kern_tc.c revision 1.35 1 1.35 ad /* $NetBSD: kern_tc.c,v 1.35 2008/05/08 18:56:58 ad Exp $ */
2 1.33 ad
3 1.33 ad /*-
4 1.33 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.33 ad * All rights reserved.
6 1.33 ad *
7 1.33 ad * Redistribution and use in source and binary forms, with or without
8 1.33 ad * modification, are permitted provided that the following conditions
9 1.33 ad * are met:
10 1.33 ad * 1. Redistributions of source code must retain the above copyright
11 1.33 ad * notice, this list of conditions and the following disclaimer.
12 1.33 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.33 ad * notice, this list of conditions and the following disclaimer in the
14 1.33 ad * documentation and/or other materials provided with the distribution.
15 1.33 ad *
16 1.33 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.33 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.33 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.33 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.33 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.33 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.33 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.33 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.33 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.33 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.33 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.33 ad */
28 1.2 kardel
29 1.1 simonb /*-
30 1.1 simonb * ----------------------------------------------------------------------------
31 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
32 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
33 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
34 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
35 1.2 kardel * ---------------------------------------------------------------------------
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb #include <sys/cdefs.h>
39 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
40 1.35 ad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.35 2008/05/08 18:56:58 ad Exp $");
41 1.1 simonb
42 1.1 simonb #include "opt_ntp.h"
43 1.1 simonb
44 1.1 simonb #include <sys/param.h>
45 1.1 simonb #include <sys/kernel.h>
46 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
47 1.1 simonb #include <sys/sysctl.h>
48 1.1 simonb #include <sys/syslog.h>
49 1.1 simonb #include <sys/systm.h>
50 1.1 simonb #include <sys/timepps.h>
51 1.1 simonb #include <sys/timetc.h>
52 1.1 simonb #include <sys/timex.h>
53 1.2 kardel #include <sys/evcnt.h>
54 1.2 kardel #include <sys/kauth.h>
55 1.25 ad #include <sys/mutex.h>
56 1.27 ad #include <sys/atomic.h>
57 1.2 kardel
58 1.2 kardel /*
59 1.1 simonb * A large step happens on boot. This constant detects such steps.
60 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
61 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
62 1.1 simonb * forever when the time step is large.
63 1.1 simonb */
64 1.1 simonb #define LARGE_STEP 200
65 1.1 simonb
66 1.1 simonb /*
67 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
68 1.1 simonb * in the air. This allows the console and other early stuff to use
69 1.1 simonb * time services.
70 1.1 simonb */
71 1.1 simonb
72 1.1 simonb static u_int
73 1.16 yamt dummy_get_timecount(struct timecounter *tc)
74 1.1 simonb {
75 1.1 simonb static u_int now;
76 1.1 simonb
77 1.1 simonb return (++now);
78 1.1 simonb }
79 1.1 simonb
80 1.1 simonb static struct timecounter dummy_timecounter = {
81 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
82 1.1 simonb };
83 1.1 simonb
84 1.1 simonb struct timehands {
85 1.1 simonb /* These fields must be initialized by the driver. */
86 1.1 simonb struct timecounter *th_counter;
87 1.1 simonb int64_t th_adjustment;
88 1.1 simonb u_int64_t th_scale;
89 1.1 simonb u_int th_offset_count;
90 1.1 simonb struct bintime th_offset;
91 1.1 simonb struct timeval th_microtime;
92 1.1 simonb struct timespec th_nanotime;
93 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
94 1.1 simonb volatile u_int th_generation;
95 1.1 simonb struct timehands *th_next;
96 1.1 simonb };
97 1.1 simonb
98 1.1 simonb static struct timehands th0;
99 1.10 christos static struct timehands th9 = { .th_next = &th0, };
100 1.10 christos static struct timehands th8 = { .th_next = &th9, };
101 1.10 christos static struct timehands th7 = { .th_next = &th8, };
102 1.10 christos static struct timehands th6 = { .th_next = &th7, };
103 1.10 christos static struct timehands th5 = { .th_next = &th6, };
