kern_tc.c revision 1.32.6.1 1 1.32.6.1 mjf /* $NetBSD: kern_tc.c,v 1.32.6.1 2008/06/02 13:24:10 mjf Exp $ */
2 1.32.6.1 mjf
3 1.32.6.1 mjf /*-
4 1.32.6.1 mjf * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.32.6.1 mjf * All rights reserved.
6 1.32.6.1 mjf *
7 1.32.6.1 mjf * Redistribution and use in source and binary forms, with or without
8 1.32.6.1 mjf * modification, are permitted provided that the following conditions
9 1.32.6.1 mjf * are met:
10 1.32.6.1 mjf * 1. Redistributions of source code must retain the above copyright
11 1.32.6.1 mjf * notice, this list of conditions and the following disclaimer.
12 1.32.6.1 mjf * 2. Redistributions in binary form must reproduce the above copyright
13 1.32.6.1 mjf * notice, this list of conditions and the following disclaimer in the
14 1.32.6.1 mjf * documentation and/or other materials provided with the distribution.
15 1.32.6.1 mjf *
16 1.32.6.1 mjf * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.32.6.1 mjf * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.32.6.1 mjf * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.32.6.1 mjf * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.32.6.1 mjf * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.32.6.1 mjf * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.32.6.1 mjf * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.32.6.1 mjf * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.32.6.1 mjf * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.32.6.1 mjf * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.32.6.1 mjf * POSSIBILITY OF SUCH DAMAGE.
27 1.32.6.1 mjf */
28 1.2 kardel
29 1.1 simonb /*-
30 1.1 simonb * ----------------------------------------------------------------------------
31 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
32 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
33 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
34 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
35 1.2 kardel * ---------------------------------------------------------------------------
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb #include <sys/cdefs.h>
39 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
40 1.32.6.1 mjf __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.32.6.1 2008/06/02 13:24:10 mjf Exp $");
41 1.1 simonb
42 1.1 simonb #include "opt_ntp.h"
43 1.1 simonb
44 1.1 simonb #include <sys/param.h>
45 1.1 simonb #include <sys/kernel.h>
46 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
47 1.1 simonb #include <sys/sysctl.h>
48 1.1 simonb #include <sys/syslog.h>
49 1.1 simonb #include <sys/systm.h>
50 1.1 simonb #include <sys/timepps.h>
51 1.1 simonb #include <sys/timetc.h>
52 1.1 simonb #include <sys/timex.h>
53 1.2 kardel #include <sys/evcnt.h>
54 1.2 kardel #include <sys/kauth.h>
55 1.25 ad #include <sys/mutex.h>
56 1.27 ad #include <sys/atomic.h>
57 1.2 kardel
58 1.2 kardel /*
59 1.1 simonb * A large step happens on boot. This constant detects such steps.
60 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
61 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
62 1.1 simonb * forever when the time step is large.
63 1.1 simonb */
64 1.1 simonb #define LARGE_STEP 200
65 1.1 simonb
66 1.1 simonb /*
67 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
68 1.1 simonb * in the air. This allows the console and other early stuff to use
69 1.1 simonb * time services.
70 1.1 simonb */
71 1.1 simonb
72 1.1 simonb static u_int
73 1.16 yamt dummy_get_timecount(struct timecounter *tc)
74 1.1 simonb {
75 1.1 simonb static u_int now;
76 1.1 simonb
77 1.1 simonb return (++now);
78 1.1 simonb }
79 1.1 simonb
80 1.1 simonb static struct timecounter dummy_timecounter = {
81 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
82 1.1 simonb };
83 1.1 simonb
84 1.1 simonb struct timehands {
85 1.1 simonb /* These fields must be initialized by the driver. */
86 1.1 simonb struct timecounter *th_counter;
87 1.1 simonb int64_t th_adjustment;
88 1.1 simonb u_int64_t th_scale;
89 1.1 simonb u_int th_offset_count;
90 1.1 simonb struct bintime th_offset;
91 1.1 simonb struct timeval th_microtime;
92 1.1 simonb struct timespec th_nanotime;
93 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
94 1.1 simonb volatile u_int th_generation;
95 1.1 simonb struct timehands *th_next;
96 1.1 simonb };
97 1.1 simonb
98 1.1 simonb static struct timehands th0;
99 1.10 christos static struct timehands th9 = { .th_next = &th0, };
100 1.10 christos static struct timehands th8 = { .th_next = &th9, };
101 1.10 christos static struct timehands th7 = { .th_next = &th8, };
102 1.10 christos static struct timehands th6 = { .th_next = &th7, };
103 1.10 christos static struct timehands th5 = { .th_next = &th6, };
