Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.42.12.1
      1  1.42.12.1       mrg /* $NetBSD: kern_tc.c,v 1.42.12.1 2012/02/24 09:11:47 mrg Exp $ */
      2       1.33        ad 
      3       1.33        ad /*-
      4       1.39        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5       1.33        ad  * All rights reserved.
      6       1.33        ad  *
      7       1.39        ad  * This code is derived from software contributed to The NetBSD Foundation
      8       1.39        ad  * by Andrew Doran.
      9       1.39        ad  *
     10       1.33        ad  * Redistribution and use in source and binary forms, with or without
     11       1.33        ad  * modification, are permitted provided that the following conditions
     12       1.33        ad  * are met:
     13       1.33        ad  * 1. Redistributions of source code must retain the above copyright
     14       1.33        ad  *    notice, this list of conditions and the following disclaimer.
     15       1.33        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.33        ad  *    notice, this list of conditions and the following disclaimer in the
     17       1.33        ad  *    documentation and/or other materials provided with the distribution.
     18       1.33        ad  *
     19       1.33        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.33        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.33        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.33        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.33        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.33        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.33        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.33        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.33        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.33        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.33        ad  * POSSIBILITY OF SUCH DAMAGE.
     30       1.33        ad  */
     31        1.2    kardel 
     32        1.1    simonb /*-
     33        1.1    simonb  * ----------------------------------------------------------------------------
     34        1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
     35        1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36        1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
     37        1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38        1.2    kardel  * ---------------------------------------------------------------------------
     39        1.1    simonb  */
     40        1.1    simonb 
     41        1.1    simonb #include <sys/cdefs.h>
     42        1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43  1.42.12.1       mrg __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.42.12.1 2012/02/24 09:11:47 mrg Exp $");
     44        1.1    simonb 
     45       1.42     pooka #ifdef _KERNEL_OPT
     46        1.1    simonb #include "opt_ntp.h"
     47       1.42     pooka #endif
     48        1.1    simonb 
     49        1.1    simonb #include <sys/param.h>
     50        1.1    simonb #include <sys/kernel.h>
     51        1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     52        1.1    simonb #include <sys/sysctl.h>
     53        1.1    simonb #include <sys/syslog.h>
     54        1.1    simonb #include <sys/systm.h>
     55        1.1    simonb #include <sys/timepps.h>
     56        1.1    simonb #include <sys/timetc.h>
     57        1.1    simonb #include <sys/timex.h>
     58        1.2    kardel #include <sys/evcnt.h>
     59        1.2    kardel #include <sys/kauth.h>
     60       1.25        ad #include <sys/mutex.h>
     61       1.27        ad #include <sys/atomic.h>
     62       1.39        ad #include <sys/xcall.h>
     63        1.2    kardel 
     64        1.2    kardel /*
     65        1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     66        1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     67        1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     68        1.1    simonb  * forever when the time step is large.
     69        1.1    simonb  */
     70        1.1    simonb #define LARGE_STEP	200
     71        1.1    simonb 
     72        1.1    simonb /*
     73        1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     74        1.1    simonb  * in the air.  This allows the console and other early stuff to use
     75        1.1    simonb  * time services.
     76        1.1    simonb  */
     77        1.1    simonb 
     78        1.1    simonb static u_int
     79       1.16      yamt dummy_get_timecount(struct timecounter *tc)
     80        1.1    simonb {
     81        1.1    simonb 	static u_int now;
     82        1.1    simonb 
     83        1.1    simonb 	return (++now);
     84        1.1    simonb }
     85        1.1    simonb 
     86        1.1    simonb static struct timecounter dummy_timecounter = {
     87        1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     88        1.1    simonb };
     89        1.1    simonb 
     90        1.1    simonb struct timehands {
     91        1.1    simonb 	/* These fields must be initialized by the driver. */
     92       1.40    kardel 	struct timecounter	*th_counter;     /* active timecounter */
     93       1.40    kardel 	int64_t			th_adjustment;   /* frequency adjustment */
     94       1.40    kardel 						 /* (NTP/adjtime) */
     95       1.40    kardel 	u_int64_t		th_scale;        /* scale factor (counter */
     96       1.40    kardel 						 /* tick->time) */
     97       1.40    kardel 	u_int64_t 		th_offset_count; /* offset at last time */
     98       1.40    kardel 						 /* update (tc_windup()) */
     99       1.40    kardel 	struct bintime		th_offset;       /* bin (up)time at windup */
    100       1.40    kardel 	struct timeval		th_microtime;    /* cached microtime */
    101       1.40    kardel 	struct timespec		th_nanotime;     /* cached nanotime */
    102        1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
    103       1.40    kardel 	volatile u_int		th_generation;   /* current genration */
    104       1.40    kardel 	struct timehands	*th_next;        /* next timehand */
    105        1.1    simonb };
    106        1.1    simonb 
    107        1.1    simonb static struct timehands th0;
    108       1.10  christos static struct timehands th9 = { .th_next = &th0, };
    109       1.10  christos static struct timehands th8 = { .th_next = &th9, };
    110       1.10  christos static struct timehands th7 = { .th_next = &th8, };
    111       1.10  christos static struct timehands th6 = { .th_next = &th7, };
    112       1.10  christos static struct timehands th5 = { .th_next = &th6, };
    113       1.10  christos static struct timehands th4 = { .th_next = &th5, };
    114       1.10  christos static struct timehands th3 = { .th_next = &th4, };
    115       1.10  christos static struct timehands th2 = { .th_next = &th3, };
    116       1.10  christos static struct timehands th1 = { .th_next = &th2, };
    117        1.1    simonb static struct timehands th0 = {
    118       1.10  christos 	.th_counter = &dummy_timecounter,
    119       1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
    120       1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
    121       1.10  christos 	.th_generation = 1,
    122       1.10  christos 	.th_next = &th1,
    123        1.1    simonb };
    124        1.1    simonb 
    125        1.1    simonb static struct timehands *volatile timehands = &th0;
    126        1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
    127        1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
    128        1.1    simonb 
    129  1.42.12.1       mrg volatile time_t time_second = 1;
    130  1.42.12.1       mrg volatile time_t time_uptime = 1;
    131        1.1    simonb 
    132        1.4    kardel static struct bintime timebasebin;
    133        1.1    simonb 
    134        1.1    simonb static int timestepwarnings;
    135        1.2    kardel 
    136       1.33        ad kmutex_t timecounter_lock;
    137       1.35        ad static u_int timecounter_mods;
    138       1.39        ad static volatile int timecounter_removals = 1;
    139       1.35        ad static u_int timecounter_bad;
    140       1.25        ad 
