Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.42.8.1
      1  1.42.8.1      yamt /* $NetBSD: kern_tc.c,v 1.42.8.1 2012/04/17 00:08:26 yamt Exp $ */
      2      1.33        ad 
      3      1.33        ad /*-
      4      1.39        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.33        ad  * All rights reserved.
      6      1.33        ad  *
      7      1.39        ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.39        ad  * by Andrew Doran.
      9      1.39        ad  *
     10      1.33        ad  * Redistribution and use in source and binary forms, with or without
     11      1.33        ad  * modification, are permitted provided that the following conditions
     12      1.33        ad  * are met:
     13      1.33        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.33        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.33        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.33        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.33        ad  *    documentation and/or other materials provided with the distribution.
     18      1.33        ad  *
     19      1.33        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.33        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.33        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.33        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.33        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.33        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.33        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.33        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.33        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.33        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.33        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.33        ad  */
     31       1.2    kardel 
     32       1.1    simonb /*-
     33       1.1    simonb  * ----------------------------------------------------------------------------
     34       1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
     35       1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36       1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
     37       1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38       1.2    kardel  * ---------------------------------------------------------------------------
     39       1.1    simonb  */
     40       1.1    simonb 
     41       1.1    simonb #include <sys/cdefs.h>
     42       1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43  1.42.8.1      yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.42.8.1 2012/04/17 00:08:26 yamt Exp $");
     44       1.1    simonb 
     45      1.42     pooka #ifdef _KERNEL_OPT
     46       1.1    simonb #include "opt_ntp.h"
     47      1.42     pooka #endif
     48       1.1    simonb 
     49       1.1    simonb #include <sys/param.h>
     50       1.1    simonb #include <sys/kernel.h>
     51       1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     52       1.1    simonb #include <sys/sysctl.h>
     53       1.1    simonb #include <sys/syslog.h>
     54       1.1    simonb #include <sys/systm.h>
     55       1.1    simonb #include <sys/timepps.h>
     56       1.1    simonb #include <sys/timetc.h>
     57       1.1    simonb #include <sys/timex.h>
     58       1.2    kardel #include <sys/evcnt.h>
     59       1.2    kardel #include <sys/kauth.h>
     60      1.25        ad #include <sys/mutex.h>
     61      1.27        ad #include <sys/atomic.h>
     62      1.39        ad #include <sys/xcall.h>
     63       1.2    kardel 
     64       1.2    kardel /*
     65       1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     66       1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     67       1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     68       1.1    simonb  * forever when the time step is large.
     69       1.1    simonb  */
     70       1.1    simonb #define LARGE_STEP	200
     71       1.1    simonb 
     72       1.1    simonb /*
     73       1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     74       1.1    simonb  * in the air.  This allows the console and other early stuff to use
     75       1.1    simonb  * time services.
     76       1.1    simonb  */
     77       1.1    simonb 
     78       1.1    simonb static u_int
     79      1.16      yamt dummy_get_timecount(struct timecounter *tc)
     80       1.1    simonb {
     81       1.1    simonb 	static u_int now;
     82       1.1    simonb 
     83       1.1    simonb 	return (++now);
     84       1.1    simonb }
     85       1.1    simonb 
     86       1.1    simonb static struct timecounter dummy_timecounter = {
     87       1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     88       1.1    simonb };
     89       1.1    simonb 
     90       1.1    simonb struct timehands {
     91       1.1    simonb 	/* These fields must be initialized by the driver. */
     92      1.40    kardel 	struct timecounter	*th_counter;     /* active timecounter */
     93      1.40    kardel 	int64_t			th_adjustment;   /* frequency adjustment */
     94      1.40    kardel 						 /* (NTP/adjtime) */
     95      1.40    kardel 	u_int64_t		th_scale;        /* scale factor (counter */
     96      1.40    kardel 						 /* tick->time) */
     97      1.40    kardel 	u_int64_t 		th_offset_count; /* offset at last time */
     98      1.40    kardel 						 /* update (tc_windup()) */
     99      1.40    kardel 	struct bintime		th_offset;       /* bin (up)time at windup */
    100      1.40    kardel 	struct timeval		th_microtime;    /* cached microtime */
    101      1.40    kardel 	struct timespec		th_nanotime;     /* cached nanotime */
    102       1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
    103      1.40    kardel 	volatile u_int		th_generation;   /* current genration */
    104      1.40    kardel 	struct timehands	*th_next;        /* next timehand */
    105       1.1    simonb };
    106       1.1    simonb 
    107       1.1    simonb static struct timehands th0;
    108      1.10  christos static struct timehands th9 = { .th_next = &th0, };
    109      1.10  christos static struct timehands th8 = { .th_next = &th9, };
    110      1.10  christos static struct timehands th7 = { .th_next = &th8, };
    111      1.10  christos static struct timehands th6 = { .th_next = &th7, };
    112      1.10  christos static struct timehands th5 = { .th_next = &th6, };
    113      1.10  christos static struct timehands th4 = { .th_next = &th5, };
    114      1.10  christos static struct timehands th3 = { .th_next = &th4, };
    115      1.10  christos static struct timehands th2 = { .th_next = &th3, };
    116      1.10  christos static struct timehands th1 = { .th_next = &th2, };
    117       1.1    simonb static struct timehands th0 = {
    118      1.10  christos 	.th_counter = &dummy_timecounter,
    119      1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
    120      1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
    121      1.10  christos 	.th_generation = 1,
    122      1.10  christos 	.th_next = &th1,
    123       1.1    simonb };
    124       1.1    simonb 
    125       1.1    simonb static struct timehands *volatile timehands = &th0;
    126       1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
    127       1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
    128       1.1    simonb 
    129  1.42.8.1      yamt volatile time_t time_second = 1;
    130  1.42.8.1      yamt volatile time_t time_uptime = 1;
    131       1.1    simonb 
    132       1.4    kardel static struct bintime timebasebin;
    133       1.1    simonb 
    134       1.1    simonb static int timestepwarnings;
    135       1.2    kardel 
    136      1.33        ad kmutex_t timecounter_lock;
    137      1.35        ad static u_int timecounter_mods;
    138      1.39        ad static volatile int timecounter_removals = 1;
    139      1.35        ad static u_int timecounter_bad;
    140      1.25        ad 
    141       1.2    kardel #ifdef __FreeBSD__