104 1.10 christos static struct timehands th4 = { .th_next = &th5, };
105 1.10 christos static struct timehands th3 = { .th_next = &th4, };
106 1.10 christos static struct timehands th2 = { .th_next = &th3, };
107 1.10 christos static struct timehands th1 = { .th_next = &th2, };
108 1.1 simonb static struct timehands th0 = {
109 1.10 christos .th_counter = &dummy_timecounter,
110 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
111 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
112 1.10 christos .th_generation = 1,
113 1.10 christos .th_next = &th1,
114 1.1 simonb };
115 1.1 simonb
116 1.1 simonb static struct timehands *volatile timehands = &th0;
117 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
118 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
119 1.1 simonb
120 1.1 simonb time_t time_second = 1;
121 1.1 simonb time_t time_uptime = 1;
122 1.1 simonb
123 1.4 kardel static struct bintime timebasebin;
124 1.1 simonb
125 1.1 simonb static int timestepwarnings;
126 1.2 kardel
127 1.32.6.1 mjf kmutex_t timecounter_lock;
128 1.32.6.1 mjf static u_int timecounter_mods;
129 1.32.6.1 mjf static u_int timecounter_bad;
130 1.25 ad
131 1.2 kardel #ifdef __FreeBSD__
132 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
133 1.1 simonb ×tepwarnings, 0, "");
134 1.2 kardel #endif /* __FreeBSD__ */
135 1.2 kardel
136 1.2 kardel /*
137 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
138 1.2 kardel */
139 1.2 kardel static int
140 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
141 1.2 kardel {
142 1.2 kardel struct sysctlnode node;
143 1.2 kardel int error;
144 1.2 kardel char newname[MAX_TCNAMELEN];
145 1.2 kardel struct timecounter *newtc, *tc;
146 1.2 kardel
147 1.2 kardel tc = timecounter;
148 1.2 kardel
149 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
150 1.2 kardel
151 1.2 kardel node = *rnode;
152 1.2 kardel node.sysctl_data = newname;
153 1.2 kardel node.sysctl_size = sizeof(newname);
154 1.2 kardel
155 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
156 1.2 kardel
157 1.2 kardel if (error ||
158 1.2 kardel newp == NULL ||
159 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
160 1.2 kardel return error;
161 1.1 simonb
162 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
163 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
164 1.26 elad NULL, NULL)) != 0)
165 1.2 kardel return (error);
166 1.2 kardel
167 1.22 ad if (!cold)
168 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
169 1.23 ad error = EINVAL;
170 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
171 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
172 1.2 kardel continue;
173 1.2 kardel /* Warm up new timecounter. */
174 1.2 kardel (void)newtc->tc_get_timecount(newtc);
175 1.2 kardel (void)newtc->tc_get_timecount(newtc);
176 1.2 kardel timecounter = newtc;
177 1.22 ad error = 0;
178 1.23 ad break;
179 1.23 ad }
180 1.22 ad if (!cold)
181 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
182 1.22 ad return error;
183 1.2 kardel }
184 1.2 kardel
185 1.2 kardel static int
186 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
187 1.2 kardel {
188 1.9 kardel char buf[MAX_TCNAMELEN+48];
189 1.32.6.1 mjf char *where;
190 1.2 kardel const char *spc;
191 1.2 kardel struct timecounter *tc;
192 1.2 kardel size_t needed, left, slen;
193 1.32.6.1 mjf int error, mods;
194 1.2 kardel
195 1.2 kardel if (newp != NULL)
196 1.2 kardel return (EPERM);
197 1.2 kardel if (namelen != 0)
198 1.2 kardel return (EINVAL);
199 1.2 kardel
200 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
201 1.32.6.1 mjf retry:
202 1.2 kardel spc = "";
203 1.2 kardel error = 0;
204 1.2 kardel needed = 0;
205 1.2 kardel left = *oldlenp;
206 1.32.6.1 mjf where = oldp;
207 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
208 1.2 kardel if (where == NULL) {
209 1.2 kardel needed += sizeof(buf); /* be conservative */
210 1.2 kardel } else {
211 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
212 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
213 1.2 kardel tc->tc_frequency);
214 1.2 kardel if (left < slen + 1)
215 1.2 kardel break;
216 1.32.6.1 mjf mods = timecounter_mods;
217 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
218 1.2 kardel error = copyout(buf, where, slen + 1);
219 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
220 1.32.6.1 mjf if (mods != timecounter_mods) {
221 1.32.6.1 mjf goto retry;
222 1.32.6.1 mjf }
223 1.2 kardel spc = " ";
224 1.2 kardel where += slen;
225 1.2 kardel needed += slen;
226 1.2 kardel left -= slen;
227 1.2 kardel }
228 1.2 kardel }
229 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
230 1.2 kardel
231 1.2 kardel *oldlenp = needed;
