Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.30
      1  1.30        ad /* $NetBSD: kern_tc.c,v 1.30 2008/01/05 18:00:37 ad Exp $ */
      2   1.2    kardel 
      3   1.1    simonb /*-
      4   1.1    simonb  * ----------------------------------------------------------------------------
      5   1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6   1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7   1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8   1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9   1.2    kardel  * ---------------------------------------------------------------------------
     10   1.1    simonb  */
     11   1.1    simonb 
     12   1.1    simonb #include <sys/cdefs.h>
     13   1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.30        ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.30 2008/01/05 18:00:37 ad Exp $");
     15   1.1    simonb 
     16   1.1    simonb #include "opt_ntp.h"
     17   1.1    simonb 
     18   1.1    simonb #include <sys/param.h>
     19   1.2    kardel #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20   1.1    simonb #include <sys/kernel.h>
     21   1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22   1.1    simonb #include <sys/sysctl.h>
     23   1.1    simonb #include <sys/syslog.h>
     24   1.1    simonb #include <sys/systm.h>
     25   1.1    simonb #include <sys/timepps.h>
     26   1.1    simonb #include <sys/timetc.h>
     27   1.1    simonb #include <sys/timex.h>
     28   1.2    kardel #include <sys/evcnt.h>
     29   1.2    kardel #include <sys/kauth.h>
     30  1.25        ad #include <sys/mutex.h>
     31  1.27        ad #include <sys/atomic.h>
     32   1.2    kardel 
     33   1.2    kardel /*
     34   1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     35   1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     36   1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     37   1.1    simonb  * forever when the time step is large.
     38   1.1    simonb  */
     39   1.1    simonb #define LARGE_STEP	200
     40   1.1    simonb 
     41   1.1    simonb /*
     42   1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     43   1.1    simonb  * in the air.  This allows the console and other early stuff to use
     44   1.1    simonb  * time services.
     45   1.1    simonb  */
     46   1.1    simonb 
     47   1.1    simonb static u_int
     48  1.16      yamt dummy_get_timecount(struct timecounter *tc)
     49   1.1    simonb {
     50   1.1    simonb 	static u_int now;
     51   1.1    simonb 
     52   1.1    simonb 	return (++now);
     53   1.1    simonb }
     54   1.1    simonb 
     55   1.1    simonb static struct timecounter dummy_timecounter = {
     56   1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     57   1.1    simonb };
     58   1.1    simonb 
     59   1.1    simonb struct timehands {
     60   1.1    simonb 	/* These fields must be initialized by the driver. */
     61   1.1    simonb 	struct timecounter	*th_counter;
     62   1.1    simonb 	int64_t			th_adjustment;
     63   1.1    simonb 	u_int64_t		th_scale;
     64   1.1    simonb 	u_int	 		th_offset_count;
     65   1.1    simonb 	struct bintime		th_offset;
     66   1.1    simonb 	struct timeval		th_microtime;
     67   1.1    simonb 	struct timespec		th_nanotime;
     68   1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     69   1.1    simonb 	volatile u_int		th_generation;
     70   1.1    simonb 	struct timehands	*th_next;
     71   1.1    simonb };
     72   1.1    simonb 
     73   1.1    simonb static struct timehands th0;
     74  1.10  christos static struct timehands th9 = { .th_next = &th0, };
     75  1.10  christos static struct timehands th8 = { .th_next = &th9, };
     76  1.10  christos static struct timehands th7 = { .th_next = &th8, };
     77  1.10  christos static struct timehands th6 = { .th_next = &th7, };
     78  1.10  christos static struct timehands th5 = { .th_next = &th6, };
     79  1.10  christos static struct timehands th4 = { .th_next = &th5, };
     80  1.10  christos static struct timehands th3 = { .th_next = &th4, };
     81  1.10  christos static struct timehands th2 = { .th_next = &th3, };
     82  1.10  christos static struct timehands th1 = { .th_next = &th2, };
     83   1.1    simonb static struct timehands th0 = {
     84  1.10  christos 	.th_counter = &dummy_timecounter,
     85  1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
     86  1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
     87  1.10  christos 	.th_generation = 1,
     88  1.10  christos 	.th_next = &th1,
     89   1.1    simonb };
     90   1.1    simonb 
     91   1.1    simonb static struct timehands *volatile timehands = &th0;
     92   1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     93   1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     94   1.1    simonb 
     95   1.1    simonb time_t time_second = 1;
     96   1.1    simonb time_t time_uptime = 1;
     97   1.1    simonb 
     98   1.4    kardel static struct bintime timebasebin;
     99   1.1    simonb 
    100   1.1    simonb static int timestepwarnings;
    101   1.2    kardel 
    102  1.25        ad extern kmutex_t time_lock;
    103  1.30        ad static kmutex_t tc_windup_lock;
    104  1.25        ad 
    105   1.2    kardel #ifdef __FreeBSD__
    106   1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    107   1.1    simonb     &timestepwarnings, 0, "");
    108   1.2    kardel #endif /* __FreeBSD__ */
    109   1.2    kardel 
    110   1.2    kardel /*
    111  1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    112   1.2    kardel  */
    113   1.2    kardel static int
    114   1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    115   1.2    kardel {
    116   1.2    kardel 	struct sysctlnode node;
    117   1.2    kardel 	int error;
    118   1.2    kardel 	char newname[MAX_TCNAMELEN];
    119   1.2    kardel 	struct timecounter *newtc, *tc;
    120   1.2    kardel 
    121   1.2    kardel 	tc = timecounter;
    122   1.2    kardel 
    123   1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    124   1.2    kardel 
    125   1.2    kardel 	node = *rnode;
