamt #include <sys/kernel.h>
21 1.3.4.2 yamt #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 1.3.4.2 yamt #include <sys/sysctl.h>
23 1.3.4.2 yamt #include <sys/syslog.h>
24 1.3.4.2 yamt #include <sys/systm.h>
25 1.3.4.2 yamt #include <sys/timepps.h>
26 1.3.4.2 yamt #include <sys/timetc.h>
27 1.3.4.2 yamt #include <sys/timex.h>
28 1.3.4.2 yamt #include <sys/evcnt.h>
29 1.3.4.2 yamt #include <sys/kauth.h>
30 1.3.4.2 yamt
31 1.3.4.2 yamt /*
32 1.3.4.2 yamt * A large step happens on boot. This constant detects such steps.
33 1.3.4.2 yamt * It is relatively small so that ntp_update_second gets called enough
34 1.3.4.2 yamt * in the typical 'missed a couple of seconds' case, but doesn't loop
35 1.3.4.2 yamt * forever when the time step is large.
36 1.3.4.2 yamt */
37 1.3.4.2 yamt #define LARGE_STEP 200
38 1.3.4.2 yamt
39 1.3.4.2 yamt /*
40 1.3.4.2 yamt * Implement a dummy timecounter which we can use until we get a real one
41 1.3.4.2 yamt * in the air. This allows the console and other early stuff to use
42 1.3.4.2 yamt * time services.
43 1.3.4.2 yamt */
44 1.3.4.2 yamt
45 1.3.4.2 yamt static u_int
46 1.3.4.2 yamt dummy_get_timecount(struct timecounter *tc)
47 1.3.4.2 yamt {
48 1.3.4.2 yamt static u_int now;
49 1.3.4.2 yamt
50 1.3.4.2 yamt return (++now);
51 1.3.4.2 yamt }
52 1.3.4.2 yamt
53 1.3.4.2 yamt static struct timecounter dummy_timecounter = {
54 1.3.4.3 yamt dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 1.3.4.2 yamt };
56 1.3.4.2 yamt
57 1.3.4.2 yamt struct timehands {
58 1.3.4.2 yamt /* These fields must be initialized by the driver. */
59 1.3.4.2 yamt struct timecounter *th_counter;
60 1.3.4.2 yamt int64_t th_adjustment;
61 1.3.4.2 yamt u_int64_t th_scale;
62 1.3.4.2 yamt u_int th_offset_count;
63 1.3.4.2 yamt struct bintime th_offset;
64 1.3.4.2 yamt struct timeval th_microtime;
65 1.3.4.2 yamt struct timespec th_nanotime;
66 1.3.4.2 yamt /* Fields not to be copied in tc_windup start with th_generation. */
67 1.3.4.2 yamt volatile u_int th_generation;
68 1.3.4.2 yamt struct timehands *th_next;
69 1.3.4.2 yamt };
70 1.3.4.2 yamt
71 1.3.4.2 yamt static struct timehands th0;
72 1.3.4.3 yamt static struct timehands th9 = { .th_next = &th0, };
73 1.3.4.3 yamt static struct timehands th8 = { .th_next = &th9, };
74 1.3.4.3 yamt static struct timehands th7 = { .th_next = &th8, };
75 1.3.4.3 yamt static struct timehands th6 = { .th_next = &th7, };
76 1.3.4.3 yamt static struct timehands th5 = { .th_next = &th6, };
77 1.3.4.3 yamt static struct timehands th4 = { .th_next = &th5, };
78 1.3.4.3 yamt static struct timehands th3 = { .th_next = &th4, };
79 1.3.4.3 yamt static struct timehands th2 = { .th_next = &th3, };
80 1.3.4.3 yamt static struct timehands th1 = { .th_next = &th2, };
81 1.3.4.2 yamt static struct timehands th0 = {
82 1.3.4.3 yamt .th_counter = &dummy_timecounter,
83 1.3.4.3 yamt .th_scale = (uint64_t)-1 / 1000000,
84 1.3.4.3 yamt .th_offset = { .sec = 1, .frac = 0 },
85 1.3.4.3 yamt .th_generation = 1,
86 1.3.4.3 yamt .th_next = &th1,
87 1.3.4.2 yamt };
88 1.3.4.2 yamt
89 1.3.4.2 yamt static struct timehands *volatile timehands = &th0;
90 1.3.4.2 yamt struct timecounter *timecounter = &dummy_timecounter;
91 1.3.4.2 yamt static struct timecounter *timecounters = &dummy_timecounter;
92 1.3.4.2 yamt
93 1.3.4.2 yamt time_t time_second = 1;
94 1.3.4.2 yamt time_t time_uptime = 1;
95 1.3.4.2 yamt
96 1.3.4.3 yamt static struct bintime timebasebin;
97 1.3.4.2 yamt
98 1.3.4.2 yamt static int timestepwarnings;
99 1.3.4.2 yamt
100 1.3.4.2 yamt #ifdef __FreeBSD__
101 1.3.4.2 yamt SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102 1.3.4.2 yamt ×tepwarnings, 0, "");
103 1.3.4.2 yamt #endif /* __FreeBSD__ */
104 1.3.4.2 yamt
105 1.3.4.2 yamt /*
106 1.3.4.2 yamt * sysctl helper routine for kern.timercounter.current
107 1.3.4.2 yamt */
108 1.3.4.2 yamt static int
109 1.3.4.2 yamt sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 1.3.4.2 yamt {
111 1.3.4.2 yamt struct sysctlnode node;
112 1.3.4.2 yamt int error;
113 1.3.4.2 yamt char newname[MAX_TCNAMELEN];
114 1.3.4.2 yamt struct timecounter *newtc, *tc;
115 1.3.4.2 yamt
116 1.3.4.2 yamt tc = timecounter;
117 1.3.4.2 yamt
118 1.3.4.2 yamt strlcpy(newname, tc->tc_name, sizeof(newname));
119 1.3.4.2 yamt
120 1.3.4.2 yamt node = *rnode;
121 1.3.4.2 yamt node.sysctl_data = newname;
122 1.3.4.2 yamt node.sysctl_size = sizeof(newname);
123 1.3.4.2 yamt
124 1.3.4.2 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
125 1.3.4.2 yamt
126 1.3.4.2 yamt if (error ||
127 1.3.4.2 yamt newp == NULL ||
128 1.3.4.2 yamt strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 1.3.4.2 yamt return error;
130 1.3.4.2 yamt
131 1.3.4.3 yamt if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 1.3.4.4 yamt KAUTH_GENERIC_ISSUSER, NULL)) != 0)
