Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.33.2.4
      1  1.33.2.4      yamt /* $NetBSD: kern_tc.c,v 1.33.2.4 2010/03/11 15:04:18 yamt Exp $ */
      2      1.33        ad 
      3      1.33        ad /*-
      4  1.33.2.3      yamt  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.33        ad  * All rights reserved.
      6      1.33        ad  *
      7  1.33.2.3      yamt  * This code is derived from software contributed to The NetBSD Foundation
      8  1.33.2.3      yamt  * by Andrew Doran.
      9  1.33.2.3      yamt  *
     10      1.33        ad  * Redistribution and use in source and binary forms, with or without
     11      1.33        ad  * modification, are permitted provided that the following conditions
     12      1.33        ad  * are met:
     13      1.33        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.33        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.33        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.33        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.33        ad  *    documentation and/or other materials provided with the distribution.
     18      1.33        ad  *
     19      1.33        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.33        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.33        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.33        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.33        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.33        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.33        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.33        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.33        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.33        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.33        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.33        ad  */
     31       1.2    kardel 
     32       1.1    simonb /*-
     33       1.1    simonb  * ----------------------------------------------------------------------------
     34       1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
     35       1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36       1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
     37       1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38       1.2    kardel  * ---------------------------------------------------------------------------
     39       1.1    simonb  */
     40       1.1    simonb 
     41       1.1    simonb #include <sys/cdefs.h>
     42       1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43  1.33.2.4      yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.33.2.4 2010/03/11 15:04:18 yamt Exp $");
     44       1.1    simonb 
     45       1.1    simonb #include "opt_ntp.h"
     46       1.1    simonb 
     47       1.1    simonb #include <sys/param.h>
     48       1.1    simonb #include <sys/kernel.h>
     49       1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     50       1.1    simonb #include <sys/sysctl.h>
     51       1.1    simonb #include <sys/syslog.h>
     52       1.1    simonb #include <sys/systm.h>
     53       1.1    simonb #include <sys/timepps.h>
     54       1.1    simonb #include <sys/timetc.h>
     55       1.1    simonb #include <sys/timex.h>
     56       1.2    kardel #include <sys/evcnt.h>
     57       1.2    kardel #include <sys/kauth.h>
     58      1.25        ad #include <sys/mutex.h>
     59      1.27        ad #include <sys/atomic.h>
     60  1.33.2.3      yamt #include <sys/xcall.h>
     61       1.2    kardel 
     62       1.2    kardel /*
     63       1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     64       1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     65       1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     66       1.1    simonb  * forever when the time step is large.
     67       1.1    simonb  */
     68       1.1    simonb #define LARGE_STEP	200
     69       1.1    simonb 
     70       1.1    simonb /*
     71       1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     72       1.1    simonb  * in the air.  This allows the console and other early stuff to use
     73       1.1    simonb  * time services.
     74       1.1    simonb  */
     75       1.1    simonb 
     76       1.1    simonb static u_int
     77      1.16      yamt dummy_get_timecount(struct timecounter *tc)
     78       1.1    simonb {
     79       1.1    simonb 	static u_int now;
     80       1.1    simonb 
     81       1.1    simonb 	return (++now);
     82       1.1    simonb }
     83       1.1    simonb 
     84       1.1    simonb static struct timecounter dummy_timecounter = {
     85       1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     86       1.1    simonb };
     87       1.1    simonb 
     88       1.1    simonb struct timehands {
     89       1.1    simonb 	/* These fields must be initialized by the driver. */
     90  1.33.2.3      yamt 	struct timecounter	*th_counter;     /* active timecounter */
     91  1.33.2.3      yamt 	int64_t			th_adjustment;   /* frequency adjustment */
     92  1.33.2.3      yamt 						 /* (NTP/adjtime) */
     93  1.33.2.3      yamt 	u_int64_t		th_scale;        /* scale factor (counter */
     94  1.33.2.3      yamt 						 /* tick->time) */
     95  1.33.2.3      yamt 	u_int64_t 		th_offset_count; /* offset at last time */
     96  1.33.2.3      yamt 						 /* update (tc_windup()) */
     97  1.33.2.3      yamt 	struct bintime		th_offset;       /* bin (up)time at windup */
     98  1.33.2.3      yamt 	struct timeval		th_microtime;    /* cached microtime */
     99  1.33.2.3      yamt 	struct timespec		th_nanotime;     /* cached nanotime */
    100       1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
    101  1.33.2.3      yamt 	volatile u_int		th_generation;   /* current genration */
    102  1.33.2.3      yamt 	struct timehands	*th_next;        /* next timehand */
    103       1.1    simonb };
    104       1.1    simonb 
    105       1.1    simonb static struct timehands th0;
    106      1.10  christos static struct timehands th9 = { .th_next = &th0, };
    107      1.10  christos static struct timehands th8 = { .th_next = &th9, };
    108      1.10  christos static struct timehands th7 = { .th_next = &th8, };
    109      1.10  christos static struct timehands th6 = { .th_next = &th7, };
    110      1.10  christos static struct timehands th5 = { .th_next = &th6, };
    111      1.10  christos static struct timehands th4 = { .th_next = &th5, };
    112      1.10  christos static struct timehands th3 = { .th_next = &th4, };
    113      1.10  christos static struct timehands th2 = { .th_next = &th3, };
    114      1.10  christos static struct timehands th1 = { .th_next = &th2, };
    115       1.1    simonb static struct timehands th0 = {
    116      1.10  christos 	.th_counter = &dummy_timecounter,
    117      1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
    118      1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
    119      1.10  christos 	.th_generation = 1,
    120      1.10  christos 	.th_next = &th1,
    121       1.1    simonb };
    122       1.1    simonb 
    123       1.1    simonb static struct timehands *volatile timehands = &th0;
    124       1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
    125       1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
    126       1.1    simonb 
    127       1.1    simonb time_t time_second = 1;
    128       1.1    simonb time_t time_uptime = 1;
    129       1.1    simonb 
    130       1.4    kardel static struct bintime timebasebin;
    131       1.1    simonb 
    132       1.1    simonb static int timestepwarnings;
    133       1.2    kardel 
    134      1.33        ad kmutex_t timecounter_lock;
    135  1.33.2.1      yamt static u_int timecounter_mods;
    136  1.33.2.3      yamt static volatile int timecounter_removals = 1;
    137  1.33.2.1      yamt static u_int timecounter_bad;
    138      1.25        ad 
    139       1.2    kardel #ifdef __FreeBSD__
