kern_tc.c revision 1.42.8.2 1 1.42.8.2 yamt /* $NetBSD: kern_tc.c,v 1.42.8.2 2013/01/16 05:33:44 yamt Exp $ */
2 1.33 ad
3 1.33 ad /*-
4 1.39 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.33 ad * All rights reserved.
6 1.33 ad *
7 1.39 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.39 ad * by Andrew Doran.
9 1.39 ad *
10 1.33 ad * Redistribution and use in source and binary forms, with or without
11 1.33 ad * modification, are permitted provided that the following conditions
12 1.33 ad * are met:
13 1.33 ad * 1. Redistributions of source code must retain the above copyright
14 1.33 ad * notice, this list of conditions and the following disclaimer.
15 1.33 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.33 ad * notice, this list of conditions and the following disclaimer in the
17 1.33 ad * documentation and/or other materials provided with the distribution.
18 1.33 ad *
19 1.33 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.33 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.33 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.33 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.33 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.33 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.33 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.33 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.33 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.33 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.33 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.33 ad */
31 1.2 kardel
32 1.1 simonb /*-
33 1.1 simonb * ----------------------------------------------------------------------------
34 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
35 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
37 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 1.2 kardel * ---------------------------------------------------------------------------
39 1.1 simonb */
40 1.1 simonb
41 1.1 simonb #include <sys/cdefs.h>
42 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 1.42.8.2 yamt __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.42.8.2 2013/01/16 05:33:44 yamt Exp $");
44 1.1 simonb
45 1.42 pooka #ifdef _KERNEL_OPT
46 1.1 simonb #include "opt_ntp.h"
47 1.42 pooka #endif
48 1.1 simonb
49 1.1 simonb #include <sys/param.h>
50 1.1 simonb #include <sys/kernel.h>
51 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
52 1.1 simonb #include <sys/sysctl.h>
53 1.1 simonb #include <sys/syslog.h>
54 1.1 simonb #include <sys/systm.h>
55 1.1 simonb #include <sys/timepps.h>
56 1.1 simonb #include <sys/timetc.h>
57 1.1 simonb #include <sys/timex.h>
58 1.2 kardel #include <sys/evcnt.h>
59 1.2 kardel #include <sys/kauth.h>
60 1.25 ad #include <sys/mutex.h>
61 1.27 ad #include <sys/atomic.h>
62 1.39 ad #include <sys/xcall.h>
63 1.2 kardel
64 1.2 kardel /*
65 1.1 simonb * A large step happens on boot. This constant detects such steps.
66 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
67 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
68 1.1 simonb * forever when the time step is large.
69 1.1 simonb */
70 1.1 simonb #define LARGE_STEP 200
71 1.1 simonb
72 1.1 simonb /*
73 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
74 1.1 simonb * in the air. This allows the console and other early stuff to use
75 1.1 simonb * time services.