133 1.3.4.2 yamt return (error);
134 1.3.4.2 yamt
135 1.3.4.2 yamt /* XXX locking */
136 1.3.4.2 yamt
137 1.3.4.2 yamt for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
138 1.3.4.2 yamt if (strcmp(newname, newtc->tc_name) != 0)
139 1.3.4.2 yamt continue;
140 1.3.4.2 yamt
141 1.3.4.2 yamt /* Warm up new timecounter. */
142 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
143 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
144 1.3.4.2 yamt
145 1.3.4.2 yamt timecounter = newtc;
146 1.3.4.2 yamt
147 1.3.4.2 yamt /* XXX unlock */
148 1.3.4.2 yamt
149 1.3.4.2 yamt return (0);
150 1.3.4.2 yamt }
151 1.3.4.2 yamt
152 1.3.4.2 yamt /* XXX unlock */
153 1.3.4.2 yamt
154 1.3.4.2 yamt return (EINVAL);
155 1.3.4.2 yamt }
156 1.3.4.2 yamt
157 1.3.4.2 yamt static int
158 1.3.4.2 yamt sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 1.3.4.2 yamt {
160 1.3.4.3 yamt char buf[MAX_TCNAMELEN+48];
161 1.3.4.2 yamt char *where = oldp;
162 1.3.4.2 yamt const char *spc;
163 1.3.4.2 yamt struct timecounter *tc;
164 1.3.4.2 yamt size_t needed, left, slen;
165 1.3.4.2 yamt int error;
166 1.3.4.2 yamt
167 1.3.4.2 yamt if (newp != NULL)
168 1.3.4.2 yamt return (EPERM);
169 1.3.4.2 yamt if (namelen != 0)
170 1.3.4.2 yamt return (EINVAL);
171 1.3.4.2 yamt
172 1.3.4.2 yamt spc = "";
173 1.3.4.2 yamt error = 0;
174 1.3.4.2 yamt needed = 0;
175 1.3.4.2 yamt left = *oldlenp;
176 1.3.4.2 yamt
177 1.3.4.2 yamt /* XXX locking */
178 1.3.4.2 yamt
179 1.3.4.2 yamt for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 1.3.4.2 yamt if (where == NULL) {
181 1.3.4.2 yamt needed += sizeof(buf); /* be conservative */
182 1.3.4.2 yamt } else {
183 1.3.4.2 yamt slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 1.3.4.2 yamt " Hz)", spc, tc->tc_name, tc->tc_quality,
185 1.3.4.2 yamt tc->tc_frequency);
186 1.3.4.2 yamt if (left < slen + 1)
187 1.3.4.2 yamt break;
188 1.3.4.2 yamt /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 1.3.4.2 yamt error = copyout(buf, where, slen + 1);
190 1.3.4.2 yamt spc = " ";
191 1.3.4.2 yamt where += slen;
192 1.3.4.2 yamt needed += slen;
193 1.3.4.2 yamt left -= slen;
194 1.3.4.2 yamt }
195 1.3.4.2 yamt }
196 1.3.4.2 yamt
197 1.3.4.2 yamt /* XXX unlock */
198 1.3.4.2 yamt
199 1.3.4.2 yamt *oldlenp = needed;
200 1.3.4.2 yamt return (error);
201 1.3.4.2 yamt }
202 1.3.4.2 yamt
203 1.3.4.2 yamt SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 1.3.4.2 yamt {
205 1.3.4.2 yamt const struct sysctlnode *node;
206 1.3.4.2 yamt
207 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, &node,
208 1.3.4.2 yamt CTLFLAG_PERMANENT,
209 1.3.4.2 yamt CTLTYPE_NODE, "timecounter",
210 1.3.4.2 yamt SYSCTL_DESCR("time counter information"),
211 1.3.4.2 yamt NULL, 0, NULL, 0,
212 1.3.4.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
213 1.3.4.2 yamt
214 1.3.4.2 yamt if (node != NULL) {
215 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
216 1.3.4.2 yamt CTLFLAG_PERMANENT,
217 1.3.4.2 yamt CTLTYPE_STRING, "choice",
218 1.3.4.2 yamt SYSCTL_DESCR("available counters"),
219 1.3.4.2 yamt sysctl_kern_timecounter_choice, 0, NULL, 0,
220 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221 1.3.4.2 yamt
222 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
223 1.3.4.2 yamt CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 1.3.4.2 yamt CTLTYPE_STRING, "hardware",
225 1.3.4.2 yamt SYSCTL_DESCR("currently active time counter"),
226 1.3.4.2 yamt sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228 1.3.4.2 yamt
229 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
230 1.3.4.2 yamt CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 1.3.4.2 yamt CTLTYPE_INT, "timestepwarnings",
232 1.3.4.2 yamt SYSCTL_DESCR("log time steps"),
233 1.3.4.2 yamt NULL, 0, ×tepwarnings, 0,
234 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 1.3.4.2 yamt }
236 1.3.4.2 yamt }
237 1.3.4.2 yamt
238 1.3.4.2 yamt #define TC_STATS(name) \
239 1.3.4.2 yamt static struct evcnt n##name = \
240 1.3.4.2 yamt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 1.3.4.2 yamt EVCNT_ATTACH_STATIC(n##name)
242 1.3.4.2 yamt
243 1.3.4.2 yamt TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 1.3.4.2 yamt TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 1.3.4.2 yamt TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 1.3.4.2 yamt TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 1.3.4.2 yamt TC_STATS(setclock);
248 1.3.4.2 yamt
249 1.3.4.2 yamt #undef TC_STATS
250 1.3.4.2 yamt
251 1.3.4.2 yamt static void tc_windup(void);
252 1.3.4.2 yamt
253 1.3.4.2 yamt /*
254 1.3.4.2 yamt * Return the difference between the timehands' counter value now and what
255 1.3.4.2 yamt * was when we copied it to the timehands' offset_count.