    142       1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    143       1.1    simonb     &timestepwarnings, 0, "");
    144       1.2    kardel #endif /* __FreeBSD__ */
    145       1.2    kardel 
    146       1.2    kardel /*
    147      1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    148       1.2    kardel  */
    149       1.2    kardel static int
    150       1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    151       1.2    kardel {
    152       1.2    kardel 	struct sysctlnode node;
    153       1.2    kardel 	int error;
    154       1.2    kardel 	char newname[MAX_TCNAMELEN];
    155       1.2    kardel 	struct timecounter *newtc, *tc;
    156       1.2    kardel 
    157       1.2    kardel 	tc = timecounter;
    158       1.2    kardel 
    159       1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    160       1.2    kardel 
    161       1.2    kardel 	node = *rnode;
    162       1.2    kardel 	node.sysctl_data = newname;
    163       1.2    kardel 	node.sysctl_size = sizeof(newname);
    164       1.2    kardel 
    165       1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    166       1.2    kardel 
    167       1.2    kardel 	if (error ||
    168       1.2    kardel 	    newp == NULL ||
    169       1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    170       1.2    kardel 		return error;
    171       1.1    simonb 
    172      1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    173      1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    174      1.26      elad 	    NULL, NULL)) != 0)
    175       1.2    kardel 		return (error);
    176       1.2    kardel 
    177      1.22        ad 	if (!cold)
    178      1.35        ad 		mutex_spin_enter(&timecounter_lock);
    179      1.23        ad 	error = EINVAL;
    180       1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    181       1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    182       1.2    kardel 			continue;
    183       1.2    kardel 		/* Warm up new timecounter. */
    184       1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    185       1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    186       1.2    kardel 		timecounter = newtc;
    187      1.22        ad 		error = 0;
    188      1.23        ad 		break;
    189      1.23        ad 	}
    190      1.22        ad 	if (!cold)
    191      1.35        ad 		mutex_spin_exit(&timecounter_lock);
    192      1.22        ad 	return error;
    193       1.2    kardel }
    194       1.2    kardel 
    195       1.2    kardel static int
    196       1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    197       1.2    kardel {
    198       1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    199      1.35        ad 	char *where;
    200       1.2    kardel 	const char *spc;
    201       1.2    kardel 	struct timecounter *tc;
    202       1.2    kardel 	size_t needed, left, slen;
    203      1.35        ad 	int error, mods;
    204       1.2    kardel 
    205       1.2    kardel 	if (newp != NULL)
    206       1.2    kardel 		return (EPERM);
    207       1.2    kardel 	if (namelen != 0)
    208       1.2    kardel 		return (EINVAL);
    209       1.2    kardel 
    210      1.35        ad 	mutex_spin_enter(&timecounter_lock);
    211      1.35        ad  retry:
    212       1.2    kardel 	spc = "";
    213       1.2    kardel 	error = 0;
    214       1.2    kardel 	needed = 0;
    215       1.2    kardel 	left = *oldlenp;
    216      1.35        ad 	where = oldp;
    217       1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    218       1.2    kardel 		if (where == NULL) {
    219       1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    220       1.2    kardel 		} else {
    221       1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    222       1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    223       1.2    kardel 					tc->tc_frequency);
    224       1.2    kardel 			if (left < slen + 1)
    225       1.2    kardel 				break;
    226      1.35        ad 		 	mods = timecounter_mods;
    227      1.35        ad 			mutex_spin_exit(&timecounter_lock);
    228       1.2    kardel 			error = copyout(buf, where, slen + 1);
    229      1.35        ad 			mutex_spin_enter(&timecounter_lock);
    230      1.35        ad 			if (mods != timecounter_mods) {
    231      1.35        ad 				goto retry;
    232      1.35        ad 			}
    233       1.2    kardel 			spc = " ";
    234       1.2    kardel 			where += slen;
    235       1.2    kardel 			needed += slen;
    236       1.2    kardel 			left -= slen;
    237       1.2    kardel 		}
    238       1.2    kardel 	}
    239      1.35        ad 	mutex_spin_exit(&timecounter_lock);
    240       1.2    kardel 
    241       1.2    kardel 	*oldlenp = needed;
    242       1.2    kardel 	return (error);
    243       1.2    kardel }
    244       1.2    kardel 
    245       1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    246       1.2    kardel {
    247       1.2    kardel 	const struct sysctlnode *node;
    248       1.2    kardel 
    249       1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    250       1.2    kardel 		       CTLFLAG_PERMANENT,
    251       1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    252       1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    253       1.2    kardel 		       NULL, 0, NULL, 0,
    254       1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    255       1.2    kardel 
    256       1.2    kardel 	if (node != NULL) {
    257       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    258       1.2    kardel 			       CTLFLAG_PERMANENT,
    259       1.2    kardel 			       CTLTYPE_STRING, "choice",
    260       1.2    kardel 			       SYSCTL_DESCR("available counters"),
    261       1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    262       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    263       1.2    kardel 
    264       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    265       1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    266       1.2    kardel 			       CTLTYPE_STRING, "hardware",
    267       1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    268       1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    269       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    270       1.2    kardel 
    271       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    272       1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    273       1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    274       1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    275       1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    276       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    277       1.2    kardel 	}
    278       1.2    kardel }
    279       1.2    kardel 
    280      1.32        ad #ifdef TC_COUNTERS
    281       1.2    kardel #define	TC_STATS(name)							\
    282       1.2    kardel static struct evcnt n##name =						\
    283       1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    284       1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    285       1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    286       1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    287       1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    288       1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    289       1.2    kardel TC_STATS(setclock);
    290      1.32        ad #define	TC_COUNT(var)	var.ev_count++
    291       1.1    simonb #undef TC_STATS
    292      1.32        ad #else
    293      1.32        ad #define	TC_COUNT(var)	/* nothing */
    294      1.32        ad #endif	/* TC_COUNTERS */
    295       1.1    simonb 
    296       1.1    simonb static void tc_windup(void);
    297       1.1    simonb 
    298       1.1    simonb /*
    299       1.1    simonb  * Return the difference between the timehands' counter value now and what
    300       1.1    simonb  * was when we copied it to the timehands' offset_count.
