kern_tc.c revision 1.3.4.8 1 1.3.4.8 yamt /* $NetBSD: kern_tc.c,v 1.3.4.8 2008/01/21 09:46:14 yamt Exp $ */
2 1.3.4.2 yamt
3 1.3.4.2 yamt /*-
4 1.3.4.2 yamt * ----------------------------------------------------------------------------
5 1.3.4.2 yamt * "THE BEER-WARE LICENSE" (Revision 42):
6 1.3.4.2 yamt * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.3.4.2 yamt * can do whatever you want with this stuff. If we meet some day, and you think
8 1.3.4.2 yamt * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.3.4.2 yamt * ---------------------------------------------------------------------------
10 1.3.4.2 yamt */
11 1.3.4.2 yamt
12 1.3.4.2 yamt #include <sys/cdefs.h>
13 1.3.4.2 yamt /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.3.4.8 yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.3.4.8 2008/01/21 09:46:14 yamt Exp $");
15 1.3.4.2 yamt
16 1.3.4.2 yamt #include "opt_ntp.h"
17 1.3.4.2 yamt
18 1.3.4.2 yamt #include <sys/param.h>
19 1.3.4.2 yamt #include <sys/kernel.h>
20 1.3.4.2 yamt #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
21 1.3.4.2 yamt #include <sys/sysctl.h>
22 1.3.4.2 yamt #include <sys/syslog.h>
23 1.3.4.2 yamt #include <sys/systm.h>
24 1.3.4.2 yamt #include <sys/timepps.h>
25 1.3.4.2 yamt #include <sys/timetc.h>
26 1.3.4.2 yamt #include <sys/timex.h>
27 1.3.4.2 yamt #include <sys/evcnt.h>
28 1.3.4.2 yamt #include <sys/kauth.h>
29 1.3.4.7 yamt #include <sys/mutex.h>
30 1.3.4.7 yamt #include <sys/atomic.h>
31 1.3.4.2 yamt
32 1.3.4.2 yamt /*
33 1.3.4.2 yamt * A large step happens on boot. This constant detects such steps.
34 1.3.4.2 yamt * It is relatively small so that ntp_update_second gets called enough
35 1.3.4.2 yamt * in the typical 'missed a couple of seconds' case, but doesn't loop
36 1.3.4.2 yamt * forever when the time step is large.
37 1.3.4.2 yamt */
38 1.3.4.2 yamt #define LARGE_STEP 200
39 1.3.4.2 yamt
40 1.3.4.2 yamt /*
41 1.3.4.2 yamt * Implement a dummy timecounter which we can use until we get a real one
42 1.3.4.2 yamt * in the air. This allows the console and other early stuff to use
43 1.3.4.2 yamt * time services.
44 1.3.4.2 yamt */
45 1.3.4.2 yamt
46 1.3.4.2 yamt static u_int
47 1.3.4.2 yamt dummy_get_timecount(struct timecounter *tc)
48 1.3.4.2 yamt {
49 1.3.4.2 yamt static u_int now;
50 1.3.4.2 yamt
51 1.3.4.2 yamt return (++now);
52 1.3.4.2 yamt }
53 1.3.4.2 yamt
54 1.3.4.2 yamt static struct timecounter dummy_timecounter = {
55 1.3.4.3 yamt dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
56 1.3.4.2 yamt };
57 1.3.4.2 yamt
58 1.3.4.2 yamt struct timehands {
59 1.3.4.2 yamt /* These fields must be initialized by the driver. */
60 1.3.4.2 yamt struct timecounter *th_counter;
61 1.3.4.2 yamt int64_t th_adjustment;
62 1.3.4.2 yamt u_int64_t th_scale;
63 1.3.4.2 yamt u_int th_offset_count;
64 1.3.4.2 yamt struct bintime th_offset;
65 1.3.4.2 yamt struct timeval th_microtime;
66 1.3.4.2 yamt struct timespec th_nanotime;
67 1.3.4.2 yamt /* Fields not to be copied in tc_windup start with th_generation. */
68 1.3.4.2 yamt volatile u_int th_generation;
69 1.3.4.2 yamt struct timehands *th_next;
70 1.3.4.2 yamt };
71 1.3.4.2 yamt
72 1.3.4.2 yamt static struct timehands th0;
73 1.3.4.3 yamt static struct timehands th9 = { .th_next = &th0, };
74 1.3.4.3 yamt static struct timehands th8 = { .th_next = &th9, };
75 1.3.4.3 yamt static struct timehands th7 = { .th_next = &th8, };
76 1.3.4.3 yamt static struct timehands th6 = { .th_next = &th7, };
77 1.3.4.3 yamt static struct timehands th5 = { .th_next = &th6, };
78 1.3.4.3 yamt static struct timehands th4 = { .th_next = &th5, };
79 1.3.4.3 yamt static struct timehands th3 = { .th_next = &th4, };
80 1.3.4.3 yamt static struct timehands th2 = { .th_next = &th3, };
81 1.3.4.3 yamt static struct timehands th1 = { .th_next = &th2, };
82 1.3.4.2 yamt static struct timehands th0 = {
83 1.3.4.3 yamt .th_counter = &dummy_timecounter,
84 1.3.4.3 yamt .th_scale = (uint64_t)-1 / 1000000,
85 1.3.4.3 yamt .th_offset = { .sec = 1, .frac = 0 },
86 1.3.4.3 yamt .th_generation = 1,
87 1.3.4.3 yamt .th_next = &th1,
88 1.3.4.2 yamt };
89 1.3.4.2 yamt
90 1.3.4.2 yamt static struct timehands *volatile timehands = &th0;
91 1.3.4.2 yamt struct timecounter *timecounter = &dummy_timecounter;
92 1.3.4.2 yamt static struct timecounter *timecounters = &dummy_timecounter;
93 1.3.4.2 yamt
94 1.3.4.2 yamt time_t time_second = 1;
95 1.3.4.2 yamt time_t time_uptime = 1;
96 1.3.4.2 yamt
97 1.3.4.3 yamt static struct bintime timebasebin;
98 1.3.4.2 yamt
99 1.3.4.2 yamt static int timestepwarnings;
100 1.3.4.2 yamt
101 1.3.4.7 yamt extern kmutex_t time_lock;
102 1.3.4.8 yamt static kmutex_t tc_windup_lock;
103 1.3.4.7 yamt
104 1.3.4.2 yamt #ifdef __FreeBSD__
105 1.3.4.2 yamt SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106 1.3.4.2 yamt ×tepwarnings, 0, "");
107 1.3.4.2 yamt #endif /* __FreeBSD__ */
108 1.3.4.2 yamt
109 1.3.4.2 yamt /*
110 1.3.4.8 yamt * sysctl helper routine for kern.timercounter.hardware
111 1.3.4.2 yamt */
112 1.3.4.2 yamt static int
113 1.3.4.2 yamt sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
114 1.3.4.2 yamt {
115 1.3.4.2 yamt struct sysctlnode node;
116 1.3.4.2 yamt int error;
117 1.3.4.2 yamt char newname[MAX_TCNAMELEN];
118 1.3.4.2 yamt struct timecounter *newtc, *tc;
119 1.3.4.2 yamt
120 1.3.4.2 yamt tc = timecounter;
121 1.3.4.2 yamt