232 1.2 kardel return (error);
233 1.2 kardel }
234 1.2 kardel
235 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
236 1.2 kardel {
237 1.2 kardel const struct sysctlnode *node;
238 1.2 kardel
239 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
240 1.2 kardel CTLFLAG_PERMANENT,
241 1.2 kardel CTLTYPE_NODE, "timecounter",
242 1.2 kardel SYSCTL_DESCR("time counter information"),
243 1.2 kardel NULL, 0, NULL, 0,
244 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
245 1.2 kardel
246 1.2 kardel if (node != NULL) {
247 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
248 1.2 kardel CTLFLAG_PERMANENT,
249 1.2 kardel CTLTYPE_STRING, "choice",
250 1.2 kardel SYSCTL_DESCR("available counters"),
251 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
252 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
253 1.2 kardel
254 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
255 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
256 1.2 kardel CTLTYPE_STRING, "hardware",
257 1.2 kardel SYSCTL_DESCR("currently active time counter"),
258 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
259 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
260 1.2 kardel
261 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
262 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
263 1.2 kardel CTLTYPE_INT, "timestepwarnings",
264 1.2 kardel SYSCTL_DESCR("log time steps"),
265 1.2 kardel NULL, 0, ×tepwarnings, 0,
266 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
267 1.2 kardel }
268 1.2 kardel }
269 1.2 kardel
270 1.32 ad #ifdef TC_COUNTERS
271 1.2 kardel #define TC_STATS(name) \
272 1.2 kardel static struct evcnt n##name = \
273 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
274 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
275 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
276 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
277 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
278 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
279 1.2 kardel TC_STATS(setclock);
280 1.32 ad #define TC_COUNT(var) var.ev_count++
281 1.1 simonb #undef TC_STATS
282 1.32 ad #else
283 1.32 ad #define TC_COUNT(var) /* nothing */
284 1.32 ad #endif /* TC_COUNTERS */
285 1.1 simonb
286 1.1 simonb static void tc_windup(void);
287 1.1 simonb
288 1.1 simonb /*
289 1.1 simonb * Return the difference between the timehands' counter value now and what
290 1.1 simonb * was when we copied it to the timehands' offset_count.
291 1.1 simonb */
292 1.1 simonb static __inline u_int
293 1.1 simonb tc_delta(struct timehands *th)
294 1.1 simonb {
295 1.1 simonb struct timecounter *tc;
296 1.1 simonb
297 1.1 simonb tc = th->th_counter;
298 1.2 kardel return ((tc->tc_get_timecount(tc) -
299 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
300 1.1 simonb }
301 1.1 simonb
302 1.1 simonb /*
303 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
304 1.1 simonb * the timehands that we operated on was not updated under our feet. See
305 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
306 1.1 simonb */
307 1.1 simonb
308 1.1 simonb void
309 1.1 simonb binuptime(struct bintime *bt)
310 1.1 simonb {
311 1.1 simonb struct timehands *th;
312 1.1 simonb u_int gen;
313 1.1 simonb
314 1.32 ad TC_COUNT(nbinuptime);
315 1.1 simonb do {
316 1.1 simonb th = timehands;
317 1.1 simonb gen = th->th_generation;
318 1.1 simonb *bt = th->th_offset;
319 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
320 1.1 simonb } while (gen == 0 || gen != th->th_generation);
321 1.1 simonb }
322 1.1 simonb
323 1.1 simonb void
324 1.1 simonb nanouptime(struct timespec *tsp)
325 1.1 simonb {
326 1.1 simonb struct bintime bt;
327 1.1 simonb
328 1.32 ad TC_COUNT(nnanouptime);
329 1.1 simonb binuptime(&bt);
330 1.1 simonb bintime2timespec(&bt, tsp);
331 1.1 simonb }
332 1.1 simonb
333 1.1 simonb void
334 1.1 simonb microuptime(struct timeval *tvp)
335 1.1 simonb {
336 1.1 simonb struct bintime bt;
337 1.1 simonb
338 1.32 ad TC_COUNT(nmicrouptime);
339 1.1 simonb binuptime(&bt);
340 1.1 simonb bintime2timeval(&bt, tvp);
341 1.1 simonb }
342 1.1 simonb
343 1.1 simonb void
344 1.1 simonb bintime(struct bintime *bt)
345 1.1 simonb {
346 1.1 simonb
347 1.32 ad TC_COUNT(nbintime);
348 1.1 simonb binuptime(bt);
349 1.4 kardel bintime_add(bt, &timebasebin);
350 1.1 simonb }
351 1.1 simonb
352 1.1 simonb void
353 1.1 simonb nanotime(struct timespec *tsp)
354 1.1 simonb {
355 1.1 simonb struct bintime bt;
356 1.1 simonb
357 1.32 ad TC_COUNT(nnanotime);
358 1.1 simonb bintime(&bt);
359 1.1 simonb bintime2timespec(&bt, tsp);
360 1.1 simonb }
361 1.1 simonb
362 1.1 simonb void
363 1.1 simonb microtime(struct timeval *tvp)
364 1.1 simonb {
