Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.32.10.1
      1  1.32.10.1      yamt /* $NetBSD: kern_tc.c,v 1.32.10.1 2008/05/18 12:35:09 yamt Exp $ */
      2  1.32.10.1      yamt 
      3  1.32.10.1      yamt /*-
      4  1.32.10.1      yamt  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.32.10.1      yamt  * All rights reserved.
      6  1.32.10.1      yamt  *
      7  1.32.10.1      yamt  * Redistribution and use in source and binary forms, with or without
      8  1.32.10.1      yamt  * modification, are permitted provided that the following conditions
      9  1.32.10.1      yamt  * are met:
     10  1.32.10.1      yamt  * 1. Redistributions of source code must retain the above copyright
     11  1.32.10.1      yamt  *    notice, this list of conditions and the following disclaimer.
     12  1.32.10.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.32.10.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     14  1.32.10.1      yamt  *    documentation and/or other materials provided with the distribution.
     15  1.32.10.1      yamt  *
     16  1.32.10.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  1.32.10.1      yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  1.32.10.1      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  1.32.10.1      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  1.32.10.1      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  1.32.10.1      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  1.32.10.1      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  1.32.10.1      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  1.32.10.1      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  1.32.10.1      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  1.32.10.1      yamt  * POSSIBILITY OF SUCH DAMAGE.
     27  1.32.10.1      yamt  */
     28        1.2    kardel 
     29        1.1    simonb /*-
     30        1.1    simonb  * ----------------------------------------------------------------------------
     31        1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
     32        1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     33        1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
     34        1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     35        1.2    kardel  * ---------------------------------------------------------------------------
     36        1.1    simonb  */
     37        1.1    simonb 
     38        1.1    simonb #include <sys/cdefs.h>
     39        1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     40  1.32.10.1      yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.32.10.1 2008/05/18 12:35:09 yamt Exp $");
     41        1.1    simonb 
     42        1.1    simonb #include "opt_ntp.h"
     43        1.1    simonb 
     44        1.1    simonb #include <sys/param.h>
     45        1.1    simonb #include <sys/kernel.h>
     46        1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     47        1.1    simonb #include <sys/sysctl.h>
     48        1.1    simonb #include <sys/syslog.h>
     49        1.1    simonb #include <sys/systm.h>
     50        1.1    simonb #include <sys/timepps.h>
     51        1.1    simonb #include <sys/timetc.h>
     52        1.1    simonb #include <sys/timex.h>
     53        1.2    kardel #include <sys/evcnt.h>
     54        1.2    kardel #include <sys/kauth.h>
     55       1.25        ad #include <sys/mutex.h>
     56       1.27        ad #include <sys/atomic.h>
     57        1.2    kardel 
     58        1.2    kardel /*
     59        1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     60        1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     61        1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     62        1.1    simonb  * forever when the time step is large.
     63        1.1    simonb  */
     64        1.1    simonb #define LARGE_STEP	200
     65        1.1    simonb 
     66        1.1    simonb /*
     67        1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     68        1.1    simonb  * in the air.  This allows the console and other early stuff to use
     69        1.1    simonb  * time services.
     70        1.1    simonb  */
     71        1.1    simonb 
     72        1.1    simonb static u_int
     73       1.16      yamt dummy_get_timecount(struct timecounter *tc)
     74        1.1    simonb {
     75        1.1    simonb 	static u_int now;
     76        1.1    simonb 
     77        1.1    simonb 	return (++now);
     78        1.1    simonb }
     79        1.1    simonb 
     80        1.1    simonb static struct timecounter dummy_timecounter = {
     81        1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     82        1.1    simonb };
     83        1.1    simonb 
     84        1.1    simonb struct timehands {
     85        1.1    simonb 	/* These fields must be initialized by the driver. */
     86        1.1    simonb 	struct timecounter	*th_counter;
     87        1.1    simonb 	int64_t			th_adjustment;
     88        1.1    simonb 	u_int64_t		th_scale;
     89        1.1    simonb 	u_int	 		th_offset_count;
     90        1.1    simonb 	struct bintime		th_offset;
     91        1.1    simonb 	struct timeval		th_microtime;
     92        1.1    simonb 	struct timespec		th_nanotime;
     93        1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     94        1.1    simonb 	volatile u_int		th_generation;
     95        1.1    simonb 	struct timehands	*th_next;
     96        1.1    simonb };
     97        1.1    simonb 
     98        1.1    simonb static struct timehands th0;
     99       1.10  christos static struct timehands th9 = { .th_next = &th0, };
    100       1.10  christos static struct timehands th8 = { .th_next = &th9, };
    101       1.10  christos static struct timehands th7 = { .th_next = &th8, };
    102       1.10  christos static struct timehands th6 = { .th_next = &th7, };
    103       1.10  christos static struct timehands th5 = { .th_next = &th6, };
    104       1.10  christos static struct timehands th4 = { .th_next = &th5, };
    105       1.10  christos static struct timehands th3 = { .th_next = &th4, };
    106       1.10  christos static struct timehands th2 = { .th_next = &th3, };
    107       1.10  christos static struct timehands th1 = { .th_next = &th2, };
    108        1.1    simonb static struct timehands th0 = {