    126   1.2    kardel 	node.sysctl_data = newname;
    127   1.2    kardel 	node.sysctl_size = sizeof(newname);
    128   1.2    kardel 
    129   1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    130   1.2    kardel 
    131   1.2    kardel 	if (error ||
    132   1.2    kardel 	    newp == NULL ||
    133   1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    134   1.2    kardel 		return error;
    135   1.1    simonb 
    136  1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    137  1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    138  1.26      elad 	    NULL, NULL)) != 0)
    139   1.2    kardel 		return (error);
    140   1.2    kardel 
    141  1.22        ad 	if (!cold)
    142  1.22        ad 		mutex_enter(&time_lock);
    143  1.23        ad 	error = EINVAL;
    144   1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    145   1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    146   1.2    kardel 			continue;
    147   1.2    kardel 		/* Warm up new timecounter. */
    148   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    149   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    150   1.2    kardel 		timecounter = newtc;
    151  1.22        ad 		error = 0;
    152  1.23        ad 		break;
    153  1.23        ad 	}
    154  1.22        ad 	if (!cold)
    155  1.22        ad 		mutex_exit(&time_lock);
    156  1.22        ad 	return error;
    157   1.2    kardel }
    158   1.2    kardel 
    159   1.2    kardel static int
    160   1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    161   1.2    kardel {
    162   1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    163   1.2    kardel 	char *where = oldp;
    164   1.2    kardel 	const char *spc;
    165   1.2    kardel 	struct timecounter *tc;
    166   1.2    kardel 	size_t needed, left, slen;
    167   1.2    kardel 	int error;
    168   1.2    kardel 
    169   1.2    kardel 	if (newp != NULL)
    170   1.2    kardel 		return (EPERM);
    171   1.2    kardel 	if (namelen != 0)
    172   1.2    kardel 		return (EINVAL);
    173   1.2    kardel 
    174   1.2    kardel 	spc = "";
    175   1.2    kardel 	error = 0;
    176   1.2    kardel 	needed = 0;
    177   1.2    kardel 	left = *oldlenp;
    178   1.2    kardel 
    179  1.22        ad 	mutex_enter(&time_lock);
    180   1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    181   1.2    kardel 		if (where == NULL) {
    182   1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    183   1.2    kardel 		} else {
    184   1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    185   1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    186   1.2    kardel 					tc->tc_frequency);
    187   1.2    kardel 			if (left < slen + 1)
    188   1.2    kardel 				break;
    189   1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    190  1.22        ad 			/* XXX copyout with held lock. */
    191   1.2    kardel 			error = copyout(buf, where, slen + 1);
    192   1.2    kardel 			spc = " ";
    193   1.2    kardel 			where += slen;
    194   1.2    kardel 			needed += slen;
    195   1.2    kardel 			left -= slen;
    196   1.2    kardel 		}
    197   1.2    kardel 	}
    198  1.22        ad 	mutex_exit(&time_lock);
    199   1.2    kardel 
    200   1.2    kardel 	*oldlenp = needed;
    201   1.2    kardel 	return (error);
    202   1.2    kardel }
    203   1.2    kardel 
    204   1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    205   1.2    kardel {
    206   1.2    kardel 	const struct sysctlnode *node;
    207   1.2    kardel 
    208   1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    209   1.2    kardel 		       CTLFLAG_PERMANENT,
    210   1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    211   1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    212   1.2    kardel 		       NULL, 0, NULL, 0,
    213   1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    214   1.2    kardel 
    215   1.2    kardel 	if (node != NULL) {
    216   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    217   1.2    kardel 			       CTLFLAG_PERMANENT,
    218   1.2    kardel 			       CTLTYPE_STRING, "choice",
    219   1.2    kardel 			       SYSCTL_DESCR("available counters"),
    220   1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    221   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    222   1.2    kardel 
    223   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    224   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    225   1.2    kardel 			       CTLTYPE_STRING, "hardware",
    226   1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    227   1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    228   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    229   1.2    kardel 
    230   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    231   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    232   1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    233   1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    234   1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    235   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    236   1.2    kardel 	}
    237   1.2    kardel }
    238   1.2    kardel 
    239   1.2    kardel #define	TC_STATS(name)							\
    240   1.2    kardel static struct evcnt n##name =						\
    241   1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    242   1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    243   1.2    kardel 
    244   1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    245   1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    246   1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    247   1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    248   1.2    kardel TC_STATS(setclock);
    249   1.1    simonb 
    250   1.1    simonb #undef TC_STATS
    251   1.1    simonb 
    252   1.1    simonb static void tc_windup(void);
    253   1.1    simonb 
    254   1.1    simonb /*
    255   1.1    simonb  * Return the difference between the timehands' counter value now and what
    256   1.1    simonb  * was when we copied it to the timehands' offset_count.
