kern_tc.c revision 1.33 1 1.33 ad /* $NetBSD: kern_tc.c,v 1.33 2008/04/21 12:56:31 ad Exp $ */
2 1.33 ad
3 1.33 ad /*-
4 1.33 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.33 ad * All rights reserved.
6 1.33 ad *
7 1.33 ad * Redistribution and use in source and binary forms, with or without
8 1.33 ad * modification, are permitted provided that the following conditions
9 1.33 ad * are met:
10 1.33 ad * 1. Redistributions of source code must retain the above copyright
11 1.33 ad * notice, this list of conditions and the following disclaimer.
12 1.33 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.33 ad * notice, this list of conditions and the following disclaimer in the
14 1.33 ad * documentation and/or other materials provided with the distribution.
15 1.33 ad * 3. All advertising materials mentioning features or use of this software
16 1.33 ad * must display the following acknowledgement:
17 1.33 ad * This product includes software developed by the NetBSD
18 1.33 ad * Foundation, Inc. and its contributors.
19 1.33 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
20 1.33 ad * contributors may be used to endorse or promote products derived
21 1.33 ad * from this software without specific prior written permission.
22 1.33 ad *
23 1.33 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.33 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.33 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.33 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.33 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.33 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.33 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.33 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.33 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.33 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.33 ad * POSSIBILITY OF SUCH DAMAGE.
34 1.33 ad */
35 1.2 kardel
36 1.1 simonb /*-
37 1.1 simonb * ----------------------------------------------------------------------------
38 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
39 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
40 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
41 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
42 1.2 kardel * ---------------------------------------------------------------------------
43 1.1 simonb */
44 1.1 simonb
45 1.1 simonb #include <sys/cdefs.h>
46 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
47 1.33 ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.33 2008/04/21 12:56:31 ad Exp $");
48 1.1 simonb
49 1.1 simonb #include "opt_ntp.h"
50 1.1 simonb
51 1.1 simonb #include <sys/param.h>
52 1.1 simonb #include <sys/kernel.h>
53 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
54 1.1 simonb #include <sys/sysctl.h>
55 1.1 simonb #include <sys/syslog.h>
56 1.1 simonb #include <sys/systm.h>
57 1.1 simonb #include <sys/timepps.h>
58 1.1 simonb #include <sys/timetc.h>
59 1.1 simonb #include <sys/timex.h>
60 1.2 kardel #include <sys/evcnt.h>
61 1.2 kardel #include <sys/kauth.h>
62 1.25 ad #include <sys/mutex.h>
63 1.27 ad #include <sys/atomic.h>
64 1.2 kardel
65 1.2 kardel /*
66 1.1 simonb * A large step happens on boot. This constant detects such steps.
67 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
68 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
69 1.1 simonb * forever when the time step is large.
70 1.1 simonb */
71 1.1 simonb #define LARGE_STEP 200
72 1.1 simonb
73 1.1 simonb /*
74 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
75 1.1 simonb * in the air. This allows the console and other early stuff to use
76 1.1 simonb * time services.
77 1.1 simonb */
78 1.1 simonb
79 1.1 simonb static u_int
80 1.16 yamt dummy_get_timecount(struct timecounter *tc)
81 1.1 simonb {
82 1.1 simonb static u_int now;
83 1.1 simonb
84 1.1 simonb return (++now);
85 1.1 simonb }
86 1.1 simonb
87 1.1 simonb static struct timecounter dummy_timecounter = {
88 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
89 1.1 simonb };
90 1.1 simonb
91 1.1 simonb struct timehands {
92 1.1 simonb /* These fields must be initialized by the driver. */
93 1.1 simonb struct timecounter *th_counter;
94 1.1 simonb int64_t th_adjustment;
95 1.1 simonb u_int64_t th_scale;
96 1.1 simonb u_int th_offset_count;
97 1.1 simonb struct bintime th_offset;
98 1.1 simonb struct timeval th_microtime;
99 1.1 simonb struct timespec th_nanotime;
100 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
101 1.1 simonb volatile u_int th_generation;