    109       1.10  christos 	.th_counter = &dummy_timecounter,
    110       1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
    111       1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
    112       1.10  christos 	.th_generation = 1,
    113       1.10  christos 	.th_next = &th1,
    114        1.1    simonb };
    115        1.1    simonb 
    116        1.1    simonb static struct timehands *volatile timehands = &th0;
    117        1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
    118        1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
    119        1.1    simonb 
    120        1.1    simonb time_t time_second = 1;
    121        1.1    simonb time_t time_uptime = 1;
    122        1.1    simonb 
    123        1.4    kardel static struct bintime timebasebin;
    124        1.1    simonb 
    125        1.1    simonb static int timestepwarnings;
    126        1.2    kardel 
    127  1.32.10.1      yamt kmutex_t timecounter_lock;
    128  1.32.10.1      yamt static u_int timecounter_mods;
    129  1.32.10.1      yamt static u_int timecounter_bad;
    130       1.25        ad 
    131        1.2    kardel #ifdef __FreeBSD__
    132        1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    133        1.1    simonb     &timestepwarnings, 0, "");
    134        1.2    kardel #endif /* __FreeBSD__ */
    135        1.2    kardel 
    136        1.2    kardel /*
    137       1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    138        1.2    kardel  */
    139        1.2    kardel static int
    140        1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    141        1.2    kardel {
    142        1.2    kardel 	struct sysctlnode node;
    143        1.2    kardel 	int error;
    144        1.2    kardel 	char newname[MAX_TCNAMELEN];
    145        1.2    kardel 	struct timecounter *newtc, *tc;
    146        1.2    kardel 
    147        1.2    kardel 	tc = timecounter;
    148        1.2    kardel 
    149        1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    150        1.2    kardel 
    151        1.2    kardel 	node = *rnode;
    152        1.2    kardel 	node.sysctl_data = newname;
    153        1.2    kardel 	node.sysctl_size = sizeof(newname);
    154        1.2    kardel 
    155        1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    156        1.2    kardel 
    157        1.2    kardel 	if (error ||
    158        1.2    kardel 	    newp == NULL ||
    159        1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    160        1.2    kardel 		return error;
    161        1.1    simonb 
    162       1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    163       1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    164       1.26      elad 	    NULL, NULL)) != 0)
    165        1.2    kardel 		return (error);
    166        1.2    kardel 
    167       1.22        ad 	if (!cold)
    168  1.32.10.1      yamt 		mutex_spin_enter(&timecounter_lock);
    169       1.23        ad 	error = EINVAL;
    170        1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    171        1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    172        1.2    kardel 			continue;
    173        1.2    kardel 		/* Warm up new timecounter. */
    174        1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    175        1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    176        1.2    kardel 		timecounter = newtc;
    177       1.22        ad 		error = 0;
    178       1.23        ad 		break;
    179       1.23        ad 	}
    180       1.22        ad 	if (!cold)
    181  1.32.10.1      yamt 		mutex_spin_exit(&timecounter_lock);
    182       1.22        ad 	return error;
    183        1.2    kardel }
    184        1.2    kardel 
    185        1.2    kardel static int
    186        1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    187        1.2    kardel {
    188        1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    189  1.32.10.1      yamt 	char *where;
    190        1.2    kardel 	const char *spc;
    191        1.2    kardel 	struct timecounter *tc;
    192        1.2    kardel 	size_t needed, left, slen;
    193  1.32.10.1      yamt 	int error, mods;
    194        1.2    kardel 
    195        1.2    kardel 	if (newp != NULL)
    196        1.2    kardel 		return (EPERM);
    197        1.2    kardel 	if (namelen != 0)
    198        1.2    kardel 		return (EINVAL);
    199        1.2    kardel 
    200  1.32.10.1      yamt 	mutex_spin_enter(&timecounter_lock);
    201  1.32.10.1      yamt  retry:
    202        1.2    kardel 	spc = "";
    203        1.2    kardel 	error = 0;
    204        1.2    kardel 	needed = 0;
    205        1.2    kardel 	left = *oldlenp;
    206  1.32.10.1      yamt 	where = oldp;
    207        1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    208        1.2    kardel 		if (where == NULL) {
    209        1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    210        1.2    kardel 		} else {
    211        1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    212        1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    213        1.2    kardel 					tc->tc_frequency);
    214        1.2    kardel 			if (left < slen + 1)
    215        1.2    kardel 				break;
    216  1.32.10.1      yamt 		 	mods = timecounter_mods;
    217  1.32.10.1      yamt 			mutex_spin_exit(&timecounter_lock);
    218        1.2    kardel 			error = copyout(buf, where, slen + 1);
    219  1.32.10.1      yamt 			mutex_spin_enter(&timecounter_lock);
    220  1.32.10.1      yamt 			if (mods != timecounter_mods) {
    221  1.32.10.1      yamt 				goto retry;
    222  1.32.10.1      yamt 			}
    223        1.2    kardel 			spc = " ";
    224        1.2    kardel 			where += slen;
    225        1.2    kardel 			needed += slen;
    226        1.2    kardel 			left -= slen;
    227        1.2    kardel 		}
    228        1.2    kardel 	}
    229  1.32.10.1      yamt 	mutex_spin_exit(&timecounter_lock);
    230        1.2    kardel 
    231        1.2    kardel 	*oldlenp = needed;
    232        1.2    kardel 	return (error);
    233        1.2    kardel }
    234        1.2    kardel 
    235        1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    236        1.2    kardel {
    237        1.2    kardel 	const struct sysctlnode *node;
    238        1.2    kardel 