    257   1.1    simonb  */
    258   1.1    simonb static __inline u_int
    259   1.1    simonb tc_delta(struct timehands *th)
    260   1.1    simonb {
    261   1.1    simonb 	struct timecounter *tc;
    262   1.1    simonb 
    263   1.1    simonb 	tc = th->th_counter;
    264   1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    265   1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    266   1.1    simonb }
    267   1.1    simonb 
    268   1.1    simonb /*
    269   1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    270   1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    271  1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    272   1.1    simonb  */
    273   1.1    simonb 
    274   1.1    simonb void
    275   1.1    simonb binuptime(struct bintime *bt)
    276   1.1    simonb {
    277   1.1    simonb 	struct timehands *th;
    278   1.1    simonb 	u_int gen;
    279   1.1    simonb 
    280   1.2    kardel 	nbinuptime.ev_count++;
    281   1.1    simonb 	do {
    282   1.1    simonb 		th = timehands;
    283   1.1    simonb 		gen = th->th_generation;
    284   1.1    simonb 		*bt = th->th_offset;
    285   1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    286   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    287   1.1    simonb }
    288   1.1    simonb 
    289   1.1    simonb void
    290   1.1    simonb nanouptime(struct timespec *tsp)
    291   1.1    simonb {
    292   1.1    simonb 	struct bintime bt;
    293   1.1    simonb 
    294   1.2    kardel 	nnanouptime.ev_count++;
    295   1.1    simonb 	binuptime(&bt);
    296   1.1    simonb 	bintime2timespec(&bt, tsp);
    297   1.1    simonb }
    298   1.1    simonb 
    299   1.1    simonb void
    300   1.1    simonb microuptime(struct timeval *tvp)
    301   1.1    simonb {
    302   1.1    simonb 	struct bintime bt;
    303   1.1    simonb 
    304   1.2    kardel 	nmicrouptime.ev_count++;
    305   1.1    simonb 	binuptime(&bt);
    306   1.1    simonb 	bintime2timeval(&bt, tvp);
    307   1.1    simonb }
    308   1.1    simonb 
    309   1.1    simonb void
    310   1.1    simonb bintime(struct bintime *bt)
    311   1.1    simonb {
    312   1.1    simonb 
    313   1.2    kardel 	nbintime.ev_count++;
    314   1.1    simonb 	binuptime(bt);
    315   1.4    kardel 	bintime_add(bt, &timebasebin);
    316   1.1    simonb }
    317   1.1    simonb 
    318   1.1    simonb void
    319   1.1    simonb nanotime(struct timespec *tsp)
    320   1.1    simonb {
    321   1.1    simonb 	struct bintime bt;
    322   1.1    simonb 
    323   1.2    kardel 	nnanotime.ev_count++;
    324   1.1    simonb 	bintime(&bt);
    325   1.1    simonb 	bintime2timespec(&bt, tsp);
    326   1.1    simonb }
    327   1.1    simonb 
    328   1.1    simonb void
    329   1.1    simonb microtime(struct timeval *tvp)
    330   1.1    simonb {
    331   1.1    simonb 	struct bintime bt;
    332   1.1    simonb 
    333   1.2    kardel 	nmicrotime.ev_count++;
    334   1.1    simonb 	bintime(&bt);
    335   1.1    simonb 	bintime2timeval(&bt, tvp);
    336   1.1    simonb }
    337   1.1    simonb 
    338   1.1    simonb void
    339   1.1    simonb getbinuptime(struct bintime *bt)
    340   1.1    simonb {
    341   1.1    simonb 	struct timehands *th;
    342   1.1    simonb 	u_int gen;
    343   1.1    simonb 
    344   1.2    kardel 	ngetbinuptime.ev_count++;
    345   1.1    simonb 	do {
    346   1.1    simonb 		th = timehands;
    347   1.1    simonb 		gen = th->th_generation;
    348   1.1    simonb 		*bt = th->th_offset;
    349   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    350   1.1    simonb }
    351   1.1    simonb 
    352   1.1    simonb void
    353   1.1    simonb getnanouptime(struct timespec *tsp)
    354   1.1    simonb {
    355   1.1    simonb 	struct timehands *th;
    356   1.1    simonb 	u_int gen;
    357   1.1    simonb 
    358   1.2    kardel 	ngetnanouptime.ev_count++;
    359   1.1    simonb 	do {
    360   1.1    simonb 		th = timehands;
    361   1.1    simonb 		gen = th->th_generation;