    301       1.1    simonb  */
    302      1.41  uebayasi static inline u_int
    303       1.1    simonb tc_delta(struct timehands *th)
    304       1.1    simonb {
    305       1.1    simonb 	struct timecounter *tc;
    306       1.1    simonb 
    307       1.1    simonb 	tc = th->th_counter;
    308       1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    309       1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    310       1.1    simonb }
    311       1.1    simonb 
    312       1.1    simonb /*
    313       1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    314       1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    315      1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    316       1.1    simonb  */
    317       1.1    simonb 
    318       1.1    simonb void
    319       1.1    simonb binuptime(struct bintime *bt)
    320       1.1    simonb {
    321       1.1    simonb 	struct timehands *th;
    322      1.39        ad 	lwp_t *l;
    323      1.39        ad 	u_int lgen, gen;
    324       1.1    simonb 
    325      1.32        ad 	TC_COUNT(nbinuptime);
    326      1.39        ad 
    327      1.39        ad 	/*
    328      1.39        ad 	 * Provide exclusion against tc_detach().
    329      1.39        ad 	 *
    330      1.39        ad 	 * We record the number of timecounter removals before accessing
    331      1.39        ad 	 * timecounter state.  Note that the LWP can be using multiple
    332      1.39        ad 	 * "generations" at once, due to interrupts (interrupted while in
    333      1.39        ad 	 * this function).  Hardware interrupts will borrow the interrupted
    334      1.39        ad 	 * LWP's l_tcgen value for this purpose, and can themselves be
    335      1.39        ad 	 * interrupted by higher priority interrupts.  In this case we need
    336      1.39        ad 	 * to ensure that the oldest generation in use is recorded.
    337      1.39        ad 	 *
    338      1.39        ad 	 * splsched() is too expensive to use, so we take care to structure
    339      1.39        ad 	 * this code in such a way that it is not required.  Likewise, we
    340      1.39        ad 	 * do not disable preemption.
    341      1.39        ad 	 *
    342      1.39        ad 	 * Memory barriers are also too expensive to use for such a
    343      1.39        ad 	 * performance critical function.  The good news is that we do not
    344      1.39        ad 	 * need memory barriers for this type of exclusion, as the thread
    345      1.39        ad 	 * updating timecounter_removals will issue a broadcast cross call
    346      1.39        ad 	 * before inspecting our l_tcgen value (this elides memory ordering
    347      1.39        ad 	 * issues).
    348      1.39        ad 	 */
    349      1.39        ad 	l = curlwp;
    350      1.39        ad 	lgen = l->l_tcgen;
    351      1.39        ad 	if (__predict_true(lgen == 0)) {
    352      1.39        ad 		l->l_tcgen = timecounter_removals;
    353      1.39        ad 	}
    354      1.39        ad 	__insn_barrier();
    355      1.39        ad 
    356       1.1    simonb 	do {
    357       1.1    simonb 		th = timehands;
    358       1.1    simonb 		gen = th->th_generation;
    359       1.1    simonb 		*bt = th->th_offset;
    360       1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    361       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    362      1.39        ad 
    363      1.39        ad 	__insn_barrier();
    364      1.39        ad 	l->l_tcgen = lgen;
    365       1.1    simonb }
    366       1.1    simonb 
    367       1.1    simonb void
    368       1.1    simonb nanouptime(struct timespec *tsp)
    369       1.1    simonb {
    370       1.1    simonb 	struct bintime bt;
    371       1.1    simonb 
    372      1.32        ad 	TC_COUNT(nnanouptime);
    373       1.1    simonb 	binuptime(&bt);
    374       1.1    simonb 	bintime2timespec(&bt, tsp);
    375       1.1    simonb }
    376       1.1    simonb 
    377       1.1    simonb void
    378       1.1    simonb microuptime(struct timeval *tvp)
    379       1.1    simonb {
    380       1.1    simonb 	struct bintime bt;
    381       1.1    simonb 
    382      1.32        ad 	TC_COUNT(nmicrouptime);
    383       1.1    simonb 	binuptime(&bt);
    384       1.1    simonb 	bintime2timeval(&bt, tvp);
    385       1.1    simonb }
    386       1.1    simonb 
    387       1.1    simonb void
    388       1.1    simonb bintime(struct bintime *bt)
    389       1.1    simonb {
    390       1.1    simonb 
    391      1.32        ad 	TC_COUNT(nbintime);
    392       1.1    simonb 	binuptime(bt);
    393       1.4    kardel 	bintime_add(bt, &timebasebin);
    394       1.1    simonb }
    395       1.1    simonb 
    396       1.1    simonb void
    397       1.1    simonb nanotime(struct timespec *tsp)
    398       1.1    simonb {
    399       1.1    simonb 	struct bintime bt;
    400       1.1    simonb 
    401      1.32        ad 	TC_COUNT(nnanotime);
    402       1.1    simonb 	bintime(&bt);
    403       1.1    simonb 	bintime2timespec(&bt, tsp);
    404       1.1    simonb }
    405       1.1    simonb 
    406       1.1    simonb void
    407       1.1    simonb microtime(struct timeval *tvp)
    408       1.1    simonb {
    409       1.1    simonb 	struct bintime bt;
    410       1.1    simonb 
    411      1.32        ad 	TC_COUNT(nmicrotime);
    412       1.1    simonb 	bintime(&bt);
    413       1.1    simonb 	bintime2timeval(&bt, tvp);
    414       1.1    simonb }
    415       1.1    simonb 
    416       1.1    simonb void
    417       1.1    simonb getbinuptime(struct bintime *bt)
    418       1.1    simonb {
    419       1.1    simonb 	struct timehands *th;
    420       1.1    simonb 	u_int gen;
    421       1.1    simonb 
    422      1.32        ad 	TC_COUNT(ngetbinuptime);