102 1.1 simonb struct timehands *th_next;
103 1.1 simonb };
104 1.1 simonb
105 1.1 simonb static struct timehands th0;
106 1.10 christos static struct timehands th9 = { .th_next = &th0, };
107 1.10 christos static struct timehands th8 = { .th_next = &th9, };
108 1.10 christos static struct timehands th7 = { .th_next = &th8, };
109 1.10 christos static struct timehands th6 = { .th_next = &th7, };
110 1.10 christos static struct timehands th5 = { .th_next = &th6, };
111 1.10 christos static struct timehands th4 = { .th_next = &th5, };
112 1.10 christos static struct timehands th3 = { .th_next = &th4, };
113 1.10 christos static struct timehands th2 = { .th_next = &th3, };
114 1.10 christos static struct timehands th1 = { .th_next = &th2, };
115 1.1 simonb static struct timehands th0 = {
116 1.10 christos .th_counter = &dummy_timecounter,
117 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
118 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
119 1.10 christos .th_generation = 1,
120 1.10 christos .th_next = &th1,
121 1.1 simonb };
122 1.1 simonb
123 1.1 simonb static struct timehands *volatile timehands = &th0;
124 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
125 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
126 1.1 simonb
127 1.1 simonb time_t time_second = 1;
128 1.1 simonb time_t time_uptime = 1;
129 1.1 simonb
130 1.4 kardel static struct bintime timebasebin;
131 1.1 simonb
132 1.1 simonb static int timestepwarnings;
133 1.2 kardel
134 1.25 ad extern kmutex_t time_lock;
135 1.33 ad kmutex_t timecounter_lock;
136 1.25 ad
137 1.2 kardel #ifdef __FreeBSD__
138 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
139 1.1 simonb ×tepwarnings, 0, "");
140 1.2 kardel #endif /* __FreeBSD__ */
141 1.2 kardel
142 1.2 kardel /*
143 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
144 1.2 kardel */
145 1.2 kardel static int
146 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
147 1.2 kardel {
148 1.2 kardel struct sysctlnode node;
149 1.2 kardel int error;
150 1.2 kardel char newname[MAX_TCNAMELEN];
151 1.2 kardel struct timecounter *newtc, *tc;
152 1.2 kardel
153 1.2 kardel tc = timecounter;
154 1.2 kardel
155 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
156 1.2 kardel
157 1.2 kardel node = *rnode;
158 1.2 kardel node.sysctl_data = newname;
159 1.2 kardel node.sysctl_size = sizeof(newname);
160 1.2 kardel
161 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
162 1.2 kardel
163 1.2 kardel if (error ||
164 1.2 kardel newp == NULL ||
165 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
166 1.2 kardel return error;
167 1.1 simonb
168 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
169 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
170 1.26 elad NULL, NULL)) != 0)
171 1.2 kardel return (error);
172 1.2 kardel
173 1.22 ad if (!cold)
174 1.22 ad mutex_enter(&time_lock);
175 1.23 ad error = EINVAL;
176 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
177 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
178 1.2 kardel continue;
179 1.2 kardel /* Warm up new timecounter. */
180 1.2 kardel (void)newtc->tc_get_timecount(newtc);
181 1.2 kardel (void)newtc->tc_get_timecount(newtc);
182 1.2 kardel timecounter = newtc;
183 1.22 ad error = 0;
184 1.23 ad break;
185 1.23 ad }
186 1.22 ad if (!cold)
187 1.22 ad mutex_exit(&time_lock);
188 1.22 ad return error;
189 1.2 kardel }
190 1.2 kardel
191 1.2 kardel static int
192 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
193 1.2 kardel {
194 1.9 kardel char buf[MAX_TCNAMELEN+48];
195 1.2 kardel char *where = oldp;
196 1.2 kardel const char *spc;
197 1.2 kardel struct timecounter *tc;
198 1.2 kardel size_t needed, left, slen;
199 1.2 kardel int error;
200 1.2 kardel
201 1.2 kardel if (newp != NULL)
202 1.2 kardel return (EPERM);
203 1.2 kardel if (namelen != 0)
204 1.2 kardel return (EINVAL);
205 1.2 kardel
206 1.2 kardel spc = "";
207 1.2 kardel error = 0;
208 1.2 kardel needed = 0;
209 1.2 kardel left = *oldlenp;
210 1.2 kardel
211 1.22 ad mutex_enter(&time_lock);
212 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
213 1.2 kardel if (where == NULL) {
214 1.2 kardel needed += sizeof(buf); /* be conservative */
215 1.2 kardel } else {
216 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
217 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
218 1.2 kardel tc->tc_frequency);
219 1.2 kardel if (left < slen + 1)
220 1.2 kardel break;
221 1.2 kardel /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