    239        1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    240        1.2    kardel 		       CTLFLAG_PERMANENT,
    241        1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    242        1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    243        1.2    kardel 		       NULL, 0, NULL, 0,
    244        1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    245        1.2    kardel 
    246        1.2    kardel 	if (node != NULL) {
    247        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    248        1.2    kardel 			       CTLFLAG_PERMANENT,
    249        1.2    kardel 			       CTLTYPE_STRING, "choice",
    250        1.2    kardel 			       SYSCTL_DESCR("available counters"),
    251        1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    252        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    253        1.2    kardel 
    254        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    255        1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    256        1.2    kardel 			       CTLTYPE_STRING, "hardware",
    257        1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    258        1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    259        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    260        1.2    kardel 
    261        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    262        1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    263        1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    264        1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    265        1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    266        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    267        1.2    kardel 	}
    268        1.2    kardel }
    269        1.2    kardel 
    270       1.32        ad #ifdef TC_COUNTERS
    271        1.2    kardel #define	TC_STATS(name)							\
    272        1.2    kardel static struct evcnt n##name =						\
    273        1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    274        1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    275        1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    276        1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    277        1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    278        1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    279        1.2    kardel TC_STATS(setclock);
    280       1.32        ad #define	TC_COUNT(var)	var.ev_count++
    281        1.1    simonb #undef TC_STATS
    282       1.32        ad #else
    283       1.32        ad #define	TC_COUNT(var)	/* nothing */
    284       1.32        ad #endif	/* TC_COUNTERS */
    285        1.1    simonb 
    286        1.1    simonb static void tc_windup(void);
    287        1.1    simonb 
    288        1.1    simonb /*
    289        1.1    simonb  * Return the difference between the timehands' counter value now and what
    290        1.1    simonb  * was when we copied it to the timehands' offset_count.
    291        1.1    simonb  */
    292        1.1    simonb static __inline u_int
    293        1.1    simonb tc_delta(struct timehands *th)
    294        1.1    simonb {
    295        1.1    simonb 	struct timecounter *tc;
    296        1.1    simonb 
    297        1.1    simonb 	tc = th->th_counter;
    298        1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    299        1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    300        1.1    simonb }
    301        1.1    simonb 
    302        1.1    simonb /*
    303        1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    304        1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    305       1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    306        1.1    simonb  */
    307        1.1    simonb 
    308        1.1    simonb void
    309        1.1    simonb binuptime(struct bintime *bt)
    310        1.1    simonb {
    311        1.1    simonb 	struct timehands *th;
    312        1.1    simonb 	u_int gen;
    313        1.1    simonb 
    314       1.32        ad 	TC_COUNT(nbinuptime);
    315        1.1    simonb 	do {
    316        1.1    simonb 		th = timehands;
    317        1.1    simonb 		gen = th->th_generation;
    318        1.1    simonb 		*bt = th->th_offset;
    319        1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    320        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    321        1.1    simonb }
    322        1.1    simonb 
    323        1.1    simonb void
    324        1.1    simonb nanouptime(struct timespec *tsp)
    325        1.1    simonb {
    326        1.1    simonb 	struct bintime bt;
    327        1.1    simonb 
    328       1.32        ad 	TC_COUNT(nnanouptime);
    329        1.1    simonb 	binuptime(&bt);
    330        1.1    simonb 	bintime2timespec(&bt, tsp);
    331        1.1    simonb }
    332        1.1    simonb 
    333        1.1    simonb void
    334        1.1    simonb microuptime(struct timeval *tvp)
    335        1.1    simonb {
    336        1.1    simonb 	struct bintime bt;
    337        1.1    simonb 
    338       1.32        ad 	TC_COUNT(nmicrouptime);
    339        1.1    simonb 	binuptime(&bt);
    340        1.1    simonb 	bintime2timeval(&bt, tvp);
    341        1.1    simonb }
    342        1.1    simonb 
    343        1.1    simonb void
    344        1.1    simonb bintime(struct bintime *bt)
    345        1.1    simonb {
    346        1.1    simonb 
    347       1.32        ad 	TC_COUNT(nbintime);
    348        1.1    simonb 	binuptime(bt);
    349        1.4    kardel 	bintime_add(bt, &timebasebin);
    350        1.1    simonb }
    351        1.1    simonb 
    352        1.1    simonb void
    353        1.1    simonb nanotime(struct timespec *tsp)
    354        1.1    simonb {
    355        1.1    simonb 	struct bintime bt;
    356        1.1    simonb 
    357       1.32        ad 	TC_COUNT(nnanotime);
    358        1.1    simonb 	bintime(&bt);
    359        1.1    simonb 	bintime2timespec(&bt, tsp);
    360        1.1    simonb }
    361        1.1    simonb 
    362        1.1    simonb void
    363        1.1    simonb microtime(struct timeval *tvp)
    364        1.1    simonb {
    365        1.1    simonb 	struct bintime bt;
    366        1.1    simonb 
    367       1.32        ad 	TC_COUNT(nmicrotime);
    368        1.1    simonb 	bintime(&bt);