    140       1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    141       1.1    simonb     &timestepwarnings, 0, "");
    142       1.2    kardel #endif /* __FreeBSD__ */
    143       1.2    kardel 
    144       1.2    kardel /*
    145      1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    146       1.2    kardel  */
    147       1.2    kardel static int
    148       1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    149       1.2    kardel {
    150       1.2    kardel 	struct sysctlnode node;
    151       1.2    kardel 	int error;
    152       1.2    kardel 	char newname[MAX_TCNAMELEN];
    153       1.2    kardel 	struct timecounter *newtc, *tc;
    154       1.2    kardel 
    155       1.2    kardel 	tc = timecounter;
    156       1.2    kardel 
    157       1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    158       1.2    kardel 
    159       1.2    kardel 	node = *rnode;
    160       1.2    kardel 	node.sysctl_data = newname;
    161       1.2    kardel 	node.sysctl_size = sizeof(newname);
    162       1.2    kardel 
    163       1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    164       1.2    kardel 
    165       1.2    kardel 	if (error ||
    166       1.2    kardel 	    newp == NULL ||
    167       1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    168       1.2    kardel 		return error;
    169       1.1    simonb 
    170      1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    171      1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    172      1.26      elad 	    NULL, NULL)) != 0)
    173       1.2    kardel 		return (error);
    174       1.2    kardel 
    175      1.22        ad 	if (!cold)
    176  1.33.2.1      yamt 		mutex_spin_enter(&timecounter_lock);
    177      1.23        ad 	error = EINVAL;
    178       1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    179       1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    180       1.2    kardel 			continue;
    181       1.2    kardel 		/* Warm up new timecounter. */
    182       1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    183       1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    184       1.2    kardel 		timecounter = newtc;
    185      1.22        ad 		error = 0;
    186      1.23        ad 		break;
    187      1.23        ad 	}
    188      1.22        ad 	if (!cold)
    189  1.33.2.1      yamt 		mutex_spin_exit(&timecounter_lock);
    190      1.22        ad 	return error;
    191       1.2    kardel }
    192       1.2    kardel 
    193       1.2    kardel static int
    194       1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    195       1.2    kardel {
    196       1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    197  1.33.2.1      yamt 	char *where;
    198       1.2    kardel 	const char *spc;
    199       1.2    kardel 	struct timecounter *tc;
    200       1.2    kardel 	size_t needed, left, slen;
    201  1.33.2.1      yamt 	int error, mods;
    202       1.2    kardel 
    203       1.2    kardel 	if (newp != NULL)
    204       1.2    kardel 		return (EPERM);
    205       1.2    kardel 	if (namelen != 0)
    206       1.2    kardel 		return (EINVAL);
    207       1.2    kardel 
    208  1.33.2.1      yamt 	mutex_spin_enter(&timecounter_lock);
    209  1.33.2.1      yamt  retry:
    210       1.2    kardel 	spc = "";
    211       1.2    kardel 	error = 0;
    212       1.2    kardel 	needed = 0;
    213       1.2    kardel 	left = *oldlenp;
    214  1.33.2.1      yamt 	where = oldp;
    215       1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    216       1.2    kardel 		if (where == NULL) {
    217       1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    218       1.2    kardel 		} else {
    219       1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    220       1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    221       1.2    kardel 					tc->tc_frequency);
    222       1.2    kardel 			if (left < slen + 1)
    223       1.2    kardel 				break;
    224  1.33.2.1      yamt 		 	mods = timecounter_mods;
    225  1.33.2.1      yamt 			mutex_spin_exit(&timecounter_lock);
    226       1.2    kardel 			error = copyout(buf, where, slen + 1);
    227  1.33.2.1      yamt 			mutex_spin_enter(&timecounter_lock);
    228  1.33.2.1      yamt 			if (mods != timecounter_mods) {
    229  1.33.2.1      yamt 				goto retry;
    230  1.33.2.1      yamt 			}
    231       1.2    kardel 			spc = " ";
    232       1.2    kardel 			where += slen;
    233       1.2    kardel 			needed += slen;
    234       1.2    kardel 			left -= slen;
    235       1.2    kardel 		}
    236       1.2    kardel 	}
    237  1.33.2.1      yamt 	mutex_spin_exit(&timecounter_lock);
    238       1.2    kardel 
    239       1.2    kardel 	*oldlenp = needed;
    240       1.2    kardel 	return (error);
    241       1.2    kardel }
    242       1.2    kardel 
    243       1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    244       1.2    kardel {
    245       1.2    kardel 	const struct sysctlnode *node;
    246       1.2    kardel 
    247       1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    248       1.2    kardel 		       CTLFLAG_PERMANENT,
    249       1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    250       1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    251       1.2    kardel 		       NULL, 0, NULL, 0,
    252       1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    253       1.2    kardel 
    254       1.2    kardel 	if (node != NULL) {
    255       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    256       1.2    kardel 			       CTLFLAG_PERMANENT,
    257       1.2    kardel 			       CTLTYPE_STRING, "choice",
    258       1.2    kardel 			       SYSCTL_DESCR("available counters"),
    259       1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    260       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    261       1.2    kardel 
    262       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    263       1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    264       1.2    kardel 			       CTLTYPE_STRING, "hardware",
    265       1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    266       1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    267       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    268       1.2    kardel 
    269       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    270       1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    271       1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    272       1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    273       1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    274       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    275       1.2    kardel 	}
    276       1.2    kardel }
    277       1.2    kardel 
    278      1.32        ad #ifdef TC_COUNTERS
    279       1.2    kardel #define	TC_STATS(name)							\
    280       1.2    kardel static struct evcnt n##name =						\
    281       1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    282       1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    283       1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    284       1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    285       1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    286       1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    287       1.2    kardel TC_STATS(setclock);
    288      1.32        ad #define	TC_COUNT(var)	var.ev_count++
    289       1.1    simonb #undef TC_STATS
    290      1.32        ad #else
    291      1.32        ad #define	TC_COUNT(var)	/* nothing */
    292      1.32        ad #endif	/* TC_COUNTERS */
    293       1.1    simonb 
    294       1.1    simonb static void tc_windup(void);
    295       1.1    simonb 
    296       1.1    simonb /*
    297       1.1    simonb  * Return the difference between the timehands' counter value now and what
    298       1.1    simonb  * was when we copied it to the timehands' offset_count.
