Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.32
      1  1.32        ad /* $NetBSD: kern_tc.c,v 1.32 2008/02/10 13:56:17 ad Exp $ */
      2   1.2    kardel 
      3   1.1    simonb /*-
      4   1.1    simonb  * ----------------------------------------------------------------------------
      5   1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6   1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7   1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8   1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9   1.2    kardel  * ---------------------------------------------------------------------------
     10   1.1    simonb  */
     11   1.1    simonb 
     12   1.1    simonb #include <sys/cdefs.h>
     13   1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.32        ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.32 2008/02/10 13:56:17 ad Exp $");
     15   1.1    simonb 
     16   1.1    simonb #include "opt_ntp.h"
     17   1.1    simonb 
     18   1.1    simonb #include <sys/param.h>
     19   1.1    simonb #include <sys/kernel.h>
     20   1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     21   1.1    simonb #include <sys/sysctl.h>
     22   1.1    simonb #include <sys/syslog.h>
     23   1.1    simonb #include <sys/systm.h>
     24   1.1    simonb #include <sys/timepps.h>
     25   1.1    simonb #include <sys/timetc.h>
     26   1.1    simonb #include <sys/timex.h>
     27   1.2    kardel #include <sys/evcnt.h>
     28   1.2    kardel #include <sys/kauth.h>
     29  1.25        ad #include <sys/mutex.h>
     30  1.27        ad #include <sys/atomic.h>
     31   1.2    kardel 
     32   1.2    kardel /*
     33   1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     34   1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     35   1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     36   1.1    simonb  * forever when the time step is large.
     37   1.1    simonb  */
     38   1.1    simonb #define LARGE_STEP	200
     39   1.1    simonb 
     40   1.1    simonb /*
     41   1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     42   1.1    simonb  * in the air.  This allows the console and other early stuff to use
     43   1.1    simonb  * time services.
     44   1.1    simonb  */
     45   1.1    simonb 
     46   1.1    simonb static u_int
     47  1.16      yamt dummy_get_timecount(struct timecounter *tc)
     48   1.1    simonb {
     49   1.1    simonb 	static u_int now;
     50   1.1    simonb 
     51   1.1    simonb 	return (++now);
     52   1.1    simonb }
     53   1.1    simonb 
     54   1.1    simonb static struct timecounter dummy_timecounter = {
     55   1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     56   1.1    simonb };
     57   1.1    simonb 
     58   1.1    simonb struct timehands {
     59   1.1    simonb 	/* These fields must be initialized by the driver. */
     60   1.1    simonb 	struct timecounter	*th_counter;
     61   1.1    simonb 	int64_t			th_adjustment;
     62   1.1    simonb 	u_int64_t		th_scale;
     63   1.1    simonb 	u_int	 		th_offset_count;
     64   1.1    simonb 	struct bintime		th_offset;
     65   1.1    simonb 	struct timeval		th_microtime;
     66   1.1    simonb 	struct timespec		th_nanotime;
     67   1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     68   1.1    simonb 	volatile u_int		th_generation;
     69   1.1    simonb 	struct timehands	*th_next;
     70   1.1    simonb };
     71   1.1    simonb 
     72   1.1    simonb static struct timehands th0;
     73  1.10  christos static struct timehands th9 = { .th_next = &th0, };
     74  1.10  christos static struct timehands th8 = { .th_next = &th9, };
     75  1.10  christos static struct timehands th7 = { .th_next = &th8, };
     76  1.10  christos static struct timehands th6 = { .th_next = &th7, };
     77  1.10  christos static struct timehands th5 = { .th_next = &th6, };
     78  1.10  christos static struct timehands th4 = { .th_next = &th5, };
     79  1.10  christos static struct timehands th3 = { .th_next = &th4, };
     80  1.10  christos static struct timehands th2 = { .th_next = &th3, };
     81  1.10  christos static struct timehands th1 = { .th_next = &th2, };
     82   1.1    simonb static struct timehands th0 = {
     83  1.10  christos 	.th_counter = &dummy_timecounter,
     84  1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
     85  1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
     86  1.10  christos 	.th_generation = 1,
     87  1.10  christos 	.th_next = &th1,
     88   1.1    simonb };
     89   1.1    simonb 
     90   1.1    simonb static struct timehands *volatile timehands = &th0;
     91   1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     92   1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     93   1.1    simonb 
     94   1.1    simonb time_t time_second = 1;
     95   1.1    simonb time_t time_uptime = 1;
     96   1.1    simonb 
     97   1.4    kardel static struct bintime timebasebin;
     98   1.1    simonb 
     99   1.1    simonb static int timestepwarnings;
    100   1.2    kardel 
    101  1.25        ad extern kmutex_t time_lock;
    102  1.30        ad static kmutex_t tc_windup_lock;
    103  1.25        ad 
    104   1.2    kardel #ifdef __FreeBSD__
    105   1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    106   1.1    simonb     &timestepwarnings, 0, "");
    107   1.2    kardel #endif /* __FreeBSD__ */
    108   1.2    kardel 
    109   1.2    kardel /*
    110  1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    111   1.2    kardel  */
    112   1.2    kardel static int
    113   1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    114   1.2    kardel {
    115   1.2    kardel 	struct sysctlnode node;
    116   1.2    kardel 	int error;
    117   1.2    kardel 	char newname[MAX_TCNAMELEN];
    118   1.2    kardel 	struct timecounter *newtc, *tc;
    119   1.2    kardel 
    120   1.2    kardel 	tc = timecounter;
    121   1.2    kardel 
    122   1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    123   1.2    kardel 
    124   1.2    kardel 	node = *rnode;
    125   1.2    kardel 	node.sysctl_data = newname;
    126   1.2    kardel 	node.sysctl_size = sizeof(newname);