    423       1.1    simonb 	do {
    424       1.1    simonb 		th = timehands;
    425       1.1    simonb 		gen = th->th_generation;
    426       1.1    simonb 		*bt = th->th_offset;
    427       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    428       1.1    simonb }
    429       1.1    simonb 
    430       1.1    simonb void
    431       1.1    simonb getnanouptime(struct timespec *tsp)
    432       1.1    simonb {
    433       1.1    simonb 	struct timehands *th;
    434       1.1    simonb 	u_int gen;
    435       1.1    simonb 
    436      1.32        ad 	TC_COUNT(ngetnanouptime);
    437       1.1    simonb 	do {
    438       1.1    simonb 		th = timehands;
    439       1.1    simonb 		gen = th->th_generation;
    440       1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    441       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    442       1.1    simonb }
    443       1.1    simonb 
    444       1.1    simonb void
    445       1.1    simonb getmicrouptime(struct timeval *tvp)
    446       1.1    simonb {
    447       1.1    simonb 	struct timehands *th;
    448       1.1    simonb 	u_int gen;
    449       1.1    simonb 
    450      1.32        ad 	TC_COUNT(ngetmicrouptime);
    451       1.1    simonb 	do {
    452       1.1    simonb 		th = timehands;
    453       1.1    simonb 		gen = th->th_generation;
    454       1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    455       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    456       1.1    simonb }
    457       1.1    simonb 
    458       1.1    simonb void
    459       1.1    simonb getbintime(struct bintime *bt)
    460       1.1    simonb {
    461       1.1    simonb 	struct timehands *th;
    462       1.1    simonb 	u_int gen;
    463       1.1    simonb 
    464      1.32        ad 	TC_COUNT(ngetbintime);
    465       1.1    simonb 	do {
    466       1.1    simonb 		th = timehands;
    467       1.1    simonb 		gen = th->th_generation;
    468       1.1    simonb 		*bt = th->th_offset;
    469       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    470       1.4    kardel 	bintime_add(bt, &timebasebin);
    471       1.1    simonb }
    472       1.1    simonb 
    473       1.1    simonb void
    474       1.1    simonb getnanotime(struct timespec *tsp)
    475       1.1    simonb {
    476       1.1    simonb 	struct timehands *th;
    477       1.1    simonb 	u_int gen;
    478       1.1    simonb 
    479      1.32        ad 	TC_COUNT(ngetnanotime);
    480       1.1    simonb 	do {
    481       1.1    simonb 		th = timehands;
    482       1.1    simonb 		gen = th->th_generation;
    483       1.1    simonb 		*tsp = th->th_nanotime;
    484       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    485       1.1    simonb }
    486       1.1    simonb 
    487       1.1    simonb void
    488       1.1    simonb getmicrotime(struct timeval *tvp)
    489       1.1    simonb {
    490       1.1    simonb 	struct timehands *th;
    491       1.1    simonb 	u_int gen;
    492       1.1    simonb 
    493      1.32        ad 	TC_COUNT(ngetmicrotime);
    494       1.1    simonb 	do {
    495       1.1    simonb 		th = timehands;
    496       1.1    simonb 		gen = th->th_generation;
    497       1.1    simonb 		*tvp = th->th_microtime;
    498       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    499       1.1    simonb }
    500       1.1    simonb 
    501       1.1    simonb /*
    502       1.1    simonb  * Initialize a new timecounter and possibly use it.
    503       1.1    simonb  */
    504       1.1    simonb void
    505       1.1    simonb tc_init(struct timecounter *tc)
    506       1.1    simonb {
    507       1.1    simonb 	u_int u;
    508       1.1    simonb 
    509       1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    510       1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    511       1.1    simonb 	u *= 11;
    512       1.1    simonb 	u /= 10;
    513       1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    514       1.1    simonb 		tc->tc_quality = -2000;
    515      1.18        ad 		aprint_verbose(
    516      1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    517       1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    518      1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    519       1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    520      1.18        ad 		aprint_verbose(
    521      1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    522      1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    523       1.7     bjh21 		    tc->tc_quality);
    524       1.1    simonb 	}
    525       1.1    simonb 
    526      1.33        ad 	mutex_spin_enter(&timecounter_lock);
    527       1.1    simonb 	tc->tc_next = timecounters;
    528       1.1    simonb 	timecounters = tc;
    529      1.35        ad 	timecounter_mods++;
    530       1.1    simonb 	/*
    531       1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    532       1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    533       1.1    simonb 	 * worse since this timecounter may not be monotonous.
    534       1.1    simonb 	 */
    535      1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    536      1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    537      1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    538      1.22        ad 		(void)tc->tc_get_timecount(tc);
    539      1.22        ad 		(void)tc->tc_get_timecount(tc);
    540      1.22        ad 		timecounter = tc;
    541      1.22        ad 		tc_windup();
    542      1.22        ad 	}
    543      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    544      1.35        ad }
    545      1.35        ad 
    546      1.35        ad /*
    547      1.35        ad  * Pick a new timecounter due to the existing counter going bad.