    299       1.1    simonb  */
    300  1.33.2.4      yamt static inline u_int
    301       1.1    simonb tc_delta(struct timehands *th)
    302       1.1    simonb {
    303       1.1    simonb 	struct timecounter *tc;
    304       1.1    simonb 
    305       1.1    simonb 	tc = th->th_counter;
    306       1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    307       1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    308       1.1    simonb }
    309       1.1    simonb 
    310       1.1    simonb /*
    311       1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    312       1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    313      1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    314       1.1    simonb  */
    315       1.1    simonb 
    316       1.1    simonb void
    317       1.1    simonb binuptime(struct bintime *bt)
    318       1.1    simonb {
    319       1.1    simonb 	struct timehands *th;
    320  1.33.2.3      yamt 	lwp_t *l;
    321  1.33.2.3      yamt 	u_int lgen, gen;
    322       1.1    simonb 
    323      1.32        ad 	TC_COUNT(nbinuptime);
    324  1.33.2.3      yamt 
    325  1.33.2.3      yamt 	/*
    326  1.33.2.3      yamt 	 * Provide exclusion against tc_detach().
    327  1.33.2.3      yamt 	 *
    328  1.33.2.3      yamt 	 * We record the number of timecounter removals before accessing
    329  1.33.2.3      yamt 	 * timecounter state.  Note that the LWP can be using multiple
    330  1.33.2.3      yamt 	 * "generations" at once, due to interrupts (interrupted while in
    331  1.33.2.3      yamt 	 * this function).  Hardware interrupts will borrow the interrupted
    332  1.33.2.3      yamt 	 * LWP's l_tcgen value for this purpose, and can themselves be
    333  1.33.2.3      yamt 	 * interrupted by higher priority interrupts.  In this case we need
    334  1.33.2.3      yamt 	 * to ensure that the oldest generation in use is recorded.
    335  1.33.2.3      yamt 	 *
    336  1.33.2.3      yamt 	 * splsched() is too expensive to use, so we take care to structure
    337  1.33.2.3      yamt 	 * this code in such a way that it is not required.  Likewise, we
    338  1.33.2.3      yamt 	 * do not disable preemption.
    339  1.33.2.3      yamt 	 *
    340  1.33.2.3      yamt 	 * Memory barriers are also too expensive to use for such a
    341  1.33.2.3      yamt 	 * performance critical function.  The good news is that we do not
    342  1.33.2.3      yamt 	 * need memory barriers for this type of exclusion, as the thread
    343  1.33.2.3      yamt 	 * updating timecounter_removals will issue a broadcast cross call
    344  1.33.2.3      yamt 	 * before inspecting our l_tcgen value (this elides memory ordering
    345  1.33.2.3      yamt 	 * issues).
    346  1.33.2.3      yamt 	 */
    347  1.33.2.3      yamt 	l = curlwp;
    348  1.33.2.3      yamt 	lgen = l->l_tcgen;
    349  1.33.2.3      yamt 	if (__predict_true(lgen == 0)) {
    350  1.33.2.3      yamt 		l->l_tcgen = timecounter_removals;
    351  1.33.2.3      yamt 	}
    352  1.33.2.3      yamt 	__insn_barrier();
    353  1.33.2.3      yamt 
    354       1.1    simonb 	do {
    355       1.1    simonb 		th = timehands;
    356       1.1    simonb 		gen = th->th_generation;
    357       1.1    simonb 		*bt = th->th_offset;
    358       1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    359       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    360  1.33.2.3      yamt 
    361  1.33.2.3      yamt 	__insn_barrier();
    362  1.33.2.3      yamt 	l->l_tcgen = lgen;
    363       1.1    simonb }
    364       1.1    simonb 
    365       1.1    simonb void
    366       1.1    simonb nanouptime(struct timespec *tsp)
    367       1.1    simonb {
    368       1.1    simonb 	struct bintime bt;
    369       1.1    simonb 
    370      1.32        ad 	TC_COUNT(nnanouptime);
    371       1.1    simonb 	binuptime(&bt);
    372       1.1    simonb 	bintime2timespec(&bt, tsp);
    373       1.1    simonb }
    374       1.1    simonb 
    375       1.1    simonb void
    376       1.1    simonb microuptime(struct timeval *tvp)
    377       1.1    simonb {
    378       1.1    simonb 	struct bintime bt;
    379       1.1    simonb 
    380      1.32        ad 	TC_COUNT(nmicrouptime);
    381       1.1    simonb 	binuptime(&bt);
    382       1.1    simonb 	bintime2timeval(&bt, tvp);
    383       1.1    simonb }
    384       1.1    simonb 
    385       1.1    simonb void
    386       1.1    simonb bintime(struct bintime *bt)
    387       1.1    simonb {
    388       1.1    simonb 
    389      1.32        ad 	TC_COUNT(nbintime);
    390       1.1    simonb 	binuptime(bt);
    391       1.4    kardel 	bintime_add(bt, &timebasebin);
    392       1.1    simonb }
    393       1.1    simonb 
    394       1.1    simonb void
    395       1.1    simonb nanotime(struct timespec *tsp)
    396       1.1    simonb {
    397       1.1    simonb 	struct bintime bt;
    398       1.1    simonb 
    399      1.32        ad 	TC_COUNT(nnanotime);
    400       1.1    simonb 	bintime(&bt);
    401       1.1    simonb 	bintime2timespec(&bt, tsp);
    402       1.1    simonb }
    403       1.1    simonb 
    404       1.1    simonb void
    405       1.1    simonb microtime(struct timeval *tvp)
    406       1.1    simonb {
    407       1.1    simonb 	struct bintime bt;
    408       1.1    simonb 
    409      1.32        ad 	TC_COUNT(nmicrotime);
    410       1.1    simonb 	bintime(&bt);
    411       1.1    simonb 	bintime2timeval(&bt, tvp);
    412       1.1    simonb }
    413       1.1    simonb 
    414       1.1    simonb void
    415       1.1    simonb getbinuptime(struct bintime *bt)
    416       1.1    simonb {
    417       1.1    simonb 	struct timehands *th;
    418       1.1    simonb 	u_int gen;
    419       1.1    simonb 
    420      1.32        ad 	TC_COUNT(ngetbinuptime);