    127   1.2    kardel 
    128   1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    129   1.2    kardel 
    130   1.2    kardel 	if (error ||
    131   1.2    kardel 	    newp == NULL ||
    132   1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    133   1.2    kardel 		return error;
    134   1.1    simonb 
    135  1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    136  1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    137  1.26      elad 	    NULL, NULL)) != 0)
    138   1.2    kardel 		return (error);
    139   1.2    kardel 
    140  1.22        ad 	if (!cold)
    141  1.22        ad 		mutex_enter(&time_lock);
    142  1.23        ad 	error = EINVAL;
    143   1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    144   1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    145   1.2    kardel 			continue;
    146   1.2    kardel 		/* Warm up new timecounter. */
    147   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    148   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    149   1.2    kardel 		timecounter = newtc;
    150  1.22        ad 		error = 0;
    151  1.23        ad 		break;
    152  1.23        ad 	}
    153  1.22        ad 	if (!cold)
    154  1.22        ad 		mutex_exit(&time_lock);
    155  1.22        ad 	return error;
    156   1.2    kardel }
    157   1.2    kardel 
    158   1.2    kardel static int
    159   1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    160   1.2    kardel {
    161   1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    162   1.2    kardel 	char *where = oldp;
    163   1.2    kardel 	const char *spc;
    164   1.2    kardel 	struct timecounter *tc;
    165   1.2    kardel 	size_t needed, left, slen;
    166   1.2    kardel 	int error;
    167   1.2    kardel 
    168   1.2    kardel 	if (newp != NULL)
    169   1.2    kardel 		return (EPERM);
    170   1.2    kardel 	if (namelen != 0)
    171   1.2    kardel 		return (EINVAL);
    172   1.2    kardel 
    173   1.2    kardel 	spc = "";
    174   1.2    kardel 	error = 0;
    175   1.2    kardel 	needed = 0;
    176   1.2    kardel 	left = *oldlenp;
    177   1.2    kardel 
    178  1.22        ad 	mutex_enter(&time_lock);
    179   1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    180   1.2    kardel 		if (where == NULL) {
    181   1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    182   1.2    kardel 		} else {
    183   1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    184   1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    185   1.2    kardel 					tc->tc_frequency);
    186   1.2    kardel 			if (left < slen + 1)
    187   1.2    kardel 				break;
    188   1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    189  1.22        ad 			/* XXX copyout with held lock. */
    190   1.2    kardel 			error = copyout(buf, where, slen + 1);
    191   1.2    kardel 			spc = " ";
    192   1.2    kardel 			where += slen;
    193   1.2    kardel 			needed += slen;
    194   1.2    kardel 			left -= slen;
    195   1.2    kardel 		}
    196   1.2    kardel 	}
    197  1.22        ad 	mutex_exit(&time_lock);
    198   1.2    kardel 
    199   1.2    kardel 	*oldlenp = needed;
    200   1.2    kardel 	return (error);
    201   1.2    kardel }
    202   1.2    kardel 
    203   1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    204   1.2    kardel {
    205   1.2    kardel 	const struct sysctlnode *node;
    206   1.2    kardel 
    207   1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    208   1.2    kardel 		       CTLFLAG_PERMANENT,
    209   1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    210   1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    211   1.2    kardel 		       NULL, 0, NULL, 0,
    212   1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213   1.2    kardel 
    214   1.2    kardel 	if (node != NULL) {
    215   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    216   1.2    kardel 			       CTLFLAG_PERMANENT,
    217   1.2    kardel 			       CTLTYPE_STRING, "choice",
    218   1.2    kardel 			       SYSCTL_DESCR("available counters"),
    219   1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    220   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    221   1.2    kardel 
    222   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    223   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    224   1.2    kardel 			       CTLTYPE_STRING, "hardware",
    225   1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    226   1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    227   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    228   1.2    kardel 
    229   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    230   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231   1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    232   1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    233   1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    234   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    235   1.2    kardel 	}
    236   1.2    kardel }
    237   1.2    kardel 
    238  1.32        ad #ifdef TC_COUNTERS
    239   1.2    kardel #define	TC_STATS(name)							\
    240   1.2    kardel static struct evcnt n##name =						\
    241   1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    242   1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    243   1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    244   1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    245   1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    246   1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    247   1.2    kardel TC_STATS(setclock);
    248  1.32        ad #define	TC_COUNT(var)	var.ev_count++
    249   1.1    simonb #undef TC_STATS
    250  1.32        ad #else
    251  1.32        ad #define	TC_COUNT(var)	/* nothing */
    252  1.32        ad #endif	/* TC_COUNTERS */
    253   1.1    simonb 
    254   1.1    simonb static void tc_windup(void);
    255   1.1    simonb 
    256   1.1    simonb /*
    257   1.1    simonb  * Return the difference between the timehands' counter value now and what
    258   1.1    simonb  * was when we copied it to the timehands' offset_count.