365 1.1 simonb struct bintime bt;
366 1.1 simonb
367 1.32 ad TC_COUNT(nmicrotime);
368 1.1 simonb bintime(&bt);
369 1.1 simonb bintime2timeval(&bt, tvp);
370 1.1 simonb }
371 1.1 simonb
372 1.1 simonb void
373 1.1 simonb getbinuptime(struct bintime *bt)
374 1.1 simonb {
375 1.1 simonb struct timehands *th;
376 1.1 simonb u_int gen;
377 1.1 simonb
378 1.32 ad TC_COUNT(ngetbinuptime);
379 1.1 simonb do {
380 1.1 simonb th = timehands;
381 1.1 simonb gen = th->th_generation;
382 1.1 simonb *bt = th->th_offset;
383 1.1 simonb } while (gen == 0 || gen != th->th_generation);
384 1.1 simonb }
385 1.1 simonb
386 1.1 simonb void
387 1.1 simonb getnanouptime(struct timespec *tsp)
388 1.1 simonb {
389 1.1 simonb struct timehands *th;
390 1.1 simonb u_int gen;
391 1.1 simonb
392 1.32 ad TC_COUNT(ngetnanouptime);
393 1.1 simonb do {
394 1.1 simonb th = timehands;
395 1.1 simonb gen = th->th_generation;
396 1.1 simonb bintime2timespec(&th->th_offset, tsp);
397 1.1 simonb } while (gen == 0 || gen != th->th_generation);
398 1.1 simonb }
399 1.1 simonb
400 1.1 simonb void
401 1.1 simonb getmicrouptime(struct timeval *tvp)
402 1.1 simonb {
403 1.1 simonb struct timehands *th;
404 1.1 simonb u_int gen;
405 1.1 simonb
406 1.32 ad TC_COUNT(ngetmicrouptime);
407 1.1 simonb do {
408 1.1 simonb th = timehands;
409 1.1 simonb gen = th->th_generation;
410 1.1 simonb bintime2timeval(&th->th_offset, tvp);
411 1.1 simonb } while (gen == 0 || gen != th->th_generation);
412 1.1 simonb }
413 1.1 simonb
414 1.1 simonb void
415 1.1 simonb getbintime(struct bintime *bt)
416 1.1 simonb {
417 1.1 simonb struct timehands *th;
418 1.1 simonb u_int gen;
419 1.1 simonb
420 1.32 ad TC_COUNT(ngetbintime);
421 1.1 simonb do {
422 1.1 simonb th = timehands;
423 1.1 simonb gen = th->th_generation;
424 1.1 simonb *bt = th->th_offset;
425 1.1 simonb } while (gen == 0 || gen != th->th_generation);
426 1.4 kardel bintime_add(bt, &timebasebin);
427 1.1 simonb }
428 1.1 simonb
429 1.1 simonb void
430 1.1 simonb getnanotime(struct timespec *tsp)
431 1.1 simonb {
432 1.1 simonb struct timehands *th;
433 1.1 simonb u_int gen;
434 1.1 simonb
435 1.32 ad TC_COUNT(ngetnanotime);
436 1.1 simonb do {
437 1.1 simonb th = timehands;
438 1.1 simonb gen = th->th_generation;
439 1.1 simonb *tsp = th->th_nanotime;
440 1.1 simonb } while (gen == 0 || gen != th->th_generation);
441 1.1 simonb }
442 1.1 simonb
443 1.1 simonb void
444 1.1 simonb getmicrotime(struct timeval *tvp)
445 1.1 simonb {
446 1.1 simonb struct timehands *th;
447 1.1 simonb u_int gen;
448 1.1 simonb
449 1.32 ad TC_COUNT(ngetmicrotime);
450 1.1 simonb do {
451 1.1 simonb th = timehands;
452 1.1 simonb gen = th->th_generation;
453 1.1 simonb *tvp = th->th_microtime;
454 1.1 simonb } while (gen == 0 || gen != th->th_generation);
455 1.1 simonb }
456 1.1 simonb
457 1.1 simonb /*
458 1.1 simonb * Initialize a new timecounter and possibly use it.
459 1.1 simonb */
460 1.1 simonb void
461 1.1 simonb tc_init(struct timecounter *tc)
462 1.1 simonb {
463 1.1 simonb u_int u;
464 1.1 simonb
465 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
466 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
467 1.1 simonb u *= 11;
468 1.1 simonb u /= 10;
469 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
470 1.1 simonb tc->tc_quality = -2000;
471 1.18 ad aprint_verbose(
472 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
473 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
474 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
475 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
476 1.18 ad aprint_verbose(
477 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
478 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
479 1.7 bjh21 tc->tc_quality);
480 1.1 simonb }
481 1.1 simonb
482 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
483 1.1 simonb tc->tc_next = timecounters;
484 1.1 simonb timecounters = tc;
485 1.32.6.1 mjf timecounter_mods++;
486 1.1 simonb /*
487 1.1 simonb * Never automatically use a timecounter with negative quality.
488 1.1 simonb * Even though we run on the dummy counter, switching here may be
489 1.1 simonb * worse since this timecounter may not be monotonous.
490 1.1 simonb */
491 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
492 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
493 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
494 1.22 ad (void)tc->tc_get_timecount(tc);
495 1.22 ad (void)tc->tc_get_timecount(tc);
496 1.22 ad timecounter = tc;
497 1.22 ad tc_windup();
498 1.22 ad }
499 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
500 1.32.6.1 mjf }
501 1.32.6.1 mjf
502 1.32.6.1 mjf /*
503 1.32.6.1 mjf * Pick a new timecounter due to the existing counter going bad.