    548      1.35        ad  */
    549      1.35        ad static void
    550      1.35        ad tc_pick(void)
    551      1.35        ad {
    552      1.35        ad 	struct timecounter *best, *tc;
    553      1.35        ad 
    554      1.35        ad 	KASSERT(mutex_owned(&timecounter_lock));
    555      1.35        ad 
    556      1.35        ad 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    557      1.35        ad 		if (tc->tc_quality > best->tc_quality)
    558      1.35        ad 			best = tc;
    559      1.35        ad 		else if (tc->tc_quality < best->tc_quality)
    560      1.35        ad 			continue;
    561      1.35        ad 		else if (tc->tc_frequency > best->tc_frequency)
    562      1.35        ad 			best = tc;
    563      1.35        ad 	}
    564      1.35        ad 	(void)best->tc_get_timecount(best);
    565      1.35        ad 	(void)best->tc_get_timecount(best);
    566      1.35        ad 	timecounter = best;
    567      1.35        ad }
    568      1.35        ad 
    569      1.35        ad /*
    570      1.35        ad  * A timecounter has gone bad, arrange to pick a new one at the next
    571      1.35        ad  * clock tick.
    572      1.35        ad  */
    573      1.35        ad void
    574      1.35        ad tc_gonebad(struct timecounter *tc)
    575      1.35        ad {
    576      1.35        ad 
    577      1.35        ad 	tc->tc_quality = -100;
    578      1.35        ad 	membar_producer();
    579      1.35        ad 	atomic_inc_uint(&timecounter_bad);
    580       1.1    simonb }
    581       1.1    simonb 
    582      1.29    dyoung /*
    583      1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    584      1.29    dyoung  */
    585      1.29    dyoung int
    586      1.29    dyoung tc_detach(struct timecounter *target)
    587      1.29    dyoung {
    588      1.35        ad 	struct timecounter *tc;
    589      1.29    dyoung 	struct timecounter **tcp = NULL;
    590      1.39        ad 	int removals;
    591      1.39        ad 	uint64_t where;
    592      1.39        ad 	lwp_t *l;
    593      1.29    dyoung 
    594      1.39        ad 	/* First, find the timecounter. */
    595      1.35        ad 	mutex_spin_enter(&timecounter_lock);
    596      1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    597      1.29    dyoung 	     tc != NULL;
    598      1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    599      1.29    dyoung 		if (tc == target)
    600      1.29    dyoung 			break;
    601      1.29    dyoung 	}
    602      1.29    dyoung 	if (tc == NULL) {
    603      1.39        ad 		mutex_spin_exit(&timecounter_lock);
    604      1.39        ad 		return ESRCH;
    605      1.39        ad 	}
    606      1.39        ad 
    607      1.39        ad 	/* And now, remove it. */
    608      1.39        ad 	*tcp = tc->tc_next;
    609      1.39        ad 	if (timecounter == target) {
    610      1.39        ad 		tc_pick();
    611      1.39        ad 		tc_windup();
    612      1.39        ad 	}
    613      1.39        ad 	timecounter_mods++;
    614      1.39        ad 	removals = timecounter_removals++;
    615      1.39        ad 	mutex_spin_exit(&timecounter_lock);
    616      1.39        ad 
    617      1.39        ad 	/*
    618      1.39        ad 	 * We now have to determine if any threads in the system are still
    619      1.39        ad 	 * making use of this timecounter.
    620      1.39        ad 	 *
    621      1.39        ad 	 * We issue a broadcast cross call to elide memory ordering issues,
    622      1.39        ad 	 * then scan all LWPs in the system looking at each's timecounter
    623      1.39        ad 	 * generation number.  We need to see a value of zero (not actively
    624      1.39        ad 	 * using a timecounter) or a value greater than our removal value.
    625      1.39        ad 	 *
    626      1.39        ad 	 * We may race with threads that read `timecounter_removals' and
    627      1.39        ad 	 * and then get preempted before updating `l_tcgen'.  This is not
    628      1.39        ad 	 * a problem, since it means that these threads have not yet started
    629      1.39        ad 	 * accessing timecounter state.  All we do need is one clean
    630      1.39        ad 	 * snapshot of the system where every thread appears not to be using
    631      1.39        ad 	 * old timecounter state.
    632      1.39        ad 	 */
    633      1.39        ad 	for (;;) {
    634      1.39        ad 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    635      1.39        ad 		xc_wait(where);
    636      1.39        ad 
    637      1.39        ad 		mutex_enter(proc_lock);
    638      1.39        ad 		LIST_FOREACH(l, &alllwp, l_list) {
    639      1.39        ad 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    640      1.39        ad 				/*
    641      1.39        ad 				 * Not using timecounter or old timecounter
    642      1.39        ad 				 * state at time of our xcall or later.
    643      1.39        ad 				 */
    644      1.39        ad 				continue;
    645      1.39        ad 			}
    646      1.39        ad 			break;
    647      1.39        ad 		}
    648      1.39        ad 		mutex_exit(proc_lock);
    649      1.39        ad 
    650      1.39        ad 		/*
    651      1.39        ad 		 * If the timecounter is still in use, wait at least 10ms
    652      1.39        ad 		 * before retrying.