    259   1.1    simonb  */
    260   1.1    simonb static __inline u_int
    261   1.1    simonb tc_delta(struct timehands *th)
    262   1.1    simonb {
    263   1.1    simonb 	struct timecounter *tc;
    264   1.1    simonb 
    265   1.1    simonb 	tc = th->th_counter;
    266   1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    267   1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    268   1.1    simonb }
    269   1.1    simonb 
    270   1.1    simonb /*
    271   1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    272   1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    273  1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    274   1.1    simonb  */
    275   1.1    simonb 
    276   1.1    simonb void
    277   1.1    simonb binuptime(struct bintime *bt)
    278   1.1    simonb {
    279   1.1    simonb 	struct timehands *th;
    280   1.1    simonb 	u_int gen;
    281   1.1    simonb 
    282  1.32        ad 	TC_COUNT(nbinuptime);
    283   1.1    simonb 	do {
    284   1.1    simonb 		th = timehands;
    285   1.1    simonb 		gen = th->th_generation;
    286   1.1    simonb 		*bt = th->th_offset;
    287   1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    288   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    289   1.1    simonb }
    290   1.1    simonb 
    291   1.1    simonb void
    292   1.1    simonb nanouptime(struct timespec *tsp)
    293   1.1    simonb {
    294   1.1    simonb 	struct bintime bt;
    295   1.1    simonb 
    296  1.32        ad 	TC_COUNT(nnanouptime);
    297   1.1    simonb 	binuptime(&bt);
    298   1.1    simonb 	bintime2timespec(&bt, tsp);
    299   1.1    simonb }
    300   1.1    simonb 
    301   1.1    simonb void
    302   1.1    simonb microuptime(struct timeval *tvp)
    303   1.1    simonb {
    304   1.1    simonb 	struct bintime bt;
    305   1.1    simonb 
    306  1.32        ad 	TC_COUNT(nmicrouptime);
    307   1.1    simonb 	binuptime(&bt);
    308   1.1    simonb 	bintime2timeval(&bt, tvp);
    309   1.1    simonb }
    310   1.1    simonb 
    311   1.1    simonb void
    312   1.1    simonb bintime(struct bintime *bt)
    313   1.1    simonb {
    314   1.1    simonb 
    315  1.32        ad 	TC_COUNT(nbintime);
    316   1.1    simonb 	binuptime(bt);
    317   1.4    kardel 	bintime_add(bt, &timebasebin);
    318   1.1    simonb }
    319   1.1    simonb 
    320   1.1    simonb void
    321   1.1    simonb nanotime(struct timespec *tsp)
    322   1.1    simonb {
    323   1.1    simonb 	struct bintime bt;
    324   1.1    simonb 
    325  1.32        ad 	TC_COUNT(nnanotime);
    326   1.1    simonb 	bintime(&bt);
    327   1.1    simonb 	bintime2timespec(&bt, tsp);
    328   1.1    simonb }
    329   1.1    simonb 
    330   1.1    simonb void
    331   1.1    simonb microtime(struct timeval *tvp)
    332   1.1    simonb {
    333   1.1    simonb 	struct bintime bt;
    334   1.1    simonb 
    335  1.32        ad 	TC_COUNT(nmicrotime);
    336   1.1    simonb 	bintime(&bt);
    337   1.1    simonb 	bintime2timeval(&bt, tvp);
    338   1.1    simonb }
    339   1.1    simonb 
    340   1.1    simonb void
    341   1.1    simonb getbinuptime(struct bintime *bt)
    342   1.1    simonb {
    343   1.1    simonb 	struct timehands *th;
    344   1.1    simonb 	u_int gen;
    345   1.1    simonb 
    346  1.32        ad 	TC_COUNT(ngetbinuptime);
    347   1.1    simonb 	do {
    348   1.1    simonb 		th = timehands;
    349   1.1    simonb 		gen = th->th_generation;
    350   1.1    simonb 		*bt = th->th_offset;
    351   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    352   1.1    simonb }
    353   1.1    simonb 
    354   1.1    simonb void
    355   1.1    simonb getnanouptime(struct timespec *tsp)
    356   1.1    simonb {
    357   1.1    simonb 	struct timehands *th;
    358   1.1    simonb 	u_int gen;
    359   1.1    simonb 
    360  1.32        ad 	TC_COUNT(ngetnanouptime);
    361   1.1    simonb 	do {
    362   1.1    simonb 		th = timehands;
    363   1.1    simonb 		gen = th->th_generation;