504 1.32.6.1 mjf */
505 1.32.6.1 mjf static void
506 1.32.6.1 mjf tc_pick(void)
507 1.32.6.1 mjf {
508 1.32.6.1 mjf struct timecounter *best, *tc;
509 1.32.6.1 mjf
510 1.32.6.1 mjf KASSERT(mutex_owned(&timecounter_lock));
511 1.32.6.1 mjf
512 1.32.6.1 mjf for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
513 1.32.6.1 mjf if (tc->tc_quality > best->tc_quality)
514 1.32.6.1 mjf best = tc;
515 1.32.6.1 mjf else if (tc->tc_quality < best->tc_quality)
516 1.32.6.1 mjf continue;
517 1.32.6.1 mjf else if (tc->tc_frequency > best->tc_frequency)
518 1.32.6.1 mjf best = tc;
519 1.32.6.1 mjf }
520 1.32.6.1 mjf (void)best->tc_get_timecount(best);
521 1.32.6.1 mjf (void)best->tc_get_timecount(best);
522 1.32.6.1 mjf timecounter = best;
523 1.32.6.1 mjf }
524 1.32.6.1 mjf
525 1.32.6.1 mjf /*
526 1.32.6.1 mjf * A timecounter has gone bad, arrange to pick a new one at the next
527 1.32.6.1 mjf * clock tick.
528 1.32.6.1 mjf */
529 1.32.6.1 mjf void
530 1.32.6.1 mjf tc_gonebad(struct timecounter *tc)
531 1.32.6.1 mjf {
532 1.32.6.1 mjf
533 1.32.6.1 mjf tc->tc_quality = -100;
534 1.32.6.1 mjf membar_producer();
535 1.32.6.1 mjf atomic_inc_uint(&timecounter_bad);
536 1.1 simonb }
537 1.1 simonb
538 1.29 dyoung /*
539 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
540 1.29 dyoung */
541 1.29 dyoung int
542 1.29 dyoung tc_detach(struct timecounter *target)
543 1.29 dyoung {
544 1.32.6.1 mjf struct timecounter *tc;
545 1.29 dyoung struct timecounter **tcp = NULL;
546 1.30 ad int rc = 0;
547 1.29 dyoung
548 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
549 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
550 1.29 dyoung tc != NULL;
551 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
552 1.29 dyoung if (tc == target)
553 1.29 dyoung break;
554 1.29 dyoung }
555 1.29 dyoung if (tc == NULL) {
556 1.29 dyoung rc = ESRCH;
557 1.32.6.1 mjf } else {
558 1.32.6.1 mjf *tcp = tc->tc_next;
559 1.32.6.1 mjf if (timecounter == target) {
560 1.32.6.1 mjf tc_pick();
561 1.32.6.1 mjf tc_windup();
562 1.32.6.1 mjf }
563 1.32.6.1 mjf timecounter_mods++;
564 1.29 dyoung }
565 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
566 1.29 dyoung return rc;
567 1.29 dyoung }
568 1.29 dyoung
569 1.1 simonb /* Report the frequency of the current timecounter. */
570 1.1 simonb u_int64_t
571 1.1 simonb tc_getfrequency(void)
572 1.1 simonb {
573 1.1 simonb
574 1.1 simonb return (timehands->th_counter->tc_frequency);
575 1.1 simonb }
576 1.1 simonb
577 1.1 simonb /*
578 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
579 1.1 simonb * when we booted.
580 1.1 simonb */
581 1.1 simonb void
582 1.1 simonb tc_setclock(struct timespec *ts)
583 1.1 simonb {
584 1.1 simonb struct timespec ts2;
585 1.1 simonb struct bintime bt, bt2;
586 1.1 simonb
587 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
588 1.32 ad TC_COUNT(nsetclock);
589 1.1 simonb binuptime(&bt2);
590 1.1 simonb timespec2bintime(ts, &bt);
591 1.1 simonb bintime_sub(&bt, &bt2);
592 1.4 kardel bintime_add(&bt2, &timebasebin);
593 1.4 kardel timebasebin = bt;
594 1.30 ad tc_windup();
595 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
596 1.1 simonb
597 1.1 simonb if (timestepwarnings) {
598 1.1 simonb bintime2timespec(&bt2, &ts2);
599 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
600 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
601 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
602 1.1 simonb }
603 1.1 simonb }
604 1.1 simonb
605 1.1 simonb /*
606 1.1 simonb * Initialize the next struct timehands in the ring and make
607 1.1 simonb * it the active timehands. Along the way we might switch to a different
608 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
609 1.1 simonb */
610 1.1 simonb static void
611 1.1 simonb tc_windup(void)
612 1.1 simonb {
613 1.1 simonb struct bintime bt;
614 1.1 simonb struct timehands *th, *tho;
615 1.1 simonb u_int64_t scale;
616 1.1 simonb u_int delta, ncount, ogen;
617 1.13 kardel int i, s_update;
618 1.1 simonb time_t t;
619 1.1 simonb
620 1.32.6.1 mjf KASSERT(mutex_owned(&timecounter_lock));
621 1.30 ad
622 1.13 kardel s_update = 0;
623 1.20 ad
624 1.1 simonb /*
625 1.1 simonb * Make the next timehands a copy of the current one, but do not
626 1.1 simonb * overwrite the generation or next pointer. While we update
627 1.20 ad * the contents, the generation must be zero. Ensure global
628 1.20 ad * visibility of the generation before proceeding.