    362   1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    363   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    364   1.1    simonb }
    365   1.1    simonb 
    366   1.1    simonb void
    367   1.1    simonb getmicrouptime(struct timeval *tvp)
    368   1.1    simonb {
    369   1.1    simonb 	struct timehands *th;
    370   1.1    simonb 	u_int gen;
    371   1.1    simonb 
    372   1.2    kardel 	ngetmicrouptime.ev_count++;
    373   1.1    simonb 	do {
    374   1.1    simonb 		th = timehands;
    375   1.1    simonb 		gen = th->th_generation;
    376   1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    377   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    378   1.1    simonb }
    379   1.1    simonb 
    380   1.1    simonb void
    381   1.1    simonb getbintime(struct bintime *bt)
    382   1.1    simonb {
    383   1.1    simonb 	struct timehands *th;
    384   1.1    simonb 	u_int gen;
    385   1.1    simonb 
    386   1.2    kardel 	ngetbintime.ev_count++;
    387   1.1    simonb 	do {
    388   1.1    simonb 		th = timehands;
    389   1.1    simonb 		gen = th->th_generation;
    390   1.1    simonb 		*bt = th->th_offset;
    391   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    392   1.4    kardel 	bintime_add(bt, &timebasebin);
    393   1.1    simonb }
    394   1.1    simonb 
    395   1.1    simonb void
    396   1.1    simonb getnanotime(struct timespec *tsp)
    397   1.1    simonb {
    398   1.1    simonb 	struct timehands *th;
    399   1.1    simonb 	u_int gen;
    400   1.1    simonb 
    401   1.2    kardel 	ngetnanotime.ev_count++;
    402   1.1    simonb 	do {
    403   1.1    simonb 		th = timehands;
    404   1.1    simonb 		gen = th->th_generation;
    405   1.1    simonb 		*tsp = th->th_nanotime;
    406   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    407   1.1    simonb }
    408   1.1    simonb 
    409   1.1    simonb void
    410   1.1    simonb getmicrotime(struct timeval *tvp)
    411   1.1    simonb {
    412   1.1    simonb 	struct timehands *th;
    413   1.1    simonb 	u_int gen;
    414   1.1    simonb 
    415   1.2    kardel 	ngetmicrotime.ev_count++;
    416   1.1    simonb 	do {
    417   1.1    simonb 		th = timehands;
    418   1.1    simonb 		gen = th->th_generation;
    419   1.1    simonb 		*tvp = th->th_microtime;
    420   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    421   1.1    simonb }
    422   1.1    simonb 
    423   1.1    simonb /*
    424   1.1    simonb  * Initialize a new timecounter and possibly use it.
    425   1.1    simonb  */
    426   1.1    simonb void
    427   1.1    simonb tc_init(struct timecounter *tc)
    428   1.1    simonb {
    429   1.1    simonb 	u_int u;
    430   1.1    simonb 
    431   1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    432   1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    433   1.1    simonb 	u *= 11;
    434   1.1    simonb 	u /= 10;
    435   1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    436   1.1    simonb 		tc->tc_quality = -2000;
    437  1.18        ad 		aprint_verbose(
    438  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    439   1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    440  1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    441   1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    442  1.18        ad 		aprint_verbose(
    443  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    444  1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    445   1.7     bjh21 		    tc->tc_quality);
    446   1.1    simonb 	}
    447   1.1    simonb 
    448  1.22        ad 	mutex_enter(&time_lock);
    449  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    450   1.1    simonb 	tc->tc_next = timecounters;
    451   1.1    simonb 	timecounters = tc;
    452   1.1    simonb 	/*
    453   1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    454   1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    455   1.1    simonb 	 * worse since this timecounter may not be monotonous.