104 1.10 christos static struct timehands th4 = { .th_next = &th5, };
105 1.10 christos static struct timehands th3 = { .th_next = &th4, };
106 1.10 christos static struct timehands th2 = { .th_next = &th3, };
107 1.10 christos static struct timehands th1 = { .th_next = &th2, };
108 1.1 simonb static struct timehands th0 = {
109 1.10 christos .th_counter = &dummy_timecounter,
110 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
111 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
112 1.10 christos .th_generation = 1,
113 1.10 christos .th_next = &th1,
114 1.1 simonb };
115 1.1 simonb
116 1.1 simonb static struct timehands *volatile timehands = &th0;
117 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
118 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
119 1.1 simonb
120 1.1 simonb time_t time_second = 1;
121 1.1 simonb time_t time_uptime = 1;
122 1.1 simonb
123 1.4 kardel static struct bintime timebasebin;
124 1.1 simonb
125 1.1 simonb static int timestepwarnings;
126 1.2 kardel
127 1.33 ad kmutex_t timecounter_lock;
128 1.35 ad static u_int timecounter_mods;
129 1.35 ad static u_int timecounter_bad;
130 1.25 ad
131 1.2 kardel #ifdef __FreeBSD__
132 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
133 1.1 simonb ×tepwarnings, 0, "");
134 1.2 kardel #endif /* __FreeBSD__ */
135 1.2 kardel
136 1.2 kardel /*
137 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
138 1.2 kardel */
139 1.2 kardel static int
140 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
141 1.2 kardel {
142 1.2 kardel struct sysctlnode node;
143 1.2 kardel int error;
144 1.2 kardel char newname[MAX_TCNAMELEN];
145 1.2 kardel struct timecounter *newtc, *tc;
146 1.2 kardel
147 1.2 kardel tc = timecounter;
148 1.2 kardel
149 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
150 1.2 kardel
151 1.2 kardel node = *rnode;
152 1.2 kardel node.sysctl_data = newname;
153 1.2 kardel node.sysctl_size = sizeof(newname);
154 1.2 kardel
155 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
156 1.2 kardel
157 1.2 kardel if (error ||
158 1.2 kardel newp == NULL ||
159 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
160 1.2 kardel return error;
161 1.1 simonb
162 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
163 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
164 1.26 elad NULL, NULL)) != 0)
165 1.2 kardel return (error);
166 1.2 kardel
167 1.22 ad if (!cold)
168 1.35 ad mutex_spin_enter(&timecounter_lock);
169 1.23 ad error = EINVAL;
170 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
171 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
172 1.2 kardel continue;
173 1.2 kardel /* Warm up new timecounter. */
174 1.2 kardel (void)newtc->tc_get_timecount(newtc);
175 1.2 kardel (void)newtc->tc_get_timecount(newtc);
176 1.2 kardel timecounter = newtc;
177 1.22 ad error = 0;
178 1.23 ad break;
179 1.23 ad }
180 1.22 ad if (!cold)
181 1.35 ad mutex_spin_exit(&timecounter_lock);
182 1.22 ad return error;
183 1.2 kardel }
184 1.2 kardel
185 1.2 kardel static int
186 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
187 1.2 kardel {
188 1.9 kardel char buf[MAX_TCNAMELEN+48];
189 1.35 ad char *where;
190 1.2 kardel const char *spc;
191 1.2 kardel struct timecounter *tc;
192 1.2 kardel size_t needed, left, slen;
193 1.35 ad int error, mods;
194 1.2 kardel
195 1.2 kardel if (newp != NULL)
196 1.2 kardel return (EPERM);
197 1.2 kardel if (namelen != 0)
198 1.2 kardel return (EINVAL);
199 1.2 kardel
200 1.35 ad mutex_spin_enter(&timecounter_lock);
201 1.35 ad retry:
202 1.2 kardel spc = "";
203 1.2 kardel error = 0;
204 1.2 kardel needed = 0;
205 1.2 kardel left = *oldlenp;
206 1.35 ad where = oldp;
207 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
208 1.2 kardel if (where == NULL) {
209 1.2 kardel needed += sizeof(buf); /* be conservative */
210 1.2 kardel } else {
211 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
212 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
213 1.2 kardel tc->tc_frequency);
214 1.2 kardel if (left < slen + 1)
215 1.2 kardel break;
216 1.35 ad mods = timecounter_mods;
217 1.35 ad mutex_spin_exit(&timecounter_lock);
218 1.2 kardel error = copyout(buf, where, slen + 1);
219 1.35 ad mutex_spin_enter(&timecounter_lock);
220 1.35 ad if (mods != timecounter_mods) {
221 1.35 ad mutex_spin_exit(&timecounter_lock);
222 1.35 ad goto retry;
223 1.35 ad }
224 1.2 kardel spc = " ";
225 1.2 kardel where += slen;
226 1.2 kardel needed += slen;