    369        1.1    simonb 	bintime2timeval(&bt, tvp);
    370        1.1    simonb }
    371        1.1    simonb 
    372        1.1    simonb void
    373        1.1    simonb getbinuptime(struct bintime *bt)
    374        1.1    simonb {
    375        1.1    simonb 	struct timehands *th;
    376        1.1    simonb 	u_int gen;
    377        1.1    simonb 
    378       1.32        ad 	TC_COUNT(ngetbinuptime);
    379        1.1    simonb 	do {
    380        1.1    simonb 		th = timehands;
    381        1.1    simonb 		gen = th->th_generation;
    382        1.1    simonb 		*bt = th->th_offset;
    383        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    384        1.1    simonb }
    385        1.1    simonb 
    386        1.1    simonb void
    387        1.1    simonb getnanouptime(struct timespec *tsp)
    388        1.1    simonb {
    389        1.1    simonb 	struct timehands *th;
    390        1.1    simonb 	u_int gen;
    391        1.1    simonb 
    392       1.32        ad 	TC_COUNT(ngetnanouptime);
    393        1.1    simonb 	do {
    394        1.1    simonb 		th = timehands;
    395        1.1    simonb 		gen = th->th_generation;
    396        1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    397        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    398        1.1    simonb }
    399        1.1    simonb 
    400        1.1    simonb void
    401        1.1    simonb getmicrouptime(struct timeval *tvp)
    402        1.1    simonb {
    403        1.1    simonb 	struct timehands *th;
    404        1.1    simonb 	u_int gen;
    405        1.1    simonb 
    406       1.32        ad 	TC_COUNT(ngetmicrouptime);
    407        1.1    simonb 	do {
    408        1.1    simonb 		th = timehands;
    409        1.1    simonb 		gen = th->th_generation;
    410        1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    411        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    412        1.1    simonb }
    413        1.1    simonb 
    414        1.1    simonb void
    415        1.1    simonb getbintime(struct bintime *bt)
    416        1.1    simonb {
    417        1.1    simonb 	struct timehands *th;
    418        1.1    simonb 	u_int gen;
    419        1.1    simonb 
    420       1.32        ad 	TC_COUNT(ngetbintime);
    421        1.1    simonb 	do {
    422        1.1    simonb 		th = timehands;
    423        1.1    simonb 		gen = th->th_generation;
    424        1.1    simonb 		*bt = th->th_offset;
    425        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    426        1.4    kardel 	bintime_add(bt, &timebasebin);
    427        1.1    simonb }
    428        1.1    simonb 
    429        1.1    simonb void
    430        1.1    simonb getnanotime(struct timespec *tsp)
    431        1.1    simonb {
    432        1.1    simonb 	struct timehands *th;
    433        1.1    simonb 	u_int gen;
    434        1.1    simonb 
    435       1.32        ad 	TC_COUNT(ngetnanotime);
    436        1.1    simonb 	do {
    437        1.1    simonb 		th = timehands;
    438        1.1    simonb 		gen = th->th_generation;
    439        1.1    simonb 		*tsp = th->th_nanotime;
    440        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    441        1.1    simonb }
    442        1.1    simonb 
    443        1.1    simonb void
    444        1.1    simonb getmicrotime(struct timeval *tvp)
    445        1.1    simonb {
    446        1.1    simonb 	struct timehands *th;
    447        1.1    simonb 	u_int gen;
    448        1.1    simonb 
    449       1.32        ad 	TC_COUNT(ngetmicrotime);
    450        1.1    simonb 	do {
    451        1.1    simonb 		th = timehands;
    452        1.1    simonb 		gen = th->th_generation;
    453        1.1    simonb 		*tvp = th->th_microtime;
    454        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    455        1.1    simonb }
    456        1.1    simonb 
    457        1.1    simonb /*
    458        1.1    simonb  * Initialize a new timecounter and possibly use it.
    459        1.1    simonb  */
    460        1.1    simonb void
    461        1.1    simonb tc_init(struct timecounter *tc)
    462        1.1    simonb {
    463        1.1    simonb 	u_int u;
    464        1.1    simonb 
    465        1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    466        1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    467        1.1    simonb 	u *= 11;
    468        1.1    simonb 	u /= 10;
    469        1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    470        1.1    simonb 		tc->tc_quality = -2000;
    471       1.18        ad 		aprint_verbose(
    472       1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    473        1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    474       1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    475        1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    476       1.18        ad 		aprint_verbose(
    477       1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    478       1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    479        1.7     bjh21 		    tc->tc_quality);
    480        1.1    simonb 	}
    481        1.1    simonb 
    482  1.32.10.1      yamt 	mutex_spin_enter(&timecounter_lock);
    483        1.1    simonb 	tc->tc_next = timecounters;
    484        1.1    simonb 	timecounters = tc;
    485  1.32.10.1      yamt 	timecounter_mods++;
    486        1.1    simonb 	/*
    487        1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    488        1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    489        1.1    simonb 	 * worse since this timecounter may not be monotonous.
    490        1.1    simonb 	 */
    491       1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    492       1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    493       1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    494       1.22        ad 		(void)tc->tc_get_timecount(tc);
    495       1.22        ad 		(void)tc->tc_get_timecount(tc);
    496       1.22        ad 		timecounter = tc;
    497       1.22        ad 		tc_windup();
    498       1.22        ad 	}
    499  1.32.10.1      yamt 	mutex_spin_exit(&timecounter_lock);
    500  1.32.10.1      yamt }
    501  1.32.10.1      yamt 
    502  1.32.10.1      yamt /*
    503  1.32.10.1      yamt  * Pick a new timecounter due to the existing counter going bad.