    364   1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    365   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    366   1.1    simonb }
    367   1.1    simonb 
    368   1.1    simonb void
    369   1.1    simonb getmicrouptime(struct timeval *tvp)
    370   1.1    simonb {
    371   1.1    simonb 	struct timehands *th;
    372   1.1    simonb 	u_int gen;
    373   1.1    simonb 
    374  1.32        ad 	TC_COUNT(ngetmicrouptime);
    375   1.1    simonb 	do {
    376   1.1    simonb 		th = timehands;
    377   1.1    simonb 		gen = th->th_generation;
    378   1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    379   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    380   1.1    simonb }
    381   1.1    simonb 
    382   1.1    simonb void
    383   1.1    simonb getbintime(struct bintime *bt)
    384   1.1    simonb {
    385   1.1    simonb 	struct timehands *th;
    386   1.1    simonb 	u_int gen;
    387   1.1    simonb 
    388  1.32        ad 	TC_COUNT(ngetbintime);
    389   1.1    simonb 	do {
    390   1.1    simonb 		th = timehands;
    391   1.1    simonb 		gen = th->th_generation;
    392   1.1    simonb 		*bt = th->th_offset;
    393   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    394   1.4    kardel 	bintime_add(bt, &timebasebin);
    395   1.1    simonb }
    396   1.1    simonb 
    397   1.1    simonb void
    398   1.1    simonb getnanotime(struct timespec *tsp)
    399   1.1    simonb {
    400   1.1    simonb 	struct timehands *th;
    401   1.1    simonb 	u_int gen;
    402   1.1    simonb 
    403  1.32        ad 	TC_COUNT(ngetnanotime);
    404   1.1    simonb 	do {
    405   1.1    simonb 		th = timehands;
    406   1.1    simonb 		gen = th->th_generation;
    407   1.1    simonb 		*tsp = th->th_nanotime;
    408   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    409   1.1    simonb }
    410   1.1    simonb 
    411   1.1    simonb void
    412   1.1    simonb getmicrotime(struct timeval *tvp)
    413   1.1    simonb {
    414   1.1    simonb 	struct timehands *th;
    415   1.1    simonb 	u_int gen;
    416   1.1    simonb 
    417  1.32        ad 	TC_COUNT(ngetmicrotime);
    418   1.1    simonb 	do {
    419   1.1    simonb 		th = timehands;
    420   1.1    simonb 		gen = th->th_generation;
    421   1.1    simonb 		*tvp = th->th_microtime;
    422   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    423   1.1    simonb }
    424   1.1    simonb 
    425   1.1    simonb /*
    426   1.1    simonb  * Initialize a new timecounter and possibly use it.
    427   1.1    simonb  */
    428   1.1    simonb void
    429   1.1    simonb tc_init(struct timecounter *tc)
    430   1.1    simonb {
    431   1.1    simonb 	u_int u;
    432   1.1    simonb 
    433   1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    434   1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    435   1.1    simonb 	u *= 11;
    436   1.1    simonb 	u /= 10;
    437   1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    438   1.1    simonb 		tc->tc_quality = -2000;
    439  1.18        ad 		aprint_verbose(
    440  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    441   1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    442  1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    443   1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    444  1.18        ad 		aprint_verbose(
    445  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    446  1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    447   1.7     bjh21 		    tc->tc_quality);
    448   1.1    simonb 	}
    449   1.1    simonb 
    450  1.22        ad 	mutex_enter(&time_lock);
    451  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    452   1.1    simonb 	tc->tc_next = timecounters;
    453   1.1    simonb 	timecounters = tc;
    454   1.1    simonb 	/*
    455   1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    456   1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    457   1.1    simonb 	 * worse since this timecounter may not be monotonous.