    421       1.1    simonb 	do {
    422       1.1    simonb 		th = timehands;
    423       1.1    simonb 		gen = th->th_generation;
    424       1.1    simonb 		*bt = th->th_offset;
    425       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    426       1.1    simonb }
    427       1.1    simonb 
    428       1.1    simonb void
    429       1.1    simonb getnanouptime(struct timespec *tsp)
    430       1.1    simonb {
    431       1.1    simonb 	struct timehands *th;
    432       1.1    simonb 	u_int gen;
    433       1.1    simonb 
    434      1.32        ad 	TC_COUNT(ngetnanouptime);
    435       1.1    simonb 	do {
    436       1.1    simonb 		th = timehands;
    437       1.1    simonb 		gen = th->th_generation;
    438       1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    439       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    440       1.1    simonb }
    441       1.1    simonb 
    442       1.1    simonb void
    443       1.1    simonb getmicrouptime(struct timeval *tvp)
    444       1.1    simonb {
    445       1.1    simonb 	struct timehands *th;
    446       1.1    simonb 	u_int gen;
    447       1.1    simonb 
    448      1.32        ad 	TC_COUNT(ngetmicrouptime);
    449       1.1    simonb 	do {
    450       1.1    simonb 		th = timehands;
    451       1.1    simonb 		gen = th->th_generation;
    452       1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    453       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    454       1.1    simonb }
    455       1.1    simonb 
    456       1.1    simonb void
    457       1.1    simonb getbintime(struct bintime *bt)
    458       1.1    simonb {
    459       1.1    simonb 	struct timehands *th;
    460       1.1    simonb 	u_int gen;
    461       1.1    simonb 
    462      1.32        ad 	TC_COUNT(ngetbintime);
    463       1.1    simonb 	do {
    464       1.1    simonb 		th = timehands;
    465       1.1    simonb 		gen = th->th_generation;
    466       1.1    simonb 		*bt = th->th_offset;
    467       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    468       1.4    kardel 	bintime_add(bt, &timebasebin);
    469       1.1    simonb }
    470       1.1    simonb 
    471       1.1    simonb void
    472       1.1    simonb getnanotime(struct timespec *tsp)
    473       1.1    simonb {
    474       1.1    simonb 	struct timehands *th;
    475       1.1    simonb 	u_int gen;
    476       1.1    simonb 
    477      1.32        ad 	TC_COUNT(ngetnanotime);
    478       1.1    simonb 	do {
    479       1.1    simonb 		th = timehands;
    480       1.1    simonb 		gen = th->th_generation;
    481       1.1    simonb 		*tsp = th->th_nanotime;
    482       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    483       1.1    simonb }
    484       1.1    simonb 
    485       1.1    simonb void
    486       1.1    simonb getmicrotime(struct timeval *tvp)
    487       1.1    simonb {
    488       1.1    simonb 	struct timehands *th;
    489       1.1    simonb 	u_int gen;
    490       1.1    simonb 
    491      1.32        ad 	TC_COUNT(ngetmicrotime);
    492       1.1    simonb 	do {
    493       1.1    simonb 		th = timehands;
    494       1.1    simonb 		gen = th->th_generation;
    495       1.1    simonb 		*tvp = th->th_microtime;
    496       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    497       1.1    simonb }
    498       1.1    simonb 
    499       1.1    simonb /*
    500       1.1    simonb  * Initialize a new timecounter and possibly use it.
    501       1.1    simonb  */
    502       1.1    simonb void
    503       1.1    simonb tc_init(struct timecounter *tc)
    504       1.1    simonb {
    505       1.1    simonb 	u_int u;
    506       1.1    simonb 
    507       1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    508       1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    509       1.1    simonb 	u *= 11;
    510       1.1    simonb 	u /= 10;
    511       1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    512       1.1    simonb 		tc->tc_quality = -2000;
    513      1.18        ad 		aprint_verbose(
    514      1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    515       1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    516      1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    517       1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    518      1.18        ad 		aprint_verbose(
    519      1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    520      1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    521       1.7     bjh21 		    tc->tc_quality);
    522       1.1    simonb 	}
    523       1.1    simonb 
    524      1.33        ad 	mutex_spin_enter(&timecounter_lock);
    525       1.1    simonb 	tc->tc_next = timecounters;
    526       1.1    simonb 	timecounters = tc;
    527  1.33.2.1      yamt 	timecounter_mods++;
    528       1.1    simonb 	/*
    529       1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    530       1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    531       1.1    simonb 	 * worse since this timecounter may not be monotonous.
    532       1.1    simonb 	 */
    533      1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    534      1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    535      1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    536      1.22        ad 		(void)tc->tc_get_timecount(tc);
    537      1.22        ad 		(void)tc->tc_get_timecount(tc);
    538      1.22        ad 		timecounter = tc;
    539      1.22        ad 		tc_windup();
    540      1.22        ad 	}
    541      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    542  1.33.2.1      yamt }
    543  1.33.2.1      yamt 
    544  1.33.2.1      yamt /*
    545  1.33.2.1      yamt  * Pick a new timecounter due to the existing counter going bad.