122 1.3.4.2 yamt strlcpy(newname, tc->tc_name, sizeof(newname));
123 1.3.4.2 yamt
124 1.3.4.2 yamt node = *rnode;
125 1.3.4.2 yamt node.sysctl_data = newname;
126 1.3.4.2 yamt node.sysctl_size = sizeof(newname);
127 1.3.4.2 yamt
128 1.3.4.2 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
129 1.3.4.2 yamt
130 1.3.4.2 yamt if (error ||
131 1.3.4.2 yamt newp == NULL ||
132 1.3.4.2 yamt strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
133 1.3.4.2 yamt return error;
134 1.3.4.2 yamt
135 1.3.4.7 yamt if (l != NULL && (error = kauth_authorize_system(l->l_cred,
136 1.3.4.7 yamt KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
137 1.3.4.7 yamt NULL, NULL)) != 0)
138 1.3.4.2 yamt return (error);
139 1.3.4.2 yamt
140 1.3.4.7 yamt if (!cold)
141 1.3.4.7 yamt mutex_enter(&time_lock);
142 1.3.4.7 yamt error = EINVAL;
143 1.3.4.2 yamt for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
144 1.3.4.2 yamt if (strcmp(newname, newtc->tc_name) != 0)
145 1.3.4.2 yamt continue;
146 1.3.4.2 yamt /* Warm up new timecounter. */
147 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
148 1.3.4.2 yamt (void)newtc->tc_get_timecount(newtc);
149 1.3.4.2 yamt timecounter = newtc;
150 1.3.4.7 yamt error = 0;
151 1.3.4.7 yamt break;
152 1.3.4.2 yamt }
153 1.3.4.7 yamt if (!cold)
154 1.3.4.7 yamt mutex_exit(&time_lock);
155 1.3.4.7 yamt return error;
156 1.3.4.2 yamt }
157 1.3.4.2 yamt
158 1.3.4.2 yamt static int
159 1.3.4.2 yamt sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
160 1.3.4.2 yamt {
161 1.3.4.3 yamt char buf[MAX_TCNAMELEN+48];
162 1.3.4.2 yamt char *where = oldp;
163 1.3.4.2 yamt const char *spc;
164 1.3.4.2 yamt struct timecounter *tc;
165 1.3.4.2 yamt size_t needed, left, slen;
166 1.3.4.2 yamt int error;
167 1.3.4.2 yamt
168 1.3.4.2 yamt if (newp != NULL)
169 1.3.4.2 yamt return (EPERM);
170 1.3.4.2 yamt if (namelen != 0)
171 1.3.4.2 yamt return (EINVAL);
172 1.3.4.2 yamt
173 1.3.4.2 yamt spc = "";
174 1.3.4.2 yamt error = 0;
175 1.3.4.2 yamt needed = 0;
176 1.3.4.2 yamt left = *oldlenp;
177 1.3.4.2 yamt
178 1.3.4.7 yamt mutex_enter(&time_lock);
179 1.3.4.2 yamt for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 1.3.4.2 yamt if (where == NULL) {
181 1.3.4.2 yamt needed += sizeof(buf); /* be conservative */
182 1.3.4.2 yamt } else {
183 1.3.4.2 yamt slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 1.3.4.2 yamt " Hz)", spc, tc->tc_name, tc->tc_quality,
185 1.3.4.2 yamt tc->tc_frequency);
186 1.3.4.2 yamt if (left < slen + 1)
187 1.3.4.2 yamt break;
188 1.3.4.2 yamt /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 1.3.4.7 yamt /* XXX copyout with held lock. */
190 1.3.4.2 yamt error = copyout(buf, where, slen + 1);
191 1.3.4.2 yamt spc = " ";
192 1.3.4.2 yamt where += slen;
193 1.3.4.2 yamt needed += slen;
194 1.3.4.2 yamt left -= slen;
195 1.3.4.2 yamt }
196 1.3.4.2 yamt }
197 1.3.4.7 yamt mutex_exit(&time_lock);
198 1.3.4.2 yamt
199 1.3.4.2 yamt *oldlenp = needed;
200 1.3.4.2 yamt return (error);
201 1.3.4.2 yamt }
202 1.3.4.2 yamt
203 1.3.4.2 yamt SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 1.3.4.2 yamt {
205 1.3.4.2 yamt const struct sysctlnode *node;
206 1.3.4.2 yamt
207 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, &node,
208 1.3.4.2 yamt CTLFLAG_PERMANENT,
209 1.3.4.2 yamt CTLTYPE_NODE, "timecounter",
210 1.3.4.2 yamt SYSCTL_DESCR("time counter information"),
211 1.3.4.2 yamt NULL, 0, NULL, 0,
212 1.3.4.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
213 1.3.4.2 yamt
214 1.3.4.2 yamt if (node != NULL) {
215 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
216 1.3.4.2 yamt CTLFLAG_PERMANENT,
217 1.3.4.2 yamt CTLTYPE_STRING, "choice",
218 1.3.4.2 yamt SYSCTL_DESCR("available counters"),
219 1.3.4.2 yamt sysctl_kern_timecounter_choice, 0, NULL, 0,
220 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221 1.3.4.2 yamt
222 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
223 1.3.4.2 yamt CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 1.3.4.2 yamt CTLTYPE_STRING, "hardware",
225 1.3.4.2 yamt SYSCTL_DESCR("currently active time counter"),
226 1.3.4.2 yamt sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228 1.3.4.2 yamt
229 1.3.4.2 yamt sysctl_createv(clog, 0, NULL, NULL,
230 1.3.4.2 yamt CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 1.3.4.2 yamt CTLTYPE_INT, "timestepwarnings",
232 1.3.4.2 yamt SYSCTL_DESCR("log time steps"),
233 1.3.4.2 yamt NULL, 0, ×tepwarnings, 0,
234 1.3.4.2 yamt CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 1.3.4.2 yamt }
236 1.3.4.2 yamt }
237 1.3.4.2 yamt
238 1.3.4.2 yamt #define TC_STATS(name) \
239 1.3.4.2 yamt static struct evcnt n##name = \
240 1.3.4.2 yamt EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 1.3.4.2 yamt EVCNT_ATTACH_STATIC(n##name)
242 1.3.4.2 yamt
243 1.3.4.2 yamt TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 1.3.4.2 yamt TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 1.3.4.2 yamt TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 1.3.4.2 yamt TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 1.3.4.2 yamt TC_STATS(setclock);
248 1.3.4.2 yamt
249 1.3.4.2 yamt #undef TC_STATS
250 1.3.4.2 yamt
251 1.3.4.2 yamt static void tc_windup(void);
252 1.3.4.2 yamt
253 1.3.4.2 yamt /*
254 1.3.4.2 yamt * Return the difference between the timehands' counter value now and what
255 1.3.4.2 yamt * was when we copied it to the timehands' offset_count.