227 1.2 kardel left -= slen;
228 1.2 kardel }
229 1.2 kardel }
230 1.35 ad mutex_spin_exit(&timecounter_lock);
231 1.2 kardel
232 1.2 kardel *oldlenp = needed;
233 1.2 kardel return (error);
234 1.2 kardel }
235 1.2 kardel
236 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
237 1.2 kardel {
238 1.2 kardel const struct sysctlnode *node;
239 1.2 kardel
240 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
241 1.2 kardel CTLFLAG_PERMANENT,
242 1.2 kardel CTLTYPE_NODE, "timecounter",
243 1.2 kardel SYSCTL_DESCR("time counter information"),
244 1.2 kardel NULL, 0, NULL, 0,
245 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
246 1.2 kardel
247 1.2 kardel if (node != NULL) {
248 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
249 1.2 kardel CTLFLAG_PERMANENT,
250 1.2 kardel CTLTYPE_STRING, "choice",
251 1.2 kardel SYSCTL_DESCR("available counters"),
252 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
253 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
254 1.2 kardel
255 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
256 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 1.2 kardel CTLTYPE_STRING, "hardware",
258 1.2 kardel SYSCTL_DESCR("currently active time counter"),
259 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
260 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
261 1.2 kardel
262 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
263 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 1.2 kardel CTLTYPE_INT, "timestepwarnings",
265 1.2 kardel SYSCTL_DESCR("log time steps"),
266 1.2 kardel NULL, 0, ×tepwarnings, 0,
267 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268 1.2 kardel }
269 1.2 kardel }
270 1.2 kardel
271 1.32 ad #ifdef TC_COUNTERS
272 1.2 kardel #define TC_STATS(name) \
273 1.2 kardel static struct evcnt n##name = \
274 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
275 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
276 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
277 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
278 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
279 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
280 1.2 kardel TC_STATS(setclock);
281 1.32 ad #define TC_COUNT(var) var.ev_count++
282 1.1 simonb #undef TC_STATS
283 1.32 ad #else
284 1.32 ad #define TC_COUNT(var) /* nothing */
285 1.32 ad #endif /* TC_COUNTERS */
286 1.1 simonb
287 1.1 simonb static void tc_windup(void);
288 1.1 simonb
289 1.1 simonb /*
290 1.1 simonb * Return the difference between the timehands' counter value now and what
291 1.1 simonb * was when we copied it to the timehands' offset_count.
292 1.1 simonb */
293 1.1 simonb static __inline u_int
294 1.1 simonb tc_delta(struct timehands *th)
295 1.1 simonb {
296 1.1 simonb struct timecounter *tc;
297 1.1 simonb
298 1.1 simonb tc = th->th_counter;
299 1.2 kardel return ((tc->tc_get_timecount(tc) -
300 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
301 1.1 simonb }
302 1.1 simonb
303 1.1 simonb /*
304 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
305 1.1 simonb * the timehands that we operated on was not updated under our feet. See
306 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
307 1.1 simonb */
308 1.1 simonb
309 1.1 simonb void
310 1.1 simonb binuptime(struct bintime *bt)
311 1.1 simonb {
312 1.1 simonb struct timehands *th;
313 1.1 simonb u_int gen;
314 1.1 simonb
315 1.32 ad TC_COUNT(nbinuptime);
316 1.1 simonb do {
317 1.1 simonb th = timehands;
318 1.1 simonb gen = th->th_generation;
319 1.1 simonb *bt = th->th_offset;
320 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
321 1.1 simonb } while (gen == 0 || gen != th->th_generation);
322 1.1 simonb }
323 1.1 simonb
324 1.1 simonb void
325 1.1 simonb nanouptime(struct timespec *tsp)
326 1.1 simonb {
327 1.1 simonb struct bintime bt;
328 1.1 simonb
329 1.32 ad TC_COUNT(nnanouptime);
330 1.1 simonb binuptime(&bt);
331 1.1 simonb bintime2timespec(&bt, tsp);
332 1.1 simonb }
333 1.1 simonb
334 1.1 simonb void
335 1.1 simonb microuptime(struct timeval *tvp)
336 1.1 simonb {
337 1.1 simonb struct bintime bt;
338 1.1 simonb
339 1.32 ad TC_COUNT(nmicrouptime);
340 1.1 simonb binuptime(&bt);
341 1.1 simonb bintime2timeval(&bt, tvp);
342 1.1 simonb }
343 1.1 simonb
344 1.1 simonb void
345 1.1 simonb bintime(struct bintime *bt)
346 1.1 simonb {
347 1.1 simonb
348 1.32 ad TC_COUNT(nbintime);
349 1.1 simonb binuptime(bt);
350 1.4 kardel bintime_add(bt, &timebasebin);
351 1.1 simonb }
352 1.1 simonb
353 1.1 simonb void