    458   1.1    simonb 	 */
    459  1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    460  1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    461  1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    462  1.22        ad 		(void)tc->tc_get_timecount(tc);
    463  1.22        ad 		(void)tc->tc_get_timecount(tc);
    464  1.22        ad 		timecounter = tc;
    465  1.22        ad 		tc_windup();
    466  1.22        ad 	}
    467  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    468  1.22        ad 	mutex_exit(&time_lock);
    469   1.1    simonb }
    470   1.1    simonb 
    471  1.29    dyoung /*
    472  1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    473  1.29    dyoung  */
    474  1.29    dyoung int
    475  1.29    dyoung tc_detach(struct timecounter *target)
    476  1.29    dyoung {
    477  1.29    dyoung 	struct timecounter *best, *tc;
    478  1.29    dyoung 	struct timecounter **tcp = NULL;
    479  1.30        ad 	int rc = 0;
    480  1.29    dyoung 
    481  1.29    dyoung 	mutex_enter(&time_lock);
    482  1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    483  1.29    dyoung 	     tc != NULL;
    484  1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    485  1.29    dyoung 		if (tc == target)
    486  1.29    dyoung 			break;
    487  1.29    dyoung 	}
    488  1.29    dyoung 	if (tc == NULL) {
    489  1.29    dyoung 		rc = ESRCH;
    490  1.29    dyoung 		goto out;
    491  1.29    dyoung 	}
    492  1.29    dyoung 	*tcp = tc->tc_next;
    493  1.29    dyoung 
    494  1.29    dyoung 	if (timecounter != target)
    495  1.29    dyoung 		goto out;
    496  1.29    dyoung 
    497  1.29    dyoung 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    498  1.29    dyoung 		if (tc->tc_quality > best->tc_quality)
    499  1.29    dyoung 			best = tc;
    500  1.29    dyoung 		else if (tc->tc_quality < best->tc_quality)
    501  1.29    dyoung 			continue;
    502  1.29    dyoung 		else if (tc->tc_frequency > best->tc_frequency)
    503  1.29    dyoung 			best = tc;
    504  1.29    dyoung 	}
    505  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    506  1.29    dyoung 	(void)best->tc_get_timecount(best);
    507  1.29    dyoung 	(void)best->tc_get_timecount(best);
    508  1.29    dyoung 	timecounter = best;
    509  1.29    dyoung 	tc_windup();
    510  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    511  1.29    dyoung out:
    512  1.29    dyoung 	mutex_exit(&time_lock);
    513  1.29    dyoung 	return rc;
    514  1.29    dyoung }
    515  1.29    dyoung 
    516   1.1    simonb /* Report the frequency of the current timecounter. */
    517   1.1    simonb u_int64_t
    518   1.1    simonb tc_getfrequency(void)
    519   1.1    simonb {
    520   1.1    simonb 
    521   1.1    simonb 	return (timehands->th_counter->tc_frequency);
    522   1.1    simonb }
    523   1.1    simonb 
    524   1.1    simonb /*
    525   1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    526   1.1    simonb  * when we booted.
    527   1.1    simonb  */
    528   1.1    simonb void
    529   1.1    simonb tc_setclock(struct timespec *ts)
    530   1.1    simonb {
    531   1.1    simonb 	struct timespec ts2;
    532   1.1    simonb 	struct bintime bt, bt2;
    533   1.1    simonb 
    534  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    535  1.32        ad 	TC_COUNT(nsetclock);
    536   1.1    simonb 	binuptime(&bt2);
    537   1.1    simonb 	timespec2bintime(ts, &bt);
    538   1.1    simonb 	bintime_sub(&bt, &bt2);
    539   1.4    kardel 	bintime_add(&bt2, &timebasebin);
    540   1.4    kardel 	timebasebin = bt;
    541  1.30        ad 	tc_windup();
    542  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    543   1.1    simonb 
    544   1.1    simonb 	if (timestepwarnings) {
    545   1.1    simonb 		bintime2timespec(&bt2, &ts2);
    546   1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    547   1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    548   1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    549   1.1    simonb 	}
    550   1.1    simonb }
    551   1.1    simonb 
    552   1.1    simonb /*
    553   1.1    simonb  * Initialize the next struct timehands in the ring and make
    554   1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    555   1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    556   1.1    simonb  */
    557   1.1    simonb static void
    558   1.1    simonb tc_windup(void)
    559   1.1    simonb {
    560   1.1    simonb 	struct bintime bt;
    561   1.1    simonb 	struct timehands *th, *tho;
    562   1.1    simonb 	u_int64_t scale;
    563   1.1    simonb 	u_int delta, ncount, ogen;
    564  1.13    kardel 	int i, s_update;
    565   1.1    simonb 	time_t t;
    566   1.1    simonb 
    567  1.30        ad 	KASSERT(mutex_owned(&tc_windup_lock));
    568  1.30        ad 
    569  1.13    kardel 	s_update = 0;
    570  1.20        ad 
    571   1.1    simonb 	/*
    572   1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    573   1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    574  1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    575  1.20        ad 	 * visibility of the generation before proceeding.