222 1.22 ad /* XXX copyout with held lock. */
223 1.2 kardel error = copyout(buf, where, slen + 1);
224 1.2 kardel spc = " ";
225 1.2 kardel where += slen;
226 1.2 kardel needed += slen;
227 1.2 kardel left -= slen;
228 1.2 kardel }
229 1.2 kardel }
230 1.22 ad mutex_exit(&time_lock);
231 1.2 kardel
232 1.2 kardel *oldlenp = needed;
233 1.2 kardel return (error);
234 1.2 kardel }
235 1.2 kardel
236 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
237 1.2 kardel {
238 1.2 kardel const struct sysctlnode *node;
239 1.2 kardel
240 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
241 1.2 kardel CTLFLAG_PERMANENT,
242 1.2 kardel CTLTYPE_NODE, "timecounter",
243 1.2 kardel SYSCTL_DESCR("time counter information"),
244 1.2 kardel NULL, 0, NULL, 0,
245 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
246 1.2 kardel
247 1.2 kardel if (node != NULL) {
248 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
249 1.2 kardel CTLFLAG_PERMANENT,
250 1.2 kardel CTLTYPE_STRING, "choice",
251 1.2 kardel SYSCTL_DESCR("available counters"),
252 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
253 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
254 1.2 kardel
255 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
256 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 1.2 kardel CTLTYPE_STRING, "hardware",
258 1.2 kardel SYSCTL_DESCR("currently active time counter"),
259 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
260 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
261 1.2 kardel
262 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
263 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 1.2 kardel CTLTYPE_INT, "timestepwarnings",
265 1.2 kardel SYSCTL_DESCR("log time steps"),
266 1.2 kardel NULL, 0, ×tepwarnings, 0,
267 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268 1.2 kardel }
269 1.2 kardel }
270 1.2 kardel
271 1.32 ad #ifdef TC_COUNTERS
272 1.2 kardel #define TC_STATS(name) \
273 1.2 kardel static struct evcnt n##name = \
274 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
275 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
276 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
277 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
278 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
279 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
280 1.2 kardel TC_STATS(setclock);
281 1.32 ad #define TC_COUNT(var) var.ev_count++
282 1.1 simonb #undef TC_STATS
283 1.32 ad #else
284 1.32 ad #define TC_COUNT(var) /* nothing */
285 1.32 ad #endif /* TC_COUNTERS */
286 1.1 simonb
287 1.1 simonb static void tc_windup(void);
288 1.1 simonb
289 1.1 simonb /*
290 1.1 simonb * Return the difference between the timehands' counter value now and what
291 1.1 simonb * was when we copied it to the timehands' offset_count.
292 1.1 simonb */
293 1.1 simonb static __inline u_int
294 1.1 simonb tc_delta(struct timehands *th)
295 1.1 simonb {
296 1.1 simonb struct timecounter *tc;
297 1.1 simonb
298 1.1 simonb tc = th->th_counter;
299 1.2 kardel return ((tc->tc_get_timecount(tc) -
300 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
301 1.1 simonb }
302 1.1 simonb
303 1.1 simonb /*
304 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
305 1.1 simonb * the timehands that we operated on was not updated under our feet. See
306 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
307 1.1 simonb */
308 1.1 simonb
309 1.1 simonb void
310 1.1 simonb binuptime(struct bintime *bt)
311 1.1 simonb {
312 1.1 simonb struct timehands *th;
313 1.1 simonb u_int gen;
314 1.1 simonb
315 1.32 ad TC_COUNT(nbinuptime);
316 1.1 simonb do {
317 1.1 simonb th = timehands;
318 1.1 simonb gen = th->th_generation;
319 1.1 simonb *bt = th->th_offset;
320 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
321 1.1 simonb } while (gen == 0 || gen != th->th_generation);
322 1.1 simonb }
323 1.1 simonb
324 1.1 simonb void
325 1.1 simonb nanouptime(struct timespec *tsp)
326 1.1 simonb {
327 1.1 simonb struct bintime bt;
328 1.1 simonb
329 1.32 ad TC_COUNT(nnanouptime);
330 1.1 simonb binuptime(&bt);
331 1.1 simonb bintime2timespec(&bt, tsp);
332 1.1 simonb }
333 1.1 simonb
334 1.1 simonb void
335 1.1 simonb microuptime(struct timeval *tvp)
336 1.1 simonb {
337 1.1 simonb struct bintime bt;
338 1.1 simonb
339 1.32 ad TC_COUNT(nmicrouptime);
340 1.1 simonb binuptime(&bt);
341 1.1 simonb bintime2timeval(&bt, tvp);
342 1.1 simonb }
343 1.1 simonb
344 1.1 simonb void
345 1.1 simonb bintime(struct bintime *bt)
346 1.1 simonb {
347 1.1 simonb