256 1.3.4.2 yamt */
257 1.3.4.2 yamt static __inline u_int
258 1.3.4.2 yamt tc_delta(struct timehands *th)
259 1.3.4.2 yamt {
260 1.3.4.2 yamt struct timecounter *tc;
261 1.3.4.2 yamt
262 1.3.4.2 yamt tc = th->th_counter;
263 1.3.4.2 yamt return ((tc->tc_get_timecount(tc) -
264 1.3.4.2 yamt th->th_offset_count) & tc->tc_counter_mask);
265 1.3.4.2 yamt }
266 1.3.4.2 yamt
267 1.3.4.2 yamt /*
268 1.3.4.2 yamt * Functions for reading the time. We have to loop until we are sure that
269 1.3.4.2 yamt * the timehands that we operated on was not updated under our feet. See
270 1.3.4.6 yamt * the comment in <sys/timevar.h> for a description of these 12 functions.
271 1.3.4.2 yamt */
272 1.3.4.2 yamt
273 1.3.4.2 yamt void
274 1.3.4.2 yamt binuptime(struct bintime *bt)
275 1.3.4.2 yamt {
276 1.3.4.2 yamt struct timehands *th;
277 1.3.4.2 yamt u_int gen;
278 1.3.4.2 yamt
279 1.3.4.2 yamt nbinuptime.ev_count++;
280 1.3.4.2 yamt do {
281 1.3.4.2 yamt th = timehands;
282 1.3.4.2 yamt gen = th->th_generation;
283 1.3.4.5 yamt mb_read();
284 1.3.4.2 yamt *bt = th->th_offset;
285 1.3.4.2 yamt bintime_addx(bt, th->th_scale * tc_delta(th));
286 1.3.4.5 yamt mb_read();
287 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
288 1.3.4.2 yamt }
289 1.3.4.2 yamt
290 1.3.4.2 yamt void
291 1.3.4.2 yamt nanouptime(struct timespec *tsp)
292 1.3.4.2 yamt {
293 1.3.4.2 yamt struct bintime bt;
294 1.3.4.2 yamt
295 1.3.4.2 yamt nnanouptime.ev_count++;
296 1.3.4.2 yamt binuptime(&bt);
297 1.3.4.2 yamt bintime2timespec(&bt, tsp);
298 1.3.4.2 yamt }
299 1.3.4.2 yamt
300 1.3.4.2 yamt void
301 1.3.4.2 yamt microuptime(struct timeval *tvp)
302 1.3.4.2 yamt {
303 1.3.4.2 yamt struct bintime bt;
304 1.3.4.2 yamt
305 1.3.4.2 yamt nmicrouptime.ev_count++;
306 1.3.4.2 yamt binuptime(&bt);
307 1.3.4.2 yamt bintime2timeval(&bt, tvp);
308 1.3.4.2 yamt }
309 1.3.4.2 yamt
310 1.3.4.2 yamt void
311 1.3.4.2 yamt bintime(struct bintime *bt)
312 1.3.4.2 yamt {
313 1.3.4.2 yamt
314 1.3.4.2 yamt nbintime.ev_count++;
315 1.3.4.2 yamt binuptime(bt);
316 1.3.4.3 yamt bintime_add(bt, &timebasebin);
317 1.3.4.2 yamt }
318 1.3.4.2 yamt
319 1.3.4.2 yamt void
320 1.3.4.2 yamt nanotime(struct timespec *tsp)
321 1.3.4.2 yamt {
322 1.3.4.2 yamt struct bintime bt;
323 1.3.4.2 yamt
324 1.3.4.2 yamt nnanotime.ev_count++;
325 1.3.4.2 yamt bintime(&bt);
326 1.3.4.2 yamt bintime2timespec(&bt, tsp);
327 1.3.4.2 yamt }
328 1.3.4.2 yamt
329 1.3.4.2 yamt void
330 1.3.4.2 yamt microtime(struct timeval *tvp)
331 1.3.4.2 yamt {
332 1.3.4.2 yamt struct bintime bt;
333 1.3.4.2 yamt
334 1.3.4.2 yamt nmicrotime.ev_count++;
335 1.3.4.2 yamt bintime(&bt);
336 1.3.4.2 yamt bintime2timeval(&bt, tvp);
337 1.3.4.2 yamt }
338 1.3.4.2 yamt
339 1.3.4.2 yamt void
340 1.3.4.2 yamt getbinuptime(struct bintime *bt)
341 1.3.4.2 yamt {
342 1.3.4.2 yamt struct timehands *th;
343 1.3.4.2 yamt u_int gen;
344 1.3.4.2 yamt
345 1.3.4.2 yamt ngetbinuptime.ev_count++;
346 1.3.4.2 yamt do {
347 1.3.4.2 yamt th = timehands;
348 1.3.4.2 yamt gen = th->th_generation;
349 1.3.4.5 yamt mb_read();
350 1.3.4.2 yamt *bt = th->th_offset;
351 1.3.4.5 yamt mb_read();
352 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
353 1.3.4.2 yamt }
354 1.3.4.2 yamt
355 1.3.4.2 yamt void
356 1.3.4.2 yamt getnanouptime(struct timespec *tsp)
357 1.3.4.2 yamt {
358 1.3.4.2 yamt struct timehands *th;
359 1.3.4.2 yamt u_int gen;
360 1.3.4.2 yamt
361 1.3.4.2 yamt ngetnanouptime.ev_count++;
362 1.3.4.2 yamt do {
363 1.3.4.2 yamt th = timehands;
364 1.3.4.2 yamt gen = th->th_generation;
365 1.3.4.5 yamt mb_read();
366 1.3.4.2 yamt bintime2timespec(&th->th_offset, tsp);
367 1.3.4.5 yamt mb_read();
368 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
369 1.3.4.2 yamt }
370 1.3.4.2 yamt
371 1.3.4.2 yamt void
372 1.3.4.2 yamt getmicrouptime(struct timeval *tvp)
373 1.3.4.2 yamt {
374 1.3.4.2 yamt struct timehands *th;
375 1.3.4.2 yamt u_int gen;
376 1.3.4.2 yamt
377 1.3.4.2 yamt ngetmicrouptime.ev_count++;
378 1.3.4.2 yamt do {
379 1.3.4.2 yamt th = timehands;
380 1.3.4.2 yamt gen = th->th_generation;
381 1.3.4.5 yamt mb_read();
382 1.3.4.2 yamt bintime2timeval(&th->th_offset, tvp);
383 1.3.4.5 yamt mb_read();