76 1.1 simonb */
77 1.1 simonb
78 1.1 simonb static u_int
79 1.16 yamt dummy_get_timecount(struct timecounter *tc)
80 1.1 simonb {
81 1.1 simonb static u_int now;
82 1.1 simonb
83 1.1 simonb return (++now);
84 1.1 simonb }
85 1.1 simonb
86 1.1 simonb static struct timecounter dummy_timecounter = {
87 1.8 christos dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
88 1.1 simonb };
89 1.1 simonb
90 1.1 simonb struct timehands {
91 1.1 simonb /* These fields must be initialized by the driver. */
92 1.40 kardel struct timecounter *th_counter; /* active timecounter */
93 1.40 kardel int64_t th_adjustment; /* frequency adjustment */
94 1.40 kardel /* (NTP/adjtime) */
95 1.40 kardel u_int64_t th_scale; /* scale factor (counter */
96 1.40 kardel /* tick->time) */
97 1.40 kardel u_int64_t th_offset_count; /* offset at last time */
98 1.40 kardel /* update (tc_windup()) */
99 1.40 kardel struct bintime th_offset; /* bin (up)time at windup */
100 1.40 kardel struct timeval th_microtime; /* cached microtime */
101 1.40 kardel struct timespec th_nanotime; /* cached nanotime */
102 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
103 1.40 kardel volatile u_int th_generation; /* current genration */
104 1.40 kardel struct timehands *th_next; /* next timehand */
105 1.1 simonb };
106 1.1 simonb
107 1.1 simonb static struct timehands th0;
108 1.10 christos static struct timehands th9 = { .th_next = &th0, };
109 1.10 christos static struct timehands th8 = { .th_next = &th9, };
110 1.10 christos static struct timehands th7 = { .th_next = &th8, };
111 1.10 christos static struct timehands th6 = { .th_next = &th7, };
112 1.10 christos static struct timehands th5 = { .th_next = &th6, };
113 1.10 christos static struct timehands th4 = { .th_next = &th5, };
114 1.10 christos static struct timehands th3 = { .th_next = &th4, };
115 1.10 christos static struct timehands th2 = { .th_next = &th3, };
116 1.10 christos static struct timehands th1 = { .th_next = &th2, };
117 1.1 simonb static struct timehands th0 = {
118 1.10 christos .th_counter = &dummy_timecounter,
119 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
120 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
121 1.10 christos .th_generation = 1,
122 1.10 christos .th_next = &th1,
123 1.1 simonb };
124 1.1 simonb
125 1.1 simonb static struct timehands *volatile timehands = &th0;
126 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
127 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
128 1.1 simonb
129 1.42.8.1 yamt volatile time_t time_second = 1;
130 1.42.8.1 yamt volatile time_t time_uptime = 1;
131 1.1 simonb
132 1.4 kardel static struct bintime timebasebin;
133 1.1 simonb
134 1.1 simonb static int timestepwarnings;
135 1.2 kardel
136 1.33 ad kmutex_t timecounter_lock;
137 1.35 ad static u_int timecounter_mods;
138 1.39 ad static volatile int timecounter_removals = 1;
139 1.35 ad static u_int timecounter_bad;
140 1.25 ad
141 1.2 kardel #ifdef __FreeBSD__
142 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
143 1.1 simonb ×tepwarnings, 0, "");
144 1.2 kardel #endif /* __FreeBSD__ */
145 1.2 kardel
146 1.2 kardel /*
147 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
148 1.2 kardel */
149 1.2 kardel static int
150 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 1.2 kardel {
152 1.2 kardel struct sysctlnode node;
153 1.2 kardel int error;
154 1.2 kardel char newname[MAX_TCNAMELEN];
155 1.2 kardel struct timecounter *newtc, *tc;
156 1.2 kardel
157 1.2 kardel tc = timecounter;
158 1.2 kardel
159 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
160 1.2 kardel
161 1.2 kardel node = *rnode;
162 1.2 kardel node.sysctl_data = newname;
163 1.2 kardel node.sysctl_size = sizeof(newname);
164 1.2 kardel
165 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
166 1.2 kardel
167 1.2 kardel if (error ||
168 1.2 kardel newp == NULL ||
169 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 1.2 kardel return error;
171 1.1 simonb
172 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 1.26 elad NULL, NULL)) != 0)
175 1.2 kardel return (error);
176 1.2 kardel
177 1.22 ad if (!cold)
178 1.35 ad mutex_spin_enter(&timecounter_lock);
179 1.23 ad error = EINVAL;
180 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