    504  1.32.10.1      yamt  */
    505  1.32.10.1      yamt static void
    506  1.32.10.1      yamt tc_pick(void)
    507  1.32.10.1      yamt {
    508  1.32.10.1      yamt 	struct timecounter *best, *tc;
    509  1.32.10.1      yamt 
    510  1.32.10.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    511  1.32.10.1      yamt 
    512  1.32.10.1      yamt 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    513  1.32.10.1      yamt 		if (tc->tc_quality > best->tc_quality)
    514  1.32.10.1      yamt 			best = tc;
    515  1.32.10.1      yamt 		else if (tc->tc_quality < best->tc_quality)
    516  1.32.10.1      yamt 			continue;
    517  1.32.10.1      yamt 		else if (tc->tc_frequency > best->tc_frequency)
    518  1.32.10.1      yamt 			best = tc;
    519  1.32.10.1      yamt 	}
    520  1.32.10.1      yamt 	(void)best->tc_get_timecount(best);
    521  1.32.10.1      yamt 	(void)best->tc_get_timecount(best);
    522  1.32.10.1      yamt 	timecounter = best;
    523  1.32.10.1      yamt }
    524  1.32.10.1      yamt 
    525  1.32.10.1      yamt /*
    526  1.32.10.1      yamt  * A timecounter has gone bad, arrange to pick a new one at the next
    527  1.32.10.1      yamt  * clock tick.
    528  1.32.10.1      yamt  */
    529  1.32.10.1      yamt void
    530  1.32.10.1      yamt tc_gonebad(struct timecounter *tc)
    531  1.32.10.1      yamt {
    532  1.32.10.1      yamt 
    533  1.32.10.1      yamt 	tc->tc_quality = -100;
    534  1.32.10.1      yamt 	membar_producer();
    535  1.32.10.1      yamt 	atomic_inc_uint(&timecounter_bad);
    536        1.1    simonb }
    537        1.1    simonb 
    538       1.29    dyoung /*
    539       1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    540       1.29    dyoung  */
    541       1.29    dyoung int
    542       1.29    dyoung tc_detach(struct timecounter *target)
    543       1.29    dyoung {
    544  1.32.10.1      yamt 	struct timecounter *tc;
    545       1.29    dyoung 	struct timecounter **tcp = NULL;
    546       1.30        ad 	int rc = 0;
    547       1.29    dyoung 
    548  1.32.10.1      yamt 	mutex_spin_enter(&timecounter_lock);
    549       1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    550       1.29    dyoung 	     tc != NULL;
    551       1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    552       1.29    dyoung 		if (tc == target)
    553       1.29    dyoung 			break;
    554       1.29    dyoung 	}
    555       1.29    dyoung 	if (tc == NULL) {
    556       1.29    dyoung 		rc = ESRCH;
    557  1.32.10.1      yamt 	} else {
    558  1.32.10.1      yamt 		*tcp = tc->tc_next;
    559  1.32.10.1      yamt 		if (timecounter == target) {
    560  1.32.10.1      yamt 			tc_pick();
    561  1.32.10.1      yamt 			tc_windup();
    562  1.32.10.1      yamt 		}
    563  1.32.10.1      yamt 		timecounter_mods++;
    564       1.29    dyoung 	}
    565  1.32.10.1      yamt 	mutex_spin_exit(&timecounter_lock);
    566       1.29    dyoung 	return rc;
    567       1.29    dyoung }
    568       1.29    dyoung 
    569        1.1    simonb /* Report the frequency of the current timecounter. */
    570        1.1    simonb u_int64_t
    571        1.1    simonb tc_getfrequency(void)
    572        1.1    simonb {
    573        1.1    simonb 
    574        1.1    simonb 	return (timehands->th_counter->tc_frequency);
    575        1.1    simonb }
    576        1.1    simonb 
    577        1.1    simonb /*
    578        1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    579        1.1    simonb  * when we booted.
    580        1.1    simonb  */
    581        1.1    simonb void
    582        1.1    simonb tc_setclock(struct timespec *ts)
    583        1.1    simonb {
    584        1.1    simonb 	struct timespec ts2;
    585        1.1    simonb 	struct bintime bt, bt2;
    586        1.1    simonb 
    587  1.32.10.1      yamt 	mutex_spin_enter(&timecounter_lock);
    588       1.32        ad 	TC_COUNT(nsetclock);
    589        1.1    simonb 	binuptime(&bt2);
    590        1.1    simonb 	timespec2bintime(ts, &bt);
    591        1.1    simonb 	bintime_sub(&bt, &bt2);
    592        1.4    kardel 	bintime_add(&bt2, &timebasebin);
    593        1.4    kardel 	timebasebin = bt;
    594       1.30        ad 	tc_windup();
    595  1.32.10.1      yamt 	mutex_spin_exit(&timecounter_lock);
    596        1.1    simonb 
    597        1.1    simonb 	if (timestepwarnings) {
    598        1.1    simonb 		bintime2timespec(&bt2, &ts2);
    599        1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    600        1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    601        1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    602        1.1    simonb 	}
    603        1.1    simonb }
    604        1.1    simonb 
    605        1.1    simonb /*
    606        1.1    simonb  * Initialize the next struct timehands in the ring and make
    607        1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    608        1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    609        1.1    simonb  */
    610        1.1    simonb static void
    611        1.1    simonb tc_windup(void)
    612        1.1    simonb {
    613        1.1    simonb 	struct bintime bt;
    614        1.1    simonb 	struct timehands *th, *tho;
    615        1.1    simonb 	u_int64_t scale;
    616        1.1    simonb 	u_int delta, ncount, ogen;
    617       1.13    kardel 	int i, s_update;
    618        1.1    simonb 	time_t t;
    619        1.1    simonb 
    620  1.32.10.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    621       1.30        ad 
    622       1.13    kardel 	s_update = 0;
    623       1.20        ad 
    624        1.1    simonb 	/*
    625        1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    626        1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    627       1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    628       1.20        ad 	 * visibility of the generation before proceeding.