384 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
385 1.3.4.2 yamt }
386 1.3.4.2 yamt
387 1.3.4.2 yamt void
388 1.3.4.2 yamt getbintime(struct bintime *bt)
389 1.3.4.2 yamt {
390 1.3.4.2 yamt struct timehands *th;
391 1.3.4.2 yamt u_int gen;
392 1.3.4.2 yamt
393 1.3.4.2 yamt ngetbintime.ev_count++;
394 1.3.4.2 yamt do {
395 1.3.4.2 yamt th = timehands;
396 1.3.4.2 yamt gen = th->th_generation;
397 1.3.4.5 yamt mb_read();
398 1.3.4.2 yamt *bt = th->th_offset;
399 1.3.4.5 yamt mb_read();
400 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
401 1.3.4.3 yamt bintime_add(bt, &timebasebin);
402 1.3.4.2 yamt }
403 1.3.4.2 yamt
404 1.3.4.2 yamt void
405 1.3.4.2 yamt getnanotime(struct timespec *tsp)
406 1.3.4.2 yamt {
407 1.3.4.2 yamt struct timehands *th;
408 1.3.4.2 yamt u_int gen;
409 1.3.4.2 yamt
410 1.3.4.2 yamt ngetnanotime.ev_count++;
411 1.3.4.2 yamt do {
412 1.3.4.2 yamt th = timehands;
413 1.3.4.2 yamt gen = th->th_generation;
414 1.3.4.5 yamt mb_read();
415 1.3.4.2 yamt *tsp = th->th_nanotime;
416 1.3.4.5 yamt mb_read();
417 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
418 1.3.4.2 yamt }
419 1.3.4.2 yamt
420 1.3.4.2 yamt void
421 1.3.4.2 yamt getmicrotime(struct timeval *tvp)
422 1.3.4.2 yamt {
423 1.3.4.2 yamt struct timehands *th;
424 1.3.4.2 yamt u_int gen;
425 1.3.4.2 yamt
426 1.3.4.2 yamt ngetmicrotime.ev_count++;
427 1.3.4.2 yamt do {
428 1.3.4.2 yamt th = timehands;
429 1.3.4.2 yamt gen = th->th_generation;
430 1.3.4.5 yamt mb_read();
431 1.3.4.2 yamt *tvp = th->th_microtime;
432 1.3.4.5 yamt mb_read();
433 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
434 1.3.4.2 yamt }
435 1.3.4.2 yamt
436 1.3.4.2 yamt /*
437 1.3.4.2 yamt * Initialize a new timecounter and possibly use it.
438 1.3.4.2 yamt */
439 1.3.4.2 yamt void
440 1.3.4.2 yamt tc_init(struct timecounter *tc)
441 1.3.4.2 yamt {
442 1.3.4.2 yamt u_int u;
443 1.3.4.3 yamt int s;
444 1.3.4.2 yamt
445 1.3.4.2 yamt u = tc->tc_frequency / tc->tc_counter_mask;
446 1.3.4.2 yamt /* XXX: We need some margin here, 10% is a guess */
447 1.3.4.2 yamt u *= 11;
448 1.3.4.2 yamt u /= 10;
449 1.3.4.2 yamt if (u > hz && tc->tc_quality >= 0) {
450 1.3.4.2 yamt tc->tc_quality = -2000;
451 1.3.4.4 yamt aprint_verbose(
452 1.3.4.4 yamt "timecounter: Timecounter \"%s\" frequency %ju Hz",
453 1.3.4.2 yamt tc->tc_name, (uintmax_t)tc->tc_frequency);
454 1.3.4.4 yamt aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
455 1.3.4.2 yamt } else if (tc->tc_quality >= 0 || bootverbose) {
456 1.3.4.4 yamt aprint_verbose(
457 1.3.4.4 yamt "timecounter: Timecounter \"%s\" frequency %ju Hz "
458 1.3.4.4 yamt "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
459 1.3.4.2 yamt tc->tc_quality);
460 1.3.4.2 yamt }
461 1.3.4.2 yamt
462 1.3.4.3 yamt s = splclock();
463 1.3.4.3 yamt
464 1.3.4.2 yamt tc->tc_next = timecounters;
465 1.3.4.2 yamt timecounters = tc;
466 1.3.4.2 yamt /*
467 1.3.4.2 yamt * Never automatically use a timecounter with negative quality.
468 1.3.4.2 yamt * Even though we run on the dummy counter, switching here may be
469 1.3.4.2 yamt * worse since this timecounter may not be monotonous.
470 1.3.4.2 yamt */
471 1.3.4.2 yamt if (tc->tc_quality < 0)
472 1.3.4.3 yamt goto out;
473 1.3.4.2 yamt if (tc->tc_quality < timecounter->tc_quality)
474 1.3.4.3 yamt goto out;
475 1.3.4.2 yamt if (tc->tc_quality == timecounter->tc_quality &&
476 1.3.4.2 yamt tc->tc_frequency < timecounter->tc_frequency)
477 1.3.4.3 yamt goto out;
478 1.3.4.2 yamt (void)tc->tc_get_timecount(tc);
479 1.3.4.2 yamt (void)tc->tc_get_timecount(tc);
480 1.3.4.2 yamt timecounter = tc;
481 1.3.4.2 yamt tc_windup();
482 1.3.4.3 yamt
483 1.3.4.3 yamt out:
484 1.3.4.3 yamt splx(s);
485 1.3.4.2 yamt }
486 1.3.4.2 yamt
487 1.3.4.2 yamt /* Report the frequency of the current timecounter. */
488 1.3.4.2 yamt u_int64_t
489 1.3.4.2 yamt tc_getfrequency(void)
490 1.3.4.2 yamt {
491 1.3.4.2 yamt
492 1.3.4.2 yamt return (timehands->th_counter->tc_frequency);
493 1.3.4.2 yamt }
494 1.3.4.2 yamt
495 1.3.4.2 yamt /*
496 1.3.4.2 yamt * Step our concept of UTC. This is done by modifying our estimate of
497 1.3.4.2 yamt * when we booted.
498 1.3.4.2 yamt * XXX: not locked.