    546  1.33.2.1      yamt  */
    547  1.33.2.1      yamt static void
    548  1.33.2.1      yamt tc_pick(void)
    549  1.33.2.1      yamt {
    550  1.33.2.1      yamt 	struct timecounter *best, *tc;
    551  1.33.2.1      yamt 
    552  1.33.2.1      yamt 	KASSERT(mutex_owned(&timecounter_lock));
    553  1.33.2.1      yamt 
    554  1.33.2.1      yamt 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    555  1.33.2.1      yamt 		if (tc->tc_quality > best->tc_quality)
    556  1.33.2.1      yamt 			best = tc;
    557  1.33.2.1      yamt 		else if (tc->tc_quality < best->tc_quality)
    558  1.33.2.1      yamt 			continue;
    559  1.33.2.1      yamt 		else if (tc->tc_frequency > best->tc_frequency)
    560  1.33.2.1      yamt 			best = tc;
    561  1.33.2.1      yamt 	}
    562  1.33.2.1      yamt 	(void)best->tc_get_timecount(best);
    563  1.33.2.1      yamt 	(void)best->tc_get_timecount(best);
    564  1.33.2.1      yamt 	timecounter = best;
    565  1.33.2.1      yamt }
    566  1.33.2.1      yamt 
    567  1.33.2.1      yamt /*
    568  1.33.2.1      yamt  * A timecounter has gone bad, arrange to pick a new one at the next
    569  1.33.2.1      yamt  * clock tick.
    570  1.33.2.1      yamt  */
    571  1.33.2.1      yamt void
    572  1.33.2.1      yamt tc_gonebad(struct timecounter *tc)
    573  1.33.2.1      yamt {
    574  1.33.2.1      yamt 
    575  1.33.2.1      yamt 	tc->tc_quality = -100;
    576  1.33.2.1      yamt 	membar_producer();
    577  1.33.2.1      yamt 	atomic_inc_uint(&timecounter_bad);
    578       1.1    simonb }
    579       1.1    simonb 
    580      1.29    dyoung /*
    581      1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    582      1.29    dyoung  */
    583      1.29    dyoung int
    584      1.29    dyoung tc_detach(struct timecounter *target)
    585      1.29    dyoung {
    586  1.33.2.1      yamt 	struct timecounter *tc;
    587      1.29    dyoung 	struct timecounter **tcp = NULL;
    588  1.33.2.3      yamt 	int removals;
    589  1.33.2.3      yamt 	uint64_t where;
    590  1.33.2.3      yamt 	lwp_t *l;
    591      1.29    dyoung 
    592  1.33.2.3      yamt 	/* First, find the timecounter. */
    593  1.33.2.1      yamt 	mutex_spin_enter(&timecounter_lock);
    594      1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    595      1.29    dyoung 	     tc != NULL;
    596      1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    597      1.29    dyoung 		if (tc == target)
    598      1.29    dyoung 			break;
    599      1.29    dyoung 	}
    600      1.29    dyoung 	if (tc == NULL) {
    601  1.33.2.3      yamt 		mutex_spin_exit(&timecounter_lock);
    602  1.33.2.3      yamt 		return ESRCH;
    603  1.33.2.3      yamt 	}
    604  1.33.2.3      yamt 
    605  1.33.2.3      yamt 	/* And now, remove it. */
    606  1.33.2.3      yamt 	*tcp = tc->tc_next;
    607  1.33.2.3      yamt 	if (timecounter == target) {
    608  1.33.2.3      yamt 		tc_pick();
    609  1.33.2.3      yamt 		tc_windup();
    610      1.29    dyoung 	}
    611  1.33.2.3      yamt 	timecounter_mods++;
    612  1.33.2.3      yamt 	removals = timecounter_removals++;
    613      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    614  1.33.2.3      yamt 
    615  1.33.2.3      yamt 	/*
    616  1.33.2.3      yamt 	 * We now have to determine if any threads in the system are still
    617  1.33.2.3      yamt 	 * making use of this timecounter.
    618  1.33.2.3      yamt 	 *
    619  1.33.2.3      yamt 	 * We issue a broadcast cross call to elide memory ordering issues,
    620  1.33.2.3      yamt 	 * then scan all LWPs in the system looking at each's timecounter
    621  1.33.2.3      yamt 	 * generation number.  We need to see a value of zero (not actively
    622  1.33.2.3      yamt 	 * using a timecounter) or a value greater than our removal value.
    623  1.33.2.3      yamt 	 *
    624  1.33.2.3      yamt 	 * We may race with threads that read `timecounter_removals' and
    625  1.33.2.3      yamt 	 * and then get preempted before updating `l_tcgen'.  This is not
    626  1.33.2.3      yamt 	 * a problem, since it means that these threads have not yet started
    627  1.33.2.3      yamt 	 * accessing timecounter state.  All we do need is one clean
    628  1.33.2.3      yamt 	 * snapshot of the system where every thread appears not to be using
    629  1.33.2.3      yamt 	 * old timecounter state.
    630  1.33.2.3      yamt 	 */
    631  1.33.2.3      yamt 	for (;;) {
    632  1.33.2.3      yamt 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    633  1.33.2.3      yamt 		xc_wait(where);
    634  1.33.2.3      yamt 
    635  1.33.2.3      yamt 		mutex_enter(proc_lock);
    636  1.33.2.3      yamt 		LIST_FOREACH(l, &alllwp, l_list) {
    637  1.33.2.3      yamt 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    638  1.33.2.3      yamt 				/*
    639  1.33.2.3      yamt 				 * Not using timecounter or old timecounter
    640  1.33.2.3      yamt 				 * state at time of our xcall or later.
    641  1.33.2.3      yamt 				 */
    642  1.33.2.3      yamt 				continue;
    643  1.33.2.3      yamt 			}
    644  1.33.2.3      yamt 			break;
    645  1.33.2.3      yamt 		}
    646  1.33.2.3      yamt 		mutex_exit(proc_lock);
    647  1.33.2.3      yamt 
    648  1.33.2.3      yamt 		/*
    649  1.33.2.3      yamt 		 * If the timecounter is still in use, wait at least 10ms
    650  1.33.2.3      yamt 		 * before retrying.