    456   1.1    simonb 	 */
    457  1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    458  1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    459  1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    460  1.22        ad 		(void)tc->tc_get_timecount(tc);
    461  1.22        ad 		(void)tc->tc_get_timecount(tc);
    462  1.22        ad 		timecounter = tc;
    463  1.22        ad 		tc_windup();
    464  1.22        ad 	}
    465  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    466  1.22        ad 	mutex_exit(&time_lock);
    467   1.1    simonb }
    468   1.1    simonb 
    469  1.29    dyoung /*
    470  1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    471  1.29    dyoung  */
    472  1.29    dyoung int
    473  1.29    dyoung tc_detach(struct timecounter *target)
    474  1.29    dyoung {
    475  1.29    dyoung 	struct timecounter *best, *tc;
    476  1.29    dyoung 	struct timecounter **tcp = NULL;
    477  1.30        ad 	int rc = 0;
    478  1.29    dyoung 
    479  1.29    dyoung 	mutex_enter(&time_lock);
    480  1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    481  1.29    dyoung 	     tc != NULL;
    482  1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    483  1.29    dyoung 		if (tc == target)
    484  1.29    dyoung 			break;
    485  1.29    dyoung 	}
    486  1.29    dyoung 	if (tc == NULL) {
    487  1.29    dyoung 		rc = ESRCH;
    488  1.29    dyoung 		goto out;
    489  1.29    dyoung 	}
    490  1.29    dyoung 	*tcp = tc->tc_next;
    491  1.29    dyoung 
    492  1.29    dyoung 	if (timecounter != target)
    493  1.29    dyoung 		goto out;
    494  1.29    dyoung 
    495  1.29    dyoung 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    496  1.29    dyoung 		if (tc->tc_quality > best->tc_quality)
    497  1.29    dyoung 			best = tc;
    498  1.29    dyoung 		else if (tc->tc_quality < best->tc_quality)
    499  1.29    dyoung 			continue;
    500  1.29    dyoung 		else if (tc->tc_frequency > best->tc_frequency)
    501  1.29    dyoung 			best = tc;
    502  1.29    dyoung 	}
    503  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    504  1.29    dyoung 	(void)best->tc_get_timecount(best);
    505  1.29    dyoung 	(void)best->tc_get_timecount(best);
    506  1.29    dyoung 	timecounter = best;
    507  1.29    dyoung 	tc_windup();
    508  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    509  1.29    dyoung out:
    510  1.29    dyoung 	mutex_exit(&time_lock);
    511  1.29    dyoung 	return rc;
    512  1.29    dyoung }
    513  1.29    dyoung 
    514   1.1    simonb /* Report the frequency of the current timecounter. */
    515   1.1    simonb u_int64_t
    516   1.1    simonb tc_getfrequency(void)
    517   1.1    simonb {
    518   1.1    simonb 
    519   1.1    simonb 	return (timehands->th_counter->tc_frequency);
    520   1.1    simonb }
    521   1.1    simonb 
    522   1.1    simonb /*
    523   1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    524   1.1    simonb  * when we booted.
    525   1.1    simonb  */
    526   1.1    simonb void
    527   1.1    simonb tc_setclock(struct timespec *ts)
    528   1.1    simonb {
    529   1.1    simonb 	struct timespec ts2;
    530   1.1    simonb 	struct bintime bt, bt2;
    531   1.1    simonb 
    532  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    533   1.2    kardel 	nsetclock.ev_count++;
    534   1.1    simonb 	binuptime(&bt2);
    535   1.1    simonb 	timespec2bintime(ts, &bt);
    536   1.1    simonb 	bintime_sub(&bt, &bt2);
    537   1.4    kardel 	bintime_add(&bt2, &timebasebin);
    538   1.4    kardel 	timebasebin = bt;
    539  1.30        ad 	tc_windup();
    540  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    541   1.1    simonb 
    542   1.1    simonb 	if (timestepwarnings) {
    543   1.1    simonb 		bintime2timespec(&bt2, &ts2);
    544   1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    545   1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    546   1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    547   1.1    simonb 	}
    548   1.1    simonb }
    549   1.1    simonb 
    550   1.1    simonb /*
    551   1.1    simonb  * Initialize the next struct timehands in the ring and make
    552   1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    553   1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    554   1.1    simonb  */
    555   1.1    simonb static void
    556   1.1    simonb tc_windup(void)
    557   1.1    simonb {
    558   1.1    simonb 	struct bintime bt;
    559   1.1    simonb 	struct timehands *th, *tho;
    560   1.1    simonb 	u_int64_t scale;
    561   1.1    simonb 	u_int delta, ncount, ogen;
    562  1.13    kardel 	int i, s_update;
    563   1.1    simonb 	time_t t;
    564   1.1    simonb 
    565  1.30        ad 	KASSERT(mutex_owned(&tc_windup_lock));
    566  1.30        ad 
    567  1.13    kardel 	s_update = 0;
    568  1.20        ad 
    569   1.1    simonb 	/*
    570   1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    571   1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    572  1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    573  1.20        ad 	 * visibility of the generation before proceeding.