499 1.3.4.2 yamt */
500 1.3.4.2 yamt void
501 1.3.4.2 yamt tc_setclock(struct timespec *ts)
502 1.3.4.2 yamt {
503 1.3.4.2 yamt struct timespec ts2;
504 1.3.4.2 yamt struct bintime bt, bt2;
505 1.3.4.2 yamt
506 1.3.4.2 yamt nsetclock.ev_count++;
507 1.3.4.2 yamt binuptime(&bt2);
508 1.3.4.2 yamt timespec2bintime(ts, &bt);
509 1.3.4.2 yamt bintime_sub(&bt, &bt2);
510 1.3.4.3 yamt bintime_add(&bt2, &timebasebin);
511 1.3.4.3 yamt timebasebin = bt;
512 1.3.4.2 yamt
513 1.3.4.2 yamt /* XXX fiddle all the little crinkly bits around the fiords... */
514 1.3.4.2 yamt tc_windup();
515 1.3.4.2 yamt if (timestepwarnings) {
516 1.3.4.2 yamt bintime2timespec(&bt2, &ts2);
517 1.3.4.2 yamt log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
518 1.3.4.2 yamt (intmax_t)ts2.tv_sec, ts2.tv_nsec,
519 1.3.4.2 yamt (intmax_t)ts->tv_sec, ts->tv_nsec);
520 1.3.4.2 yamt }
521 1.3.4.2 yamt }
522 1.3.4.2 yamt
523 1.3.4.2 yamt /*
524 1.3.4.2 yamt * Initialize the next struct timehands in the ring and make
525 1.3.4.2 yamt * it the active timehands. Along the way we might switch to a different
526 1.3.4.2 yamt * timecounter and/or do seconds processing in NTP. Slightly magic.
527 1.3.4.2 yamt */
528 1.3.4.2 yamt static void
529 1.3.4.2 yamt tc_windup(void)
530 1.3.4.2 yamt {
531 1.3.4.2 yamt struct bintime bt;
532 1.3.4.2 yamt struct timehands *th, *tho;
533 1.3.4.2 yamt u_int64_t scale;
534 1.3.4.2 yamt u_int delta, ncount, ogen;
535 1.3.4.3 yamt int i, s_update;
536 1.3.4.2 yamt time_t t;
537 1.3.4.2 yamt
538 1.3.4.3 yamt s_update = 0;
539 1.3.4.5 yamt
540 1.3.4.2 yamt /*
541 1.3.4.2 yamt * Make the next timehands a copy of the current one, but do not
542 1.3.4.2 yamt * overwrite the generation or next pointer. While we update
543 1.3.4.5 yamt * the contents, the generation must be zero. Ensure global
544 1.3.4.5 yamt * visibility of the generation before proceeding.
545 1.3.4.2 yamt */
546 1.3.4.2 yamt tho = timehands;
547 1.3.4.2 yamt th = tho->th_next;
548 1.3.4.2 yamt ogen = th->th_generation;
549 1.3.4.2 yamt th->th_generation = 0;
550 1.3.4.5 yamt mb_write();
551 1.3.4.2 yamt bcopy(tho, th, offsetof(struct timehands, th_generation));
552 1.3.4.2 yamt
553 1.3.4.2 yamt /*
554 1.3.4.2 yamt * Capture a timecounter delta on the current timecounter and if
555 1.3.4.2 yamt * changing timecounters, a counter value from the new timecounter.
556 1.3.4.2 yamt * Update the offset fields accordingly.
557 1.3.4.2 yamt */
558 1.3.4.2 yamt delta = tc_delta(th);
559 1.3.4.2 yamt if (th->th_counter != timecounter)
560 1.3.4.2 yamt ncount = timecounter->tc_get_timecount(timecounter);
561 1.3.4.2 yamt else
562 1.3.4.2 yamt ncount = 0;
563 1.3.4.2 yamt th->th_offset_count += delta;
564 1.3.4.2 yamt th->th_offset_count &= th->th_counter->tc_counter_mask;
565 1.3.4.2 yamt bintime_addx(&th->th_offset, th->th_scale * delta);
566 1.3.4.2 yamt
567 1.3.4.2 yamt /*
568 1.3.4.2 yamt * Hardware latching timecounters may not generate interrupts on
569 1.3.4.2 yamt * PPS events, so instead we poll them. There is a finite risk that
570 1.3.4.2 yamt * the hardware might capture a count which is later than the one we
571 1.3.4.2 yamt * got above, and therefore possibly in the next NTP second which might
572 1.3.4.2 yamt * have a different rate than the current NTP second. It doesn't
573 1.3.4.2 yamt * matter in practice.
574 1.3.4.2 yamt */
575 1.3.4.2 yamt if (tho->th_counter->tc_poll_pps)
576 1.3.4.2 yamt tho->th_counter->tc_poll_pps(tho->th_counter);
577 1.3.4.2 yamt
578 1.3.4.2 yamt /*
579 1.3.4.2 yamt * Deal with NTP second processing. The for loop normally
580 1.3.4.2 yamt * iterates at most once, but in extreme situations it might
581 1.3.4.2 yamt * keep NTP sane if timeouts are not run for several seconds.
582 1.3.4.2 yamt * At boot, the time step can be large when the TOD hardware
583 1.3.4.2 yamt * has been read, so on really large steps, we call
584 1.3.4.2 yamt * ntp_update_second only twice. We need to call it twice in
585 1.3.4.2 yamt * case we missed a leap second.
586 1.3.4.2 yamt * If NTP is not compiled in ntp_update_second still calculates
587 1.3.4.2 yamt * the adjustment resulting from adjtime() calls.
588 1.3.4.2 yamt */
589 1.3.4.2 yamt bt = th->th_offset;
590 1.3.4.3 yamt bintime_add(&bt, &timebasebin);
591 1.3.4.2 yamt i = bt.sec - tho->th_microtime.tv_sec;
592 1.3.4.2 yamt if (i > LARGE_STEP)
593 1.3.4.2 yamt i = 2;
594 1.3.4.2 yamt for (; i > 0; i--) {
595 1.3.4.2 yamt t = bt.sec;
596 1.3.4.2 yamt ntp_update_second(&th->th_adjustment, &bt.sec);
597 1.3.4.3 yamt s_update = 1;
598 1.3.4.2 yamt if (bt.sec != t)
599 1.3.4.3 yamt timebasebin.sec += bt.sec - t;
600 1.3.4.2 yamt }
601 1.3.4.2 yamt
602 1.3.4.2 yamt /* Update the UTC timestamps used by the get*() functions. */
603 1.3.4.2 yamt /* XXX shouldn't do this here. Should force non-`get' versions. */
604 1.3.4.2 yamt bintime2timeval(&bt, &th->th_microtime);
605 1.3.4.2 yamt bintime2timespec(&bt, &th->th_nanotime);
606 1.3.4.2 yamt
607 1.3.4.2 yamt /* Now is a good time to change timecounters. */
608 1.3.4.2 yamt if (th->th_counter != timecounter) {
609 1.3.4.2 yamt th->th_counter = timecounter;
610 1.3.4.2 yamt th->th_offset_count = ncount;
611 1.3.4.3 yamt s_update = 1;
612 1.3.4.2 yamt }
613 1.3.4.2 yamt
614 1.3.4.2 yamt /*-
615 1.3.4.2 yamt * Recalculate the scaling factor. We want the number of 1/2^64
616 1.3.4.2 yamt * fractions of a second per period of the hardware counter, taking
617 1.3.4.2 yamt * into account the th_adjustment factor which the NTP PLL/adjtime(2)
618 1.3.4.2 yamt * processing provides us with.