256 1.3.4.2 yamt */
257 1.3.4.2 yamt static __inline u_int
258 1.3.4.2 yamt tc_delta(struct timehands *th)
259 1.3.4.2 yamt {
260 1.3.4.2 yamt struct timecounter *tc;
261 1.3.4.2 yamt
262 1.3.4.2 yamt tc = th->th_counter;
263 1.3.4.2 yamt return ((tc->tc_get_timecount(tc) -
264 1.3.4.2 yamt th->th_offset_count) & tc->tc_counter_mask);
265 1.3.4.2 yamt }
266 1.3.4.2 yamt
267 1.3.4.2 yamt /*
268 1.3.4.2 yamt * Functions for reading the time. We have to loop until we are sure that
269 1.3.4.2 yamt * the timehands that we operated on was not updated under our feet. See
270 1.3.4.6 yamt * the comment in <sys/timevar.h> for a description of these 12 functions.
271 1.3.4.2 yamt */
272 1.3.4.2 yamt
273 1.3.4.2 yamt void
274 1.3.4.2 yamt binuptime(struct bintime *bt)
275 1.3.4.2 yamt {
276 1.3.4.2 yamt struct timehands *th;
277 1.3.4.2 yamt u_int gen;
278 1.3.4.2 yamt
279 1.3.4.2 yamt nbinuptime.ev_count++;
280 1.3.4.2 yamt do {
281 1.3.4.2 yamt th = timehands;
282 1.3.4.2 yamt gen = th->th_generation;
283 1.3.4.2 yamt *bt = th->th_offset;
284 1.3.4.2 yamt bintime_addx(bt, th->th_scale * tc_delta(th));
285 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
286 1.3.4.2 yamt }
287 1.3.4.2 yamt
288 1.3.4.2 yamt void
289 1.3.4.2 yamt nanouptime(struct timespec *tsp)
290 1.3.4.2 yamt {
291 1.3.4.2 yamt struct bintime bt;
292 1.3.4.2 yamt
293 1.3.4.2 yamt nnanouptime.ev_count++;
294 1.3.4.2 yamt binuptime(&bt);
295 1.3.4.2 yamt bintime2timespec(&bt, tsp);
296 1.3.4.2 yamt }
297 1.3.4.2 yamt
298 1.3.4.2 yamt void
299 1.3.4.2 yamt microuptime(struct timeval *tvp)
300 1.3.4.2 yamt {
301 1.3.4.2 yamt struct bintime bt;
302 1.3.4.2 yamt
303 1.3.4.2 yamt nmicrouptime.ev_count++;
304 1.3.4.2 yamt binuptime(&bt);
305 1.3.4.2 yamt bintime2timeval(&bt, tvp);
306 1.3.4.2 yamt }
307 1.3.4.2 yamt
308 1.3.4.2 yamt void
309 1.3.4.2 yamt bintime(struct bintime *bt)
310 1.3.4.2 yamt {
311 1.3.4.2 yamt
312 1.3.4.2 yamt nbintime.ev_count++;
313 1.3.4.2 yamt binuptime(bt);
314 1.3.4.3 yamt bintime_add(bt, &timebasebin);
315 1.3.4.2 yamt }
316 1.3.4.2 yamt
317 1.3.4.2 yamt void
318 1.3.4.2 yamt nanotime(struct timespec *tsp)
319 1.3.4.2 yamt {
320 1.3.4.2 yamt struct bintime bt;
321 1.3.4.2 yamt
322 1.3.4.2 yamt nnanotime.ev_count++;
323 1.3.4.2 yamt bintime(&bt);
324 1.3.4.2 yamt bintime2timespec(&bt, tsp);
325 1.3.4.2 yamt }
326 1.3.4.2 yamt
327 1.3.4.2 yamt void
328 1.3.4.2 yamt microtime(struct timeval *tvp)
329 1.3.4.2 yamt {
330 1.3.4.2 yamt struct bintime bt;
331 1.3.4.2 yamt
332 1.3.4.2 yamt nmicrotime.ev_count++;
333 1.3.4.2 yamt bintime(&bt);
334 1.3.4.2 yamt bintime2timeval(&bt, tvp);
335 1.3.4.2 yamt }
336 1.3.4.2 yamt
337 1.3.4.2 yamt void
338 1.3.4.2 yamt getbinuptime(struct bintime *bt)
339 1.3.4.2 yamt {
340 1.3.4.2 yamt struct timehands *th;
341 1.3.4.2 yamt u_int gen;
342 1.3.4.2 yamt
343 1.3.4.2 yamt ngetbinuptime.ev_count++;
344 1.3.4.2 yamt do {
345 1.3.4.2 yamt th = timehands;
346 1.3.4.2 yamt gen = th->th_generation;
347 1.3.4.2 yamt *bt = th->th_offset;
348 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
349 1.3.4.2 yamt }
350 1.3.4.2 yamt
351 1.3.4.2 yamt void
352 1.3.4.2 yamt getnanouptime(struct timespec *tsp)
353 1.3.4.2 yamt {
354 1.3.4.2 yamt struct timehands *th;
355 1.3.4.2 yamt u_int gen;
356 1.3.4.2 yamt
357 1.3.4.2 yamt ngetnanouptime.ev_count++;
358 1.3.4.2 yamt do {
359 1.3.4.2 yamt th = timehands;
360 1.3.4.2 yamt gen = th->th_generation;
361 1.3.4.2 yamt bintime2timespec(&th->th_offset, tsp);
362 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
363 1.3.4.2 yamt }
364 1.3.4.2 yamt
365 1.3.4.2 yamt void
366 1.3.4.2 yamt getmicrouptime(struct timeval *tvp)
367 1.3.4.2 yamt {
368 1.3.4.2 yamt struct timehands *th;
369 1.3.4.2 yamt u_int gen;
370 1.3.4.2 yamt
371 1.3.4.2 yamt ngetmicrouptime.ev_count++;