354 1.1 simonb nanotime(struct timespec *tsp)
355 1.1 simonb {
356 1.1 simonb struct bintime bt;
357 1.1 simonb
358 1.32 ad TC_COUNT(nnanotime);
359 1.1 simonb bintime(&bt);
360 1.1 simonb bintime2timespec(&bt, tsp);
361 1.1 simonb }
362 1.1 simonb
363 1.1 simonb void
364 1.1 simonb microtime(struct timeval *tvp)
365 1.1 simonb {
366 1.1 simonb struct bintime bt;
367 1.1 simonb
368 1.32 ad TC_COUNT(nmicrotime);
369 1.1 simonb bintime(&bt);
370 1.1 simonb bintime2timeval(&bt, tvp);
371 1.1 simonb }
372 1.1 simonb
373 1.1 simonb void
374 1.1 simonb getbinuptime(struct bintime *bt)
375 1.1 simonb {
376 1.1 simonb struct timehands *th;
377 1.1 simonb u_int gen;
378 1.1 simonb
379 1.32 ad TC_COUNT(ngetbinuptime);
380 1.1 simonb do {
381 1.1 simonb th = timehands;
382 1.1 simonb gen = th->th_generation;
383 1.1 simonb *bt = th->th_offset;
384 1.1 simonb } while (gen == 0 || gen != th->th_generation);
385 1.1 simonb }
386 1.1 simonb
387 1.1 simonb void
388 1.1 simonb getnanouptime(struct timespec *tsp)
389 1.1 simonb {
390 1.1 simonb struct timehands *th;
391 1.1 simonb u_int gen;
392 1.1 simonb
393 1.32 ad TC_COUNT(ngetnanouptime);
394 1.1 simonb do {
395 1.1 simonb th = timehands;
396 1.1 simonb gen = th->th_generation;
397 1.1 simonb bintime2timespec(&th->th_offset, tsp);
398 1.1 simonb } while (gen == 0 || gen != th->th_generation);
399 1.1 simonb }
400 1.1 simonb
401 1.1 simonb void
402 1.1 simonb getmicrouptime(struct timeval *tvp)
403 1.1 simonb {
404 1.1 simonb struct timehands *th;
405 1.1 simonb u_int gen;
406 1.1 simonb
407 1.32 ad TC_COUNT(ngetmicrouptime);
408 1.1 simonb do {
409 1.1 simonb th = timehands;
410 1.1 simonb gen = th->th_generation;
411 1.1 simonb bintime2timeval(&th->th_offset, tvp);
412 1.1 simonb } while (gen == 0 || gen != th->th_generation);
413 1.1 simonb }
414 1.1 simonb
415 1.1 simonb void
416 1.1 simonb getbintime(struct bintime *bt)
417 1.1 simonb {
418 1.1 simonb struct timehands *th;
419 1.1 simonb u_int gen;
420 1.1 simonb
421 1.32 ad TC_COUNT(ngetbintime);
422 1.1 simonb do {
423 1.1 simonb th = timehands;
424 1.1 simonb gen = th->th_generation;
425 1.1 simonb *bt = th->th_offset;
426 1.1 simonb } while (gen == 0 || gen != th->th_generation);
427 1.4 kardel bintime_add(bt, &timebasebin);
428 1.1 simonb }
429 1.1 simonb
430 1.1 simonb void
431 1.1 simonb getnanotime(struct timespec *tsp)
432 1.1 simonb {
433 1.1 simonb struct timehands *th;
434 1.1 simonb u_int gen;
435 1.1 simonb
436 1.32 ad TC_COUNT(ngetnanotime);
437 1.1 simonb do {
438 1.1 simonb th = timehands;
439 1.1 simonb gen = th->th_generation;
440 1.1 simonb *tsp = th->th_nanotime;
441 1.1 simonb } while (gen == 0 || gen != th->th_generation);
442 1.1 simonb }
443 1.1 simonb
444 1.1 simonb void
445 1.1 simonb getmicrotime(struct timeval *tvp)
446 1.1 simonb {
447 1.1 simonb struct timehands *th;
448 1.1 simonb u_int gen;
449 1.1 simonb
450 1.32 ad TC_COUNT(ngetmicrotime);
451 1.1 simonb do {
452 1.1 simonb th = timehands;
453 1.1 simonb gen = th->th_generation;
454 1.1 simonb *tvp = th->th_microtime;
455 1.1 simonb } while (gen == 0 || gen != th->th_generation);
456 1.1 simonb }
457 1.1 simonb
458 1.1 simonb /*
459 1.1 simonb * Initialize a new timecounter and possibly use it.
460 1.1 simonb */
461 1.1 simonb void
462 1.1 simonb tc_init(struct timecounter *tc)
463 1.1 simonb {
464 1.1 simonb u_int u;
465 1.1 simonb
466 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
467 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
468 1.1 simonb u *= 11;
469 1.1 simonb u /= 10;
470 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
471 1.1 simonb tc->tc_quality = -2000;
472 1.18 ad aprint_verbose(
473 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
474 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
475 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
476 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
477 1.18 ad aprint_verbose(
478 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
479 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
480 1.7 bjh21 tc->tc_quality);
481 1.1 simonb }
482 1.1 simonb
483 1.33 ad mutex_spin_enter(&timecounter_lock);
484 1.1 simonb tc->tc_next = timecounters;
485 1.1 simonb timecounters = tc;
486 1.35 ad timecounter_mods++;
487 1.1 simonb /*
488 1.1 simonb * Never automatically use a timecounter with negative quality.
489 1.1 simonb * Even though we run on the dummy counter, switching here may be
490 1.1 simonb * worse since this timecounter may not be monotonous.