    651  1.33.2.3      yamt 		 */
    652  1.33.2.3      yamt 		if (l == NULL) {
    653  1.33.2.3      yamt 			return 0;
    654  1.33.2.3      yamt 		}
    655  1.33.2.3      yamt 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    656  1.33.2.3      yamt 	}
    657      1.29    dyoung }
    658      1.29    dyoung 
    659       1.1    simonb /* Report the frequency of the current timecounter. */
    660       1.1    simonb u_int64_t
    661       1.1    simonb tc_getfrequency(void)
    662       1.1    simonb {
    663       1.1    simonb 
    664       1.1    simonb 	return (timehands->th_counter->tc_frequency);
    665       1.1    simonb }
    666       1.1    simonb 
    667       1.1    simonb /*
    668       1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    669       1.1    simonb  * when we booted.
    670       1.1    simonb  */
    671       1.1    simonb void
    672  1.33.2.2      yamt tc_setclock(const struct timespec *ts)
    673       1.1    simonb {
    674       1.1    simonb 	struct timespec ts2;
    675       1.1    simonb 	struct bintime bt, bt2;
    676       1.1    simonb 
    677      1.33        ad 	mutex_spin_enter(&timecounter_lock);
    678      1.32        ad 	TC_COUNT(nsetclock);
    679       1.1    simonb 	binuptime(&bt2);
    680       1.1    simonb 	timespec2bintime(ts, &bt);
    681       1.1    simonb 	bintime_sub(&bt, &bt2);
    682       1.4    kardel 	bintime_add(&bt2, &timebasebin);
    683       1.4    kardel 	timebasebin = bt;
    684      1.30        ad 	tc_windup();
    685      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    686       1.1    simonb 
    687       1.1    simonb 	if (timestepwarnings) {
    688       1.1    simonb 		bintime2timespec(&bt2, &ts2);
    689  1.33.2.2      yamt 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
    690  1.33.2.2      yamt 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    691  1.33.2.2      yamt 		    (long long)ts->tv_sec, ts->tv_nsec);
    692       1.1    simonb 	}
    693       1.1    simonb }
    694       1.1    simonb 
    695       1.1    simonb /*
    696       1.1    simonb  * Initialize the next struct timehands in the ring and make
    697       1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    698       1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    699       1.1    simonb  */
    700       1.1    simonb static void
    701       1.1    simonb tc_windup(void)
    702       1.1    simonb {
    703       1.1    simonb 	struct bintime bt;
    704       1.1    simonb 	struct timehands *th, *tho;
    705       1.1    simonb 	u_int64_t scale;
    706       1.1    simonb 	u_int delta, ncount, ogen;
    707      1.13    kardel 	int i, s_update;
    708       1.1    simonb 	time_t t;
    709       1.1    simonb 
    710      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    711      1.30        ad 
    712      1.13    kardel 	s_update = 0;
    713      1.20        ad 
    714       1.1    simonb 	/*
    715       1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    716       1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    717      1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    718      1.20        ad 	 * visibility of the generation before proceeding.
    719       1.1    simonb 	 */
    720       1.1    simonb 	tho = timehands;
    721       1.1    simonb 	th = tho->th_next;
    722       1.1    simonb 	ogen = th->th_generation;
    723       1.1    simonb 	th->th_generation = 0;
    724      1.27        ad 	membar_producer();
    725       1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    726       1.1    simonb 
    727       1.1    simonb 	/*
    728       1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    729       1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    730       1.1    simonb 	 * Update the offset fields accordingly.
    731       1.1    simonb 	 */
    732       1.1    simonb 	delta = tc_delta(th);
    733       1.1    simonb 	if (th->th_counter != timecounter)
    734       1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    735       1.1    simonb 	else
    736       1.1    simonb 		ncount = 0;
    737       1.1    simonb 	th->th_offset_count += delta;
    738       1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    739       1.1    simonb 
    740       1.1    simonb 	/*
    741       1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    742       1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    743       1.1    simonb 	 * the hardware might capture a count which is later than the one we
    744       1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    745       1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    746       1.1    simonb 	 * matter in practice.
    747       1.1    simonb 	 */
    748       1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    749       1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    750       1.1    simonb 
    751       1.1    simonb 	/*
    752       1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    753       1.1    simonb 	 * iterates at most once, but in extreme situations it might
    754       1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    755       1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    756       1.1    simonb 	 * has been read, so on really large steps, we call
    757       1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    758       1.1    simonb 	 * case we missed a leap second.
    759       1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    760       1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    761       1.1    simonb 	 */
    762       1.1    simonb 	bt = th->th_offset;
    763       1.4    kardel 	bintime_add(&bt, &timebasebin);
    764       1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    765       1.1    simonb 	if (i > LARGE_STEP)
    766       1.1    simonb 		i = 2;
    767       1.1    simonb 	for (; i > 0; i--) {
    768       1.1    simonb 		t = bt.sec;
    769       1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    770      1.13    kardel 		s_update = 1;
    771       1.1    simonb 		if (bt.sec != t)
    772       1.4    kardel 			timebasebin.sec += bt.sec - t;
    773       1.1    simonb 	}
    774       1.2    kardel 
    775       1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    776       1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    777       1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    778       1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    779       1.1    simonb 	/* Now is a good time to change timecounters. */
    780       1.1    simonb 	if (th->th_counter != timecounter) {
    781       1.1    simonb 		th->th_counter = timecounter;
    782       1.1    simonb 		th->th_offset_count = ncount;
    783      1.13    kardel 		s_update = 1;
    784       1.1    simonb 	}
    785       1.1    simonb 
    786       1.1    simonb 	/*-
    787       1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    788       1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    789       1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    790       1.1    simonb 	 * processing provides us with.