    141        1.2    kardel #ifdef __FreeBSD__
    142        1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    143        1.1    simonb     &timestepwarnings, 0, "");
    144        1.2    kardel #endif /* __FreeBSD__ */
    145        1.2    kardel 
    146        1.2    kardel /*
    147       1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    148        1.2    kardel  */
    149        1.2    kardel static int
    150        1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    151        1.2    kardel {
    152        1.2    kardel 	struct sysctlnode node;
    153        1.2    kardel 	int error;
    154        1.2    kardel 	char newname[MAX_TCNAMELEN];
    155        1.2    kardel 	struct timecounter *newtc, *tc;
    156        1.2    kardel 
    157        1.2    kardel 	tc = timecounter;
    158        1.2    kardel 
    159        1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    160        1.2    kardel 
    161        1.2    kardel 	node = *rnode;
    162        1.2    kardel 	node.sysctl_data = newname;
    163        1.2    kardel 	node.sysctl_size = sizeof(newname);
    164        1.2    kardel 
    165        1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    166        1.2    kardel 
    167        1.2    kardel 	if (error ||
    168        1.2    kardel 	    newp == NULL ||
    169        1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    170        1.2    kardel 		return error;
    171        1.1    simonb 
    172       1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    173       1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    174       1.26      elad 	    NULL, NULL)) != 0)
    175        1.2    kardel 		return (error);
    176        1.2    kardel 
    177       1.22        ad 	if (!cold)
    178       1.35        ad 		mutex_spin_enter(&timecounter_lock);
    179       1.23        ad 	error = EINVAL;
    180        1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    181        1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    182        1.2    kardel 			continue;
    183        1.2    kardel 		/* Warm up new timecounter. */
    184        1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    185        1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    186        1.2    kardel 		timecounter = newtc;
    187       1.22        ad 		error = 0;
    188       1.23        ad 		break;
    189       1.23        ad 	}
    190       1.22        ad 	if (!cold)
    191       1.35        ad 		mutex_spin_exit(&timecounter_lock);
    192       1.22        ad 	return error;
    193        1.2    kardel }
    194        1.2    kardel 
    195        1.2    kardel static int
    196        1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    197        1.2    kardel {
    198        1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    199       1.35        ad 	char *where;
    200        1.2    kardel 	const char *spc;
    201        1.2    kardel 	struct timecounter *tc;
    202        1.2    kardel 	size_t needed, left, slen;
    203       1.35        ad 	int error, mods;
    204        1.2    kardel 
    205        1.2    kardel 	if (newp != NULL)
    206        1.2    kardel 		return (EPERM);
    207        1.2    kardel 	if (namelen != 0)
    208        1.2    kardel 		return (EINVAL);
    209        1.2    kardel 
    210       1.35        ad 	mutex_spin_enter(&timecounter_lock);
    211       1.35        ad  retry:
    212        1.2    kardel 	spc = "";
    213        1.2    kardel 	error = 0;
    214        1.2    kardel 	needed = 0;
    215        1.2    kardel 	left = *oldlenp;
    216       1.35        ad 	where = oldp;
    217        1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    218        1.2    kardel 		if (where == NULL) {
    219        1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    220        1.2    kardel 		} else {
    221        1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    222        1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    223        1.2    kardel 					tc->tc_frequency);
    224        1.2    kardel 			if (left < slen + 1)
    225        1.2    kardel 				break;
    226       1.35        ad 		 	mods = timecounter_mods;
    227       1.35        ad 			mutex_spin_exit(&timecounter_lock);
    228        1.2    kardel 			error = copyout(buf, where, slen + 1);
    229       1.35        ad 			mutex_spin_enter(&timecounter_lock);
    230       1.35        ad 			if (mods != timecounter_mods) {
    231       1.35        ad 				goto retry;
    232       1.35        ad 			}
    233        1.2    kardel 			spc = " ";
    234        1.2    kardel 			where += slen;
    235        1.2    kardel 			needed += slen;
    236        1.2    kardel 			left -= slen;
    237        1.2    kardel 		}
    238        1.2    kardel 	}
    239       1.35        ad 	mutex_spin_exit(&timecounter_lock);
    240        1.2    kardel 
    241        1.2    kardel 	*oldlenp = needed;
    242        1.2    kardel 	return (error);
    243        1.2    kardel }
    244        1.2    kardel 
    245        1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    246        1.2    kardel {
    247        1.2    kardel 	const struct sysctlnode *node;
    248        1.2    kardel 
    249        1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    250        1.2    kardel 		       CTLFLAG_PERMANENT,
    251        1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    252        1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    253        1.2    kardel 		       NULL, 0, NULL, 0,
    254        1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    255        1.2    kardel 
    256        1.2    kardel 	if (node != NULL) {
    257        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    258        1.2    kardel 			       CTLFLAG_PERMANENT,
    259        1.2    kardel 			       CTLTYPE_STRING, "choice",
    260        1.2    kardel 			       SYSCTL_DESCR("available counters"),
    261        1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    262        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    263        1.2    kardel 
    264        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    265        1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    266        1.2    kardel 			       CTLTYPE_STRING, "hardware",
    267        1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    268        1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    269        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    270        1.2    kardel 
    271        1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    272        1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    273        1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    274        1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    275        1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    276        1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    277        1.2    kardel 	}
    278        1.2    kardel }
    279        1.2    kardel 
    280       1.32        ad #ifdef TC_COUNTERS
    281        1.2    kardel #define	TC_STATS(name)							\
    282        1.2    kardel static struct evcnt n##name =						\
    283        1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    284        1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    285        1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    286        1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    287        1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    288        1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    289        1.2    kardel TC_STATS(setclock);
    290       1.32        ad #define	TC_COUNT(var)	var.ev_count++
    291        1.1    simonb #undef TC_STATS
    292       1.32        ad #else
    293       1.32        ad #define	TC_COUNT(var)	/* nothing */
    294       1.32        ad #endif	/* TC_COUNTERS */
    295        1.1    simonb 
    296        1.1    simonb static void tc_windup(void);
    297        1.1    simonb 
    298        1.1    simonb /*
    299        1.1    simonb  * Return the difference between the timehands' counter value now and what
    300        1.1    simonb  * was when we copied it to the timehands' offset_count.