372 1.3.4.2 yamt do {
373 1.3.4.2 yamt th = timehands;
374 1.3.4.2 yamt gen = th->th_generation;
375 1.3.4.2 yamt bintime2timeval(&th->th_offset, tvp);
376 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
377 1.3.4.2 yamt }
378 1.3.4.2 yamt
379 1.3.4.2 yamt void
380 1.3.4.2 yamt getbintime(struct bintime *bt)
381 1.3.4.2 yamt {
382 1.3.4.2 yamt struct timehands *th;
383 1.3.4.2 yamt u_int gen;
384 1.3.4.2 yamt
385 1.3.4.2 yamt ngetbintime.ev_count++;
386 1.3.4.2 yamt do {
387 1.3.4.2 yamt th = timehands;
388 1.3.4.2 yamt gen = th->th_generation;
389 1.3.4.2 yamt *bt = th->th_offset;
390 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
391 1.3.4.3 yamt bintime_add(bt, &timebasebin);
392 1.3.4.2 yamt }
393 1.3.4.2 yamt
394 1.3.4.2 yamt void
395 1.3.4.2 yamt getnanotime(struct timespec *tsp)
396 1.3.4.2 yamt {
397 1.3.4.2 yamt struct timehands *th;
398 1.3.4.2 yamt u_int gen;
399 1.3.4.2 yamt
400 1.3.4.2 yamt ngetnanotime.ev_count++;
401 1.3.4.2 yamt do {
402 1.3.4.2 yamt th = timehands;
403 1.3.4.2 yamt gen = th->th_generation;
404 1.3.4.2 yamt *tsp = th->th_nanotime;
405 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
406 1.3.4.2 yamt }
407 1.3.4.2 yamt
408 1.3.4.2 yamt void
409 1.3.4.2 yamt getmicrotime(struct timeval *tvp)
410 1.3.4.2 yamt {
411 1.3.4.2 yamt struct timehands *th;
412 1.3.4.2 yamt u_int gen;
413 1.3.4.2 yamt
414 1.3.4.2 yamt ngetmicrotime.ev_count++;
415 1.3.4.2 yamt do {
416 1.3.4.2 yamt th = timehands;
417 1.3.4.2 yamt gen = th->th_generation;
418 1.3.4.2 yamt *tvp = th->th_microtime;
419 1.3.4.2 yamt } while (gen == 0 || gen != th->th_generation);
420 1.3.4.2 yamt }
421 1.3.4.2 yamt
422 1.3.4.2 yamt /*
423 1.3.4.2 yamt * Initialize a new timecounter and possibly use it.
424 1.3.4.2 yamt */
425 1.3.4.2 yamt void
426 1.3.4.2 yamt tc_init(struct timecounter *tc)
427 1.3.4.2 yamt {
428 1.3.4.2 yamt u_int u;
429 1.3.4.2 yamt
430 1.3.4.2 yamt u = tc->tc_frequency / tc->tc_counter_mask;
431 1.3.4.2 yamt /* XXX: We need some margin here, 10% is a guess */
432 1.3.4.2 yamt u *= 11;
433 1.3.4.2 yamt u /= 10;
434 1.3.4.2 yamt if (u > hz && tc->tc_quality >= 0) {
435 1.3.4.2 yamt tc->tc_quality = -2000;
436 1.3.4.4 yamt aprint_verbose(
437 1.3.4.4 yamt "timecounter: Timecounter \"%s\" frequency %ju Hz",
438 1.3.4.2 yamt tc->tc_name, (uintmax_t)tc->tc_frequency);
439 1.3.4.4 yamt aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
440 1.3.4.2 yamt } else if (tc->tc_quality >= 0 || bootverbose) {
441 1.3.4.4 yamt aprint_verbose(
442 1.3.4.4 yamt "timecounter: Timecounter \"%s\" frequency %ju Hz "
443 1.3.4.4 yamt "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
444 1.3.4.2 yamt tc->tc_quality);
445 1.3.4.2 yamt }
446 1.3.4.2 yamt
447 1.3.4.7 yamt mutex_enter(&time_lock);
448 1.3.4.8 yamt mutex_spin_enter(&tc_windup_lock);
449 1.3.4.2 yamt tc->tc_next = timecounters;
450 1.3.4.2 yamt timecounters = tc;
451 1.3.4.2 yamt /*
452 1.3.4.2 yamt * Never automatically use a timecounter with negative quality.
453 1.3.4.2 yamt * Even though we run on the dummy counter, switching here may be
454 1.3.4.2 yamt * worse since this timecounter may not be monotonous.
455 1.3.4.2 yamt */
456 1.3.4.7 yamt if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
457 1.3.4.7 yamt (tc->tc_quality == timecounter->tc_quality &&
458 1.3.4.7 yamt tc->tc_frequency > timecounter->tc_frequency))) {
459 1.3.4.7 yamt (void)tc->tc_get_timecount(tc);
460 1.3.4.7 yamt (void)tc->tc_get_timecount(tc);
461 1.3.4.7 yamt timecounter = tc;
462 1.3.4.7 yamt tc_windup();
463 1.3.4.7 yamt }
464 1.3.4.8 yamt mutex_spin_exit(&tc_windup_lock);
465 1.3.4.7 yamt mutex_exit(&time_lock);
466 1.3.4.2 yamt }
467 1.3.4.2 yamt
468 1.3.4.8 yamt /*
469 1.3.4.8 yamt * Stop using a timecounter and remove it from the timecounters list.