    791       1.1    simonb 	 *
    792       1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    793       1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    794       1.1    simonb 	 *
    795       1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    796       1.1    simonb 	 *
    797       1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    798       1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    799       1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    800       1.1    simonb 	 *
    801       1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    802       1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    803       1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    804       1.1    simonb  	 *
    805       1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    806       1.1    simonb 	 * to the goddess of code clarity.
    807       1.1    simonb 	 *
    808       1.1    simonb 	 */
    809      1.13    kardel 	if (s_update) {
    810      1.13    kardel 		scale = (u_int64_t)1 << 63;
    811      1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    812      1.13    kardel 		scale /= th->th_counter->tc_frequency;
    813      1.13    kardel 		th->th_scale = scale * 2;
    814      1.13    kardel 	}
    815       1.1    simonb 	/*
    816       1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    817      1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    818      1.20        ad 	 * changes are globally visible before changing.
    819       1.1    simonb 	 */
    820       1.1    simonb 	if (++ogen == 0)
    821       1.1    simonb 		ogen = 1;
    822      1.27        ad 	membar_producer();
    823       1.1    simonb 	th->th_generation = ogen;
    824       1.1    simonb 
    825      1.20        ad 	/*
    826      1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    827      1.20        ad 	 * globally visible before changing.
    828      1.20        ad 	 */
    829       1.1    simonb 	time_second = th->th_microtime.tv_sec;
    830       1.1    simonb 	time_uptime = th->th_offset.sec;
    831      1.27        ad 	membar_producer();
    832       1.1    simonb 	timehands = th;
    833      1.24        ad 
    834      1.24        ad 	/*
    835      1.24        ad 	 * Force users of the old timehand to move on.  This is
    836      1.24        ad 	 * necessary for MP systems; we need to ensure that the
    837      1.24        ad 	 * consumers will move away from the old timehand before
    838      1.24        ad 	 * we begin updating it again when we eventually wrap
    839      1.24        ad 	 * around.
    840      1.24        ad 	 */
    841      1.24        ad 	if (++tho->th_generation == 0)
    842      1.24        ad 		tho->th_generation = 1;
    843       1.1    simonb }
    844       1.1    simonb 
    845       1.1    simonb /*
    846       1.1    simonb  * RFC 2783 PPS-API implementation.
    847       1.1    simonb  */
    848       1.1    simonb 
    849       1.1    simonb int
    850      1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    851       1.1    simonb {
    852       1.1    simonb 	pps_params_t *app;
    853       1.2    kardel 	pps_info_t *pipi;
    854       1.1    simonb #ifdef PPS_SYNC
    855       1.2    kardel 	int *epi;
    856       1.1    simonb #endif
    857       1.1    simonb 
    858      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    859      1.33        ad 
    860       1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    861       1.1    simonb 	switch (cmd) {
    862       1.1    simonb 	case PPS_IOC_CREATE:
    863       1.1    simonb 		return (0);
    864       1.1    simonb 	case PPS_IOC_DESTROY:
    865       1.1    simonb 		return (0);
    866       1.1    simonb 	case PPS_IOC_SETPARAMS:
    867       1.1    simonb 		app = (pps_params_t *)data;
    868       1.1    simonb 		if (app->mode & ~pps->ppscap)
    869       1.1    simonb 			return (EINVAL);
    870       1.1    simonb 		pps->ppsparam = *app;
    871       1.1    simonb 		return (0);
    872       1.1    simonb 	case PPS_IOC_GETPARAMS:
    873       1.1    simonb 		app = (pps_params_t *)data;
    874       1.1    simonb 		*app = pps->ppsparam;
    875       1.1    simonb 		app->api_version = PPS_API_VERS_1;
    876       1.1    simonb 		return (0);
    877       1.1    simonb 	case PPS_IOC_GETCAP:
    878       1.1    simonb 		*(int*)data = pps->ppscap;
    879       1.1    simonb 		return (0);
    880       1.1    simonb 	case PPS_IOC_FETCH:
    881       1.2    kardel 		pipi = (pps_info_t *)data;
    882       1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    883       1.2    kardel 		*pipi = pps->ppsinfo;
    884       1.1    simonb 		return (0);
    885       1.1    simonb 	case PPS_IOC_KCBIND:
    886       1.1    simonb #ifdef PPS_SYNC
    887       1.2    kardel 		epi = (int *)data;
    888       1.1    simonb 		/* XXX Only root should be able to do this */
    889       1.2    kardel 		if (*epi & ~pps->ppscap)
    890       1.1    simonb 			return (EINVAL);
    891       1.2    kardel 		pps->kcmode = *epi;
    892       1.1    simonb 		return (0);
    893       1.1    simonb #else
    894       1.1    simonb 		return (EOPNOTSUPP);
    895       1.1    simonb #endif
    896       1.1    simonb 	default:
    897       1.2    kardel 		return (EPASSTHROUGH);
    898       1.1    simonb 	}
    899       1.1    simonb }
    900       1.1    simonb 
    901       1.1    simonb void
    902       1.1    simonb pps_init(struct pps_state *pps)
    903       1.1    simonb {
    904      1.33        ad 
    905      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    906      1.33        ad 
    907       1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    908       1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    909       1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    910       1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    911       1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    912       1.1    simonb }
    913       1.1    simonb 
    914       1.1    simonb void
    915       1.1    simonb pps_capture(struct pps_state *pps)
    916       1.1    simonb {
    917       1.1    simonb 	struct timehands *th;
    918       1.1    simonb 
    919      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    920      1.33        ad 	KASSERT(pps != NULL);
    921      1.33        ad 
    922       1.1    simonb 	th = timehands;
    923       1.1    simonb 	pps->capgen = th->th_generation;
    924       1.1    simonb 	pps->capth = th;
    925  1.33.2.3      yamt 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
    926       1.1    simonb 	if (pps->capgen != th->th_generation)
    927       1.1    simonb 		pps->capgen = 0;
    928       1.1    simonb }
    929       1.1    simonb 
    930       1.1    simonb void
    931       1.1    simonb pps_event(struct pps_state *pps, int event)
    932       1.1    simonb {
    933       1.1    simonb 	struct bintime bt;
    934       1.1    simonb 	struct timespec ts, *tsp, *osp;
    935  1.33.2.3      yamt 	u_int64_t tcount, *pcount;