    574   1.1    simonb 	 */
    575   1.1    simonb 	tho = timehands;
    576   1.1    simonb 	th = tho->th_next;
    577   1.1    simonb 	ogen = th->th_generation;
    578   1.1    simonb 	th->th_generation = 0;
    579  1.27        ad 	membar_producer();
    580   1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    581   1.1    simonb 
    582   1.1    simonb 	/*
    583   1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    584   1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    585   1.1    simonb 	 * Update the offset fields accordingly.
    586   1.1    simonb 	 */
    587   1.1    simonb 	delta = tc_delta(th);
    588   1.1    simonb 	if (th->th_counter != timecounter)
    589   1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    590   1.1    simonb 	else
    591   1.1    simonb 		ncount = 0;
    592   1.1    simonb 	th->th_offset_count += delta;
    593   1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    594   1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    595   1.1    simonb 
    596   1.1    simonb 	/*
    597   1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    598   1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    599   1.1    simonb 	 * the hardware might capture a count which is later than the one we
    600   1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    601   1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    602   1.1    simonb 	 * matter in practice.
    603   1.1    simonb 	 */
    604   1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    605   1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    606   1.1    simonb 
    607   1.1    simonb 	/*
    608   1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    609   1.1    simonb 	 * iterates at most once, but in extreme situations it might
    610   1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    611   1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    612   1.1    simonb 	 * has been read, so on really large steps, we call
    613   1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    614   1.1    simonb 	 * case we missed a leap second.
    615   1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    616   1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    617   1.1    simonb 	 */
    618   1.1    simonb 	bt = th->th_offset;
    619   1.4    kardel 	bintime_add(&bt, &timebasebin);
    620   1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    621   1.1    simonb 	if (i > LARGE_STEP)
    622   1.1    simonb 		i = 2;
    623   1.1    simonb 	for (; i > 0; i--) {
    624   1.1    simonb 		t = bt.sec;
    625   1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    626  1.13    kardel 		s_update = 1;
    627   1.1    simonb 		if (bt.sec != t)
    628   1.4    kardel 			timebasebin.sec += bt.sec - t;
    629   1.1    simonb 	}
    630   1.2    kardel 
    631   1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    632   1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    633   1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    634   1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    635   1.1    simonb 
    636   1.1    simonb 	/* Now is a good time to change timecounters. */
    637   1.1    simonb 	if (th->th_counter != timecounter) {
    638   1.1    simonb 		th->th_counter = timecounter;
    639   1.1    simonb 		th->th_offset_count = ncount;
    640  1.13    kardel 		s_update = 1;
    641   1.1    simonb 	}
    642   1.1    simonb 
    643   1.1    simonb 	/*-
    644   1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    645   1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    646   1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    647   1.1    simonb 	 * processing provides us with.
    648   1.1    simonb 	 *
    649   1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    650   1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    651   1.1    simonb 	 *
    652   1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    653   1.1    simonb 	 *
    654   1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    655   1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    656   1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    657   1.1    simonb 	 *
    658   1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    659   1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    660   1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    661   1.1    simonb  	 *
    662   1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    663   1.1    simonb 	 * to the goddess of code clarity.
    664   1.1    simonb 	 *
    665   1.1    simonb 	 */
    666  1.13    kardel 	if (s_update) {
    667  1.13    kardel 		scale = (u_int64_t)1 << 63;
    668  1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    669  1.13    kardel 		scale /= th->th_counter->tc_frequency;
    670  1.13    kardel 		th->th_scale = scale * 2;
    671  1.13    kardel 	}
    672   1.1    simonb 	/*
    673   1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    674  1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    675  1.20        ad 	 * changes are globally visible before changing.
    676   1.1    simonb 	 */
    677   1.1    simonb 	if (++ogen == 0)
    678   1.1    simonb 		ogen = 1;
    679  1.27        ad 	membar_producer();
    680   1.1    simonb 	th->th_generation = ogen;
    681   1.1    simonb 
    682  1.20        ad 	/*
    683  1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    684  1.20        ad 	 * globally visible before changing.
    685  1.20        ad 	 */
    686   1.1    simonb 	time_second = th->th_microtime.tv_sec;
    687   1.1    simonb 	time_uptime = th->th_offset.sec;
    688  1.27        ad 	membar_producer();
    689   1.1    simonb 	timehands = th;
    690  1.24        ad 
    691  1.24        ad 	/*
    692  1.24        ad 	 * Force users of the old timehand to move on.  This is
    693  1.24        ad 	 * necessary for MP systems; we need to ensure that the
    694  1.24        ad 	 * consumers will move away from the old timehand before
    695  1.24        ad 	 * we begin updating it again when we eventually wrap
    696  1.24        ad 	 * around.