348 1.32 ad TC_COUNT(nbintime);
349 1.1 simonb binuptime(bt);
350 1.4 kardel bintime_add(bt, &timebasebin);
351 1.1 simonb }
352 1.1 simonb
353 1.1 simonb void
354 1.1 simonb nanotime(struct timespec *tsp)
355 1.1 simonb {
356 1.1 simonb struct bintime bt;
357 1.1 simonb
358 1.32 ad TC_COUNT(nnanotime);
359 1.1 simonb bintime(&bt);
360 1.1 simonb bintime2timespec(&bt, tsp);
361 1.1 simonb }
362 1.1 simonb
363 1.1 simonb void
364 1.1 simonb microtime(struct timeval *tvp)
365 1.1 simonb {
366 1.1 simonb struct bintime bt;
367 1.1 simonb
368 1.32 ad TC_COUNT(nmicrotime);
369 1.1 simonb bintime(&bt);
370 1.1 simonb bintime2timeval(&bt, tvp);
371 1.1 simonb }
372 1.1 simonb
373 1.1 simonb void
374 1.1 simonb getbinuptime(struct bintime *bt)
375 1.1 simonb {
376 1.1 simonb struct timehands *th;
377 1.1 simonb u_int gen;
378 1.1 simonb
379 1.32 ad TC_COUNT(ngetbinuptime);
380 1.1 simonb do {
381 1.1 simonb th = timehands;
382 1.1 simonb gen = th->th_generation;
383 1.1 simonb *bt = th->th_offset;
384 1.1 simonb } while (gen == 0 || gen != th->th_generation);
385 1.1 simonb }
386 1.1 simonb
387 1.1 simonb void
388 1.1 simonb getnanouptime(struct timespec *tsp)
389 1.1 simonb {
390 1.1 simonb struct timehands *th;
391 1.1 simonb u_int gen;
392 1.1 simonb
393 1.32 ad TC_COUNT(ngetnanouptime);
394 1.1 simonb do {
395 1.1 simonb th = timehands;
396 1.1 simonb gen = th->th_generation;
397 1.1 simonb bintime2timespec(&th->th_offset, tsp);
398 1.1 simonb } while (gen == 0 || gen != th->th_generation);
399 1.1 simonb }
400 1.1 simonb
401 1.1 simonb void
402 1.1 simonb getmicrouptime(struct timeval *tvp)
403 1.1 simonb {
404 1.1 simonb struct timehands *th;
405 1.1 simonb u_int gen;
406 1.1 simonb
407 1.32 ad TC_COUNT(ngetmicrouptime);
408 1.1 simonb do {
409 1.1 simonb th = timehands;
410 1.1 simonb gen = th->th_generation;
411 1.1 simonb bintime2timeval(&th->th_offset, tvp);
412 1.1 simonb } while (gen == 0 || gen != th->th_generation);
413 1.1 simonb }
414 1.1 simonb
415 1.1 simonb void
416 1.1 simonb getbintime(struct bintime *bt)
417 1.1 simonb {
418 1.1 simonb struct timehands *th;
419 1.1 simonb u_int gen;
420 1.1 simonb
421 1.32 ad TC_COUNT(ngetbintime);
422 1.1 simonb do {
423 1.1 simonb th = timehands;
424 1.1 simonb gen = th->th_generation;
425 1.1 simonb *bt = th->th_offset;
426 1.1 simonb } while (gen == 0 || gen != th->th_generation);
427 1.4 kardel bintime_add(bt, &timebasebin);
428 1.1 simonb }
429 1.1 simonb
430 1.1 simonb void
431 1.1 simonb getnanotime(struct timespec *tsp)
432 1.1 simonb {
433 1.1 simonb struct timehands *th;
434 1.1 simonb u_int gen;
435 1.1 simonb
436 1.32 ad TC_COUNT(ngetnanotime);
437 1.1 simonb do {
438 1.1 simonb th = timehands;
439 1.1 simonb gen = th->th_generation;
440 1.1 simonb *tsp = th->th_nanotime;
441 1.1 simonb } while (gen == 0 || gen != th->th_generation);
442 1.1 simonb }
443 1.1 simonb
444 1.1 simonb void
445 1.1 simonb getmicrotime(struct timeval *tvp)
446 1.1 simonb {
447 1.1 simonb struct timehands *th;
448 1.1 simonb u_int gen;
449 1.1 simonb
450 1.32 ad TC_COUNT(ngetmicrotime);
451 1.1 simonb do {
452 1.1 simonb th = timehands;
453 1.1 simonb gen = th->th_generation;
454 1.1 simonb *tvp = th->th_microtime;
455 1.1 simonb } while (gen == 0 || gen != th->th_generation);
456 1.1 simonb }
457 1.1 simonb
458 1.1 simonb /*
459 1.1 simonb * Initialize a new timecounter and possibly use it.
460 1.1 simonb */
461 1.1 simonb void
462 1.1 simonb tc_init(struct timecounter *tc)
463 1.1 simonb {
464 1.1 simonb u_int u;
465 1.1 simonb
466 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
467 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
468 1.1 simonb u *= 11;
469 1.1 simonb u /= 10;
470 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
471 1.1 simonb tc->tc_quality = -2000;
472 1.18 ad aprint_verbose(
473 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
474 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
475 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
476 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
477 1.18 ad aprint_verbose(
478 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
479 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
480 1.7 bjh21 tc->tc_quality);
481 1.1 simonb }
482 1.1 simonb
483 1.22 ad mutex_enter(&time_lock);
484 1.33 ad mutex_spin_enter(&timecounter_lock);
485 1.1 simonb tc->tc_next = timecounters;
486 1.1 simonb timecounters = tc;
487 1.1 simonb /*
488 1.1 simonb * Never automatically use a timecounter with negative quality.