182 1.2 kardel continue;
183 1.2 kardel /* Warm up new timecounter. */
184 1.2 kardel (void)newtc->tc_get_timecount(newtc);
185 1.2 kardel (void)newtc->tc_get_timecount(newtc);
186 1.2 kardel timecounter = newtc;
187 1.22 ad error = 0;
188 1.23 ad break;
189 1.23 ad }
190 1.22 ad if (!cold)
191 1.35 ad mutex_spin_exit(&timecounter_lock);
192 1.22 ad return error;
193 1.2 kardel }
194 1.2 kardel
195 1.2 kardel static int
196 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 1.2 kardel {
198 1.9 kardel char buf[MAX_TCNAMELEN+48];
199 1.35 ad char *where;
200 1.2 kardel const char *spc;
201 1.2 kardel struct timecounter *tc;
202 1.2 kardel size_t needed, left, slen;
203 1.35 ad int error, mods;
204 1.2 kardel
205 1.2 kardel if (newp != NULL)
206 1.2 kardel return (EPERM);
207 1.2 kardel if (namelen != 0)
208 1.2 kardel return (EINVAL);
209 1.2 kardel
210 1.35 ad mutex_spin_enter(&timecounter_lock);
211 1.35 ad retry:
212 1.2 kardel spc = "";
213 1.2 kardel error = 0;
214 1.2 kardel needed = 0;
215 1.2 kardel left = *oldlenp;
216 1.35 ad where = oldp;
217 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 1.2 kardel if (where == NULL) {
219 1.2 kardel needed += sizeof(buf); /* be conservative */
220 1.2 kardel } else {
221 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
223 1.2 kardel tc->tc_frequency);
224 1.2 kardel if (left < slen + 1)
225 1.2 kardel break;
226 1.35 ad mods = timecounter_mods;
227 1.35 ad mutex_spin_exit(&timecounter_lock);
228 1.2 kardel error = copyout(buf, where, slen + 1);
229 1.35 ad mutex_spin_enter(&timecounter_lock);
230 1.35 ad if (mods != timecounter_mods) {
231 1.35 ad goto retry;
232 1.35 ad }
233 1.2 kardel spc = " ";
234 1.2 kardel where += slen;
235 1.2 kardel needed += slen;
236 1.2 kardel left -= slen;
237 1.2 kardel }
238 1.2 kardel }
239 1.35 ad mutex_spin_exit(&timecounter_lock);
240 1.2 kardel
241 1.2 kardel *oldlenp = needed;
242 1.2 kardel return (error);
243 1.2 kardel }
244 1.2 kardel
245 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 1.2 kardel {
247 1.2 kardel const struct sysctlnode *node;
248 1.2 kardel
249 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
250 1.2 kardel CTLFLAG_PERMANENT,
251 1.2 kardel CTLTYPE_NODE, "timecounter",
252 1.2 kardel SYSCTL_DESCR("time counter information"),
253 1.2 kardel NULL, 0, NULL, 0,
254 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
255 1.2 kardel
256 1.2 kardel if (node != NULL) {
257 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
258 1.2 kardel CTLFLAG_PERMANENT,
259 1.2 kardel CTLTYPE_STRING, "choice",
260 1.2 kardel SYSCTL_DESCR("available counters"),
261 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
262 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263 1.2 kardel
264 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
265 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 1.2 kardel CTLTYPE_STRING, "hardware",
267 1.2 kardel SYSCTL_DESCR("currently active time counter"),
268 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270 1.2 kardel
271 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
272 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 1.2 kardel CTLTYPE_INT, "timestepwarnings",
274 1.2 kardel SYSCTL_DESCR("log time steps"),
275 1.2 kardel NULL, 0, ×tepwarnings, 0,
276 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 1.2 kardel }
278 1.2 kardel }
279 1.2 kardel
280 1.32 ad #ifdef TC_COUNTERS
281 1.2 kardel #define TC_STATS(name) \
282 1.2 kardel static struct evcnt n##name = \
283 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
284 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
285 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
286 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
287 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
289 1.2 kardel TC_STATS(setclock);
290 1.32 ad #define TC_COUNT(var) var.ev_count++
291 1.1 simonb #undef TC_STATS
292 1.32 ad #else
293 1.32 ad #define TC_COUNT(var) /* nothing */
294 1.32 ad #endif /* TC_COUNTERS */
295 1.1 simonb
296 1.1 simonb static void tc_windup(void);
297 1.1 simonb
298 1.1 simonb /*
299 1.1 simonb * Return the difference between the timehands' counter value now and what
300 1.1 simonb * was when we copied it to the timehands' offset_count.