629 1.1 simonb */
630 1.1 simonb tho = timehands;
631 1.1 simonb th = tho->th_next;
632 1.1 simonb ogen = th->th_generation;
633 1.1 simonb th->th_generation = 0;
634 1.27 ad membar_producer();
635 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
636 1.1 simonb
637 1.1 simonb /*
638 1.1 simonb * Capture a timecounter delta on the current timecounter and if
639 1.1 simonb * changing timecounters, a counter value from the new timecounter.
640 1.1 simonb * Update the offset fields accordingly.
641 1.1 simonb */
642 1.1 simonb delta = tc_delta(th);
643 1.1 simonb if (th->th_counter != timecounter)
644 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
645 1.1 simonb else
646 1.1 simonb ncount = 0;
647 1.1 simonb th->th_offset_count += delta;
648 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
649 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
650 1.1 simonb
651 1.1 simonb /*
652 1.1 simonb * Hardware latching timecounters may not generate interrupts on
653 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
654 1.1 simonb * the hardware might capture a count which is later than the one we
655 1.1 simonb * got above, and therefore possibly in the next NTP second which might
656 1.1 simonb * have a different rate than the current NTP second. It doesn't
657 1.1 simonb * matter in practice.
658 1.1 simonb */
659 1.1 simonb if (tho->th_counter->tc_poll_pps)
660 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
661 1.1 simonb
662 1.1 simonb /*
663 1.1 simonb * Deal with NTP second processing. The for loop normally
664 1.1 simonb * iterates at most once, but in extreme situations it might
665 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
666 1.1 simonb * At boot, the time step can be large when the TOD hardware
667 1.1 simonb * has been read, so on really large steps, we call
668 1.1 simonb * ntp_update_second only twice. We need to call it twice in
669 1.1 simonb * case we missed a leap second.
670 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
671 1.2 kardel * the adjustment resulting from adjtime() calls.
672 1.1 simonb */
673 1.1 simonb bt = th->th_offset;
674 1.4 kardel bintime_add(&bt, &timebasebin);
675 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
676 1.1 simonb if (i > LARGE_STEP)
677 1.1 simonb i = 2;
678 1.1 simonb for (; i > 0; i--) {
679 1.1 simonb t = bt.sec;
680 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
681 1.13 kardel s_update = 1;
682 1.1 simonb if (bt.sec != t)
683 1.4 kardel timebasebin.sec += bt.sec - t;
684 1.1 simonb }
685 1.2 kardel
686 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
687 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
688 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
689 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
690 1.1 simonb
691 1.1 simonb /* Now is a good time to change timecounters. */
692 1.1 simonb if (th->th_counter != timecounter) {
693 1.1 simonb th->th_counter = timecounter;
694 1.1 simonb th->th_offset_count = ncount;
695 1.13 kardel s_update = 1;
696 1.1 simonb }
697 1.1 simonb
698 1.1 simonb /*-
699 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
700 1.1 simonb * fractions of a second per period of the hardware counter, taking
701 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
702 1.1 simonb * processing provides us with.
703 1.1 simonb *
704 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
705 1.1 simonb * fraction and we want 64 bit binary fraction of second:
706 1.1 simonb *
707 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
708 1.1 simonb *
709 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
710 1.1 simonb * we can only multiply by about 850 without overflowing, but that
711 1.1 simonb * leaves suitably precise fractions for multiply before divide.
712 1.1 simonb *
713 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
714 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
715 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
716 1.1 simonb *
717 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
718 1.1 simonb * to the goddess of code clarity.
719 1.1 simonb *
720 1.1 simonb */
721 1.13 kardel if (s_update) {
722 1.13 kardel scale = (u_int64_t)1 << 63;
723 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
724 1.13 kardel scale /= th->th_counter->tc_frequency;
725 1.13 kardel th->th_scale = scale * 2;
726 1.13 kardel }
727 1.1 simonb /*
728 1.1 simonb * Now that the struct timehands is again consistent, set the new
729 1.20 ad * generation number, making sure to not make it zero. Ensure
730 1.20 ad * changes are globally visible before changing.
731 1.1 simonb */
732 1.1 simonb if (++ogen == 0)
733 1.1 simonb ogen = 1;
734 1.27 ad membar_producer();
735 1.1 simonb th->th_generation = ogen;
736 1.1 simonb
737 1.20 ad /*
738 1.20 ad * Go live with the new struct timehands. Ensure changes are
739 1.20 ad * globally visible before changing.