619 1.3.4.2 yamt *
620 1.3.4.2 yamt * The th_adjustment is nanoseconds per second with 32 bit binary
621 1.3.4.2 yamt * fraction and we want 64 bit binary fraction of second:
622 1.3.4.2 yamt *
623 1.3.4.2 yamt * x = a * 2^32 / 10^9 = a * 4.294967296
624 1.3.4.2 yamt *
625 1.3.4.2 yamt * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
626 1.3.4.2 yamt * we can only multiply by about 850 without overflowing, but that
627 1.3.4.2 yamt * leaves suitably precise fractions for multiply before divide.
628 1.3.4.2 yamt *
629 1.3.4.2 yamt * Divide before multiply with a fraction of 2199/512 results in a
630 1.3.4.2 yamt * systematic undercompensation of 10PPM of th_adjustment. On a
631 1.3.4.2 yamt * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
632 1.3.4.2 yamt *
633 1.3.4.2 yamt * We happily sacrifice the lowest of the 64 bits of our result
634 1.3.4.2 yamt * to the goddess of code clarity.
635 1.3.4.2 yamt *
636 1.3.4.2 yamt */
637 1.3.4.3 yamt if (s_update) {
638 1.3.4.3 yamt scale = (u_int64_t)1 << 63;
639 1.3.4.3 yamt scale += (th->th_adjustment / 1024) * 2199;
640 1.3.4.3 yamt scale /= th->th_counter->tc_frequency;
641 1.3.4.3 yamt th->th_scale = scale * 2;
642 1.3.4.3 yamt }
643 1.3.4.2 yamt /*
644 1.3.4.2 yamt * Now that the struct timehands is again consistent, set the new
645 1.3.4.5 yamt * generation number, making sure to not make it zero. Ensure
646 1.3.4.5 yamt * changes are globally visible before changing.
647 1.3.4.2 yamt */
648 1.3.4.2 yamt if (++ogen == 0)
649 1.3.4.2 yamt ogen = 1;
650 1.3.4.5 yamt mb_write();
651 1.3.4.2 yamt th->th_generation = ogen;
652 1.3.4.2 yamt
653 1.3.4.5 yamt /*
654 1.3.4.5 yamt * Go live with the new struct timehands. Ensure changes are
655 1.3.4.5 yamt * globally visible before changing.
656 1.3.4.5 yamt */
657 1.3.4.2 yamt time_second = th->th_microtime.tv_sec;
658 1.3.4.2 yamt time_uptime = th->th_offset.sec;
659 1.3.4.5 yamt mb_write();
660 1.3.4.2 yamt timehands = th;
661 1.3.4.2 yamt }
662 1.3.4.2 yamt
663 1.3.4.2 yamt #ifdef __FreeBSD__
664 1.3.4.2 yamt /* Report or change the active timecounter hardware. */
665 1.3.4.2 yamt static int
666 1.3.4.2 yamt sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
667 1.3.4.2 yamt {
668 1.3.4.2 yamt char newname[32];
669 1.3.4.2 yamt struct timecounter *newtc, *tc;
670 1.3.4.2 yamt int error;
671 1.3.4.2 yamt
672 1.3.4.2 yamt tc = timecounter;
673 1.3.4.2 yamt strlcpy(newname, tc->tc_name, sizeof(newname));
674 1.3.4.2 yamt
675 1.3.4.2 yamt error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
676 1.3.4.2 yamt if (error != 0 || req->newptr == NULL ||
677 1.3.4.2 yamt strcmp(newname, tc->tc_name) == 0)
678 1.3.4.2 yamt return (error);
679 1.3.4.2 yamt
680 1.3.4.2 yamt for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
681 1.3.4.2 yamt if (strcmp(newname, newtc->tc_name) != 0)
682 1.3.4.2 yamt continue;
683 1.3.4.2 yamt
684 1.3.4.2 yamt /* Warm up new timecounter. */
685 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
686 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
687 1.3.4.2 yamt
688 1.3.4.2 yamt timecounter = newtc;
689 1.3.4.2 yamt return (0);
690 1.3.4.2 yamt }
691 1.3.4.2 yamt return (EINVAL);
692 1.3.4.2 yamt }
693 1.3.4.2 yamt
694 1.3.4.2 yamt SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
695 1.3.4.2 yamt 0, 0, sysctl_kern_timecounter_hardware, "A", "");
696 1.3.4.2 yamt
697 1.3.4.2 yamt
698 1.3.4.2 yamt /* Report or change the active timecounter hardware. */
699 1.3.4.2 yamt static int
700 1.3.4.2 yamt sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
701 1.3.4.2 yamt {
702 1.3.4.2 yamt char buf[32], *spc;
703 1.3.4.2 yamt struct timecounter *tc;
704 1.3.4.2 yamt int error;
705 1.3.4.2 yamt
706 1.3.4.2 yamt spc = "";
707 1.3.4.2 yamt error = 0;
708 1.3.4.2 yamt for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
709 1.3.4.2 yamt sprintf(buf, "%s%s(%d)",
710 1.3.4.2 yamt spc, tc->tc_name, tc->tc_quality);
711 1.3.4.2 yamt error = SYSCTL_OUT(req, buf, strlen(buf));
712 1.3.4.2 yamt spc = " ";
713 1.3.4.2 yamt }
714 1.3.4.2 yamt return (error);
715 1.3.4.2 yamt }
716 1.3.4.2 yamt
717 1.3.4.2 yamt SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
718 1.3.4.2 yamt 0, 0, sysctl_kern_timecounter_choice, "A", "");
719 1.3.4.2 yamt #endif /* __FreeBSD__ */
720 1.3.4.2 yamt
721 1.3.4.2 yamt /*
722 1.3.4.2 yamt * RFC 2783 PPS-API implementation.