    301        1.1    simonb  */
    302       1.41  uebayasi static inline u_int
    303        1.1    simonb tc_delta(struct timehands *th)
    304        1.1    simonb {
    305        1.1    simonb 	struct timecounter *tc;
    306        1.1    simonb 
    307        1.1    simonb 	tc = th->th_counter;
    308        1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    309        1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    310        1.1    simonb }
    311        1.1    simonb 
    312        1.1    simonb /*
    313        1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    314        1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    315       1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    316        1.1    simonb  */
    317        1.1    simonb 
    318        1.1    simonb void
    319        1.1    simonb binuptime(struct bintime *bt)
    320        1.1    simonb {
    321        1.1    simonb 	struct timehands *th;
    322       1.39        ad 	lwp_t *l;
    323       1.39        ad 	u_int lgen, gen;
    324        1.1    simonb 
    325       1.32        ad 	TC_COUNT(nbinuptime);
    326       1.39        ad 
    327       1.39        ad 	/*
    328       1.39        ad 	 * Provide exclusion against tc_detach().
    329       1.39        ad 	 *
    330       1.39        ad 	 * We record the number of timecounter removals before accessing
    331       1.39        ad 	 * timecounter state.  Note that the LWP can be using multiple
    332       1.39        ad 	 * "generations" at once, due to interrupts (interrupted while in
    333       1.39        ad 	 * this function).  Hardware interrupts will borrow the interrupted
    334       1.39        ad 	 * LWP's l_tcgen value for this purpose, and can themselves be
    335       1.39        ad 	 * interrupted by higher priority interrupts.  In this case we need
    336       1.39        ad 	 * to ensure that the oldest generation in use is recorded.
    337       1.39        ad 	 *
    338       1.39        ad 	 * splsched() is too expensive to use, so we take care to structure
    339       1.39        ad 	 * this code in such a way that it is not required.  Likewise, we
    340       1.39        ad 	 * do not disable preemption.
    341       1.39        ad 	 *
    342       1.39        ad 	 * Memory barriers are also too expensive to use for such a
    343       1.39        ad 	 * performance critical function.  The good news is that we do not
    344       1.39        ad 	 * need memory barriers for this type of exclusion, as the thread
    345       1.39        ad 	 * updating timecounter_removals will issue a broadcast cross call
    346       1.39        ad 	 * before inspecting our l_tcgen value (this elides memory ordering
    347       1.39        ad 	 * issues).
    348       1.39        ad 	 */
    349       1.39        ad 	l = curlwp;
    350       1.39        ad 	lgen = l->l_tcgen;
    351       1.39        ad 	if (__predict_true(lgen == 0)) {
    352       1.39        ad 		l->l_tcgen = timecounter_removals;
    353       1.39        ad 	}
    354       1.39        ad 	__insn_barrier();
    355       1.39        ad 
    356        1.1    simonb 	do {
    357        1.1    simonb 		th = timehands;
    358        1.1    simonb 		gen = th->th_generation;
    359        1.1    simonb 		*bt = th->th_offset;
    360        1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    361        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    362       1.39        ad 
    363       1.39        ad 	__insn_barrier();
    364       1.39        ad 	l->l_tcgen = lgen;
    365        1.1    simonb }
    366        1.1    simonb 
    367        1.1    simonb void
    368        1.1    simonb nanouptime(struct timespec *tsp)
    369        1.1    simonb {
    370        1.1    simonb 	struct bintime bt;
    371        1.1    simonb 
    372       1.32        ad 	TC_COUNT(nnanouptime);
    373        1.1    simonb 	binuptime(&bt);
    374        1.1    simonb 	bintime2timespec(&bt, tsp);
    375        1.1    simonb }
    376        1.1    simonb 
    377        1.1    simonb void
    378        1.1    simonb microuptime(struct timeval *tvp)
    379        1.1    simonb {
    380        1.1    simonb 	struct bintime bt;
    381        1.1    simonb 
    382       1.32        ad 	TC_COUNT(nmicrouptime);
    383        1.1    simonb 	binuptime(&bt);
    384        1.1    simonb 	bintime2timeval(&bt, tvp);
    385        1.1    simonb }
    386        1.1    simonb 
    387        1.1    simonb void
    388        1.1    simonb bintime(struct bintime *bt)
    389        1.1    simonb {
    390        1.1    simonb 
    391       1.32        ad 	TC_COUNT(nbintime);
    392        1.1    simonb 	binuptime(bt);
    393        1.4    kardel 	bintime_add(bt, &timebasebin);
    394        1.1    simonb }
    395        1.1    simonb 
    396        1.1    simonb void
    397        1.1    simonb nanotime(struct timespec *tsp)
    398        1.1    simonb {
    399        1.1    simonb 	struct bintime bt;
    400        1.1    simonb 
    401       1.32        ad 	TC_COUNT(nnanotime);
    402        1.1    simonb 	bintime(&bt);
    403        1.1    simonb 	bintime2timespec(&bt, tsp);
    404        1.1    simonb }
    405        1.1    simonb 
    406        1.1    simonb void
    407        1.1    simonb microtime(struct timeval *tvp)
    408        1.1    simonb {
    409        1.1    simonb 	struct bintime bt;
    410        1.1    simonb 
    411       1.32        ad 	TC_COUNT(nmicrotime);
    412        1.1    simonb 	bintime(&bt);
    413        1.1    simonb 	bintime2timeval(&bt, tvp);