489 1.1 simonb * Even though we run on the dummy counter, switching here may be
490 1.1 simonb * worse since this timecounter may not be monotonous.
491 1.1 simonb */
492 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
493 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
494 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
495 1.22 ad (void)tc->tc_get_timecount(tc);
496 1.22 ad (void)tc->tc_get_timecount(tc);
497 1.22 ad timecounter = tc;
498 1.22 ad tc_windup();
499 1.22 ad }
500 1.33 ad mutex_spin_exit(&timecounter_lock);
501 1.22 ad mutex_exit(&time_lock);
502 1.1 simonb }
503 1.1 simonb
504 1.29 dyoung /*
505 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
506 1.29 dyoung */
507 1.29 dyoung int
508 1.29 dyoung tc_detach(struct timecounter *target)
509 1.29 dyoung {
510 1.29 dyoung struct timecounter *best, *tc;
511 1.29 dyoung struct timecounter **tcp = NULL;
512 1.30 ad int rc = 0;
513 1.29 dyoung
514 1.29 dyoung mutex_enter(&time_lock);
515 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
516 1.29 dyoung tc != NULL;
517 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
518 1.29 dyoung if (tc == target)
519 1.29 dyoung break;
520 1.29 dyoung }
521 1.29 dyoung if (tc == NULL) {
522 1.29 dyoung rc = ESRCH;
523 1.29 dyoung goto out;
524 1.29 dyoung }
525 1.29 dyoung *tcp = tc->tc_next;
526 1.29 dyoung
527 1.29 dyoung if (timecounter != target)
528 1.29 dyoung goto out;
529 1.29 dyoung
530 1.29 dyoung for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
531 1.29 dyoung if (tc->tc_quality > best->tc_quality)
532 1.29 dyoung best = tc;
533 1.29 dyoung else if (tc->tc_quality < best->tc_quality)
534 1.29 dyoung continue;
535 1.29 dyoung else if (tc->tc_frequency > best->tc_frequency)
536 1.29 dyoung best = tc;
537 1.29 dyoung }
538 1.33 ad mutex_spin_enter(&timecounter_lock);
539 1.29 dyoung (void)best->tc_get_timecount(best);
540 1.29 dyoung (void)best->tc_get_timecount(best);
541 1.29 dyoung timecounter = best;
542 1.29 dyoung tc_windup();
543 1.33 ad mutex_spin_exit(&timecounter_lock);
544 1.29 dyoung out:
545 1.29 dyoung mutex_exit(&time_lock);
546 1.29 dyoung return rc;
547 1.29 dyoung }
548 1.29 dyoung
549 1.1 simonb /* Report the frequency of the current timecounter. */
550 1.1 simonb u_int64_t
551 1.1 simonb tc_getfrequency(void)
552 1.1 simonb {
553 1.1 simonb
554 1.1 simonb return (timehands->th_counter->tc_frequency);
555 1.1 simonb }
556 1.1 simonb
557 1.1 simonb /*
558 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
559 1.1 simonb * when we booted.
560 1.1 simonb */
561 1.1 simonb void
562 1.1 simonb tc_setclock(struct timespec *ts)
563 1.1 simonb {
564 1.1 simonb struct timespec ts2;
565 1.1 simonb struct bintime bt, bt2;
566 1.1 simonb
567 1.33 ad mutex_spin_enter(&timecounter_lock);
568 1.32 ad TC_COUNT(nsetclock);
569 1.1 simonb binuptime(&bt2);
570 1.1 simonb timespec2bintime(ts, &bt);
571 1.1 simonb bintime_sub(&bt, &bt2);
572 1.4 kardel bintime_add(&bt2, &timebasebin);
573 1.4 kardel timebasebin = bt;
574 1.30 ad tc_windup();
575 1.33 ad mutex_spin_exit(&timecounter_lock);
576 1.1 simonb
577 1.1 simonb if (timestepwarnings) {
578 1.1 simonb bintime2timespec(&bt2, &ts2);
579 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
580 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
581 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
582 1.1 simonb }
583 1.1 simonb }
584 1.1 simonb
585 1.1 simonb /*
586 1.1 simonb * Initialize the next struct timehands in the ring and make
587 1.1 simonb * it the active timehands. Along the way we might switch to a different
588 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
589 1.1 simonb */
590 1.1 simonb static void
591 1.1 simonb tc_windup(void)
592 1.1 simonb {
593 1.1 simonb struct bintime bt;
594 1.1 simonb struct timehands *th, *tho;
595 1.1 simonb u_int64_t scale;
596 1.1 simonb u_int delta, ncount, ogen;
597 1.13 kardel int i, s_update;
598 1.1 simonb time_t t;
599 1.1 simonb
600 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
601 1.30 ad
602 1.13 kardel s_update = 0;
603 1.20 ad
604 1.1 simonb /*
605 1.1 simonb * Make the next timehands a copy of the current one, but do not
606 1.1 simonb * overwrite the generation or next pointer. While we update
607 1.20 ad * the contents, the generation must be zero. Ensure global
608 1.20 ad * visibility of the generation before proceeding.