723 1.3.4.2 yamt */
724 1.3.4.2 yamt
725 1.3.4.2 yamt int
726 1.3.4.5 yamt pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
727 1.3.4.2 yamt {
728 1.3.4.2 yamt pps_params_t *app;
729 1.3.4.2 yamt pps_info_t *pipi;
730 1.3.4.2 yamt #ifdef PPS_SYNC
731 1.3.4.2 yamt int *epi;
732 1.3.4.2 yamt #endif
733 1.3.4.2 yamt
734 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
735 1.3.4.2 yamt switch (cmd) {
736 1.3.4.2 yamt case PPS_IOC_CREATE:
737 1.3.4.2 yamt return (0);
738 1.3.4.2 yamt case PPS_IOC_DESTROY:
739 1.3.4.2 yamt return (0);
740 1.3.4.2 yamt case PPS_IOC_SETPARAMS:
741 1.3.4.2 yamt app = (pps_params_t *)data;
742 1.3.4.2 yamt if (app->mode & ~pps->ppscap)
743 1.3.4.2 yamt return (EINVAL);
744 1.3.4.2 yamt pps->ppsparam = *app;
745 1.3.4.2 yamt return (0);
746 1.3.4.2 yamt case PPS_IOC_GETPARAMS:
747 1.3.4.2 yamt app = (pps_params_t *)data;
748 1.3.4.2 yamt *app = pps->ppsparam;
749 1.3.4.2 yamt app->api_version = PPS_API_VERS_1;
750 1.3.4.2 yamt return (0);
751 1.3.4.2 yamt case PPS_IOC_GETCAP:
752 1.3.4.2 yamt *(int*)data = pps->ppscap;
753 1.3.4.2 yamt return (0);
754 1.3.4.2 yamt case PPS_IOC_FETCH:
755 1.3.4.2 yamt pipi = (pps_info_t *)data;
756 1.3.4.2 yamt pps->ppsinfo.current_mode = pps->ppsparam.mode;
757 1.3.4.2 yamt *pipi = pps->ppsinfo;
758 1.3.4.2 yamt return (0);
759 1.3.4.2 yamt case PPS_IOC_KCBIND:
760 1.3.4.2 yamt #ifdef PPS_SYNC
761 1.3.4.2 yamt epi = (int *)data;
762 1.3.4.2 yamt /* XXX Only root should be able to do this */
763 1.3.4.2 yamt if (*epi & ~pps->ppscap)
764 1.3.4.2 yamt return (EINVAL);
765 1.3.4.2 yamt pps->kcmode = *epi;
766 1.3.4.2 yamt return (0);
767 1.3.4.2 yamt #else
768 1.3.4.2 yamt return (EOPNOTSUPP);
769 1.3.4.2 yamt #endif
770 1.3.4.2 yamt default:
771 1.3.4.2 yamt return (EPASSTHROUGH);
772 1.3.4.2 yamt }
773 1.3.4.2 yamt }
774 1.3.4.2 yamt
775 1.3.4.2 yamt void
776 1.3.4.2 yamt pps_init(struct pps_state *pps)
777 1.3.4.2 yamt {
778 1.3.4.2 yamt pps->ppscap |= PPS_TSFMT_TSPEC;
779 1.3.4.2 yamt if (pps->ppscap & PPS_CAPTUREASSERT)
780 1.3.4.2 yamt pps->ppscap |= PPS_OFFSETASSERT;
781 1.3.4.2 yamt if (pps->ppscap & PPS_CAPTURECLEAR)
782 1.3.4.2 yamt pps->ppscap |= PPS_OFFSETCLEAR;
783 1.3.4.2 yamt }
784 1.3.4.2 yamt
785 1.3.4.2 yamt void
786 1.3.4.2 yamt pps_capture(struct pps_state *pps)
787 1.3.4.2 yamt {
788 1.3.4.2 yamt struct timehands *th;
789 1.3.4.2 yamt
790 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
791 1.3.4.2 yamt th = timehands;
792 1.3.4.2 yamt pps->capgen = th->th_generation;
793 1.3.4.2 yamt pps->capth = th;
794 1.3.4.2 yamt pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
795 1.3.4.2 yamt if (pps->capgen != th->th_generation)
796 1.3.4.2 yamt pps->capgen = 0;
797 1.3.4.2 yamt }
798 1.3.4.2 yamt
799 1.3.4.2 yamt void
800 1.3.4.2 yamt pps_event(struct pps_state *pps, int event)
801 1.3.4.2 yamt {
802 1.3.4.2 yamt struct bintime bt;
803 1.3.4.2 yamt struct timespec ts, *tsp, *osp;
804 1.3.4.2 yamt u_int tcount, *pcount;
805 1.3.4.2 yamt int foff, fhard;
806 1.3.4.2 yamt pps_seq_t *pseq;
807 1.3.4.2 yamt
808 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
809 1.3.4.2 yamt /* If the timecounter was wound up underneath us, bail out. */
810 1.3.4.2 yamt if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
811 1.3.4.2 yamt return;
812 1.3.4.2 yamt
813 1.3.4.2 yamt /* Things would be easier with arrays. */
814 1.3.4.2 yamt if (event == PPS_CAPTUREASSERT) {
815 1.3.4.2 yamt tsp = &pps->ppsinfo.assert_timestamp;
816 1.3.4.2 yamt osp = &pps->ppsparam.assert_offset;
817 1.3.4.2 yamt foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
818 1.3.4.2 yamt fhard = pps->kcmode & PPS_CAPTUREASSERT;
819 1.3.4.2 yamt pcount = &pps->ppscount[0];
820 1.3.4.2 yamt pseq = &pps->ppsinfo.assert_sequence;
821 1.3.4.2 yamt } else {
822 1.3.4.2 yamt tsp = &pps->ppsinfo.clear_timestamp;
823 1.3.4.2 yamt osp = &pps->ppsparam.clear_offset;
824 1.3.4.2 yamt foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
825 1.3.4.2 yamt fhard = pps->kcmode & PPS_CAPTURECLEAR;
826 1.3.4.2 yamt pcount = &pps->ppscount[1];
827 1.3.4.2 yamt pseq = &pps->ppsinfo.clear_sequence;
828 1.3.4.2 yamt }
829 1.3.4.2 yamt
830 1.3.4.2 yamt /*
831 1.3.4.2 yamt * If the timecounter changed, we cannot compare the count values, so
832 1.3.4.2 yamt * we have to drop the rest of the PPS-stuff until the next event.