    414        1.1    simonb }
    415        1.1    simonb 
    416        1.1    simonb void
    417        1.1    simonb getbinuptime(struct bintime *bt)
    418        1.1    simonb {
    419        1.1    simonb 	struct timehands *th;
    420        1.1    simonb 	u_int gen;
    421        1.1    simonb 
    422       1.32        ad 	TC_COUNT(ngetbinuptime);
    423        1.1    simonb 	do {
    424        1.1    simonb 		th = timehands;
    425        1.1    simonb 		gen = th->th_generation;
    426        1.1    simonb 		*bt = th->th_offset;
    427        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    428        1.1    simonb }
    429        1.1    simonb 
    430        1.1    simonb void
    431        1.1    simonb getnanouptime(struct timespec *tsp)
    432        1.1    simonb {
    433        1.1    simonb 	struct timehands *th;
    434        1.1    simonb 	u_int gen;
    435        1.1    simonb 
    436       1.32        ad 	TC_COUNT(ngetnanouptime);
    437        1.1    simonb 	do {
    438        1.1    simonb 		th = timehands;
    439        1.1    simonb 		gen = th->th_generation;
    440        1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    441        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    442        1.1    simonb }
    443        1.1    simonb 
    444        1.1    simonb void
    445        1.1    simonb getmicrouptime(struct timeval *tvp)
    446        1.1    simonb {
    447        1.1    simonb 	struct timehands *th;
    448        1.1    simonb 	u_int gen;
    449        1.1    simonb 
    450       1.32        ad 	TC_COUNT(ngetmicrouptime);
    451        1.1    simonb 	do {
    452        1.1    simonb 		th = timehands;
    453        1.1    simonb 		gen = th->th_generation;
    454        1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    455        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    456        1.1    simonb }
    457        1.1    simonb 
    458        1.1    simonb void
    459        1.1    simonb getbintime(struct bintime *bt)
    460        1.1    simonb {
    461        1.1    simonb 	struct timehands *th;
    462        1.1    simonb 	u_int gen;
    463        1.1    simonb 
    464       1.32        ad 	TC_COUNT(ngetbintime);
    465        1.1    simonb 	do {
    466        1.1    simonb 		th = timehands;
    467        1.1    simonb 		gen = th->th_generation;
    468        1.1    simonb 		*bt = th->th_offset;
    469        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    470        1.4    kardel 	bintime_add(bt, &timebasebin);
    471        1.1    simonb }
    472        1.1    simonb 
    473        1.1    simonb void
    474        1.1    simonb getnanotime(struct timespec *tsp)
    475        1.1    simonb {
    476        1.1    simonb 	struct timehands *th;
    477        1.1    simonb 	u_int gen;
    478        1.1    simonb 
    479       1.32        ad 	TC_COUNT(ngetnanotime);
    480        1.1    simonb 	do {
    481        1.1    simonb 		th = timehands;
    482        1.1    simonb 		gen = th->th_generation;
    483        1.1    simonb 		*tsp = th->th_nanotime;
    484        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    485        1.1    simonb }
    486        1.1    simonb 
    487        1.1    simonb void
    488        1.1    simonb getmicrotime(struct timeval *tvp)
    489        1.1    simonb {
    490        1.1    simonb 	struct timehands *th;
    491        1.1    simonb 	u_int gen;
    492        1.1    simonb 
    493       1.32        ad 	TC_COUNT(ngetmicrotime);
    494        1.1    simonb 	do {
    495        1.1    simonb 		th = timehands;
    496        1.1    simonb 		gen = th->th_generation;
    497        1.1    simonb 		*tvp = th->th_microtime;
    498        1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    499        1.1    simonb }
    500        1.1    simonb 
    501        1.1    simonb /*
    502        1.1    simonb  * Initialize a new timecounter and possibly use it.
    503        1.1    simonb  */
    504        1.1    simonb void
    505        1.1    simonb tc_init(struct timecounter *tc)
    506        1.1    simonb {
    507        1.1    simonb 	u_int u;
    508        1.1    simonb 
    509        1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    510        1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    511        1.1    simonb 	u *= 11;
    512        1.1    simonb 	u /= 10;
    513        1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    514        1.1    simonb 		tc->tc_quality = -2000;
    515       1.18        ad 		aprint_verbose(
    516       1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    517        1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    518       1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    519        1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    520       1.18        ad 		aprint_verbose(
    521       1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    522       1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    523        1.7     bjh21 		    tc->tc_quality);
    524        1.1    simonb 	}
    525        1.1    simonb 
    526       1.33        ad 	mutex_spin_enter(&timecounter_lock);
    527        1.1    simonb 	tc->tc_next = timecounters;
    528        1.1    simonb 	timecounters = tc;
    529       1.35        ad 	timecounter_mods++;
    530        1.1    simonb 	/*
    531        1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    532        1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    533        1.1    simonb 	 * worse since this timecounter may not be monotonous.