609 1.1 simonb */
610 1.1 simonb tho = timehands;
611 1.1 simonb th = tho->th_next;
612 1.1 simonb ogen = th->th_generation;
613 1.1 simonb th->th_generation = 0;
614 1.27 ad membar_producer();
615 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
616 1.1 simonb
617 1.1 simonb /*
618 1.1 simonb * Capture a timecounter delta on the current timecounter and if
619 1.1 simonb * changing timecounters, a counter value from the new timecounter.
620 1.1 simonb * Update the offset fields accordingly.
621 1.1 simonb */
622 1.1 simonb delta = tc_delta(th);
623 1.1 simonb if (th->th_counter != timecounter)
624 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
625 1.1 simonb else
626 1.1 simonb ncount = 0;
627 1.1 simonb th->th_offset_count += delta;
628 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
629 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
630 1.1 simonb
631 1.1 simonb /*
632 1.1 simonb * Hardware latching timecounters may not generate interrupts on
633 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
634 1.1 simonb * the hardware might capture a count which is later than the one we
635 1.1 simonb * got above, and therefore possibly in the next NTP second which might
636 1.1 simonb * have a different rate than the current NTP second. It doesn't
637 1.1 simonb * matter in practice.
638 1.1 simonb */
639 1.1 simonb if (tho->th_counter->tc_poll_pps)
640 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
641 1.1 simonb
642 1.1 simonb /*
643 1.1 simonb * Deal with NTP second processing. The for loop normally
644 1.1 simonb * iterates at most once, but in extreme situations it might
645 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
646 1.1 simonb * At boot, the time step can be large when the TOD hardware
647 1.1 simonb * has been read, so on really large steps, we call
648 1.1 simonb * ntp_update_second only twice. We need to call it twice in
649 1.1 simonb * case we missed a leap second.
650 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
651 1.2 kardel * the adjustment resulting from adjtime() calls.
652 1.1 simonb */
653 1.1 simonb bt = th->th_offset;
654 1.4 kardel bintime_add(&bt, &timebasebin);
655 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
656 1.1 simonb if (i > LARGE_STEP)
657 1.1 simonb i = 2;
658 1.1 simonb for (; i > 0; i--) {
659 1.1 simonb t = bt.sec;
660 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
661 1.13 kardel s_update = 1;
662 1.1 simonb if (bt.sec != t)
663 1.4 kardel timebasebin.sec += bt.sec - t;
664 1.1 simonb }
665 1.2 kardel
666 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
667 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
668 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
669 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
670 1.1 simonb
671 1.1 simonb /* Now is a good time to change timecounters. */
672 1.1 simonb if (th->th_counter != timecounter) {
673 1.1 simonb th->th_counter = timecounter;
674 1.1 simonb th->th_offset_count = ncount;
675 1.13 kardel s_update = 1;
676 1.1 simonb }
677 1.1 simonb
678 1.1 simonb /*-
679 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
680 1.1 simonb * fractions of a second per period of the hardware counter, taking
681 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
682 1.1 simonb * processing provides us with.
683 1.1 simonb *
684 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
685 1.1 simonb * fraction and we want 64 bit binary fraction of second:
686 1.1 simonb *
687 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
688 1.1 simonb *
689 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
690 1.1 simonb * we can only multiply by about 850 without overflowing, but that
691 1.1 simonb * leaves suitably precise fractions for multiply before divide.
692 1.1 simonb *
693 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
694 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
695 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
696 1.1 simonb *
697 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
698 1.1 simonb * to the goddess of code clarity.
699 1.1 simonb *
700 1.1 simonb */
701 1.13 kardel if (s_update) {
702 1.13 kardel scale = (u_int64_t)1 << 63;
703 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
704 1.13 kardel scale /= th->th_counter->tc_frequency;
705 1.13 kardel th->th_scale = scale * 2;
706 1.13 kardel }
707 1.1 simonb /*
708 1.1 simonb * Now that the struct timehands is again consistent, set the new
709 1.20 ad * generation number, making sure to not make it zero. Ensure
710 1.20 ad * changes are globally visible before changing.