491 1.1 simonb */
492 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
493 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
494 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
495 1.22 ad (void)tc->tc_get_timecount(tc);
496 1.22 ad (void)tc->tc_get_timecount(tc);
497 1.22 ad timecounter = tc;
498 1.22 ad tc_windup();
499 1.22 ad }
500 1.33 ad mutex_spin_exit(&timecounter_lock);
501 1.35 ad }
502 1.35 ad
503 1.35 ad /*
504 1.35 ad * Pick a new timecounter due to the existing counter going bad.
505 1.35 ad */
506 1.35 ad static void
507 1.35 ad tc_pick(void)
508 1.35 ad {
509 1.35 ad struct timecounter *best, *tc;
510 1.35 ad
511 1.35 ad KASSERT(mutex_owned(&timecounter_lock));
512 1.35 ad
513 1.35 ad for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
514 1.35 ad if (tc->tc_quality > best->tc_quality)
515 1.35 ad best = tc;
516 1.35 ad else if (tc->tc_quality < best->tc_quality)
517 1.35 ad continue;
518 1.35 ad else if (tc->tc_frequency > best->tc_frequency)
519 1.35 ad best = tc;
520 1.35 ad }
521 1.35 ad (void)best->tc_get_timecount(best);
522 1.35 ad (void)best->tc_get_timecount(best);
523 1.35 ad timecounter = best;
524 1.35 ad }
525 1.35 ad
526 1.35 ad /*
527 1.35 ad * A timecounter has gone bad, arrange to pick a new one at the next
528 1.35 ad * clock tick.
529 1.35 ad */
530 1.35 ad void
531 1.35 ad tc_gonebad(struct timecounter *tc)
532 1.35 ad {
533 1.35 ad
534 1.35 ad tc->tc_quality = -100;
535 1.35 ad membar_producer();
536 1.35 ad atomic_inc_uint(&timecounter_bad);
537 1.1 simonb }
538 1.1 simonb
539 1.29 dyoung /*
540 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
541 1.29 dyoung */
542 1.29 dyoung int
543 1.29 dyoung tc_detach(struct timecounter *target)
544 1.29 dyoung {
545 1.35 ad struct timecounter *tc;
546 1.29 dyoung struct timecounter **tcp = NULL;
547 1.30 ad int rc = 0;
548 1.29 dyoung
549 1.35 ad mutex_spin_enter(&timecounter_lock);
550 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
551 1.29 dyoung tc != NULL;
552 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
553 1.29 dyoung if (tc == target)
554 1.29 dyoung break;
555 1.29 dyoung }
556 1.29 dyoung if (tc == NULL) {
557 1.29 dyoung rc = ESRCH;
558 1.35 ad } else {
559 1.35 ad *tcp = tc->tc_next;
560 1.35 ad if (timecounter == target) {
561 1.35 ad tc_pick();
562 1.35 ad tc_windup();
563 1.35 ad }
564 1.35 ad timecounter_mods++;
565 1.29 dyoung }
566 1.33 ad mutex_spin_exit(&timecounter_lock);
567 1.29 dyoung return rc;
568 1.29 dyoung }
569 1.29 dyoung
570 1.1 simonb /* Report the frequency of the current timecounter. */
571 1.1 simonb u_int64_t
572 1.1 simonb tc_getfrequency(void)
573 1.1 simonb {
574 1.1 simonb
575 1.1 simonb return (timehands->th_counter->tc_frequency);
576 1.1 simonb }
577 1.1 simonb
578 1.1 simonb /*
579 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
580 1.1 simonb * when we booted.
581 1.1 simonb */
582 1.1 simonb void
583 1.1 simonb tc_setclock(struct timespec *ts)
584 1.1 simonb {
585 1.1 simonb struct timespec ts2;
586 1.1 simonb struct bintime bt, bt2;
587 1.1 simonb
588 1.33 ad mutex_spin_enter(&timecounter_lock);
589 1.32 ad TC_COUNT(nsetclock);
590 1.1 simonb binuptime(&bt2);
591 1.1 simonb timespec2bintime(ts, &bt);
592 1.1 simonb bintime_sub(&bt, &bt2);
593 1.4 kardel bintime_add(&bt2, &timebasebin);
594 1.4 kardel timebasebin = bt;
595 1.30 ad tc_windup();
596 1.33 ad mutex_spin_exit(&timecounter_lock);
597 1.1 simonb
598 1.1 simonb if (timestepwarnings) {
599 1.1 simonb bintime2timespec(&bt2, &ts2);
600 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
601 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
602 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
603 1.1 simonb }
604 1.1 simonb }
605 1.1 simonb
606 1.1 simonb /*
607 1.1 simonb * Initialize the next struct timehands in the ring and make
608 1.1 simonb * it the active timehands. Along the way we might switch to a different
609 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
610 1.1 simonb */
611 1.1 simonb static void
612 1.1 simonb tc_windup(void)
613 1.1 simonb {
614 1.1 simonb struct bintime bt;
615 1.1 simonb struct timehands *th, *tho;
616 1.1 simonb u_int64_t scale;
617 1.1 simonb u_int delta, ncount, ogen;
618 1.13 kardel int i, s_update;
619 1.1 simonb time_t t;
620 1.1 simonb
621 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
622 1.30 ad
623 1.13 kardel s_update = 0;
624 1.20 ad
625 1.1 simonb /*
626 1.1 simonb * Make the next timehands a copy of the current one, but do not
627 1.1 simonb * overwrite the generation or next pointer. While we update
628 1.20 ad * the contents, the generation must be zero. Ensure global
629 1.20 ad * visibility of the generation before proceeding.