    534        1.1    simonb 	 */
    535       1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    536       1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    537       1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    538       1.22        ad 		(void)tc->tc_get_timecount(tc);
    539       1.22        ad 		(void)tc->tc_get_timecount(tc);
    540       1.22        ad 		timecounter = tc;
    541       1.22        ad 		tc_windup();
    542       1.22        ad 	}
    543       1.33        ad 	mutex_spin_exit(&timecounter_lock);
    544       1.35        ad }
    545       1.35        ad 
    546       1.35        ad /*
    547       1.35        ad  * Pick a new timecounter due to the existing counter going bad.
    548       1.35        ad  */
    549       1.35        ad static void
    550       1.35        ad tc_pick(void)
    551       1.35        ad {
    552       1.35        ad 	struct timecounter *best, *tc;
    553       1.35        ad 
    554       1.35        ad 	KASSERT(mutex_owned(&timecounter_lock));
    555       1.35        ad 
    556       1.35        ad 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    557       1.35        ad 		if (tc->tc_quality > best->tc_quality)
    558       1.35        ad 			best = tc;
    559       1.35        ad 		else if (tc->tc_quality < best->tc_quality)
    560       1.35        ad 			continue;
    561       1.35        ad 		else if (tc->tc_frequency > best->tc_frequency)
    562       1.35        ad 			best = tc;
    563       1.35        ad 	}
    564       1.35        ad 	(void)best->tc_get_timecount(best);
    565       1.35        ad 	(void)best->tc_get_timecount(best);
    566       1.35        ad 	timecounter = best;
    567       1.35        ad }
    568       1.35        ad 
    569       1.35        ad /*
    570       1.35        ad  * A timecounter has gone bad, arrange to pick a new one at the next
    571       1.35        ad  * clock tick.
    572       1.35        ad  */
    573       1.35        ad void
    574       1.35        ad tc_gonebad(struct timecounter *tc)
    575       1.35        ad {
    576       1.35        ad 
    577       1.35        ad 	tc->tc_quality = -100;
    578       1.35        ad 	membar_producer();
    579       1.35        ad 	atomic_inc_uint(&timecounter_bad);
    580        1.1    simonb }
    581        1.1    simonb 
    582       1.29    dyoung /*
    583       1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    584       1.29    dyoung  */
    585       1.29    dyoung int
    586       1.29    dyoung tc_detach(struct timecounter *target)
    587       1.29    dyoung {
    588       1.35        ad 	struct timecounter *tc;
    589       1.29    dyoung 	struct timecounter **tcp = NULL;
    590       1.39        ad 	int removals;
    591       1.39        ad 	uint64_t where;
    592       1.39        ad 	lwp_t *l;
    593       1.29    dyoung 
    594       1.39        ad 	/* First, find the timecounter. */
    595       1.35        ad 	mutex_spin_enter(&timecounter_lock);
    596       1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    597       1.29    dyoung 	     tc != NULL;
    598       1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    599       1.29    dyoung 		if (tc == target)
    600       1.29    dyoung 			break;
    601       1.29    dyoung 	}
    602       1.29    dyoung 	if (tc == NULL) {
    603       1.39        ad 		mutex_spin_exit(&timecounter_lock);
    604       1.39        ad 		return ESRCH;
    605       1.39        ad 	}
    606       1.39        ad 
    607       1.39        ad 	/* And now, remove it. */
    608       1.39        ad 	*tcp = tc->tc_next;
    609       1.39        ad 	if (timecounter == target) {
    610       1.39        ad 		tc_pick();
    611       1.39        ad 		tc_windup();
    612       1.39        ad 	}
    613       1.39        ad 	timecounter_mods++;
    614       1.39        ad 	removals = timecounter_removals++;
    615       1.39        ad 	mutex_spin_exit(&timecounter_lock);
    616       1.39        ad 
    617       1.39        ad 	/*
    618       1.39        ad 	 * We now have to determine if any threads in the system are still
    619       1.39        ad 	 * making use of this timecounter.
    620       1.39        ad 	 *
    621       1.39        ad 	 * We issue a broadcast cross call to elide memory ordering issues,
    622       1.39        ad 	 * then scan all LWPs in the system looking at each's timecounter
    623       1.39        ad 	 * generation number.  We need to see a value of zero (not actively
    624       1.39        ad 	 * using a timecounter) or a value greater than our removal value.
    625       1.39        ad 	 *
    626       1.39        ad 	 * We may race with threads that read `timecounter_removals' and
    627       1.39        ad 	 * and then get preempted before updating `l_tcgen'.  This is not
    628       1.39        ad 	 * a problem, since it means that these threads have not yet started
    629       1.39        ad 	 * accessing timecounter state.  All we do need is one clean
    630       1.39        ad 	 * snapshot of the system where every thread appears not to be using
    631       1.39        ad 	 * old timecounter state.
    632       1.39        ad 	 */
    633       1.39        ad 	for (;;) {
    634       1.39        ad 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    635       1.39        ad 		xc_wait(where);
    636       1.39        ad 
    637       1.39        ad 		mutex_enter(proc_lock);
    638       1.39        ad 		LIST_FOREACH(l, &alllwp, l_list) {
    639       1.39        ad 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    640       1.39        ad 				/*
    641       1.39        ad 				 * Not using timecounter or old timecounter
    642       1.39        ad 				 * state at time of our xcall or later.
    643       1.39        ad 				 */
    644       1.39        ad 				continue;
    645       1.39        ad 			}
    646       1.39        ad 			break;
    647       1.39        ad 		}
    648       1.39        ad 		mutex_exit(proc_lock);
    649       1.39        ad 
    650       1.39        ad 		/*
    651       1.39        ad 		 * If the timecounter is still in use, wait at least 10ms
    652       1.39        ad 		 * before retrying.