    653      1.39        ad 		 */
    654      1.39        ad 		if (l == NULL) {
    655      1.39        ad 			return 0;
    656      1.35        ad 		}
    657      1.39        ad 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    658      1.29    dyoung 	}
    659      1.29    dyoung }
    660      1.29    dyoung 
    661       1.1    simonb /* Report the frequency of the current timecounter. */
    662       1.1    simonb u_int64_t
    663       1.1    simonb tc_getfrequency(void)
    664       1.1    simonb {
    665       1.1    simonb 
    666       1.1    simonb 	return (timehands->th_counter->tc_frequency);
    667       1.1    simonb }
    668       1.1    simonb 
    669       1.1    simonb /*
    670       1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    671       1.1    simonb  * when we booted.
    672       1.1    simonb  */
    673       1.1    simonb void
    674      1.38  christos tc_setclock(const struct timespec *ts)
    675       1.1    simonb {
    676       1.1    simonb 	struct timespec ts2;
    677       1.1    simonb 	struct bintime bt, bt2;
    678       1.1    simonb 
    679      1.33        ad 	mutex_spin_enter(&timecounter_lock);
    680      1.32        ad 	TC_COUNT(nsetclock);
    681       1.1    simonb 	binuptime(&bt2);
    682       1.1    simonb 	timespec2bintime(ts, &bt);
    683       1.1    simonb 	bintime_sub(&bt, &bt2);
    684       1.4    kardel 	bintime_add(&bt2, &timebasebin);
    685       1.4    kardel 	timebasebin = bt;
    686      1.30        ad 	tc_windup();
    687      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    688       1.1    simonb 
    689       1.1    simonb 	if (timestepwarnings) {
    690       1.1    simonb 		bintime2timespec(&bt2, &ts2);
    691      1.38  christos 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
    692      1.38  christos 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    693      1.38  christos 		    (long long)ts->tv_sec, ts->tv_nsec);
    694       1.1    simonb 	}
    695       1.1    simonb }
    696       1.1    simonb 
    697       1.1    simonb /*
    698       1.1    simonb  * Initialize the next struct timehands in the ring and make
    699       1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    700       1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    701       1.1    simonb  */
    702       1.1    simonb static void
    703       1.1    simonb tc_windup(void)
    704       1.1    simonb {
    705       1.1    simonb 	struct bintime bt;
    706       1.1    simonb 	struct timehands *th, *tho;
    707       1.1    simonb 	u_int64_t scale;
    708       1.1    simonb 	u_int delta, ncount, ogen;
    709      1.13    kardel 	int i, s_update;
    710       1.1    simonb 	time_t t;
    711       1.1    simonb 
    712      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    713      1.30        ad 
    714      1.13    kardel 	s_update = 0;
    715      1.20        ad 
    716       1.1    simonb 	/*
    717       1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    718       1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    719      1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    720      1.20        ad 	 * visibility of the generation before proceeding.
    721       1.1    simonb 	 */
    722       1.1    simonb 	tho = timehands;
    723       1.1    simonb 	th = tho->th_next;
    724       1.1    simonb 	ogen = th->th_generation;
    725       1.1    simonb 	th->th_generation = 0;
    726      1.27        ad 	membar_producer();
    727       1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    728       1.1    simonb 
    729       1.1    simonb 	/*
    730       1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    731       1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    732       1.1    simonb 	 * Update the offset fields accordingly.
    733       1.1    simonb 	 */
    734       1.1    simonb 	delta = tc_delta(th);
    735       1.1    simonb 	if (th->th_counter != timecounter)
    736       1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    737       1.1    simonb 	else
    738       1.1    simonb 		ncount = 0;
    739       1.1    simonb 	th->th_offset_count += delta;
    740       1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    741       1.1    simonb 
    742       1.1    simonb 	/*
    743       1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    744       1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    745       1.1    simonb 	 * the hardware might capture a count which is later than the one we
    746       1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    747       1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    748       1.1    simonb 	 * matter in practice.
    749       1.1    simonb 	 */
    750       1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    751       1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    752       1.1    simonb 
    753       1.1    simonb 	/*
    754       1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    755       1.1    simonb 	 * iterates at most once, but in extreme situations it might
    756       1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    757       1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    758       1.1    simonb 	 * has been read, so on really large steps, we call
    759       1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    760       1.1    simonb 	 * case we missed a leap second.
    761       1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    762       1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    763       1.1    simonb 	 */
    764       1.1    simonb 	bt = th->th_offset;
    765       1.4    kardel 	bintime_add(&bt, &timebasebin);
    766       1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    767       1.1    simonb 	if (i > LARGE_STEP)
    768       1.1    simonb 		i = 2;
    769       1.1    simonb 	for (; i > 0; i--) {
    770       1.1    simonb 		t = bt.sec;
    771       1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    772      1.13    kardel 		s_update = 1;
    773       1.1    simonb 		if (bt.sec != t)
    774       1.4    kardel 			timebasebin.sec += bt.sec - t;
    775       1.1    simonb 	}
    776       1.2    kardel 
    777       1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    778       1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    779       1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    780       1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    781       1.1    simonb 	/* Now is a good time to change timecounters. */
    782       1.1    simonb 	if (th->th_counter != timecounter) {
    783       1.1    simonb 		th->th_counter = timecounter;
    784       1.1    simonb 		th->th_offset_count = ncount;
    785      1.13    kardel 		s_update = 1;
    786       1.1    simonb 	}
    787       1.1    simonb 
    788       1.1    simonb 	/*-
    789       1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    790       1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    791       1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    792       1.1    simonb 	 * processing provides us with.
    793       1.1    simonb 	 *
    794       1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    795       1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    796       1.1    simonb 	 *
    797       1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    798       1.1    simonb 	 *
    799       1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    800       1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    801       1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    802       1.1    simonb 	 *
    803       1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    804       1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    805       1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    806       1.1    simonb  	 *
    807       1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    808       1.1    simonb 	 * to the goddess of code clarity.