    576   1.1    simonb 	 */
    577   1.1    simonb 	tho = timehands;
    578   1.1    simonb 	th = tho->th_next;
    579   1.1    simonb 	ogen = th->th_generation;
    580   1.1    simonb 	th->th_generation = 0;
    581  1.27        ad 	membar_producer();
    582   1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    583   1.1    simonb 
    584   1.1    simonb 	/*
    585   1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    586   1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    587   1.1    simonb 	 * Update the offset fields accordingly.
    588   1.1    simonb 	 */
    589   1.1    simonb 	delta = tc_delta(th);
    590   1.1    simonb 	if (th->th_counter != timecounter)
    591   1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    592   1.1    simonb 	else
    593   1.1    simonb 		ncount = 0;
    594   1.1    simonb 	th->th_offset_count += delta;
    595   1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    596   1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    597   1.1    simonb 
    598   1.1    simonb 	/*
    599   1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    600   1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    601   1.1    simonb 	 * the hardware might capture a count which is later than the one we
    602   1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    603   1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    604   1.1    simonb 	 * matter in practice.
    605   1.1    simonb 	 */
    606   1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    607   1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    608   1.1    simonb 
    609   1.1    simonb 	/*
    610   1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    611   1.1    simonb 	 * iterates at most once, but in extreme situations it might
    612   1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    613   1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    614   1.1    simonb 	 * has been read, so on really large steps, we call
    615   1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    616   1.1    simonb 	 * case we missed a leap second.
    617   1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    618   1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    619   1.1    simonb 	 */
    620   1.1    simonb 	bt = th->th_offset;
    621   1.4    kardel 	bintime_add(&bt, &timebasebin);
    622   1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    623   1.1    simonb 	if (i > LARGE_STEP)
    624   1.1    simonb 		i = 2;
    625   1.1    simonb 	for (; i > 0; i--) {
    626   1.1    simonb 		t = bt.sec;
    627   1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    628  1.13    kardel 		s_update = 1;
    629   1.1    simonb 		if (bt.sec != t)
    630   1.4    kardel 			timebasebin.sec += bt.sec - t;
    631   1.1    simonb 	}
    632   1.2    kardel 
    633   1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    634   1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    635   1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    636   1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    637   1.1    simonb 
    638   1.1    simonb 	/* Now is a good time to change timecounters. */
    639   1.1    simonb 	if (th->th_counter != timecounter) {
    640   1.1    simonb 		th->th_counter = timecounter;
    641   1.1    simonb 		th->th_offset_count = ncount;
    642  1.13    kardel 		s_update = 1;
    643   1.1    simonb 	}
    644   1.1    simonb 
    645   1.1    simonb 	/*-
    646   1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    647   1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    648   1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    649   1.1    simonb 	 * processing provides us with.
    650   1.1    simonb 	 *
    651   1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    652   1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    653   1.1    simonb 	 *
    654   1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    655   1.1    simonb 	 *
    656   1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    657   1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    658   1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    659   1.1    simonb 	 *
    660   1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    661   1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    662   1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    663   1.1    simonb  	 *
    664   1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    665   1.1    simonb 	 * to the goddess of code clarity.
    666   1.1    simonb 	 *
    667   1.1    simonb 	 */
    668  1.13    kardel 	if (s_update) {
    669  1.13    kardel 		scale = (u_int64_t)1 << 63;
    670  1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    671  1.13    kardel 		scale /= th->th_counter->tc_frequency;
    672  1.13    kardel 		th->th_scale = scale * 2;
    673  1.13    kardel 	}
    674   1.1    simonb 	/*
    675   1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    676  1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    677  1.20        ad 	 * changes are globally visible before changing.
    678   1.1    simonb 	 */
    679   1.1    simonb 	if (++ogen == 0)
    680   1.1    simonb 		ogen = 1;
    681  1.27        ad 	membar_producer();
    682   1.1    simonb 	th->th_generation = ogen;
    683   1.1    simonb 
    684  1.20        ad 	/*
    685  1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    686  1.20        ad 	 * globally visible before changing.
    687  1.20        ad 	 */
    688   1.1    simonb 	time_second = th->th_microtime.tv_sec;
    689   1.1    simonb 	time_uptime = th->th_offset.sec;
    690  1.27        ad 	membar_producer();
    691   1.1    simonb 	timehands = th;
    692  1.24        ad 
    693  1.24        ad 	/*
    694  1.24        ad 	 * Force users of the old timehand to move on.  This is
    695  1.24        ad 	 * necessary for MP systems; we need to ensure that the
    696  1.24        ad 	 * consumers will move away from the old timehand before
    697  1.24        ad 	 * we begin updating it again when we eventually wrap
    698  1.24        ad 	 * around.