301 1.1 simonb */
302 1.41 uebayasi static inline u_int
303 1.1 simonb tc_delta(struct timehands *th)
304 1.1 simonb {
305 1.1 simonb struct timecounter *tc;
306 1.1 simonb
307 1.1 simonb tc = th->th_counter;
308 1.2 kardel return ((tc->tc_get_timecount(tc) -
309 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
310 1.1 simonb }
311 1.1 simonb
312 1.1 simonb /*
313 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
314 1.1 simonb * the timehands that we operated on was not updated under our feet. See
315 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
316 1.1 simonb */
317 1.1 simonb
318 1.1 simonb void
319 1.1 simonb binuptime(struct bintime *bt)
320 1.1 simonb {
321 1.1 simonb struct timehands *th;
322 1.39 ad lwp_t *l;
323 1.39 ad u_int lgen, gen;
324 1.1 simonb
325 1.32 ad TC_COUNT(nbinuptime);
326 1.39 ad
327 1.39 ad /*
328 1.39 ad * Provide exclusion against tc_detach().
329 1.39 ad *
330 1.39 ad * We record the number of timecounter removals before accessing
331 1.39 ad * timecounter state. Note that the LWP can be using multiple
332 1.39 ad * "generations" at once, due to interrupts (interrupted while in
333 1.39 ad * this function). Hardware interrupts will borrow the interrupted
334 1.39 ad * LWP's l_tcgen value for this purpose, and can themselves be
335 1.39 ad * interrupted by higher priority interrupts. In this case we need
336 1.39 ad * to ensure that the oldest generation in use is recorded.
337 1.39 ad *
338 1.39 ad * splsched() is too expensive to use, so we take care to structure
339 1.39 ad * this code in such a way that it is not required. Likewise, we
340 1.39 ad * do not disable preemption.
341 1.39 ad *
342 1.39 ad * Memory barriers are also too expensive to use for such a
343 1.39 ad * performance critical function. The good news is that we do not
344 1.39 ad * need memory barriers for this type of exclusion, as the thread
345 1.39 ad * updating timecounter_removals will issue a broadcast cross call
346 1.39 ad * before inspecting our l_tcgen value (this elides memory ordering
347 1.39 ad * issues).
348 1.39 ad */
349 1.39 ad l = curlwp;
350 1.39 ad lgen = l->l_tcgen;
351 1.39 ad if (__predict_true(lgen == 0)) {
352 1.39 ad l->l_tcgen = timecounter_removals;
353 1.39 ad }
354 1.39 ad __insn_barrier();
355 1.39 ad
356 1.1 simonb do {
357 1.1 simonb th = timehands;
358 1.1 simonb gen = th->th_generation;
359 1.1 simonb *bt = th->th_offset;
360 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
361 1.1 simonb } while (gen == 0 || gen != th->th_generation);
362 1.39 ad
363 1.39 ad __insn_barrier();
364 1.39 ad l->l_tcgen = lgen;
365 1.1 simonb }
366 1.1 simonb
367 1.1 simonb void
368 1.1 simonb nanouptime(struct timespec *tsp)
369 1.1 simonb {
370 1.1 simonb struct bintime bt;
371 1.1 simonb
372 1.32 ad TC_COUNT(nnanouptime);
373 1.1 simonb binuptime(&bt);
374 1.1 simonb bintime2timespec(&bt, tsp);
375 1.1 simonb }
376 1.1 simonb
377 1.1 simonb void
378 1.1 simonb microuptime(struct timeval *tvp)
379 1.1 simonb {
380 1.1 simonb struct bintime bt;
381 1.1 simonb
382 1.32 ad TC_COUNT(nmicrouptime);
383 1.1 simonb binuptime(&bt);
384 1.1 simonb bintime2timeval(&bt, tvp);
385 1.1 simonb }
386 1.1 simonb
387 1.1 simonb void
388 1.1 simonb bintime(struct bintime *bt)
389 1.1 simonb {
390 1.1 simonb
391 1.32 ad TC_COUNT(nbintime);
392 1.1 simonb binuptime(bt);