470 1.3.4.8 yamt */
471 1.3.4.8 yamt int
472 1.3.4.8 yamt tc_detach(struct timecounter *target)
473 1.3.4.8 yamt {
474 1.3.4.8 yamt struct timecounter *best, *tc;
475 1.3.4.8 yamt struct timecounter **tcp = NULL;
476 1.3.4.8 yamt int rc = 0;
477 1.3.4.8 yamt
478 1.3.4.8 yamt mutex_enter(&time_lock);
479 1.3.4.8 yamt for (tcp = &timecounters, tc = timecounters;
480 1.3.4.8 yamt tc != NULL;
481 1.3.4.8 yamt tcp = &tc->tc_next, tc = tc->tc_next) {
482 1.3.4.8 yamt if (tc == target)
483 1.3.4.8 yamt break;
484 1.3.4.8 yamt }
485 1.3.4.8 yamt if (tc == NULL) {
486 1.3.4.8 yamt rc = ESRCH;
487 1.3.4.8 yamt goto out;
488 1.3.4.8 yamt }
489 1.3.4.8 yamt *tcp = tc->tc_next;
490 1.3.4.8 yamt
491 1.3.4.8 yamt if (timecounter != target)
492 1.3.4.8 yamt goto out;
493 1.3.4.8 yamt
494 1.3.4.8 yamt for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
495 1.3.4.8 yamt if (tc->tc_quality > best->tc_quality)
496 1.3.4.8 yamt best = tc;
497 1.3.4.8 yamt else if (tc->tc_quality < best->tc_quality)
498 1.3.4.8 yamt continue;
499 1.3.4.8 yamt else if (tc->tc_frequency > best->tc_frequency)
500 1.3.4.8 yamt best = tc;
501 1.3.4.8 yamt }
502 1.3.4.8 yamt mutex_spin_enter(&tc_windup_lock);
503 1.3.4.8 yamt (void)best->tc_get_timecount(best);
504 1.3.4.8 yamt (void)best->tc_get_timecount(best);
505 1.3.4.8 yamt timecounter = best;
506 1.3.4.8 yamt tc_windup();
507 1.3.4.8 yamt mutex_spin_exit(&tc_windup_lock);
508 1.3.4.8 yamt out:
509 1.3.4.8 yamt mutex_exit(&time_lock);
510 1.3.4.8 yamt return rc;
511 1.3.4.8 yamt }
512 1.3.4.8 yamt
513 1.3.4.2 yamt /* Report the frequency of the current timecounter. */
514 1.3.4.2 yamt u_int64_t
515 1.3.4.2 yamt tc_getfrequency(void)
516 1.3.4.2 yamt {
517 1.3.4.2 yamt
518 1.3.4.2 yamt return (timehands->th_counter->tc_frequency);
519 1.3.4.2 yamt }
520 1.3.4.2 yamt
521 1.3.4.2 yamt /*
522 1.3.4.2 yamt * Step our concept of UTC. This is done by modifying our estimate of
523 1.3.4.2 yamt * when we booted.
524 1.3.4.2 yamt */
525 1.3.4.2 yamt void
526 1.3.4.2 yamt tc_setclock(struct timespec *ts)
527 1.3.4.2 yamt {
528 1.3.4.2 yamt struct timespec ts2;
529 1.3.4.2 yamt struct bintime bt, bt2;
530 1.3.4.2 yamt
531 1.3.4.8 yamt mutex_spin_enter(&tc_windup_lock);
532 1.3.4.2 yamt nsetclock.ev_count++;
533 1.3.4.2 yamt binuptime(&bt2);
534 1.3.4.2 yamt timespec2bintime(ts, &bt);
535 1.3.4.2 yamt bintime_sub(&bt, &bt2);
536 1.3.4.3 yamt bintime_add(&bt2, &timebasebin);
537 1.3.4.3 yamt timebasebin = bt;
538 1.3.4.2 yamt tc_windup();
539 1.3.4.8 yamt mutex_spin_exit(&tc_windup_lock);
540 1.3.4.8 yamt
541 1.3.4.2 yamt if (timestepwarnings) {
542 1.3.4.2 yamt bintime2timespec(&bt2, &ts2);
543 1.3.4.2 yamt log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
544 1.3.4.2 yamt (intmax_t)ts2.tv_sec, ts2.tv_nsec,
545 1.3.4.2 yamt (intmax_t)ts->tv_sec, ts->tv_nsec);
546 1.3.4.2 yamt }
547 1.3.4.2 yamt }
548 1.3.4.2 yamt
549 1.3.4.2 yamt /*
550 1.3.4.2 yamt * Initialize the next struct timehands in the ring and make
551 1.3.4.2 yamt * it the active timehands. Along the way we might switch to a different
552 1.3.4.2 yamt * timecounter and/or do seconds processing in NTP. Slightly magic.
553 1.3.4.2 yamt */
554 1.3.4.2 yamt static void
555 1.3.4.2 yamt tc_windup(void)
556 1.3.4.2 yamt {
557 1.3.4.2 yamt struct bintime bt;
558 1.3.4.2 yamt struct timehands *th, *tho;
559 1.3.4.2 yamt u_int64_t scale;
560 1.3.4.2 yamt u_int delta, ncount, ogen;
561 1.3.4.3 yamt int i, s_update;
562 1.3.4.2 yamt time_t t;
563 1.3.4.2 yamt
564 1.3.4.8 yamt KASSERT(mutex_owned(&tc_windup_lock));
565 1.3.4.8 yamt
566 1.3.4.3 yamt s_update = 0;
567 1.3.4.5 yamt
568 1.3.4.2 yamt /*
569 1.3.4.2 yamt * Make the next timehands a copy of the current one, but do not
570 1.3.4.2 yamt * overwrite the generation or next pointer. While we update
571 1.3.4.5 yamt * the contents, the generation must be zero. Ensure global
572 1.3.4.5 yamt * visibility of the generation before proceeding.
573 1.3.4.2 yamt */
574 1.3.4.2 yamt tho = timehands;
575 1.3.4.2 yamt th = tho->th_next;
576 1.3.4.2 yamt ogen = th->th_generation;
577 1.3.4.2 yamt th->th_generation = 0;
578 1.3.4.7 yamt membar_producer();
579 1.3.4.2 yamt bcopy(tho, th, offsetof(struct timehands, th_generation));
580 1.3.4.2 yamt
581 1.3.4.2 yamt /*
582 1.3.4.2 yamt * Capture a timecounter delta on the current timecounter and if
583 1.3.4.2 yamt * changing timecounters, a counter value from the new timecounter.
584 1.3.4.2 yamt * Update the offset fields accordingly.
585 1.3.4.2 yamt */
586 1.3.4.2 yamt delta = tc_delta(th);
587 1.3.4.2 yamt if (th->th_counter != timecounter)
588 1.3.4.2 yamt ncount = timecounter->tc_get_timecount(timecounter);
589 1.3.4.2 yamt else
590 1.3.4.2 yamt ncount = 0;
591 1.3.4.2 yamt th->th_offset_count += delta;
592 1.3.4.2 yamt th->th_offset_count &= th->th_counter->tc_counter_mask;
593 1.3.4.2 yamt bintime_addx(&th->th_offset, th->th_scale * delta);
594 1.3.4.2 yamt
595 1.3.4.2 yamt /*
596 1.3.4.2 yamt * Hardware latching timecounters may not generate interrupts on
597 1.3.4.2 yamt * PPS events, so instead we poll them. There is a finite risk that
598 1.3.4.2 yamt * the hardware might capture a count which is later than the one we
599 1.3.4.2 yamt * got above, and therefore possibly in the next NTP second which might
600 1.3.4.2 yamt * have a different rate than the current NTP second. It doesn't
601 1.3.4.2 yamt * matter in practice.