630 1.1 simonb */
631 1.1 simonb tho = timehands;
632 1.1 simonb th = tho->th_next;
633 1.1 simonb ogen = th->th_generation;
634 1.1 simonb th->th_generation = 0;
635 1.27 ad membar_producer();
636 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
637 1.1 simonb
638 1.1 simonb /*
639 1.1 simonb * Capture a timecounter delta on the current timecounter and if
640 1.1 simonb * changing timecounters, a counter value from the new timecounter.
641 1.1 simonb * Update the offset fields accordingly.
642 1.1 simonb */
643 1.1 simonb delta = tc_delta(th);
644 1.1 simonb if (th->th_counter != timecounter)
645 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
646 1.1 simonb else
647 1.1 simonb ncount = 0;
648 1.1 simonb th->th_offset_count += delta;
649 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
650 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
651 1.1 simonb
652 1.1 simonb /*
653 1.1 simonb * Hardware latching timecounters may not generate interrupts on
654 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
655 1.1 simonb * the hardware might capture a count which is later than the one we
656 1.1 simonb * got above, and therefore possibly in the next NTP second which might
657 1.1 simonb * have a different rate than the current NTP second. It doesn't
658 1.1 simonb * matter in practice.
659 1.1 simonb */
660 1.1 simonb if (tho->th_counter->tc_poll_pps)
661 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
662 1.1 simonb
663 1.1 simonb /*
664 1.1 simonb * Deal with NTP second processing. The for loop normally
665 1.1 simonb * iterates at most once, but in extreme situations it might
666 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
667 1.1 simonb * At boot, the time step can be large when the TOD hardware
668 1.1 simonb * has been read, so on really large steps, we call
669 1.1 simonb * ntp_update_second only twice. We need to call it twice in
670 1.1 simonb * case we missed a leap second.
671 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
672 1.2 kardel * the adjustment resulting from adjtime() calls.
673 1.1 simonb */
674 1.1 simonb bt = th->th_offset;
675 1.4 kardel bintime_add(&bt, &timebasebin);
676 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
677 1.1 simonb if (i > LARGE_STEP)
678 1.1 simonb i = 2;
679 1.1 simonb for (; i > 0; i--) {
680 1.1 simonb t = bt.sec;
681 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
682 1.13 kardel s_update = 1;
683 1.1 simonb if (bt.sec != t)
684 1.4 kardel timebasebin.sec += bt.sec - t;
685 1.1 simonb }
686 1.2 kardel
687 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
688 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
689 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
690 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
691 1.1 simonb
692 1.1 simonb /* Now is a good time to change timecounters. */
693 1.1 simonb if (th->th_counter != timecounter) {
694 1.1 simonb th->th_counter = timecounter;
695 1.1 simonb th->th_offset_count = ncount;
696 1.13 kardel s_update = 1;
697 1.1 simonb }
698 1.1 simonb
699 1.1 simonb /*-
700 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
701 1.1 simonb * fractions of a second per period of the hardware counter, taking
702 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
703 1.1 simonb * processing provides us with.
704 1.1 simonb *
705 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
706 1.1 simonb * fraction and we want 64 bit binary fraction of second:
707 1.1 simonb *
708 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
709 1.1 simonb *
710 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
711 1.1 simonb * we can only multiply by about 850 without overflowing, but that
712 1.1 simonb * leaves suitably precise fractions for multiply before divide.
713 1.1 simonb *
714 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
715 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
716 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
717 1.1 simonb *
718 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
719 1.1 simonb * to the goddess of code clarity.
720 1.1 simonb *
721 1.1 simonb */
722 1.13 kardel if (s_update) {
723 1.13 kardel scale = (u_int64_t)1 << 63;
724 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
725 1.13 kardel scale /= th->th_counter->tc_frequency;
726 1.13 kardel th->th_scale = scale * 2;
727 1.13 kardel }
728 1.1 simonb /*
729 1.1 simonb * Now that the struct timehands is again consistent, set the new
730 1.20 ad * generation number, making sure to not make it zero. Ensure
731 1.20 ad * changes are globally visible before changing.
732 1.1 simonb */
733 1.1 simonb if (++ogen == 0)
734 1.1 simonb ogen = 1;
735 1.27 ad membar_producer();
736 1.1 simonb th->th_generation = ogen;
737 1.1 simonb
738 1.20 ad /*
739 1.20 ad * Go live with the new struct timehands. Ensure changes are
740 1.20 ad * globally visible before changing.