    809       1.1    simonb 	 *
    810       1.1    simonb 	 */
    811      1.13    kardel 	if (s_update) {
    812      1.13    kardel 		scale = (u_int64_t)1 << 63;
    813      1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    814      1.13    kardel 		scale /= th->th_counter->tc_frequency;
    815      1.13    kardel 		th->th_scale = scale * 2;
    816      1.13    kardel 	}
    817       1.1    simonb 	/*
    818       1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    819      1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    820      1.20        ad 	 * changes are globally visible before changing.
    821       1.1    simonb 	 */
    822       1.1    simonb 	if (++ogen == 0)
    823       1.1    simonb 		ogen = 1;
    824      1.27        ad 	membar_producer();
    825       1.1    simonb 	th->th_generation = ogen;
    826       1.1    simonb 
    827      1.20        ad 	/*
    828      1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    829      1.20        ad 	 * globally visible before changing.
    830      1.20        ad 	 */
    831       1.1    simonb 	time_second = th->th_microtime.tv_sec;
    832       1.1    simonb 	time_uptime = th->th_offset.sec;
    833      1.27        ad 	membar_producer();
    834       1.1    simonb 	timehands = th;
    835      1.24        ad 
    836      1.24        ad 	/*
    837      1.24        ad 	 * Force users of the old timehand to move on.  This is
    838      1.24        ad 	 * necessary for MP systems; we need to ensure that the
    839      1.24        ad 	 * consumers will move away from the old timehand before
    840      1.24        ad 	 * we begin updating it again when we eventually wrap
    841      1.24        ad 	 * around.
    842      1.24        ad 	 */
    843      1.24        ad 	if (++tho->th_generation == 0)
    844      1.24        ad 		tho->th_generation = 1;
    845       1.1    simonb }
    846       1.1    simonb 
    847       1.1    simonb /*
    848       1.1    simonb  * RFC 2783 PPS-API implementation.
    849       1.1    simonb  */
    850       1.1    simonb 
    851       1.1    simonb int
    852      1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    853       1.1    simonb {
    854       1.1    simonb 	pps_params_t *app;
    855       1.2    kardel 	pps_info_t *pipi;
    856       1.1    simonb #ifdef PPS_SYNC
    857       1.2    kardel 	int *epi;
    858       1.1    simonb #endif
    859       1.1    simonb 
    860      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    861      1.33        ad 
    862       1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    863       1.1    simonb 	switch (cmd) {
    864       1.1    simonb 	case PPS_IOC_CREATE:
    865       1.1    simonb 		return (0);
    866       1.1    simonb 	case PPS_IOC_DESTROY:
    867       1.1    simonb 		return (0);
    868       1.1    simonb 	case PPS_IOC_SETPARAMS:
    869       1.1    simonb 		app = (pps_params_t *)data;
    870       1.1    simonb 		if (app->mode & ~pps->ppscap)
    871       1.1    simonb 			return (EINVAL);
    872       1.1    simonb 		pps->ppsparam = *app;
    873       1.1    simonb 		return (0);
    874       1.1    simonb 	case PPS_IOC_GETPARAMS:
    875       1.1    simonb 		app = (pps_params_t *)data;
    876       1.1    simonb 		*app = pps->ppsparam;
    877       1.1    simonb 		app->api_version = PPS_API_VERS_1;
    878       1.1    simonb 		return (0);
    879       1.1    simonb 	case PPS_IOC_GETCAP:
    880       1.1    simonb 		*(int*)data = pps->ppscap;
    881       1.1    simonb 		return (0);
    882       1.1    simonb 	case PPS_IOC_FETCH:
    883       1.2    kardel 		pipi = (pps_info_t *)data;
    884       1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    885       1.2    kardel 		*pipi = pps->ppsinfo;
    886       1.1    simonb 		return (0);
    887       1.1    simonb 	case PPS_IOC_KCBIND:
    888       1.1    simonb #ifdef PPS_SYNC
    889       1.2    kardel 		epi = (int *)data;
    890       1.1    simonb 		/* XXX Only root should be able to do this */
    891       1.2    kardel 		if (*epi & ~pps->ppscap)
    892       1.1    simonb 			return (EINVAL);
    893       1.2    kardel 		pps->kcmode = *epi;
    894       1.1    simonb 		return (0);
    895       1.1    simonb #else
    896       1.1    simonb 		return (EOPNOTSUPP);
    897       1.1    simonb #endif
    898       1.1    simonb 	default:
    899       1.2    kardel 		return (EPASSTHROUGH);
    900       1.1    simonb 	}
    901       1.1    simonb }
    902       1.1    simonb 
    903       1.1    simonb void
    904       1.1    simonb pps_init(struct pps_state *pps)
    905       1.1    simonb {
    906      1.33        ad 
    907      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    908      1.33        ad 
    909       1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    910       1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    911       1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    912       1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    913       1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    914       1.1    simonb }
    915       1.1    simonb 
    916       1.1    simonb void
    917       1.1    simonb pps_capture(struct pps_state *pps)
    918       1.1    simonb {
    919       1.1    simonb 	struct timehands *th;
    920       1.1    simonb 
    921      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    922      1.33        ad 	KASSERT(pps != NULL);
    923      1.33        ad 
    924       1.1    simonb 	th = timehands;
    925       1.1    simonb 	pps->capgen = th->th_generation;
    926       1.1    simonb 	pps->capth = th;
    927      1.40    kardel 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
    928       1.1    simonb 	if (pps->capgen != th->th_generation)
    929       1.1    simonb 		pps->capgen = 0;
    930       1.1    simonb }
    931       1.1    simonb 
    932       1.1    simonb void
    933       1.1    simonb pps_event(struct pps_state *pps, int event)
    934       1.1    simonb {
    935       1.1    simonb 	struct bintime bt;
    936       1.1    simonb 	struct timespec ts, *tsp, *osp;
    937      1.40    kardel 	u_int64_t tcount, *pcount;
    938       1.1    simonb 	int foff, fhard;
    939       1.1    simonb 	pps_seq_t *pseq;
    940       1.1    simonb 
    941      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    942      1.33        ad 
    943       1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    944       1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    945       1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    946       1.1    simonb 		return;