    653       1.39        ad 		 */
    654       1.39        ad 		if (l == NULL) {
    655       1.39        ad 			return 0;
    656       1.35        ad 		}
    657       1.39        ad 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    658       1.29    dyoung 	}
    659       1.29    dyoung }
    660       1.29    dyoung 
    661        1.1    simonb /* Report the frequency of the current timecounter. */
    662        1.1    simonb u_int64_t
    663        1.1    simonb tc_getfrequency(void)
    664        1.1    simonb {
    665        1.1    simonb 
    666        1.1    simonb 	return (timehands->th_counter->tc_frequency);
    667        1.1    simonb }
    668        1.1    simonb 
    669        1.1    simonb /*
    670        1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    671        1.1    simonb  * when we booted.
    672        1.1    simonb  */
    673        1.1    simonb void
    674       1.38  christos tc_setclock(const struct timespec *ts)
    675        1.1    simonb {
    676        1.1    simonb 	struct timespec ts2;
    677        1.1    simonb 	struct bintime bt, bt2;
    678        1.1    simonb 
    679       1.33        ad 	mutex_spin_enter(&timecounter_lock);
    680       1.32        ad 	TC_COUNT(nsetclock);
    681        1.1    simonb 	binuptime(&bt2);
    682        1.1    simonb 	timespec2bintime(ts, &bt);
    683        1.1    simonb 	bintime_sub(&bt, &bt2);
    684        1.4    kardel 	bintime_add(&bt2, &timebasebin);
    685        1.4    kardel 	timebasebin = bt;
    686       1.30        ad 	tc_windup();
    687       1.33        ad 	mutex_spin_exit(&timecounter_lock);
    688        1.1    simonb 
    689        1.1    simonb 	if (timestepwarnings) {
    690        1.1    simonb 		bintime2timespec(&bt2, &ts2);
    691       1.38  christos 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
    692       1.38  christos 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    693       1.38  christos 		    (long long)ts->tv_sec, ts->tv_nsec);
    694        1.1    simonb 	}
    695        1.1    simonb }
    696        1.1    simonb 
    697        1.1    simonb /*
    698        1.1    simonb  * Initialize the next struct timehands in the ring and make
    699        1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    700        1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    701        1.1    simonb  */
    702        1.1    simonb static void
    703        1.1    simonb tc_windup(void)
    704        1.1    simonb {
    705        1.1    simonb 	struct bintime bt;
    706        1.1    simonb 	struct timehands *th, *tho;
    707        1.1    simonb 	u_int64_t scale;
    708        1.1    simonb 	u_int delta, ncount, ogen;
    709       1.13    kardel 	int i, s_update;
    710        1.1    simonb 	time_t t;
    711        1.1    simonb 
    712       1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    713       1.30        ad 
    714       1.13    kardel 	s_update = 0;
    715       1.20        ad 
    716        1.1    simonb 	/*
    717        1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    718        1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    719       1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    720       1.20        ad 	 * visibility of the generation before proceeding.
    721        1.1    simonb 	 */
    722        1.1    simonb 	tho = timehands;
    723        1.1    simonb 	th = tho->th_next;
    724        1.1    simonb 	ogen = th->th_generation;
    725        1.1    simonb 	th->th_generation = 0;
    726       1.27        ad 	membar_producer();
    727        1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    728        1.1    simonb 
    729        1.1    simonb 	/*
    730        1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    731        1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    732        1.1    simonb 	 * Update the offset fields accordingly.
    733        1.1    simonb 	 */
    734        1.1    simonb 	delta = tc_delta(th);
    735        1.1    simonb 	if (th->th_counter != timecounter)
    736        1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    737        1.1    simonb 	else
    738        1.1    simonb 		ncount = 0;
    739        1.1    simonb 	th->th_offset_count += delta;
    740        1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    741        1.1    simonb 
    742        1.1    simonb 	/*
    743        1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    744        1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    745        1.1    simonb 	 * the hardware might capture a count which is later than the one we
    746        1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    747        1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    748        1.1    simonb 	 * matter in practice.
    749        1.1    simonb 	 */
    750        1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    751        1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    752        1.1    simonb 
    753        1.1    simonb 	/*
    754        1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    755        1.1    simonb 	 * iterates at most once, but in extreme situations it might
    756        1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    757        1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    758        1.1    simonb 	 * has been read, so on really large steps, we call
    759        1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    760        1.1    simonb 	 * case we missed a leap second.
    761        1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    762        1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    763        1.1    simonb 	 */
    764        1.1    simonb 	bt = th->th_offset;
    765        1.4    kardel 	bintime_add(&bt, &timebasebin);
    766        1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    767        1.1    simonb 	if (i > LARGE_STEP)
    768        1.1    simonb 		i = 2;
    769        1.1    simonb 	for (; i > 0; i--) {
    770        1.1    simonb 		t = bt.sec;
    771        1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    772       1.13    kardel 		s_update = 1;
    773        1.1    simonb 		if (bt.sec != t)
    774        1.4    kardel 			timebasebin.sec += bt.sec - t;
    775        1.1    simonb 	}
    776        1.2    kardel 
    777        1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    778        1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    779        1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    780        1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    781        1.1    simonb 	/* Now is a good time to change timecounters. */
    782        1.1    simonb 	if (th->th_counter != timecounter) {
    783        1.1    simonb 		th->th_counter = timecounter;
    784        1.1    simonb 		th->th_offset_count = ncount;
    785       1.13    kardel 		s_update = 1;
    786        1.1    simonb 	}
    787        1.1    simonb 
    788        1.1    simonb 	/*-
    789        1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    790        1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    791        1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    792        1.1    simonb 	 * processing provides us with.
    793        1.1    simonb 	 *
    794        1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    795        1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    796        1.1    simonb 	 *
    797        1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    798        1.1    simonb 	 *
    799        1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    800        1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    801        1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    802        1.1    simonb 	 *
    803        1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    804        1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    805        1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    806        1.1    simonb  	 *
    807        1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    808        1.1    simonb 	 * to the goddess of code clarity.