833 1.3.4.2 yamt */
834 1.3.4.2 yamt if (pps->ppstc != pps->capth->th_counter) {
835 1.3.4.2 yamt pps->ppstc = pps->capth->th_counter;
836 1.3.4.2 yamt *pcount = pps->capcount;
837 1.3.4.2 yamt pps->ppscount[2] = pps->capcount;
838 1.3.4.2 yamt return;
839 1.3.4.2 yamt }
840 1.3.4.2 yamt
841 1.3.4.2 yamt /* Convert the count to a timespec. */
842 1.3.4.2 yamt tcount = pps->capcount - pps->capth->th_offset_count;
843 1.3.4.2 yamt tcount &= pps->capth->th_counter->tc_counter_mask;
844 1.3.4.2 yamt bt = pps->capth->th_offset;
845 1.3.4.2 yamt bintime_addx(&bt, pps->capth->th_scale * tcount);
846 1.3.4.3 yamt bintime_add(&bt, &timebasebin);
847 1.3.4.2 yamt bintime2timespec(&bt, &ts);
848 1.3.4.2 yamt
849 1.3.4.2 yamt /* If the timecounter was wound up underneath us, bail out. */
850 1.3.4.2 yamt if (pps->capgen != pps->capth->th_generation)
851 1.3.4.2 yamt return;
852 1.3.4.2 yamt
853 1.3.4.2 yamt *pcount = pps->capcount;
854 1.3.4.2 yamt (*pseq)++;
855 1.3.4.2 yamt *tsp = ts;
856 1.3.4.2 yamt
857 1.3.4.2 yamt if (foff) {
858 1.3.4.2 yamt timespecadd(tsp, osp, tsp);
859 1.3.4.2 yamt if (tsp->tv_nsec < 0) {
860 1.3.4.2 yamt tsp->tv_nsec += 1000000000;
861 1.3.4.2 yamt tsp->tv_sec -= 1;
862 1.3.4.2 yamt }
863 1.3.4.2 yamt }
864 1.3.4.2 yamt #ifdef PPS_SYNC
865 1.3.4.2 yamt if (fhard) {
866 1.3.4.2 yamt u_int64_t scale;
867 1.3.4.2 yamt
868 1.3.4.2 yamt /*
869 1.3.4.2 yamt * Feed the NTP PLL/FLL.
870 1.3.4.2 yamt * The FLL wants to know how many (hardware) nanoseconds
871 1.3.4.2 yamt * elapsed since the previous event.
872 1.3.4.2 yamt */
873 1.3.4.2 yamt tcount = pps->capcount - pps->ppscount[2];
874 1.3.4.2 yamt pps->ppscount[2] = pps->capcount;
875 1.3.4.2 yamt tcount &= pps->capth->th_counter->tc_counter_mask;
876 1.3.4.2 yamt scale = (u_int64_t)1 << 63;
877 1.3.4.2 yamt scale /= pps->capth->th_counter->tc_frequency;
878 1.3.4.2 yamt scale *= 2;
879 1.3.4.2 yamt bt.sec = 0;
880 1.3.4.2 yamt bt.frac = 0;
881 1.3.4.2 yamt bintime_addx(&bt, scale * tcount);
882 1.3.4.2 yamt bintime2timespec(&bt, &ts);
883 1.3.4.2 yamt hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
884 1.3.4.2 yamt }
885 1.3.4.2 yamt #endif
886 1.3.4.2 yamt }
887 1.3.4.2 yamt
888 1.3.4.2 yamt /*
889 1.3.4.2 yamt * Timecounters need to be updated every so often to prevent the hardware
890 1.3.4.2 yamt * counter from overflowing. Updating also recalculates the cached values
891 1.3.4.2 yamt * used by the get*() family of functions, so their precision depends on
892 1.3.4.2 yamt * the update frequency.
893 1.3.4.2 yamt */
894 1.3.4.2 yamt
895 1.3.4.2 yamt static int tc_tick;
896 1.3.4.2 yamt #ifdef __FreeBSD__
897 1.3.4.2 yamt SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
898 1.3.4.2 yamt #endif /* __FreeBSD__ */
899 1.3.4.2 yamt
900 1.3.4.2 yamt void
901 1.3.4.2 yamt tc_ticktock(void)
902 1.3.4.2 yamt {
903 1.3.4.2 yamt static int count;
904 1.3.4.2 yamt
905 1.3.4.2 yamt if (++count < tc_tick)
906 1.3.4.2 yamt return;
907 1.3.4.2 yamt count = 0;
908 1.3.4.2 yamt tc_windup();
909 1.3.4.2 yamt }
910 1.3.4.2 yamt
911 1.3.4.2 yamt void
912 1.3.4.2 yamt inittimecounter(void)
913 1.3.4.2 yamt {
914 1.3.4.2 yamt u_int p;
915 1.3.4.2 yamt
916 1.3.4.2 yamt /*
917 1.3.4.2 yamt * Set the initial timeout to
918 1.3.4.2 yamt * max(1, <approx. number of hardclock ticks in a millisecond>).
919 1.3.4.2 yamt * People should probably not use the sysctl to set the timeout
920 1.3.4.2 yamt * to smaller than its inital value, since that value is the
921 1.3.4.2 yamt * smallest reasonable one. If they want better timestamps they
922 1.3.4.2 yamt * should use the non-"get"* functions.
923 1.3.4.2 yamt */
924 1.3.4.2 yamt if (hz > 1000)
925 1.3.4.2 yamt tc_tick = (hz + 500) / 1000;
926 1.3.4.2 yamt else
927 1.3.4.2 yamt tc_tick = 1;
928 1.3.4.2 yamt p = (tc_tick * 1000000) / hz;
929 1.3.4.4 yamt aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
930 1.3.4.4 yamt p / 1000, p % 1000);
931 1.3.4.2 yamt
932 1.3.4.2 yamt /* warm up new timecounter (again) and get rolling. */
933 1.3.4.2 yamt (void)timecounter->tc_get_timecount(timecounter);
934 1.3.4.2 yamt (void)timecounter->tc_get_timecount(timecounter);
935 1.3.4.2 yamt }
936 1.3.4.2 yamt
937 1.3.4.2 yamt #ifdef __FreeBSD__
938 1.3.4.2 yamt SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
939 1.3.4.2 yamt #endif /* __FreeBSD__ */
940 1.3.4.2 yamt #endif /* __HAVE_TIMECOUNTER */
941