740 1.20 ad */
741 1.1 simonb time_second = th->th_microtime.tv_sec;
742 1.1 simonb time_uptime = th->th_offset.sec;
743 1.27 ad membar_producer();
744 1.1 simonb timehands = th;
745 1.24 ad
746 1.24 ad /*
747 1.24 ad * Force users of the old timehand to move on. This is
748 1.24 ad * necessary for MP systems; we need to ensure that the
749 1.24 ad * consumers will move away from the old timehand before
750 1.24 ad * we begin updating it again when we eventually wrap
751 1.24 ad * around.
752 1.24 ad */
753 1.24 ad if (++tho->th_generation == 0)
754 1.24 ad tho->th_generation = 1;
755 1.1 simonb }
756 1.1 simonb
757 1.1 simonb /*
758 1.1 simonb * RFC 2783 PPS-API implementation.
759 1.1 simonb */
760 1.1 simonb
761 1.1 simonb int
762 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
763 1.1 simonb {
764 1.1 simonb pps_params_t *app;
765 1.2 kardel pps_info_t *pipi;
766 1.1 simonb #ifdef PPS_SYNC
767 1.2 kardel int *epi;
768 1.1 simonb #endif
769 1.1 simonb
770 1.32.6.1 mjf KASSERT(mutex_owned(&timecounter_lock));
771 1.32.6.1 mjf
772 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
773 1.1 simonb switch (cmd) {
774 1.1 simonb case PPS_IOC_CREATE:
775 1.1 simonb return (0);
776 1.1 simonb case PPS_IOC_DESTROY:
777 1.1 simonb return (0);
778 1.1 simonb case PPS_IOC_SETPARAMS:
779 1.1 simonb app = (pps_params_t *)data;
780 1.1 simonb if (app->mode & ~pps->ppscap)
781 1.1 simonb return (EINVAL);
782 1.1 simonb pps->ppsparam = *app;
783 1.1 simonb return (0);
784 1.1 simonb case PPS_IOC_GETPARAMS:
785 1.1 simonb app = (pps_params_t *)data;
786 1.1 simonb *app = pps->ppsparam;
787 1.1 simonb app->api_version = PPS_API_VERS_1;
788 1.1 simonb return (0);
789 1.1 simonb case PPS_IOC_GETCAP:
790 1.1 simonb *(int*)data = pps->ppscap;
791 1.1 simonb return (0);
792 1.1 simonb case PPS_IOC_FETCH:
793 1.2 kardel pipi = (pps_info_t *)data;
794 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
795 1.2 kardel *pipi = pps->ppsinfo;
796 1.1 simonb return (0);
797 1.1 simonb case PPS_IOC_KCBIND:
798 1.1 simonb #ifdef PPS_SYNC
799 1.2 kardel epi = (int *)data;
800 1.1 simonb /* XXX Only root should be able to do this */
801 1.2 kardel if (*epi & ~pps->ppscap)
802 1.1 simonb return (EINVAL);
803 1.2 kardel pps->kcmode = *epi;
804 1.1 simonb return (0);
805 1.1 simonb #else
806 1.1 simonb return (EOPNOTSUPP);
807 1.1 simonb #endif
808 1.1 simonb default:
809 1.2 kardel return (EPASSTHROUGH);
810 1.1 simonb }
811 1.1 simonb }
812 1.1 simonb
813 1.1 simonb void
814 1.1 simonb pps_init(struct pps_state *pps)
815 1.1 simonb {
816 1.32.6.1 mjf
817 1.32.6.1 mjf KASSERT(mutex_owned(&timecounter_lock));
818 1.32.6.1 mjf
819 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
820 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
821 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
822 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
823 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
824 1.1 simonb }
825 1.1 simonb
826 1.1 simonb void
827 1.1 simonb pps_capture(struct pps_state *pps)
828 1.1 simonb {
829 1.1 simonb struct timehands *th;
830 1.1 simonb
831 1.32.6.1 mjf KASSERT(mutex_owned(&timecounter_lock));
832 1.32.6.1 mjf KASSERT(pps != NULL);
833 1.32.6.1 mjf
834 1.1 simonb th = timehands;
835 1.1 simonb pps->capgen = th->th_generation;
836 1.1 simonb pps->capth = th;
837 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
838 1.1 simonb if (pps->capgen != th->th_generation)
839 1.1 simonb pps->capgen = 0;
840 1.1 simonb }
841 1.1 simonb
842 1.1 simonb void
843 1.1 simonb pps_event(struct pps_state *pps, int event)
844 1.1 simonb {
845 1.1 simonb struct bintime bt;
846 1.1 simonb struct timespec ts, *tsp, *osp;
847 1.1 simonb u_int tcount, *pcount;
848 1.1 simonb int foff, fhard;
849 1.1 simonb pps_seq_t *pseq;
850 1.1 simonb
851 1.32.6.1 mjf KASSERT(mutex_owned(&timecounter_lock));
852 1.32.6.1 mjf
853 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
854 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
855 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
856 1.1 simonb return;
857 1.1 simonb
858 1.1 simonb /* Things would be easier with arrays. */
859 1.1 simonb if (event == PPS_CAPTUREASSERT) {
860 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
861 1.1 simonb osp = &pps->ppsparam.assert_offset;
862 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
863 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
864 1.1 simonb pcount = &pps->ppscount[0];
865 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
866 1.1 simonb } else {