    809        1.1    simonb 	 *
    810        1.1    simonb 	 */
    811       1.13    kardel 	if (s_update) {
    812       1.13    kardel 		scale = (u_int64_t)1 << 63;
    813       1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    814       1.13    kardel 		scale /= th->th_counter->tc_frequency;
    815       1.13    kardel 		th->th_scale = scale * 2;
    816       1.13    kardel 	}
    817        1.1    simonb 	/*
    818        1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    819       1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    820       1.20        ad 	 * changes are globally visible before changing.
    821        1.1    simonb 	 */
    822        1.1    simonb 	if (++ogen == 0)
    823        1.1    simonb 		ogen = 1;
    824       1.27        ad 	membar_producer();
    825        1.1    simonb 	th->th_generation = ogen;
    826        1.1    simonb 
    827       1.20        ad 	/*
    828       1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    829       1.20        ad 	 * globally visible before changing.
    830       1.20        ad 	 */
    831        1.1    simonb 	time_second = th->th_microtime.tv_sec;
    832        1.1    simonb 	time_uptime = th->th_offset.sec;
    833       1.27        ad 	membar_producer();
    834        1.1    simonb 	timehands = th;
    835       1.24        ad 
    836       1.24        ad 	/*
    837       1.24        ad 	 * Force users of the old timehand to move on.  This is
    838       1.24        ad 	 * necessary for MP systems; we need to ensure that the
    839       1.24        ad 	 * consumers will move away from the old timehand before
    840       1.24        ad 	 * we begin updating it again when we eventually wrap
    841       1.24        ad 	 * around.
    842       1.24        ad 	 */
    843       1.24        ad 	if (++tho->th_generation == 0)
    844       1.24        ad 		tho->th_generation = 1;
    845        1.1    simonb }
    846        1.1    simonb 
    847        1.1    simonb /*
    848        1.1    simonb  * RFC 2783 PPS-API implementation.
    849        1.1    simonb  */
    850        1.1    simonb 
    851        1.1    simonb int
    852       1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    853        1.1    simonb {
    854        1.1    simonb 	pps_params_t *app;
    855        1.2    kardel 	pps_info_t *pipi;
    856        1.1    simonb #ifdef PPS_SYNC
    857        1.2    kardel 	int *epi;
    858        1.1    simonb #endif
    859        1.1    simonb 
    860       1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    861       1.33        ad 
    862        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    863        1.1    simonb 	switch (cmd) {
    864        1.1    simonb 	case PPS_IOC_CREATE:
    865        1.1    simonb 		return (0);
    866        1.1    simonb 	case PPS_IOC_DESTROY:
    867        1.1    simonb 		return (0);
    868        1.1    simonb 	case PPS_IOC_SETPARAMS:
    869        1.1    simonb 		app = (pps_params_t *)data;
    870        1.1    simonb 		if (app->mode & ~pps->ppscap)
    871        1.1    simonb 			return (EINVAL);
    872        1.1    simonb 		pps->ppsparam = *app;
    873        1.1    simonb 		return (0);
    874        1.1    simonb 	case PPS_IOC_GETPARAMS:
    875        1.1    simonb 		app = (pps_params_t *)data;
    876        1.1    simonb 		*app = pps->ppsparam;
    877        1.1    simonb 		app->api_version = PPS_API_VERS_1;
    878        1.1    simonb 		return (0);
    879        1.1    simonb 	case PPS_IOC_GETCAP:
    880        1.1    simonb 		*(int*)data = pps->ppscap;
    881        1.1    simonb 		return (0);
    882        1.1    simonb 	case PPS_IOC_FETCH:
    883        1.2    kardel 		pipi = (pps_info_t *)data;
    884        1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    885        1.2    kardel 		*pipi = pps->ppsinfo;
    886        1.1    simonb 		return (0);
    887        1.1    simonb 	case PPS_IOC_KCBIND:
    888        1.1    simonb #ifdef PPS_SYNC
    889        1.2    kardel 		epi = (int *)data;
    890        1.1    simonb 		/* XXX Only root should be able to do this */
    891        1.2    kardel 		if (*epi & ~pps->ppscap)
    892        1.1    simonb 			return (EINVAL);
    893        1.2    kardel 		pps->kcmode = *epi;
    894        1.1    simonb 		return (0);
    895        1.1    simonb #else
    896        1.1    simonb 		return (EOPNOTSUPP);
    897        1.1    simonb #endif
    898        1.1    simonb 	default:
    899        1.2    kardel 		return (EPASSTHROUGH);
    900        1.1    simonb 	}
    901        1.1    simonb }
    902        1.1    simonb 
    903        1.1    simonb void
    904        1.1    simonb pps_init(struct pps_state *pps)
    905        1.1    simonb {
    906       1.33        ad 
    907       1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    908       1.33        ad 
    909        1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    910        1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    911        1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    912        1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    913        1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    914        1.1    simonb }
    915        1.1    simonb 
    916        1.1    simonb void
    917        1.1    simonb pps_capture(struct pps_state *pps)
    918        1.1    simonb {
    919        1.1    simonb 	struct timehands *th;
    920        1.1    simonb 
    921       1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    922       1.33        ad 	KASSERT(pps != NULL);
    923       1.33        ad 
    924        1.1    simonb 	th = timehands;
    925        1.1    simonb 	pps->capgen = th->th_generation;
    926        1.1    simonb 	pps->capth = th;
    927       1.40    kardel 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
    928        1.1    simonb 	if (pps->capgen != th->th_generation)
    929        1.1    simonb 		pps->capgen = 0;
    930        1.1    simonb }
    931        1.1    simonb 
    932        1.1    simonb void
    933        1.1    simonb pps_event(struct pps_state *pps, int event)
    934        1.1    simonb {
    935        1.1    simonb 	struct bintime bt;
    936        1.1    simonb 	struct timespec ts, *tsp, *osp;
    937       1.40    kardel 	u_int64_t tcount, *pcount;
    938        1.1    simonb 	int foff, fhard;
    939        1.1    simonb 	pps_seq_t *pseq;
    940        1.1    simonb 
    941       1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    942       1.33        ad 
    943        1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    944        1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    945        1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    946        1.1    simonb 		return;