    629        1.1    simonb 	 */
    630        1.1    simonb 	tho = timehands;
    631        1.1    simonb 	th = tho->th_next;
    632        1.1    simonb 	ogen = th->th_generation;
    633        1.1    simonb 	th->th_generation = 0;
    634       1.27        ad 	membar_producer();
    635        1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    636        1.1    simonb 
    637        1.1    simonb 	/*
    638        1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    639        1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    640        1.1    simonb 	 * Update the offset fields accordingly.
    641        1.1    simonb 	 */
    642        1.1    simonb 	delta = tc_delta(th);
    643        1.1    simonb 	if (th->th_counter != timecounter)
    644        1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    645        1.1    simonb 	else
    646        1.1    simonb 		ncount = 0;
    647        1.1    simonb 	th->th_offset_count += delta;
    648        1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    649        1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    650        1.1    simonb 
    651        1.1    simonb 	/*
    652        1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    653        1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    654        1.1    simonb 	 * the hardware might capture a count which is later than the one we
    655        1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    656        1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    657        1.1    simonb 	 * matter in practice.
    658        1.1    simonb 	 */
    659        1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    660        1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    661        1.1    simonb 
    662        1.1    simonb 	/*
    663        1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    664        1.1    simonb 	 * iterates at most once, but in extreme situations it might
    665        1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    666        1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    667        1.1    simonb 	 * has been read, so on really large steps, we call
    668        1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    669        1.1    simonb 	 * case we missed a leap second.
    670        1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    671        1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    672        1.1    simonb 	 */
    673        1.1    simonb 	bt = th->th_offset;
    674        1.4    kardel 	bintime_add(&bt, &timebasebin);
    675        1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    676        1.1    simonb 	if (i > LARGE_STEP)
    677        1.1    simonb 		i = 2;
    678        1.1    simonb 	for (; i > 0; i--) {
    679        1.1    simonb 		t = bt.sec;
    680        1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    681       1.13    kardel 		s_update = 1;
    682        1.1    simonb 		if (bt.sec != t)
    683        1.4    kardel 			timebasebin.sec += bt.sec - t;
    684        1.1    simonb 	}
    685        1.2    kardel 
    686        1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    687        1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    688        1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    689        1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    690        1.1    simonb 
    691        1.1    simonb 	/* Now is a good time to change timecounters. */
    692        1.1    simonb 	if (th->th_counter != timecounter) {
    693        1.1    simonb 		th->th_counter = timecounter;
    694        1.1    simonb 		th->th_offset_count = ncount;
    695       1.13    kardel 		s_update = 1;
    696        1.1    simonb 	}
    697        1.1    simonb 
    698        1.1    simonb 	/*-
    699        1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    700        1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    701        1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    702        1.1    simonb 	 * processing provides us with.
    703        1.1    simonb 	 *
    704        1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    705        1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    706        1.1    simonb 	 *
    707        1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    708        1.1    simonb 	 *
    709        1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    710        1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    711        1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    712        1.1    simonb 	 *
    713        1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    714        1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    715        1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    716        1.1    simonb  	 *
    717        1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    718        1.1    simonb 	 * to the goddess of code clarity.
    719        1.1    simonb 	 *
    720        1.1    simonb 	 */
    721       1.13    kardel 	if (s_update) {
    722       1.13    kardel 		scale = (u_int64_t)1 << 63;
    723       1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    724       1.13    kardel 		scale /= th->th_counter->tc_frequency;
    725       1.13    kardel 		th->th_scale = scale * 2;
    726       1.13    kardel 	}
    727        1.1    simonb 	/*
    728        1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    729       1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    730       1.20        ad 	 * changes are globally visible before changing.
    731        1.1    simonb 	 */
    732        1.1    simonb 	if (++ogen == 0)
    733        1.1    simonb 		ogen = 1;
    734       1.27        ad 	membar_producer();
    735        1.1    simonb 	th->th_generation = ogen;
    736        1.1    simonb 
    737       1.20        ad 	/*
    738       1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    739       1.20        ad 	 * globally visible before changing.