    697  1.24        ad 	 */
    698  1.24        ad 	if (++tho->th_generation == 0)
    699  1.24        ad 		tho->th_generation = 1;
    700   1.1    simonb }
    701   1.1    simonb 
    702   1.1    simonb /*
    703   1.1    simonb  * RFC 2783 PPS-API implementation.
    704   1.1    simonb  */
    705   1.1    simonb 
    706   1.1    simonb int
    707  1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    708   1.1    simonb {
    709   1.1    simonb 	pps_params_t *app;
    710   1.2    kardel 	pps_info_t *pipi;
    711   1.1    simonb #ifdef PPS_SYNC
    712   1.2    kardel 	int *epi;
    713   1.1    simonb #endif
    714   1.1    simonb 
    715   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    716   1.1    simonb 	switch (cmd) {
    717   1.1    simonb 	case PPS_IOC_CREATE:
    718   1.1    simonb 		return (0);
    719   1.1    simonb 	case PPS_IOC_DESTROY:
    720   1.1    simonb 		return (0);
    721   1.1    simonb 	case PPS_IOC_SETPARAMS:
    722   1.1    simonb 		app = (pps_params_t *)data;
    723   1.1    simonb 		if (app->mode & ~pps->ppscap)
    724   1.1    simonb 			return (EINVAL);
    725   1.1    simonb 		pps->ppsparam = *app;
    726   1.1    simonb 		return (0);
    727   1.1    simonb 	case PPS_IOC_GETPARAMS:
    728   1.1    simonb 		app = (pps_params_t *)data;
    729   1.1    simonb 		*app = pps->ppsparam;
    730   1.1    simonb 		app->api_version = PPS_API_VERS_1;
    731   1.1    simonb 		return (0);
    732   1.1    simonb 	case PPS_IOC_GETCAP:
    733   1.1    simonb 		*(int*)data = pps->ppscap;
    734   1.1    simonb 		return (0);
    735   1.1    simonb 	case PPS_IOC_FETCH:
    736   1.2    kardel 		pipi = (pps_info_t *)data;
    737   1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    738   1.2    kardel 		*pipi = pps->ppsinfo;
    739   1.1    simonb 		return (0);
    740   1.1    simonb 	case PPS_IOC_KCBIND:
    741   1.1    simonb #ifdef PPS_SYNC
    742   1.2    kardel 		epi = (int *)data;
    743   1.1    simonb 		/* XXX Only root should be able to do this */
    744   1.2    kardel 		if (*epi & ~pps->ppscap)
    745   1.1    simonb 			return (EINVAL);
    746   1.2    kardel 		pps->kcmode = *epi;
    747   1.1    simonb 		return (0);
    748   1.1    simonb #else
    749   1.1    simonb 		return (EOPNOTSUPP);
    750   1.1    simonb #endif
    751   1.1    simonb 	default:
    752   1.2    kardel 		return (EPASSTHROUGH);
    753   1.1    simonb 	}
    754   1.1    simonb }
    755   1.1    simonb 
    756   1.1    simonb void
    757   1.1    simonb pps_init(struct pps_state *pps)
    758   1.1    simonb {
    759   1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    760   1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    761   1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    762   1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    763   1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    764   1.1    simonb }
    765   1.1    simonb 
    766   1.1    simonb void
    767   1.1    simonb pps_capture(struct pps_state *pps)
    768   1.1    simonb {
    769   1.1    simonb 	struct timehands *th;
    770   1.1    simonb 
    771   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    772   1.1    simonb 	th = timehands;
    773   1.1    simonb 	pps->capgen = th->th_generation;
    774   1.1    simonb 	pps->capth = th;
    775   1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    776   1.1    simonb 	if (pps->capgen != th->th_generation)
    777   1.1    simonb 		pps->capgen = 0;
    778   1.1    simonb }
    779   1.1    simonb 
    780   1.1    simonb void
    781   1.1    simonb pps_event(struct pps_state *pps, int event)
    782   1.1    simonb {
    783   1.1    simonb 	struct bintime bt;
    784   1.1    simonb 	struct timespec ts, *tsp, *osp;
    785   1.1    simonb 	u_int tcount, *pcount;
    786   1.1    simonb 	int foff, fhard;
    787   1.1    simonb 	pps_seq_t *pseq;
    788   1.1    simonb 
    789   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    790   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    791   1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    792   1.1    simonb 		return;
    793   1.1    simonb 
    794   1.1    simonb 	/* Things would be easier with arrays. */
    795   1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    796   1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    797   1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    798   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    799   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    800   1.1    simonb 		pcount = &pps->ppscount[0];
    801   1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    802   1.1    simonb 	} else {
    803   1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    804   1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    805   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    806   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    807   1.1    simonb 		pcount = &pps->ppscount[1];