741 1.20 ad */
742 1.1 simonb time_second = th->th_microtime.tv_sec;
743 1.1 simonb time_uptime = th->th_offset.sec;
744 1.27 ad membar_producer();
745 1.1 simonb timehands = th;
746 1.24 ad
747 1.24 ad /*
748 1.24 ad * Force users of the old timehand to move on. This is
749 1.24 ad * necessary for MP systems; we need to ensure that the
750 1.24 ad * consumers will move away from the old timehand before
751 1.24 ad * we begin updating it again when we eventually wrap
752 1.24 ad * around.
753 1.24 ad */
754 1.24 ad if (++tho->th_generation == 0)
755 1.24 ad tho->th_generation = 1;
756 1.1 simonb }
757 1.1 simonb
758 1.1 simonb /*
759 1.1 simonb * RFC 2783 PPS-API implementation.
760 1.1 simonb */
761 1.1 simonb
762 1.1 simonb int
763 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
764 1.1 simonb {
765 1.1 simonb pps_params_t *app;
766 1.2 kardel pps_info_t *pipi;
767 1.1 simonb #ifdef PPS_SYNC
768 1.2 kardel int *epi;
769 1.1 simonb #endif
770 1.1 simonb
771 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
772 1.33 ad
773 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
774 1.1 simonb switch (cmd) {
775 1.1 simonb case PPS_IOC_CREATE:
776 1.1 simonb return (0);
777 1.1 simonb case PPS_IOC_DESTROY:
778 1.1 simonb return (0);
779 1.1 simonb case PPS_IOC_SETPARAMS:
780 1.1 simonb app = (pps_params_t *)data;
781 1.1 simonb if (app->mode & ~pps->ppscap)
782 1.1 simonb return (EINVAL);
783 1.1 simonb pps->ppsparam = *app;
784 1.1 simonb return (0);
785 1.1 simonb case PPS_IOC_GETPARAMS:
786 1.1 simonb app = (pps_params_t *)data;
787 1.1 simonb *app = pps->ppsparam;
788 1.1 simonb app->api_version = PPS_API_VERS_1;
789 1.1 simonb return (0);
790 1.1 simonb case PPS_IOC_GETCAP:
791 1.1 simonb *(int*)data = pps->ppscap;
792 1.1 simonb return (0);
793 1.1 simonb case PPS_IOC_FETCH:
794 1.2 kardel pipi = (pps_info_t *)data;
795 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
796 1.2 kardel *pipi = pps->ppsinfo;
797 1.1 simonb return (0);
798 1.1 simonb case PPS_IOC_KCBIND:
799 1.1 simonb #ifdef PPS_SYNC
800 1.2 kardel epi = (int *)data;
801 1.1 simonb /* XXX Only root should be able to do this */
802 1.2 kardel if (*epi & ~pps->ppscap)
803 1.1 simonb return (EINVAL);
804 1.2 kardel pps->kcmode = *epi;
805 1.1 simonb return (0);
806 1.1 simonb #else
807 1.1 simonb return (EOPNOTSUPP);
808 1.1 simonb #endif
809 1.1 simonb default:
810 1.2 kardel return (EPASSTHROUGH);
811 1.1 simonb }
812 1.1 simonb }
813 1.1 simonb
814 1.1 simonb void
815 1.1 simonb pps_init(struct pps_state *pps)
816 1.1 simonb {
817 1.33 ad
818 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
819 1.33 ad
820 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
821 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
822 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
823 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
824 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
825 1.1 simonb }
826 1.1 simonb
827 1.1 simonb void
828 1.1 simonb pps_capture(struct pps_state *pps)
829 1.1 simonb {
830 1.1 simonb struct timehands *th;
831 1.1 simonb
832 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
833 1.33 ad KASSERT(pps != NULL);
834 1.33 ad
835 1.1 simonb th = timehands;
836 1.1 simonb pps->capgen = th->th_generation;
837 1.1 simonb pps->capth = th;
838 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
839 1.1 simonb if (pps->capgen != th->th_generation)
840 1.1 simonb pps->capgen = 0;
841 1.1 simonb }
842 1.1 simonb
843 1.1 simonb void
844 1.1 simonb pps_event(struct pps_state *pps, int event)
845 1.1 simonb {
846 1.1 simonb struct bintime bt;
847 1.1 simonb struct timespec ts, *tsp, *osp;
848 1.1 simonb u_int tcount, *pcount;
849 1.1 simonb int foff, fhard;
850 1.1 simonb pps_seq_t *pseq;
851 1.1 simonb
852 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
853 1.33 ad
854 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
855 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
856 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
857 1.1 simonb return;
858 1.1 simonb
859 1.1 simonb /* Things would be easier with arrays. */
860 1.1 simonb if (event == PPS_CAPTUREASSERT) {
861 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
862 1.1 simonb osp = &pps->ppsparam.assert_offset;
863 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
864 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
865 1.1 simonb pcount = &pps->ppscount[0];
866 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
867 1.1 simonb } else {