602 1.3.4.2 yamt */
603 1.3.4.2 yamt if (tho->th_counter->tc_poll_pps)
604 1.3.4.2 yamt tho->th_counter->tc_poll_pps(tho->th_counter);
605 1.3.4.2 yamt
606 1.3.4.2 yamt /*
607 1.3.4.2 yamt * Deal with NTP second processing. The for loop normally
608 1.3.4.2 yamt * iterates at most once, but in extreme situations it might
609 1.3.4.2 yamt * keep NTP sane if timeouts are not run for several seconds.
610 1.3.4.2 yamt * At boot, the time step can be large when the TOD hardware
611 1.3.4.2 yamt * has been read, so on really large steps, we call
612 1.3.4.2 yamt * ntp_update_second only twice. We need to call it twice in
613 1.3.4.2 yamt * case we missed a leap second.
614 1.3.4.2 yamt * If NTP is not compiled in ntp_update_second still calculates
615 1.3.4.2 yamt * the adjustment resulting from adjtime() calls.
616 1.3.4.2 yamt */
617 1.3.4.2 yamt bt = th->th_offset;
618 1.3.4.3 yamt bintime_add(&bt, &timebasebin);
619 1.3.4.2 yamt i = bt.sec - tho->th_microtime.tv_sec;
620 1.3.4.2 yamt if (i > LARGE_STEP)
621 1.3.4.2 yamt i = 2;
622 1.3.4.2 yamt for (; i > 0; i--) {
623 1.3.4.2 yamt t = bt.sec;
624 1.3.4.2 yamt ntp_update_second(&th->th_adjustment, &bt.sec);
625 1.3.4.3 yamt s_update = 1;
626 1.3.4.2 yamt if (bt.sec != t)
627 1.3.4.3 yamt timebasebin.sec += bt.sec - t;
628 1.3.4.2 yamt }
629 1.3.4.2 yamt
630 1.3.4.2 yamt /* Update the UTC timestamps used by the get*() functions. */
631 1.3.4.2 yamt /* XXX shouldn't do this here. Should force non-`get' versions. */
632 1.3.4.2 yamt bintime2timeval(&bt, &th->th_microtime);
633 1.3.4.2 yamt bintime2timespec(&bt, &th->th_nanotime);
634 1.3.4.2 yamt
635 1.3.4.2 yamt /* Now is a good time to change timecounters. */
636 1.3.4.2 yamt if (th->th_counter != timecounter) {
637 1.3.4.2 yamt th->th_counter = timecounter;
638 1.3.4.2 yamt th->th_offset_count = ncount;
639 1.3.4.3 yamt s_update = 1;
640 1.3.4.2 yamt }
641 1.3.4.2 yamt
642 1.3.4.2 yamt /*-
643 1.3.4.2 yamt * Recalculate the scaling factor. We want the number of 1/2^64
644 1.3.4.2 yamt * fractions of a second per period of the hardware counter, taking
645 1.3.4.2 yamt * into account the th_adjustment factor which the NTP PLL/adjtime(2)
646 1.3.4.2 yamt * processing provides us with.
647 1.3.4.2 yamt *
648 1.3.4.2 yamt * The th_adjustment is nanoseconds per second with 32 bit binary
649 1.3.4.2 yamt * fraction and we want 64 bit binary fraction of second:
650 1.3.4.2 yamt *
651 1.3.4.2 yamt * x = a * 2^32 / 10^9 = a * 4.294967296
652 1.3.4.2 yamt *
653 1.3.4.2 yamt * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
654 1.3.4.2 yamt * we can only multiply by about 850 without overflowing, but that
655 1.3.4.2 yamt * leaves suitably precise fractions for multiply before divide.
656 1.3.4.2 yamt *
657 1.3.4.2 yamt * Divide before multiply with a fraction of 2199/512 results in a
658 1.3.4.2 yamt * systematic undercompensation of 10PPM of th_adjustment. On a
659 1.3.4.2 yamt * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
660 1.3.4.2 yamt *
661 1.3.4.2 yamt * We happily sacrifice the lowest of the 64 bits of our result
662 1.3.4.2 yamt * to the goddess of code clarity.
663 1.3.4.2 yamt *
664 1.3.4.2 yamt */
665 1.3.4.3 yamt if (s_update) {
666 1.3.4.3 yamt scale = (u_int64_t)1 << 63;
667 1.3.4.3 yamt scale += (th->th_adjustment / 1024) * 2199;
668 1.3.4.3 yamt scale /= th->th_counter->tc_frequency;
669 1.3.4.3 yamt th->th_scale = scale * 2;
670 1.3.4.3 yamt }
671 1.3.4.2 yamt /*
672 1.3.4.2 yamt * Now that the struct timehands is again consistent, set the new
673 1.3.4.5 yamt * generation number, making sure to not make it zero. Ensure
674 1.3.4.5 yamt * changes are globally visible before changing.
675 1.3.4.2 yamt */
676 1.3.4.2 yamt if (++ogen == 0)
677 1.3.4.2 yamt ogen = 1;
678 1.3.4.7 yamt membar_producer();
679 1.3.4.2 yamt th->th_generation = ogen;
680 1.3.4.2 yamt
681 1.3.4.5 yamt /*
682 1.3.4.5 yamt * Go live with the new struct timehands. Ensure changes are
683 1.3.4.5 yamt * globally visible before changing.
684 1.3.4.5 yamt */
685 1.3.4.2 yamt time_second = th->th_microtime.tv_sec;
686 1.3.4.2 yamt time_uptime = th->th_offset.sec;
687 1.3.4.7 yamt membar_producer();
688 1.3.4.2 yamt timehands = th;
689 1.3.4.2 yamt
690 1.3.4.7 yamt /*
691 1.3.4.7 yamt * Force users of the old timehand to move on. This is
692 1.3.4.7 yamt * necessary for MP systems; we need to ensure that the
693 1.3.4.7 yamt * consumers will move away from the old timehand before
694 1.3.4.7 yamt * we begin updating it again when we eventually wrap
695 1.3.4.7 yamt * around.