711 1.1 simonb */
712 1.1 simonb if (++ogen == 0)
713 1.1 simonb ogen = 1;
714 1.27 ad membar_producer();
715 1.1 simonb th->th_generation = ogen;
716 1.1 simonb
717 1.20 ad /*
718 1.20 ad * Go live with the new struct timehands. Ensure changes are
719 1.20 ad * globally visible before changing.
720 1.20 ad */
721 1.1 simonb time_second = th->th_microtime.tv_sec;
722 1.1 simonb time_uptime = th->th_offset.sec;
723 1.27 ad membar_producer();
724 1.1 simonb timehands = th;
725 1.24 ad
726 1.24 ad /*
727 1.24 ad * Force users of the old timehand to move on. This is
728 1.24 ad * necessary for MP systems; we need to ensure that the
729 1.24 ad * consumers will move away from the old timehand before
730 1.24 ad * we begin updating it again when we eventually wrap
731 1.24 ad * around.
732 1.24 ad */
733 1.24 ad if (++tho->th_generation == 0)
734 1.24 ad tho->th_generation = 1;
735 1.1 simonb }
736 1.1 simonb
737 1.1 simonb /*
738 1.1 simonb * RFC 2783 PPS-API implementation.
739 1.1 simonb */
740 1.1 simonb
741 1.1 simonb int
742 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
743 1.1 simonb {
744 1.1 simonb pps_params_t *app;
745 1.2 kardel pps_info_t *pipi;
746 1.1 simonb #ifdef PPS_SYNC
747 1.2 kardel int *epi;
748 1.1 simonb #endif
749 1.1 simonb
750 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
751 1.33 ad
752 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
753 1.1 simonb switch (cmd) {
754 1.1 simonb case PPS_IOC_CREATE:
755 1.1 simonb return (0);
756 1.1 simonb case PPS_IOC_DESTROY:
757 1.1 simonb return (0);
758 1.1 simonb case PPS_IOC_SETPARAMS:
759 1.1 simonb app = (pps_params_t *)data;
760 1.1 simonb if (app->mode & ~pps->ppscap)
761 1.1 simonb return (EINVAL);
762 1.1 simonb pps->ppsparam = *app;
763 1.1 simonb return (0);
764 1.1 simonb case PPS_IOC_GETPARAMS:
765 1.1 simonb app = (pps_params_t *)data;
766 1.1 simonb *app = pps->ppsparam;
767 1.1 simonb app->api_version = PPS_API_VERS_1;
768 1.1 simonb return (0);
769 1.1 simonb case PPS_IOC_GETCAP:
770 1.1 simonb *(int*)data = pps->ppscap;
771 1.1 simonb return (0);
772 1.1 simonb case PPS_IOC_FETCH:
773 1.2 kardel pipi = (pps_info_t *)data;
774 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
775 1.2 kardel *pipi = pps->ppsinfo;
776 1.1 simonb return (0);
777 1.1 simonb case PPS_IOC_KCBIND:
778 1.1 simonb #ifdef PPS_SYNC
779 1.2 kardel epi = (int *)data;
780 1.1 simonb /* XXX Only root should be able to do this */
781 1.2 kardel if (*epi & ~pps->ppscap)
782 1.1 simonb return (EINVAL);
783 1.2 kardel pps->kcmode = *epi;
784 1.1 simonb return (0);
785 1.1 simonb #else
786 1.1 simonb return (EOPNOTSUPP);
787 1.1 simonb #endif
788 1.1 simonb default:
789 1.2 kardel return (EPASSTHROUGH);
790 1.1 simonb }
791 1.1 simonb }
792 1.1 simonb
793 1.1 simonb void
794 1.1 simonb pps_init(struct pps_state *pps)
795 1.1 simonb {
796 1.33 ad
797 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
798 1.33 ad
799 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
800 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
801 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
802 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
803 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
804 1.1 simonb }
805 1.1 simonb
806 1.1 simonb void
807 1.1 simonb pps_capture(struct pps_state *pps)
808 1.1 simonb {
809 1.1 simonb struct timehands *th;
810 1.1 simonb
811 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
812 1.33 ad KASSERT(pps != NULL);
813 1.33 ad
814 1.1 simonb th = timehands;
815 1.1 simonb pps->capgen = th->th_generation;
816 1.1 simonb pps->capth = th;
817 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
818 1.1 simonb if (pps->capgen != th->th_generation)
819 1.1 simonb pps->capgen = 0;
820 1.1 simonb }
821 1.1 simonb
822 1.1 simonb void
823 1.1 simonb pps_event(struct pps_state *pps, int event)
824 1.1 simonb {
825 1.1 simonb struct bintime bt;
826 1.1 simonb struct timespec ts, *tsp, *osp;
827 1.1 simonb u_int tcount, *pcount;
828 1.1 simonb int foff, fhard;
829 1.1 simonb pps_seq_t *pseq;
830 1.1 simonb
831 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
832 1.33 ad
833 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
834 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
835 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
836 1.1 simonb return;
837 1.1 simonb
838 1.1 simonb /* Things would be easier with arrays. */
839 1.1 simonb if (event == PPS_CAPTUREASSERT) {
840 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