393 1.4 kardel bintime_add(bt, &timebasebin);
394 1.1 simonb }
395 1.1 simonb
396 1.1 simonb void
397 1.1 simonb nanotime(struct timespec *tsp)
398 1.1 simonb {
399 1.1 simonb struct bintime bt;
400 1.1 simonb
401 1.32 ad TC_COUNT(nnanotime);
402 1.1 simonb bintime(&bt);
403 1.1 simonb bintime2timespec(&bt, tsp);
404 1.1 simonb }
405 1.1 simonb
406 1.1 simonb void
407 1.1 simonb microtime(struct timeval *tvp)
408 1.1 simonb {
409 1.1 simonb struct bintime bt;
410 1.1 simonb
411 1.32 ad TC_COUNT(nmicrotime);
412 1.1 simonb bintime(&bt);
413 1.1 simonb bintime2timeval(&bt, tvp);
414 1.1 simonb }
415 1.1 simonb
416 1.1 simonb void
417 1.1 simonb getbinuptime(struct bintime *bt)
418 1.1 simonb {
419 1.1 simonb struct timehands *th;
420 1.1 simonb u_int gen;
421 1.1 simonb
422 1.32 ad TC_COUNT(ngetbinuptime);
423 1.1 simonb do {
424 1.1 simonb th = timehands;
425 1.1 simonb gen = th->th_generation;
426 1.1 simonb *bt = th->th_offset;
427 1.1 simonb } while (gen == 0 || gen != th->th_generation);
428 1.1 simonb }
429 1.1 simonb
430 1.1 simonb void
431 1.1 simonb getnanouptime(struct timespec *tsp)
432 1.1 simonb {
433 1.1 simonb struct timehands *th;
434 1.1 simonb u_int gen;
435 1.1 simonb
436 1.32 ad TC_COUNT(ngetnanouptime);
437 1.1 simonb do {
438 1.1 simonb th = timehands;
439 1.1 simonb gen = th->th_generation;
440 1.1 simonb bintime2timespec(&th->th_offset, tsp);
441 1.1 simonb } while (gen == 0 || gen != th->th_generation);
442 1.1 simonb }
443 1.1 simonb
444 1.1 simonb void
445 1.1 simonb getmicrouptime(struct timeval *tvp)
446 1.1 simonb {
447 1.1 simonb struct timehands *th;
448 1.1 simonb u_int gen;
449 1.1 simonb
450 1.32 ad TC_COUNT(ngetmicrouptime);
451 1.1 simonb do {
452 1.1 simonb th = timehands;
453 1.1 simonb gen = th->th_generation;
454 1.1 simonb bintime2timeval(&th->th_offset, tvp);
455 1.1 simonb } while (gen == 0 || gen != th->th_generation);
456 1.1 simonb }
457 1.1 simonb
458 1.1 simonb void
459 1.1 simonb getbintime(struct bintime *bt)
460 1.1 simonb {
461 1.1 simonb struct timehands *th;
462 1.1 simonb u_int gen;
463 1.1 simonb
464 1.32 ad TC_COUNT(ngetbintime);
465 1.1 simonb do {
466 1.1 simonb th = timehands;
467 1.1 simonb gen = th->th_generation;
468 1.1 simonb *bt = th->th_offset;
469 1.1 simonb } while (gen == 0 || gen != th->th_generation);
470 1.4 kardel bintime_add(bt, &timebasebin);
471 1.1 simonb }
472 1.1 simonb
473 1.1 simonb void
474 1.1 simonb getnanotime(struct timespec *tsp)
475 1.1 simonb {
476 1.1 simonb struct timehands *th;
477 1.1 simonb u_int gen;
478 1.1 simonb
479 1.32 ad TC_COUNT(ngetnanotime);
480 1.1 simonb do {
481 1.1 simonb th = timehands;
482 1.1 simonb gen = th->th_generation;
483 1.1 simonb *tsp = th->th_nanotime;
484 1.1 simonb } while (gen == 0 || gen != th->th_generation);
485 1.1 simonb }
486 1.1 simonb
487 1.1 simonb void
488 1.1 simonb getmicrotime(struct timeval *tvp)
489 1.1 simonb {
490 1.1 simonb struct timehands *th;
491 1.1 simonb u_int gen;
492 1.1 simonb
493 1.32 ad TC_COUNT(ngetmicrotime);
494 1.1 simonb do {
495 1.1 simonb th = timehands;
496 1.1 simonb gen = th->th_generation;
497 1.1 simonb *tvp = th->th_microtime;
498 1.1 simonb } while (gen == 0 || gen != th->th_generation);
499 1.1 simonb }
500 1.1 simonb
501 1.1 simonb /*
502 1.1 simonb * Initialize a new timecounter and possibly use it.