    936       1.1    simonb 	int foff, fhard;
    937       1.1    simonb 	pps_seq_t *pseq;
    938       1.1    simonb 
    939      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    940      1.33        ad 
    941       1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    942       1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    943       1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    944       1.1    simonb 		return;
    945       1.1    simonb 
    946       1.1    simonb 	/* Things would be easier with arrays. */
    947       1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    948       1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    949       1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    950       1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    951       1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    952       1.1    simonb 		pcount = &pps->ppscount[0];
    953       1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    954       1.1    simonb 	} else {
    955       1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    956       1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    957       1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    958       1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    959       1.1    simonb 		pcount = &pps->ppscount[1];
    960       1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    961       1.1    simonb 	}
    962       1.1    simonb 
    963       1.1    simonb 	/*
    964       1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    965       1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    966       1.1    simonb 	 */
    967       1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    968       1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    969       1.1    simonb 		*pcount = pps->capcount;
    970       1.1    simonb 		pps->ppscount[2] = pps->capcount;
    971       1.1    simonb 		return;
    972       1.1    simonb 	}
    973       1.1    simonb 
    974       1.1    simonb 	/* Convert the count to a timespec. */
    975       1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    976       1.1    simonb 	bt = pps->capth->th_offset;
    977       1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    978       1.4    kardel 	bintime_add(&bt, &timebasebin);
    979       1.1    simonb 	bintime2timespec(&bt, &ts);
    980       1.1    simonb 
    981       1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    982       1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    983       1.1    simonb 		return;
    984       1.1    simonb 
    985       1.1    simonb 	*pcount = pps->capcount;
    986       1.1    simonb 	(*pseq)++;
    987       1.1    simonb 	*tsp = ts;
    988       1.1    simonb 
    989       1.1    simonb 	if (foff) {
    990       1.2    kardel 		timespecadd(tsp, osp, tsp);
    991       1.1    simonb 		if (tsp->tv_nsec < 0) {
    992       1.1    simonb 			tsp->tv_nsec += 1000000000;
    993       1.1    simonb 			tsp->tv_sec -= 1;
    994       1.1    simonb 		}
    995       1.1    simonb 	}
    996       1.1    simonb #ifdef PPS_SYNC
    997       1.1    simonb 	if (fhard) {
    998       1.1    simonb 		u_int64_t scale;
    999       1.1    simonb 
   1000       1.1    simonb 		/*
   1001       1.1    simonb 		 * Feed the NTP PLL/FLL.
   1002       1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
   1003       1.1    simonb 		 * elapsed since the previous event.
   1004       1.1    simonb 		 */
   1005       1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
   1006       1.1    simonb 		pps->ppscount[2] = pps->capcount;
   1007       1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1008       1.1    simonb 		scale = (u_int64_t)1 << 63;
   1009       1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
   1010       1.1    simonb 		scale *= 2;
   1011       1.1    simonb 		bt.sec = 0;
   1012       1.1    simonb 		bt.frac = 0;
   1013       1.1    simonb 		bintime_addx(&bt, scale * tcount);
   1014       1.1    simonb 		bintime2timespec(&bt, &ts);
   1015       1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
   1016       1.1    simonb 	}
   1017       1.1    simonb #endif
   1018       1.1    simonb }
   1019       1.1    simonb 
   1020       1.1    simonb /*
   1021       1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
   1022       1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
   1023       1.1    simonb  * used by the get*() family of functions, so their precision depends on
   1024       1.1    simonb  * the update frequency.
   1025       1.1    simonb  */
   1026       1.1    simonb 
   1027       1.1    simonb static int tc_tick;
   1028       1.1    simonb 
   1029       1.1    simonb void
   1030       1.1    simonb tc_ticktock(void)
   1031       1.1    simonb {
   1032       1.1    simonb 	static int count;
   1033       1.1    simonb 
   1034       1.1    simonb 	if (++count < tc_tick)
   1035       1.1    simonb 		return;
   1036       1.1    simonb 	count = 0;
   1037      1.33        ad 	mutex_spin_enter(&timecounter_lock);
   1038  1.33.2.1      yamt 	if (timecounter_bad != 0) {
   1039  1.33.2.1      yamt 		/* An existing timecounter has gone bad, pick a new one. */
   1040  1.33.2.1      yamt 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1041  1.33.2.1      yamt 		if (timecounter->tc_quality < 0) {
   1042  1.33.2.1      yamt 			tc_pick();
   1043  1.33.2.1      yamt 		}
   1044  1.33.2.1      yamt 	}
   1045       1.1    simonb 	tc_windup();
   1046      1.33        ad 	mutex_spin_exit(&timecounter_lock);
   1047       1.1    simonb }
   1048       1.1    simonb 
   1049       1.2    kardel void
   1050       1.2    kardel inittimecounter(void)
   1051       1.1    simonb {
   1052       1.1    simonb 	u_int p;
   1053       1.1    simonb 
   1054  1.33.2.2      yamt 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1055      1.30        ad 
   1056       1.1    simonb 	/*
   1057       1.1    simonb 	 * Set the initial timeout to
   1058       1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1059       1.1    simonb 	 * People should probably not use the sysctl to set the timeout
   1060       1.1    simonb 	 * to smaller than its inital value, since that value is the
   1061       1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
   1062       1.1    simonb 	 * should use the non-"get"* functions.
   1063       1.1    simonb 	 */
   1064       1.1    simonb 	if (hz > 1000)
   1065       1.1    simonb 		tc_tick = (hz + 500) / 1000;
   1066       1.1    simonb 	else
   1067       1.1    simonb 		tc_tick = 1;
   1068       1.1    simonb 	p = (tc_tick * 1000000) / hz;
   1069      1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1070      1.18        ad 	    p / 1000, p % 1000);
   1071       1.1    simonb 
   1072       1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
   1073       1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1074       1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1075       1.1    simonb }
   1076