867 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
868 1.1 simonb osp = &pps->ppsparam.clear_offset;
869 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
870 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
871 1.1 simonb pcount = &pps->ppscount[1];
872 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
873 1.1 simonb }
874 1.1 simonb
875 1.1 simonb /*
876 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
877 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
878 1.1 simonb */
879 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
880 1.1 simonb pps->ppstc = pps->capth->th_counter;
881 1.1 simonb *pcount = pps->capcount;
882 1.1 simonb pps->ppscount[2] = pps->capcount;
883 1.1 simonb return;
884 1.1 simonb }
885 1.1 simonb
886 1.1 simonb /* Convert the count to a timespec. */
887 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
888 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
889 1.1 simonb bt = pps->capth->th_offset;
890 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
891 1.4 kardel bintime_add(&bt, &timebasebin);
892 1.1 simonb bintime2timespec(&bt, &ts);
893 1.1 simonb
894 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
895 1.1 simonb if (pps->capgen != pps->capth->th_generation)
896 1.1 simonb return;
897 1.1 simonb
898 1.1 simonb *pcount = pps->capcount;
899 1.1 simonb (*pseq)++;
900 1.1 simonb *tsp = ts;
901 1.1 simonb
902 1.1 simonb if (foff) {
903 1.2 kardel timespecadd(tsp, osp, tsp);
904 1.1 simonb if (tsp->tv_nsec < 0) {
905 1.1 simonb tsp->tv_nsec += 1000000000;
906 1.1 simonb tsp->tv_sec -= 1;
907 1.1 simonb }
908 1.1 simonb }
909 1.1 simonb #ifdef PPS_SYNC
910 1.1 simonb if (fhard) {
911 1.1 simonb u_int64_t scale;
912 1.1 simonb
913 1.1 simonb /*
914 1.1 simonb * Feed the NTP PLL/FLL.
915 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
916 1.1 simonb * elapsed since the previous event.
917 1.1 simonb */
918 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
919 1.1 simonb pps->ppscount[2] = pps->capcount;
920 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
921 1.1 simonb scale = (u_int64_t)1 << 63;
922 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
923 1.1 simonb scale *= 2;
924 1.1 simonb bt.sec = 0;
925 1.1 simonb bt.frac = 0;
926 1.1 simonb bintime_addx(&bt, scale * tcount);
927 1.1 simonb bintime2timespec(&bt, &ts);
928 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
929 1.1 simonb }
930 1.1 simonb #endif
931 1.1 simonb }
932 1.1 simonb
933 1.1 simonb /*
934 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
935 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
936 1.1 simonb * used by the get*() family of functions, so their precision depends on
937 1.1 simonb * the update frequency.
938 1.1 simonb */
939 1.1 simonb
940 1.1 simonb static int tc_tick;
941 1.1 simonb
942 1.1 simonb void
943 1.1 simonb tc_ticktock(void)
944 1.1 simonb {
945 1.1 simonb static int count;
946 1.1 simonb
947 1.1 simonb if (++count < tc_tick)
948 1.1 simonb return;
949 1.1 simonb count = 0;
950 1.32.6.1 mjf mutex_spin_enter(&timecounter_lock);
951 1.32.6.1 mjf if (timecounter_bad != 0) {
952 1.32.6.1 mjf /* An existing timecounter has gone bad, pick a new one. */
953 1.32.6.1 mjf (void)atomic_swap_uint(&timecounter_bad, 0);
954 1.32.6.1 mjf if (timecounter->tc_quality < 0) {
955 1.32.6.1 mjf tc_pick();
956 1.32.6.1 mjf }
957 1.32.6.1 mjf }
958 1.1 simonb tc_windup();
959 1.32.6.1 mjf mutex_spin_exit(&timecounter_lock);
960 1.1 simonb }
961 1.1 simonb
962 1.2 kardel void
963 1.2 kardel inittimecounter(void)
964 1.1 simonb {
965 1.1 simonb u_int p;
966 1.1 simonb
967 1.32.6.1 mjf mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
968 1.30 ad
969 1.1 simonb /*
970 1.1 simonb * Set the initial timeout to
971 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
972 1.1 simonb * People should probably not use the sysctl to set the timeout
973 1.1 simonb * to smaller than its inital value, since that value is the
974 1.1 simonb * smallest reasonable one. If they want better timestamps they
975 1.1 simonb * should use the non-"get"* functions.
976 1.1 simonb */
977 1.1 simonb if (hz > 1000)
978 1.1 simonb tc_tick = (hz + 500) / 1000;
979 1.1 simonb else
980 1.1 simonb tc_tick = 1;
981 1.1 simonb p = (tc_tick * 1000000) / hz;
982 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
983 1.18 ad p / 1000, p % 1000);
984 1.1 simonb
985 1.1 simonb /* warm up new timecounter (again) and get rolling. */
986 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
987 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
988 1.1 simonb }
989