    740       1.20        ad 	 */
    741        1.1    simonb 	time_second = th->th_microtime.tv_sec;
    742        1.1    simonb 	time_uptime = th->th_offset.sec;
    743       1.27        ad 	membar_producer();
    744        1.1    simonb 	timehands = th;
    745       1.24        ad 
    746       1.24        ad 	/*
    747       1.24        ad 	 * Force users of the old timehand to move on.  This is
    748       1.24        ad 	 * necessary for MP systems; we need to ensure that the
    749       1.24        ad 	 * consumers will move away from the old timehand before
    750       1.24        ad 	 * we begin updating it again when we eventually wrap
    751       1.24        ad 	 * around.
    752       1.24        ad 	 */
    753       1.24        ad 	if (++tho->th_generation == 0)
    754       1.24        ad 		tho->th_generation = 1;
    755        1.1    simonb }
    756        1.1    simonb 
    757        1.1    simonb /*
    758        1.1    simonb  * RFC 2783 PPS-API implementation.
    759        1.1    simonb  */
    760        1.1    simonb 
    761        1.1    simonb int
    762       1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    763        1.1    simonb {
    764        1.1    simonb 	pps_params_t *app;
    765        1.2    kardel 	pps_info_t *pipi;
    766        1.1    simonb #ifdef PPS_SYNC
    767        1.2    kardel 	int *epi;
    768        1.1    simonb #endif
    769        1.1    simonb 
    770  1.32.10.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    771  1.32.10.1      yamt 
    772        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    773        1.1    simonb 	switch (cmd) {
    774        1.1    simonb 	case PPS_IOC_CREATE:
    775        1.1    simonb 		return (0);
    776        1.1    simonb 	case PPS_IOC_DESTROY:
    777        1.1    simonb 		return (0);
    778        1.1    simonb 	case PPS_IOC_SETPARAMS:
    779        1.1    simonb 		app = (pps_params_t *)data;
    780        1.1    simonb 		if (app->mode & ~pps->ppscap)
    781        1.1    simonb 			return (EINVAL);
    782        1.1    simonb 		pps->ppsparam = *app;
    783        1.1    simonb 		return (0);
    784        1.1    simonb 	case PPS_IOC_GETPARAMS:
    785        1.1    simonb 		app = (pps_params_t *)data;
    786        1.1    simonb 		*app = pps->ppsparam;
    787        1.1    simonb 		app->api_version = PPS_API_VERS_1;
    788        1.1    simonb 		return (0);
    789        1.1    simonb 	case PPS_IOC_GETCAP:
    790        1.1    simonb 		*(int*)data = pps->ppscap;
    791        1.1    simonb 		return (0);
    792        1.1    simonb 	case PPS_IOC_FETCH:
    793        1.2    kardel 		pipi = (pps_info_t *)data;
    794        1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    795        1.2    kardel 		*pipi = pps->ppsinfo;
    796        1.1    simonb 		return (0);
    797        1.1    simonb 	case PPS_IOC_KCBIND:
    798        1.1    simonb #ifdef PPS_SYNC
    799        1.2    kardel 		epi = (int *)data;
    800        1.1    simonb 		/* XXX Only root should be able to do this */
    801        1.2    kardel 		if (*epi & ~pps->ppscap)
    802        1.1    simonb 			return (EINVAL);
    803        1.2    kardel 		pps->kcmode = *epi;
    804        1.1    simonb 		return (0);
    805        1.1    simonb #else
    806        1.1    simonb 		return (EOPNOTSUPP);
    807        1.1    simonb #endif
    808        1.1    simonb 	default:
    809        1.2    kardel 		return (EPASSTHROUGH);
    810        1.1    simonb 	}
    811        1.1    simonb }
    812        1.1    simonb 
    813        1.1    simonb void
    814        1.1    simonb pps_init(struct pps_state *pps)
    815        1.1    simonb {
    816  1.32.10.1      yamt 
    817  1.32.10.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    818  1.32.10.1      yamt 
    819        1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    820        1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    821        1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    822        1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    823        1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    824        1.1    simonb }
    825        1.1    simonb 
    826        1.1    simonb void
    827        1.1    simonb pps_capture(struct pps_state *pps)
    828        1.1    simonb {
    829        1.1    simonb 	struct timehands *th;
    830        1.1    simonb 
    831  1.32.10.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    832  1.32.10.1      yamt 	KASSERT(pps != NULL);
    833  1.32.10.1      yamt 
    834        1.1    simonb 	th = timehands;
    835        1.1    simonb 	pps->capgen = th->th_generation;
    836        1.1    simonb 	pps->capth = th;
    837        1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    838        1.1    simonb 	if (pps->capgen != th->th_generation)
    839        1.1    simonb 		pps->capgen = 0;
    840        1.1    simonb }
    841        1.1    simonb 
    842        1.1    simonb void
    843        1.1    simonb pps_event(struct pps_state *pps, int event)
    844        1.1    simonb {
    845        1.1    simonb 	struct bintime bt;
    846        1.1    simonb 	struct timespec ts, *tsp, *osp;
    847        1.1    simonb 	u_int tcount, *pcount;
    848        1.1    simonb 	int foff, fhard;
    849        1.1    simonb 	pps_seq_t *pseq;
    850        1.1    simonb 
    851  1.32.10.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    852  1.32.10.1      yamt 
    853        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    854        1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    855        1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    856        1.1    simonb 		return;
    857        1.1    simonb 
    858        1.1    simonb 	/* Things would be easier with arrays. */
    859        1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    860        1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    861        1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    862        1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    863        1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    864        1.1    simonb 		pcount = &pps->ppscount[0];