841 1.1 simonb osp = &pps->ppsparam.assert_offset;
842 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
843 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
844 1.1 simonb pcount = &pps->ppscount[0];
845 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
846 1.1 simonb } else {
847 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
848 1.1 simonb osp = &pps->ppsparam.clear_offset;
849 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
850 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
851 1.1 simonb pcount = &pps->ppscount[1];
852 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
853 1.1 simonb }
854 1.1 simonb
855 1.1 simonb /*
856 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
857 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
858 1.1 simonb */
859 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
860 1.1 simonb pps->ppstc = pps->capth->th_counter;
861 1.1 simonb *pcount = pps->capcount;
862 1.1 simonb pps->ppscount[2] = pps->capcount;
863 1.1 simonb return;
864 1.1 simonb }
865 1.1 simonb
866 1.1 simonb /* Convert the count to a timespec. */
867 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
868 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
869 1.1 simonb bt = pps->capth->th_offset;
870 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
871 1.4 kardel bintime_add(&bt, &timebasebin);
872 1.1 simonb bintime2timespec(&bt, &ts);
873 1.1 simonb
874 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
875 1.1 simonb if (pps->capgen != pps->capth->th_generation)
876 1.1 simonb return;
877 1.1 simonb
878 1.1 simonb *pcount = pps->capcount;
879 1.1 simonb (*pseq)++;
880 1.1 simonb *tsp = ts;
881 1.1 simonb
882 1.1 simonb if (foff) {
883 1.2 kardel timespecadd(tsp, osp, tsp);
884 1.1 simonb if (tsp->tv_nsec < 0) {
885 1.1 simonb tsp->tv_nsec += 1000000000;
886 1.1 simonb tsp->tv_sec -= 1;
887 1.1 simonb }
888 1.1 simonb }
889 1.1 simonb #ifdef PPS_SYNC
890 1.1 simonb if (fhard) {
891 1.1 simonb u_int64_t scale;
892 1.1 simonb
893 1.1 simonb /*
894 1.1 simonb * Feed the NTP PLL/FLL.
895 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
896 1.1 simonb * elapsed since the previous event.
897 1.1 simonb */
898 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
899 1.1 simonb pps->ppscount[2] = pps->capcount;
900 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
901 1.1 simonb scale = (u_int64_t)1 << 63;
902 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
903 1.1 simonb scale *= 2;
904 1.1 simonb bt.sec = 0;
905 1.1 simonb bt.frac = 0;
906 1.1 simonb bintime_addx(&bt, scale * tcount);
907 1.1 simonb bintime2timespec(&bt, &ts);
908 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
909 1.1 simonb }
910 1.1 simonb #endif
911 1.1 simonb }
912 1.1 simonb
913 1.1 simonb /*
914 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
915 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
916 1.1 simonb * used by the get*() family of functions, so their precision depends on
917 1.1 simonb * the update frequency.
918 1.1 simonb */
919 1.1 simonb
920 1.1 simonb static int tc_tick;
921 1.1 simonb
922 1.1 simonb void
923 1.1 simonb tc_ticktock(void)
924 1.1 simonb {
925 1.1 simonb static int count;
926 1.1 simonb
927 1.1 simonb if (++count < tc_tick)
928 1.1 simonb return;
929 1.1 simonb count = 0;
930 1.33 ad mutex_spin_enter(&timecounter_lock);
931 1.1 simonb tc_windup();
932 1.33 ad mutex_spin_exit(&timecounter_lock);
933 1.1 simonb }
934 1.1 simonb
935 1.2 kardel void
936 1.2 kardel inittimecounter(void)
937 1.1 simonb {
938 1.1 simonb u_int p;
939 1.1 simonb
940 1.33 ad mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
941 1.30 ad
942 1.1 simonb /*
943 1.1 simonb * Set the initial timeout to
944 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
945 1.1 simonb * People should probably not use the sysctl to set the timeout
946 1.1 simonb * to smaller than its inital value, since that value is the
947 1.1 simonb * smallest reasonable one. If they want better timestamps they
948 1.1 simonb * should use the non-"get"* functions.
949 1.1 simonb */
950 1.1 simonb if (hz > 1000)
951 1.1 simonb tc_tick = (hz + 500) / 1000;
952 1.1 simonb else
953 1.1 simonb tc_tick = 1;
954 1.1 simonb p = (tc_tick * 1000000) / hz;
955 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
956 1.18 ad p / 1000, p % 1000);
957 1.1 simonb
958 1.1 simonb /* warm up new timecounter (again) and get rolling. */
959 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
960 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
961 1.1 simonb }
962