    947        1.1    simonb 
    948        1.1    simonb 	/* Things would be easier with arrays. */
    949        1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    950        1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    951        1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    952        1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    953        1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    954        1.1    simonb 		pcount = &pps->ppscount[0];
    955        1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    956        1.1    simonb 	} else {
    957        1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    958        1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    959        1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    960        1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    961        1.1    simonb 		pcount = &pps->ppscount[1];
    962        1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    963        1.1    simonb 	}
    964        1.1    simonb 
    965        1.1    simonb 	/*
    966        1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    967        1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    968        1.1    simonb 	 */
    969        1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    970        1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    971        1.1    simonb 		*pcount = pps->capcount;
    972        1.1    simonb 		pps->ppscount[2] = pps->capcount;
    973        1.1    simonb 		return;
    974        1.1    simonb 	}
    975        1.1    simonb 
    976        1.1    simonb 	/* Convert the count to a timespec. */
    977        1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    978        1.1    simonb 	bt = pps->capth->th_offset;
    979        1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    980        1.4    kardel 	bintime_add(&bt, &timebasebin);
    981        1.1    simonb 	bintime2timespec(&bt, &ts);
    982        1.1    simonb 
    983        1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    984        1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    985        1.1    simonb 		return;
    986        1.1    simonb 
    987        1.1    simonb 	*pcount = pps->capcount;
    988        1.1    simonb 	(*pseq)++;
    989        1.1    simonb 	*tsp = ts;
    990        1.1    simonb 
    991        1.1    simonb 	if (foff) {
    992        1.2    kardel 		timespecadd(tsp, osp, tsp);
    993        1.1    simonb 		if (tsp->tv_nsec < 0) {
    994        1.1    simonb 			tsp->tv_nsec += 1000000000;
    995        1.1    simonb 			tsp->tv_sec -= 1;
    996        1.1    simonb 		}
    997        1.1    simonb 	}
    998        1.1    simonb #ifdef PPS_SYNC
    999        1.1    simonb 	if (fhard) {
   1000        1.1    simonb 		u_int64_t scale;
   1001        1.1    simonb 
   1002        1.1    simonb 		/*
   1003        1.1    simonb 		 * Feed the NTP PLL/FLL.
   1004        1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
   1005        1.1    simonb 		 * elapsed since the previous event.
   1006        1.1    simonb 		 */
   1007        1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
   1008        1.1    simonb 		pps->ppscount[2] = pps->capcount;
   1009        1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1010        1.1    simonb 		scale = (u_int64_t)1 << 63;
   1011        1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
   1012        1.1    simonb 		scale *= 2;
   1013        1.1    simonb 		bt.sec = 0;
   1014        1.1    simonb 		bt.frac = 0;
   1015        1.1    simonb 		bintime_addx(&bt, scale * tcount);
   1016        1.1    simonb 		bintime2timespec(&bt, &ts);
   1017        1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
   1018        1.1    simonb 	}
   1019        1.1    simonb #endif
   1020        1.1    simonb }
   1021        1.1    simonb 
   1022        1.1    simonb /*
   1023        1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
   1024        1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
   1025        1.1    simonb  * used by the get*() family of functions, so their precision depends on
   1026        1.1    simonb  * the update frequency.
   1027        1.1    simonb  */
   1028        1.1    simonb 
   1029        1.1    simonb static int tc_tick;
   1030        1.1    simonb 
   1031        1.1    simonb void
   1032        1.1    simonb tc_ticktock(void)
   1033        1.1    simonb {
   1034        1.1    simonb 	static int count;
   1035        1.1    simonb 
   1036        1.1    simonb 	if (++count < tc_tick)
   1037        1.1    simonb 		return;
   1038        1.1    simonb 	count = 0;
   1039       1.33        ad 	mutex_spin_enter(&timecounter_lock);
   1040       1.35        ad 	if (timecounter_bad != 0) {
   1041       1.35        ad 		/* An existing timecounter has gone bad, pick a new one. */
   1042       1.35        ad 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1043       1.35        ad 		if (timecounter->tc_quality < 0) {
   1044       1.35        ad 			tc_pick();
   1045       1.35        ad 		}
   1046       1.35        ad 	}
   1047        1.1    simonb 	tc_windup();
   1048       1.33        ad 	mutex_spin_exit(&timecounter_lock);
   1049        1.1    simonb }
   1050        1.1    simonb 
   1051        1.2    kardel void
   1052        1.2    kardel inittimecounter(void)
   1053        1.1    simonb {
   1054        1.1    simonb 	u_int p;
   1055        1.1    simonb 
   1056       1.37    kardel 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1057       1.30        ad 
   1058        1.1    simonb 	/*
   1059        1.1    simonb 	 * Set the initial timeout to
   1060        1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1061        1.1    simonb 	 * People should probably not use the sysctl to set the timeout
   1062        1.1    simonb 	 * to smaller than its inital value, since that value is the
   1063        1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
   1064        1.1    simonb 	 * should use the non-"get"* functions.
   1065        1.1    simonb 	 */
   1066        1.1    simonb 	if (hz > 1000)
   1067        1.1    simonb 		tc_tick = (hz + 500) / 1000;
   1068        1.1    simonb 	else
   1069        1.1    simonb 		tc_tick = 1;
   1070        1.1    simonb 	p = (tc_tick * 1000000) / hz;
   1071       1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1072       1.18        ad 	    p / 1000, p % 1000);
   1073        1.1    simonb 
   1074        1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
   1075        1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1076        1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1077        1.1    simonb }
   1078