696 1.3.4.7 yamt */
697 1.3.4.7 yamt if (++tho->th_generation == 0)
698 1.3.4.7 yamt tho->th_generation = 1;
699 1.3.4.2 yamt }
700 1.3.4.2 yamt
701 1.3.4.2 yamt /*
702 1.3.4.2 yamt * RFC 2783 PPS-API implementation.
703 1.3.4.2 yamt */
704 1.3.4.2 yamt
705 1.3.4.2 yamt int
706 1.3.4.5 yamt pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
707 1.3.4.2 yamt {
708 1.3.4.2 yamt pps_params_t *app;
709 1.3.4.2 yamt pps_info_t *pipi;
710 1.3.4.2 yamt #ifdef PPS_SYNC
711 1.3.4.2 yamt int *epi;
712 1.3.4.2 yamt #endif
713 1.3.4.2 yamt
714 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
715 1.3.4.2 yamt switch (cmd) {
716 1.3.4.2 yamt case PPS_IOC_CREATE:
717 1.3.4.2 yamt return (0);
718 1.3.4.2 yamt case PPS_IOC_DESTROY:
719 1.3.4.2 yamt return (0);
720 1.3.4.2 yamt case PPS_IOC_SETPARAMS:
721 1.3.4.2 yamt app = (pps_params_t *)data;
722 1.3.4.2 yamt if (app->mode & ~pps->ppscap)
723 1.3.4.2 yamt return (EINVAL);
724 1.3.4.2 yamt pps->ppsparam = *app;
725 1.3.4.2 yamt return (0);
726 1.3.4.2 yamt case PPS_IOC_GETPARAMS:
727 1.3.4.2 yamt app = (pps_params_t *)data;
728 1.3.4.2 yamt *app = pps->ppsparam;
729 1.3.4.2 yamt app->api_version = PPS_API_VERS_1;
730 1.3.4.2 yamt return (0);
731 1.3.4.2 yamt case PPS_IOC_GETCAP:
732 1.3.4.2 yamt *(int*)data = pps->ppscap;
733 1.3.4.2 yamt return (0);
734 1.3.4.2 yamt case PPS_IOC_FETCH:
735 1.3.4.2 yamt pipi = (pps_info_t *)data;
736 1.3.4.2 yamt pps->ppsinfo.current_mode = pps->ppsparam.mode;
737 1.3.4.2 yamt *pipi = pps->ppsinfo;
738 1.3.4.2 yamt return (0);
739 1.3.4.2 yamt case PPS_IOC_KCBIND:
740 1.3.4.2 yamt #ifdef PPS_SYNC
741 1.3.4.2 yamt epi = (int *)data;
742 1.3.4.2 yamt /* XXX Only root should be able to do this */
743 1.3.4.2 yamt if (*epi & ~pps->ppscap)
744 1.3.4.2 yamt return (EINVAL);
745 1.3.4.2 yamt pps->kcmode = *epi;
746 1.3.4.2 yamt return (0);
747 1.3.4.2 yamt #else
748 1.3.4.2 yamt return (EOPNOTSUPP);
749 1.3.4.2 yamt #endif
750 1.3.4.2 yamt default:
751 1.3.4.2 yamt return (EPASSTHROUGH);
752 1.3.4.2 yamt }
753 1.3.4.2 yamt }
754 1.3.4.2 yamt
755 1.3.4.2 yamt void
756 1.3.4.2 yamt pps_init(struct pps_state *pps)
757 1.3.4.2 yamt {
758 1.3.4.2 yamt pps->ppscap |= PPS_TSFMT_TSPEC;
759 1.3.4.2 yamt if (pps->ppscap & PPS_CAPTUREASSERT)
760 1.3.4.2 yamt pps->ppscap |= PPS_OFFSETASSERT;
761 1.3.4.2 yamt if (pps->ppscap & PPS_CAPTURECLEAR)
762 1.3.4.2 yamt pps->ppscap |= PPS_OFFSETCLEAR;
763 1.3.4.2 yamt }
764 1.3.4.2 yamt
765 1.3.4.2 yamt void
766 1.3.4.2 yamt pps_capture(struct pps_state *pps)
767 1.3.4.2 yamt {
768 1.3.4.2 yamt struct timehands *th;
769 1.3.4.2 yamt
770 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
771 1.3.4.2 yamt th = timehands;
772 1.3.4.2 yamt pps->capgen = th->th_generation;
773 1.3.4.2 yamt pps->capth = th;
774 1.3.4.2 yamt pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
775 1.3.4.2 yamt if (pps->capgen != th->th_generation)
776 1.3.4.2 yamt pps->capgen = 0;
777 1.3.4.2 yamt }
778 1.3.4.2 yamt
779 1.3.4.2 yamt void
780 1.3.4.2 yamt pps_event(struct pps_state *pps, int event)
781 1.3.4.2 yamt {
782 1.3.4.2 yamt struct bintime bt;
783 1.3.4.2 yamt struct timespec ts, *tsp, *osp;
784 1.3.4.2 yamt u_int tcount, *pcount;
785 1.3.4.2 yamt int foff, fhard;
786 1.3.4.2 yamt pps_seq_t *pseq;
787 1.3.4.2 yamt
788 1.3.4.2 yamt KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
789 1.3.4.2 yamt /* If the timecounter was wound up underneath us, bail out. */
790 1.3.4.2 yamt if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
791 1.3.4.2 yamt return;
792 1.3.4.2 yamt
793 1.3.4.2 yamt /* Things would be easier with arrays. */
794 1.3.4.2 yamt if (event == PPS_CAPTUREASSERT) {
795 1.3.4.2 yamt tsp = &pps->ppsinfo.assert_timestamp;
796 1.3.4.2 yamt osp = &pps->ppsparam.assert_offset;
797 1.3.4.2 yamt foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
798 1.3.4.2 yamt fhard = pps->kcmode & PPS_CAPTUREASSERT;
799 1.3.4.2 yamt pcount = &pps->ppscount[0];
800 1.3.4.2 yamt pseq = &pps->ppsinfo.assert_sequence;
801 1.3.4.2 yamt } else {
802 1.3.4.2 yamt tsp = &pps->ppsinfo.clear_timestamp;
803 1.3.4.2 yamt osp = &pps->ppsparam.clear_offset;
804 1.3.4.2 yamt foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
805 1.3.4.2 yamt fhard = pps->kcmode & PPS_CAPTURECLEAR;
806 1.3.4.2 yamt pcount = &pps->ppscount[1];
807 1.3.4.2 yamt pseq = &pps->ppsinfo.clear_sequence;
808 1.3.4.2 yamt }
809 1.3.4.2 yamt
810 1.3.4.2 yamt /*
811 1.3.4.2 yamt * If the timecounter changed, we cannot compare the count values, so
812 1.3.4.2 yamt * we have to drop the rest of the PPS-stuff until the next event.