    699  1.24        ad 	 */
    700  1.24        ad 	if (++tho->th_generation == 0)
    701  1.24        ad 		tho->th_generation = 1;
    702   1.1    simonb }
    703   1.1    simonb 
    704   1.1    simonb /*
    705   1.1    simonb  * RFC 2783 PPS-API implementation.
    706   1.1    simonb  */
    707   1.1    simonb 
    708   1.1    simonb int
    709  1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    710   1.1    simonb {
    711   1.1    simonb 	pps_params_t *app;
    712   1.2    kardel 	pps_info_t *pipi;
    713   1.1    simonb #ifdef PPS_SYNC
    714   1.2    kardel 	int *epi;
    715   1.1    simonb #endif
    716   1.1    simonb 
    717   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    718   1.1    simonb 	switch (cmd) {
    719   1.1    simonb 	case PPS_IOC_CREATE:
    720   1.1    simonb 		return (0);
    721   1.1    simonb 	case PPS_IOC_DESTROY:
    722   1.1    simonb 		return (0);
    723   1.1    simonb 	case PPS_IOC_SETPARAMS:
    724   1.1    simonb 		app = (pps_params_t *)data;
    725   1.1    simonb 		if (app->mode & ~pps->ppscap)
    726   1.1    simonb 			return (EINVAL);
    727   1.1    simonb 		pps->ppsparam = *app;
    728   1.1    simonb 		return (0);
    729   1.1    simonb 	case PPS_IOC_GETPARAMS:
    730   1.1    simonb 		app = (pps_params_t *)data;
    731   1.1    simonb 		*app = pps->ppsparam;
    732   1.1    simonb 		app->api_version = PPS_API_VERS_1;
    733   1.1    simonb 		return (0);
    734   1.1    simonb 	case PPS_IOC_GETCAP:
    735   1.1    simonb 		*(int*)data = pps->ppscap;
    736   1.1    simonb 		return (0);
    737   1.1    simonb 	case PPS_IOC_FETCH:
    738   1.2    kardel 		pipi = (pps_info_t *)data;
    739   1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    740   1.2    kardel 		*pipi = pps->ppsinfo;
    741   1.1    simonb 		return (0);
    742   1.1    simonb 	case PPS_IOC_KCBIND:
    743   1.1    simonb #ifdef PPS_SYNC
    744   1.2    kardel 		epi = (int *)data;
    745   1.1    simonb 		/* XXX Only root should be able to do this */
    746   1.2    kardel 		if (*epi & ~pps->ppscap)
    747   1.1    simonb 			return (EINVAL);
    748   1.2    kardel 		pps->kcmode = *epi;
    749   1.1    simonb 		return (0);
    750   1.1    simonb #else
    751   1.1    simonb 		return (EOPNOTSUPP);
    752   1.1    simonb #endif
    753   1.1    simonb 	default:
    754   1.2    kardel 		return (EPASSTHROUGH);
    755   1.1    simonb 	}
    756   1.1    simonb }
    757   1.1    simonb 
    758   1.1    simonb void
    759   1.1    simonb pps_init(struct pps_state *pps)
    760   1.1    simonb {
    761   1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    762   1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    763   1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    764   1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    765   1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    766   1.1    simonb }
    767   1.1    simonb 
    768   1.1    simonb void
    769   1.1    simonb pps_capture(struct pps_state *pps)
    770   1.1    simonb {
    771   1.1    simonb 	struct timehands *th;
    772   1.1    simonb 
    773   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    774   1.1    simonb 	th = timehands;
    775   1.1    simonb 	pps->capgen = th->th_generation;
    776   1.1    simonb 	pps->capth = th;
    777   1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    778   1.1    simonb 	if (pps->capgen != th->th_generation)
    779   1.1    simonb 		pps->capgen = 0;
    780   1.1    simonb }
    781   1.1    simonb 
    782   1.1    simonb void
    783   1.1    simonb pps_event(struct pps_state *pps, int event)
    784   1.1    simonb {
    785   1.1    simonb 	struct bintime bt;
    786   1.1    simonb 	struct timespec ts, *tsp, *osp;
    787   1.1    simonb 	u_int tcount, *pcount;
    788   1.1    simonb 	int foff, fhard;
    789   1.1    simonb 	pps_seq_t *pseq;
    790   1.1    simonb 
    791   1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    792   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    793   1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    794   1.1    simonb 		return;
    795   1.1    simonb 
    796   1.1    simonb 	/* Things would be easier with arrays. */
    797   1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    798   1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    799   1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    800   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    801   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    802   1.1    simonb 		pcount = &pps->ppscount[0];
    803   1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    804   1.1    simonb 	} else {
    805   1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    806   1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    807   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    808   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    809   1.1    simonb 		pcount = &pps->ppscount[1];