868 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
869 1.1 simonb osp = &pps->ppsparam.clear_offset;
870 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
871 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
872 1.1 simonb pcount = &pps->ppscount[1];
873 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
874 1.1 simonb }
875 1.1 simonb
876 1.1 simonb /*
877 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
878 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
879 1.1 simonb */
880 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
881 1.1 simonb pps->ppstc = pps->capth->th_counter;
882 1.1 simonb *pcount = pps->capcount;
883 1.1 simonb pps->ppscount[2] = pps->capcount;
884 1.1 simonb return;
885 1.1 simonb }
886 1.1 simonb
887 1.1 simonb /* Convert the count to a timespec. */
888 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
889 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
890 1.1 simonb bt = pps->capth->th_offset;
891 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
892 1.4 kardel bintime_add(&bt, &timebasebin);
893 1.1 simonb bintime2timespec(&bt, &ts);
894 1.1 simonb
895 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
896 1.1 simonb if (pps->capgen != pps->capth->th_generation)
897 1.1 simonb return;
898 1.1 simonb
899 1.1 simonb *pcount = pps->capcount;
900 1.1 simonb (*pseq)++;
901 1.1 simonb *tsp = ts;
902 1.1 simonb
903 1.1 simonb if (foff) {
904 1.2 kardel timespecadd(tsp, osp, tsp);
905 1.1 simonb if (tsp->tv_nsec < 0) {
906 1.1 simonb tsp->tv_nsec += 1000000000;
907 1.1 simonb tsp->tv_sec -= 1;
908 1.1 simonb }
909 1.1 simonb }
910 1.1 simonb #ifdef PPS_SYNC
911 1.1 simonb if (fhard) {
912 1.1 simonb u_int64_t scale;
913 1.1 simonb
914 1.1 simonb /*
915 1.1 simonb * Feed the NTP PLL/FLL.
916 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
917 1.1 simonb * elapsed since the previous event.
918 1.1 simonb */
919 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
920 1.1 simonb pps->ppscount[2] = pps->capcount;
921 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
922 1.1 simonb scale = (u_int64_t)1 << 63;
923 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
924 1.1 simonb scale *= 2;
925 1.1 simonb bt.sec = 0;
926 1.1 simonb bt.frac = 0;
927 1.1 simonb bintime_addx(&bt, scale * tcount);
928 1.1 simonb bintime2timespec(&bt, &ts);
929 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
930 1.1 simonb }
931 1.1 simonb #endif
932 1.1 simonb }
933 1.1 simonb
934 1.1 simonb /*
935 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
936 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
937 1.1 simonb * used by the get*() family of functions, so their precision depends on
938 1.1 simonb * the update frequency.
939 1.1 simonb */
940 1.1 simonb
941 1.1 simonb static int tc_tick;
942 1.1 simonb
943 1.1 simonb void
944 1.1 simonb tc_ticktock(void)
945 1.1 simonb {
946 1.1 simonb static int count;
947 1.1 simonb
948 1.1 simonb if (++count < tc_tick)
949 1.1 simonb return;
950 1.1 simonb count = 0;
951 1.33 ad mutex_spin_enter(&timecounter_lock);
952 1.35 ad if (timecounter_bad != 0) {
953 1.35 ad /* An existing timecounter has gone bad, pick a new one. */
954 1.35 ad (void)atomic_swap_uint(&timecounter_bad, 0);
955 1.35 ad if (timecounter->tc_quality < 0) {
956 1.35 ad tc_pick();
957 1.35 ad }
958 1.35 ad }
959 1.1 simonb tc_windup();
960 1.33 ad mutex_spin_exit(&timecounter_lock);
961 1.1 simonb }
962 1.1 simonb
963 1.2 kardel void
964 1.2 kardel inittimecounter(void)
965 1.1 simonb {
966 1.1 simonb u_int p;
967 1.1 simonb
968 1.33 ad mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
969 1.30 ad
970 1.1 simonb /*
971 1.1 simonb * Set the initial timeout to
972 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
973 1.1 simonb * People should probably not use the sysctl to set the timeout
974 1.1 simonb * to smaller than its inital value, since that value is the
975 1.1 simonb * smallest reasonable one. If they want better timestamps they
976 1.1 simonb * should use the non-"get"* functions.
977 1.1 simonb */
978 1.1 simonb if (hz > 1000)
979 1.1 simonb tc_tick = (hz + 500) / 1000;
980 1.1 simonb else
981 1.1 simonb tc_tick = 1;
982 1.1 simonb p = (tc_tick * 1000000) / hz;
983 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
984 1.18 ad p / 1000, p % 1000);
985 1.1 simonb
986 1.1 simonb /* warm up new timecounter (again) and get rolling. */
987 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
988 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
989 1.1 simonb }
990