    865        1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    866        1.1    simonb 	} else {
    867        1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    868        1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    869        1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    870        1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    871        1.1    simonb 		pcount = &pps->ppscount[1];
    872        1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    873        1.1    simonb 	}
    874        1.1    simonb 
    875        1.1    simonb 	/*
    876        1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    877        1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    878        1.1    simonb 	 */
    879        1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    880        1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    881        1.1    simonb 		*pcount = pps->capcount;
    882        1.1    simonb 		pps->ppscount[2] = pps->capcount;
    883        1.1    simonb 		return;
    884        1.1    simonb 	}
    885        1.1    simonb 
    886        1.1    simonb 	/* Convert the count to a timespec. */
    887        1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    888        1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    889        1.1    simonb 	bt = pps->capth->th_offset;
    890        1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    891        1.4    kardel 	bintime_add(&bt, &timebasebin);
    892        1.1    simonb 	bintime2timespec(&bt, &ts);
    893        1.1    simonb 
    894        1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    895        1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    896        1.1    simonb 		return;
    897        1.1    simonb 
    898        1.1    simonb 	*pcount = pps->capcount;
    899        1.1    simonb 	(*pseq)++;
    900        1.1    simonb 	*tsp = ts;
    901        1.1    simonb 
    902        1.1    simonb 	if (foff) {
    903        1.2    kardel 		timespecadd(tsp, osp, tsp);
    904        1.1    simonb 		if (tsp->tv_nsec < 0) {
    905        1.1    simonb 			tsp->tv_nsec += 1000000000;
    906        1.1    simonb 			tsp->tv_sec -= 1;
    907        1.1    simonb 		}
    908        1.1    simonb 	}
    909        1.1    simonb #ifdef PPS_SYNC
    910        1.1    simonb 	if (fhard) {
    911        1.1    simonb 		u_int64_t scale;
    912        1.1    simonb 
    913        1.1    simonb 		/*
    914        1.1    simonb 		 * Feed the NTP PLL/FLL.
    915        1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    916        1.1    simonb 		 * elapsed since the previous event.
    917        1.1    simonb 		 */
    918        1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    919        1.1    simonb 		pps->ppscount[2] = pps->capcount;
    920        1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    921        1.1    simonb 		scale = (u_int64_t)1 << 63;
    922        1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    923        1.1    simonb 		scale *= 2;
    924        1.1    simonb 		bt.sec = 0;
    925        1.1    simonb 		bt.frac = 0;
    926        1.1    simonb 		bintime_addx(&bt, scale * tcount);
    927        1.1    simonb 		bintime2timespec(&bt, &ts);
    928        1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    929        1.1    simonb 	}
    930        1.1    simonb #endif
    931        1.1    simonb }
    932        1.1    simonb 
    933        1.1    simonb /*
    934        1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    935        1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    936        1.1    simonb  * used by the get*() family of functions, so their precision depends on
    937        1.1    simonb  * the update frequency.
    938        1.1    simonb  */
    939        1.1    simonb 
    940        1.1    simonb static int tc_tick;
    941        1.1    simonb 
    942        1.1    simonb void
    943        1.1    simonb tc_ticktock(void)
    944        1.1    simonb {
    945        1.1    simonb 	static int count;
    946        1.1    simonb 
    947        1.1    simonb 	if (++count < tc_tick)
    948        1.1    simonb 		return;
    949        1.1    simonb 	count = 0;
    950  1.32.10.1      yamt 	mutex_spin_enter(&timecounter_lock);
    951  1.32.10.1      yamt 	if (timecounter_bad != 0) {
    952  1.32.10.1      yamt 		/* An existing timecounter has gone bad, pick a new one. */
    953  1.32.10.1      yamt 		(void)atomic_swap_uint(&timecounter_bad, 0);
    954  1.32.10.1      yamt 		if (timecounter->tc_quality < 0) {
    955  1.32.10.1      yamt 			tc_pick();
    956  1.32.10.1      yamt 		}
    957  1.32.10.1      yamt 	}
    958        1.1    simonb 	tc_windup();
    959  1.32.10.1      yamt 	mutex_spin_exit(&timecounter_lock);
    960        1.1    simonb }
    961        1.1    simonb 
    962        1.2    kardel void
    963        1.2    kardel inittimecounter(void)
    964        1.1    simonb {
    965        1.1    simonb 	u_int p;
    966        1.1    simonb 
    967  1.32.10.1      yamt 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
    968       1.30        ad 
    969        1.1    simonb 	/*
    970        1.1    simonb 	 * Set the initial timeout to
    971        1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    972        1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    973        1.1    simonb 	 * to smaller than its inital value, since that value is the
    974        1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    975        1.1    simonb 	 * should use the non-"get"* functions.
    976        1.1    simonb 	 */
    977        1.1    simonb 	if (hz > 1000)
    978        1.1    simonb 		tc_tick = (hz + 500) / 1000;
    979        1.1    simonb 	else
    980        1.1    simonb 		tc_tick = 1;
    981        1.1    simonb 	p = (tc_tick * 1000000) / hz;
    982       1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    983       1.18        ad 	    p / 1000, p % 1000);
    984        1.1    simonb 
    985        1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    986        1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    987        1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    988        1.1    simonb }
    989