    808   1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    809   1.1    simonb 	}
    810   1.1    simonb 
    811   1.1    simonb 	/*
    812   1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    813   1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    814   1.1    simonb 	 */
    815   1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    816   1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    817   1.1    simonb 		*pcount = pps->capcount;
    818   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    819   1.1    simonb 		return;
    820   1.1    simonb 	}
    821   1.1    simonb 
    822   1.1    simonb 	/* Convert the count to a timespec. */
    823   1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    824   1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    825   1.1    simonb 	bt = pps->capth->th_offset;
    826   1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    827   1.4    kardel 	bintime_add(&bt, &timebasebin);
    828   1.1    simonb 	bintime2timespec(&bt, &ts);
    829   1.1    simonb 
    830   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    831   1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    832   1.1    simonb 		return;
    833   1.1    simonb 
    834   1.1    simonb 	*pcount = pps->capcount;
    835   1.1    simonb 	(*pseq)++;
    836   1.1    simonb 	*tsp = ts;
    837   1.1    simonb 
    838   1.1    simonb 	if (foff) {
    839   1.2    kardel 		timespecadd(tsp, osp, tsp);
    840   1.1    simonb 		if (tsp->tv_nsec < 0) {
    841   1.1    simonb 			tsp->tv_nsec += 1000000000;
    842   1.1    simonb 			tsp->tv_sec -= 1;
    843   1.1    simonb 		}
    844   1.1    simonb 	}
    845   1.1    simonb #ifdef PPS_SYNC
    846   1.1    simonb 	if (fhard) {
    847   1.1    simonb 		u_int64_t scale;
    848   1.1    simonb 
    849   1.1    simonb 		/*
    850   1.1    simonb 		 * Feed the NTP PLL/FLL.
    851   1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    852   1.1    simonb 		 * elapsed since the previous event.
    853   1.1    simonb 		 */
    854   1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    855   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    856   1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    857   1.1    simonb 		scale = (u_int64_t)1 << 63;
    858   1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    859   1.1    simonb 		scale *= 2;
    860   1.1    simonb 		bt.sec = 0;
    861   1.1    simonb 		bt.frac = 0;
    862   1.1    simonb 		bintime_addx(&bt, scale * tcount);
    863   1.1    simonb 		bintime2timespec(&bt, &ts);
    864   1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    865   1.1    simonb 	}
    866   1.1    simonb #endif
    867   1.1    simonb }
    868   1.1    simonb 
    869   1.1    simonb /*
    870   1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    871   1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    872   1.1    simonb  * used by the get*() family of functions, so their precision depends on
    873   1.1    simonb  * the update frequency.
    874   1.1    simonb  */
    875   1.1    simonb 
    876   1.1    simonb static int tc_tick;
    877   1.1    simonb 
    878   1.1    simonb void
    879   1.1    simonb tc_ticktock(void)
    880   1.1    simonb {
    881   1.1    simonb 	static int count;
    882   1.1    simonb 
    883   1.1    simonb 	if (++count < tc_tick)
    884   1.1    simonb 		return;
    885   1.1    simonb 	count = 0;
    886  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    887   1.1    simonb 	tc_windup();
    888  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    889   1.1    simonb }
    890   1.1    simonb 
    891   1.2    kardel void
    892   1.2    kardel inittimecounter(void)
    893   1.1    simonb {
    894   1.1    simonb 	u_int p;
    895   1.1    simonb 
    896  1.30        ad 	mutex_init(&tc_windup_lock, MUTEX_DEFAULT, IPL_SCHED);
    897  1.30        ad 
    898   1.1    simonb 	/*
    899   1.1    simonb 	 * Set the initial timeout to
    900   1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    901   1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    902   1.1    simonb 	 * to smaller than its inital value, since that value is the
    903   1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    904   1.1    simonb 	 * should use the non-"get"* functions.
    905   1.1    simonb 	 */
    906   1.1    simonb 	if (hz > 1000)
    907   1.1    simonb 		tc_tick = (hz + 500) / 1000;
    908   1.1    simonb 	else
    909   1.1    simonb 		tc_tick = 1;
    910   1.1    simonb 	p = (tc_tick * 1000000) / hz;
    911  1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    912  1.18        ad 	    p / 1000, p % 1000);
    913   1.1    simonb 
    914   1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    915   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    916   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    917   1.1    simonb }
    918   1.1    simonb 
    919   1.2    kardel #endif /* __HAVE_TIMECOUNTER */
    920