    810   1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    811   1.1    simonb 	}
    812   1.1    simonb 
    813   1.1    simonb 	/*
    814   1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    815   1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    816   1.1    simonb 	 */
    817   1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    818   1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    819   1.1    simonb 		*pcount = pps->capcount;
    820   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    821   1.1    simonb 		return;
    822   1.1    simonb 	}
    823   1.1    simonb 
    824   1.1    simonb 	/* Convert the count to a timespec. */
    825   1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    826   1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    827   1.1    simonb 	bt = pps->capth->th_offset;
    828   1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    829   1.4    kardel 	bintime_add(&bt, &timebasebin);
    830   1.1    simonb 	bintime2timespec(&bt, &ts);
    831   1.1    simonb 
    832   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    833   1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    834   1.1    simonb 		return;
    835   1.1    simonb 
    836   1.1    simonb 	*pcount = pps->capcount;
    837   1.1    simonb 	(*pseq)++;
    838   1.1    simonb 	*tsp = ts;
    839   1.1    simonb 
    840   1.1    simonb 	if (foff) {
    841   1.2    kardel 		timespecadd(tsp, osp, tsp);
    842   1.1    simonb 		if (tsp->tv_nsec < 0) {
    843   1.1    simonb 			tsp->tv_nsec += 1000000000;
    844   1.1    simonb 			tsp->tv_sec -= 1;
    845   1.1    simonb 		}
    846   1.1    simonb 	}
    847   1.1    simonb #ifdef PPS_SYNC
    848   1.1    simonb 	if (fhard) {
    849   1.1    simonb 		u_int64_t scale;
    850   1.1    simonb 
    851   1.1    simonb 		/*
    852   1.1    simonb 		 * Feed the NTP PLL/FLL.
    853   1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    854   1.1    simonb 		 * elapsed since the previous event.
    855   1.1    simonb 		 */
    856   1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    857   1.1    simonb 		pps->ppscount[2] = pps->capcount;
    858   1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    859   1.1    simonb 		scale = (u_int64_t)1 << 63;
    860   1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    861   1.1    simonb 		scale *= 2;
    862   1.1    simonb 		bt.sec = 0;
    863   1.1    simonb 		bt.frac = 0;
    864   1.1    simonb 		bintime_addx(&bt, scale * tcount);
    865   1.1    simonb 		bintime2timespec(&bt, &ts);
    866   1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    867   1.1    simonb 	}
    868   1.1    simonb #endif
    869   1.1    simonb }
    870   1.1    simonb 
    871   1.1    simonb /*
    872   1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    873   1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    874   1.1    simonb  * used by the get*() family of functions, so their precision depends on
    875   1.1    simonb  * the update frequency.
    876   1.1    simonb  */
    877   1.1    simonb 
    878   1.1    simonb static int tc_tick;
    879   1.1    simonb 
    880   1.1    simonb void
    881   1.1    simonb tc_ticktock(void)
    882   1.1    simonb {
    883   1.1    simonb 	static int count;
    884   1.1    simonb 
    885   1.1    simonb 	if (++count < tc_tick)
    886   1.1    simonb 		return;
    887   1.1    simonb 	count = 0;
    888  1.30        ad 	mutex_spin_enter(&tc_windup_lock);
    889   1.1    simonb 	tc_windup();
    890  1.30        ad 	mutex_spin_exit(&tc_windup_lock);
    891   1.1    simonb }
    892   1.1    simonb 
    893   1.2    kardel void
    894   1.2    kardel inittimecounter(void)
    895   1.1    simonb {
    896   1.1    simonb 	u_int p;
    897   1.1    simonb 
    898  1.30        ad 	mutex_init(&tc_windup_lock, MUTEX_DEFAULT, IPL_SCHED);
    899  1.30        ad 
    900   1.1    simonb 	/*
    901   1.1    simonb 	 * Set the initial timeout to
    902   1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    903   1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    904   1.1    simonb 	 * to smaller than its inital value, since that value is the
    905   1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    906   1.1    simonb 	 * should use the non-"get"* functions.
    907   1.1    simonb 	 */
    908   1.1    simonb 	if (hz > 1000)
    909   1.1    simonb 		tc_tick = (hz + 500) / 1000;
    910   1.1    simonb 	else
    911   1.1    simonb 		tc_tick = 1;
    912   1.1    simonb 	p = (tc_tick * 1000000) / hz;
    913  1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    914  1.18        ad 	    p / 1000, p % 1000);
    915   1.1    simonb 
    916   1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    917   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    918   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    919   1.1    simonb }
    920