503 1.1 simonb */
504 1.1 simonb void
505 1.1 simonb tc_init(struct timecounter *tc)
506 1.1 simonb {
507 1.1 simonb u_int u;
508 1.1 simonb
509 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
510 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
511 1.1 simonb u *= 11;
512 1.1 simonb u /= 10;
513 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
514 1.1 simonb tc->tc_quality = -2000;
515 1.18 ad aprint_verbose(
516 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
517 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
518 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
519 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
520 1.18 ad aprint_verbose(
521 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
522 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
523 1.7 bjh21 tc->tc_quality);
524 1.1 simonb }
525 1.1 simonb
526 1.33 ad mutex_spin_enter(&timecounter_lock);
527 1.1 simonb tc->tc_next = timecounters;
528 1.1 simonb timecounters = tc;
529 1.35 ad timecounter_mods++;
530 1.1 simonb /*
531 1.1 simonb * Never automatically use a timecounter with negative quality.
532 1.1 simonb * Even though we run on the dummy counter, switching here may be
533 1.1 simonb * worse since this timecounter may not be monotonous.
534 1.1 simonb */
535 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
536 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
537 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
538 1.22 ad (void)tc->tc_get_timecount(tc);
539 1.22 ad (void)tc->tc_get_timecount(tc);
540 1.22 ad timecounter = tc;
541 1.22 ad tc_windup();
542 1.22 ad }
543 1.33 ad mutex_spin_exit(&timecounter_lock);
544 1.35 ad }
545 1.35 ad
546 1.35 ad /*
547 1.35 ad * Pick a new timecounter due to the existing counter going bad.
548 1.35 ad */
549 1.35 ad static void
550 1.35 ad tc_pick(void)
551 1.35 ad {
552 1.35 ad struct timecounter *best, *tc;
553 1.35 ad
554 1.35 ad KASSERT(mutex_owned(&timecounter_lock));
555 1.35 ad
556 1.35 ad for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
557 1.35 ad if (tc->tc_quality > best->tc_quality)
558 1.35 ad best = tc;
559 1.35 ad else if (tc->tc_quality < best->tc_quality)
560 1.35 ad continue;
561 1.35 ad else if (tc->tc_frequency > best->tc_frequency)
562 1.35 ad best = tc;
563 1.35 ad }
564 1.35 ad (void)best->tc_get_timecount(best);
565 1.35 ad (void)best->tc_get_timecount(best);
566 1.35 ad timecounter = best;
567 1.35 ad }
568 1.35 ad
569 1.35 ad /*
570 1.35 ad * A timecounter has gone bad, arrange to pick a new one at the next
571 1.35 ad * clock tick.