813 1.3.4.2 yamt */
814 1.3.4.2 yamt if (pps->ppstc != pps->capth->th_counter) {
815 1.3.4.2 yamt pps->ppstc = pps->capth->th_counter;
816 1.3.4.2 yamt *pcount = pps->capcount;
817 1.3.4.2 yamt pps->ppscount[2] = pps->capcount;
818 1.3.4.2 yamt return;
819 1.3.4.2 yamt }
820 1.3.4.2 yamt
821 1.3.4.2 yamt /* Convert the count to a timespec. */
822 1.3.4.2 yamt tcount = pps->capcount - pps->capth->th_offset_count;
823 1.3.4.2 yamt tcount &= pps->capth->th_counter->tc_counter_mask;
824 1.3.4.2 yamt bt = pps->capth->th_offset;
825 1.3.4.2 yamt bintime_addx(&bt, pps->capth->th_scale * tcount);
826 1.3.4.3 yamt bintime_add(&bt, &timebasebin);
827 1.3.4.2 yamt bintime2timespec(&bt, &ts);
828 1.3.4.2 yamt
829 1.3.4.2 yamt /* If the timecounter was wound up underneath us, bail out. */
830 1.3.4.2 yamt if (pps->capgen != pps->capth->th_generation)
831 1.3.4.2 yamt return;
832 1.3.4.2 yamt
833 1.3.4.2 yamt *pcount = pps->capcount;
834 1.3.4.2 yamt (*pseq)++;
835 1.3.4.2 yamt *tsp = ts;
836 1.3.4.2 yamt
837 1.3.4.2 yamt if (foff) {
838 1.3.4.2 yamt timespecadd(tsp, osp, tsp);
839 1.3.4.2 yamt if (tsp->tv_nsec < 0) {
840 1.3.4.2 yamt tsp->tv_nsec += 1000000000;
841 1.3.4.2 yamt tsp->tv_sec -= 1;
842 1.3.4.2 yamt }
843 1.3.4.2 yamt }
844 1.3.4.2 yamt #ifdef PPS_SYNC
845 1.3.4.2 yamt if (fhard) {
846 1.3.4.2 yamt u_int64_t scale;
847 1.3.4.2 yamt
848 1.3.4.2 yamt /*
849 1.3.4.2 yamt * Feed the NTP PLL/FLL.
850 1.3.4.2 yamt * The FLL wants to know how many (hardware) nanoseconds
851 1.3.4.2 yamt * elapsed since the previous event.
852 1.3.4.2 yamt */
853 1.3.4.2 yamt tcount = pps->capcount - pps->ppscount[2];
854 1.3.4.2 yamt pps->ppscount[2] = pps->capcount;
855 1.3.4.2 yamt tcount &= pps->capth->th_counter->tc_counter_mask;
856 1.3.4.2 yamt scale = (u_int64_t)1 << 63;
857 1.3.4.2 yamt scale /= pps->capth->th_counter->tc_frequency;
858 1.3.4.2 yamt scale *= 2;
859 1.3.4.2 yamt bt.sec = 0;
860 1.3.4.2 yamt bt.frac = 0;
861 1.3.4.2 yamt bintime_addx(&bt, scale * tcount);
862 1.3.4.2 yamt bintime2timespec(&bt, &ts);
863 1.3.4.2 yamt hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
864 1.3.4.2 yamt }
865 1.3.4.2 yamt #endif
866 1.3.4.2 yamt }
867 1.3.4.2 yamt
868 1.3.4.2 yamt /*
869 1.3.4.2 yamt * Timecounters need to be updated every so often to prevent the hardware
870 1.3.4.2 yamt * counter from overflowing. Updating also recalculates the cached values
871 1.3.4.2 yamt * used by the get*() family of functions, so their precision depends on
872 1.3.4.2 yamt * the update frequency.
873 1.3.4.2 yamt */
874 1.3.4.2 yamt
875 1.3.4.2 yamt static int tc_tick;
876 1.3.4.2 yamt
877 1.3.4.2 yamt void
878 1.3.4.2 yamt tc_ticktock(void)
879 1.3.4.2 yamt {
880 1.3.4.2 yamt static int count;
881 1.3.4.2 yamt
882 1.3.4.2 yamt if (++count < tc_tick)
883 1.3.4.2 yamt return;
884 1.3.4.2 yamt count = 0;
885 1.3.4.8 yamt mutex_spin_enter(&tc_windup_lock);
886 1.3.4.2 yamt tc_windup();
887 1.3.4.8 yamt mutex_spin_exit(&tc_windup_lock);
888 1.3.4.2 yamt }
889 1.3.4.2 yamt
890 1.3.4.2 yamt void
891 1.3.4.2 yamt inittimecounter(void)
892 1.3.4.2 yamt {
893 1.3.4.2 yamt u_int p;
894 1.3.4.2 yamt
895 1.3.4.8 yamt mutex_init(&tc_windup_lock, MUTEX_DEFAULT, IPL_SCHED);
896 1.3.4.8 yamt
897 1.3.4.2 yamt /*
898 1.3.4.2 yamt * Set the initial timeout to
899 1.3.4.2 yamt * max(1, <approx. number of hardclock ticks in a millisecond>).
900 1.3.4.2 yamt * People should probably not use the sysctl to set the timeout
901 1.3.4.2 yamt * to smaller than its inital value, since that value is the
902 1.3.4.2 yamt * smallest reasonable one. If they want better timestamps they
903 1.3.4.2 yamt * should use the non-"get"* functions.
904 1.3.4.2 yamt */
905 1.3.4.2 yamt if (hz > 1000)
906 1.3.4.2 yamt tc_tick = (hz + 500) / 1000;
907 1.3.4.2 yamt else
908 1.3.4.2 yamt tc_tick = 1;
909 1.3.4.2 yamt p = (tc_tick * 1000000) / hz;
910 1.3.4.4 yamt aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
911 1.3.4.4 yamt p / 1000, p % 1000);
912 1.3.4.2 yamt
913 1.3.4.2 yamt /* warm up new timecounter (again) and get rolling. */
914 1.3.4.2 yamt (void)timecounter->tc_get_timecount(timecounter);
915 1.3.4.2 yamt (void)timecounter->tc_get_timecount(timecounter);
916 1.3.4.2 yamt }
917