    947       1.1    simonb 
    948       1.1    simonb 	/* Things would be easier with arrays. */
    949       1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    950       1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    951       1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    952       1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    953       1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    954       1.1    simonb 		pcount = &pps->ppscount[0];
    955       1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    956       1.1    simonb 	} else {
    957       1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    958       1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    959       1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    960       1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    961       1.1    simonb 		pcount = &pps->ppscount[1];
    962       1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    963       1.1    simonb 	}
    964       1.1    simonb 
    965       1.1    simonb 	/*
    966       1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    967       1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    968       1.1    simonb 	 */
    969       1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    970       1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    971       1.1    simonb 		*pcount = pps->capcount;
    972       1.1    simonb 		pps->ppscount[2] = pps->capcount;
    973       1.1    simonb 		return;
    974       1.1    simonb 	}
    975       1.1    simonb 
    976       1.1    simonb 	/* Convert the count to a timespec. */
    977       1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    978       1.1    simonb 	bt = pps->capth->th_offset;
    979       1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    980       1.4    kardel 	bintime_add(&bt, &timebasebin);
    981       1.1    simonb 	bintime2timespec(&bt, &ts);
    982       1.1    simonb 
    983       1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    984       1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    985       1.1    simonb 		return;
    986       1.1    simonb 
    987       1.1    simonb 	*pcount = pps->capcount;
    988       1.1    simonb 	(*pseq)++;
    989       1.1    simonb 	*tsp = ts;
    990       1.1    simonb 
    991       1.1    simonb 	if (foff) {
    992       1.2    kardel 		timespecadd(tsp, osp, tsp);
    993       1.1    simonb 		if (tsp->tv_nsec < 0) {
    994       1.1    simonb 			tsp->tv_nsec += 1000000000;
    995       1.1    simonb 			tsp->tv_sec -= 1;
    996       1.1    simonb 		}
    997       1.1    simonb 	}
    998       1.1    simonb #ifdef PPS_SYNC
    999       1.1    simonb 	if (fhard) {
   1000       1.1    simonb 		u_int64_t scale;
   1001       1.1    simonb 
   1002       1.1    simonb 		/*
   1003       1.1    simonb 		 * Feed the NTP PLL/FLL.
   1004       1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
   1005       1.1    simonb 		 * elapsed since the previous event.
   1006       1.1    simonb 		 */
   1007       1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
   1008       1.1    simonb 		pps->ppscount[2] = pps->capcount;
   1009       1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1010       1.1    simonb 		scale = (u_int64_t)1 << 63;
   1011       1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
   1012       1.1    simonb 		scale *= 2;
   1013       1.1    simonb 		bt.sec = 0;
   1014       1.1    simonb 		bt.frac = 0;
   1015       1.1    simonb 		bintime_addx(&bt, scale * tcount);
   1016       1.1    simonb 		bintime2timespec(&bt, &ts);
   1017       1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
   1018       1.1    simonb 	}
   1019       1.1    simonb #endif
   1020       1.1    simonb }
   1021       1.1    simonb 
   1022       1.1    simonb /*
   1023       1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
   1024       1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
   1025       1.1    simonb  * used by the get*() family of functions, so their precision depends on
   1026       1.1    simonb  * the update frequency.
   1027       1.1    simonb  */
   1028       1.1    simonb 
   1029       1.1    simonb static int tc_tick;
   1030       1.1    simonb 
   1031       1.1    simonb void
   1032       1.1    simonb tc_ticktock(void)
   1033       1.1    simonb {
   1034       1.1    simonb 	static int count;
   1035       1.1    simonb 
   1036       1.1    simonb 	if (++count < tc_tick)
   1037       1.1    simonb 		return;
   1038       1.1    simonb 	count = 0;
   1039      1.33        ad 	mutex_spin_enter(&timecounter_lock);
   1040      1.35        ad 	if (timecounter_bad != 0) {
   1041      1.35        ad 		/* An existing timecounter has gone bad, pick a new one. */
   1042      1.35        ad 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1043      1.35        ad 		if (timecounter->tc_quality < 0) {
   1044      1.35        ad 			tc_pick();
   1045      1.35        ad 		}
   1046      1.35        ad 	}
   1047       1.1    simonb 	tc_windup();
   1048      1.33        ad 	mutex_spin_exit(&timecounter_lock);
   1049       1.1    simonb }
   1050       1.1    simonb 
   1051       1.2    kardel void
   1052       1.2    kardel inittimecounter(void)
   1053       1.1    simonb {
   1054       1.1    simonb 	u_int p;
   1055       1.1    simonb 
   1056      1.37    kardel 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1057      1.30        ad 
   1058       1.1    simonb 	/*
   1059       1.1    simonb 	 * Set the initial timeout to
   1060       1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1061       1.1    simonb 	 * People should probably not use the sysctl to set the timeout
   1062       1.1    simonb 	 * to smaller than its inital value, since that value is the
   1063       1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
   1064       1.1    simonb 	 * should use the non-"get"* functions.
   1065       1.1    simonb 	 */
   1066       1.1    simonb 	if (hz > 1000)
   1067       1.1    simonb 		tc_tick = (hz + 500) / 1000;
   1068       1.1    simonb 	else
   1069       1.1    simonb 		tc_tick = 1;
   1070       1.1    simonb 	p = (tc_tick * 1000000) / hz;
   1071      1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1072      1.18        ad 	    p / 1000, p % 1000);
   1073       1.1    simonb 
   1074       1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
   1075       1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1076       1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1077       1.1    simonb }
   1078