572 1.35 ad */
573 1.35 ad void
574 1.35 ad tc_gonebad(struct timecounter *tc)
575 1.35 ad {
576 1.35 ad
577 1.35 ad tc->tc_quality = -100;
578 1.35 ad membar_producer();
579 1.35 ad atomic_inc_uint(&timecounter_bad);
580 1.1 simonb }
581 1.1 simonb
582 1.29 dyoung /*
583 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
584 1.29 dyoung */
585 1.29 dyoung int
586 1.29 dyoung tc_detach(struct timecounter *target)
587 1.29 dyoung {
588 1.35 ad struct timecounter *tc;
589 1.29 dyoung struct timecounter **tcp = NULL;
590 1.39 ad int removals;
591 1.39 ad uint64_t where;
592 1.39 ad lwp_t *l;
593 1.29 dyoung
594 1.39 ad /* First, find the timecounter. */
595 1.35 ad mutex_spin_enter(&timecounter_lock);
596 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
597 1.29 dyoung tc != NULL;
598 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
599 1.29 dyoung if (tc == target)
600 1.29 dyoung break;
601 1.29 dyoung }
602 1.29 dyoung if (tc == NULL) {
603 1.39 ad mutex_spin_exit(&timecounter_lock);
604 1.39 ad return ESRCH;
605 1.39 ad }
606 1.39 ad
607 1.39 ad /* And now, remove it. */
608 1.39 ad *tcp = tc->tc_next;
609 1.39 ad if (timecounter == target) {
610 1.39 ad tc_pick();
611 1.39 ad tc_windup();
612 1.39 ad }
613 1.39 ad timecounter_mods++;
614 1.39 ad removals = timecounter_removals++;
615 1.39 ad mutex_spin_exit(&timecounter_lock);
616 1.39 ad
617 1.39 ad /*
618 1.39 ad * We now have to determine if any threads in the system are still
619 1.39 ad * making use of this timecounter.
620 1.39 ad *
621 1.39 ad * We issue a broadcast cross call to elide memory ordering issues,
622 1.39 ad * then scan all LWPs in the system looking at each's timecounter
623 1.39 ad * generation number. We need to see a value of zero (not actively
624 1.39 ad * using a timecounter) or a value greater than our removal value.
625 1.39 ad *
626 1.39 ad * We may race with threads that read `timecounter_removals' and
627 1.39 ad * and then get preempted before updating `l_tcgen'. This is not
628 1.39 ad * a problem, since it means that these threads have not yet started
629 1.39 ad * accessing timecounter state. All we do need is one clean
630 1.39 ad * snapshot of the system where every thread appears not to be using
631 1.39 ad * old timecounter state.
632 1.39 ad */
633 1.39 ad for (;;) {
634 1.39 ad where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
635 1.39 ad xc_wait(where);
636 1.39 ad
637 1.39 ad mutex_enter(proc_lock);
638 1.39 ad LIST_FOREACH(l, &alllwp, l_list) {
639 1.39 ad if (l->l_tcgen == 0 || l->l_tcgen > removals) {
640 1.39 ad /*
641 1.39 ad * Not using timecounter or old timecounter
642 1.39 ad * state at time of our xcall or later.
643 1.39 ad */
644 1.39 ad continue;
645 1.39 ad }
646 1.39 ad break;
647 1.39 ad }
648 1.39 ad mutex_exit(proc_lock);
649 1.39 ad
650 1.39 ad /*
651 1.39 ad * If the timecounter is still in use, wait at least 10ms
652 1.39 ad * before retrying.
653 1.39 ad */
654 1.39 ad if (l == NULL) {
655 1.39 ad return 0;
656 1.35 ad }
657 1.39 ad (void)kpause("tcdetach", false, mstohz(10), NULL);
658 1.29 dyoung }
659 1.29 dyoung }
660 1.29 dyoung
661 1.1 simonb /* Report the frequency of the current timecounter. */
662 1.1 simonb u_int64_t
663 1.1 simonb tc_getfrequency(void)
664 1.1 simonb {
665 1.1 simonb
666 1.1 simonb return (timehands->th_counter->tc_frequency);
667 1.1 simonb }
668 1.1 simonb
669 1.1 simonb /*
670 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
671 1.1 simonb * when we booted.
672 1.1 simonb */
673 1.1 simonb void
674 1.38 christos tc_setclock(const struct timespec *ts)
675 1.1 simonb {
676 1.1 simonb struct timespec ts2;
677 1.1 simonb struct bintime bt, bt2;
678 1.1 simonb
679 1.33 ad mutex_spin_enter(&timecounter_lock);
680 1.32 ad TC_COUNT(nsetclock);
681 1.1 simonb binuptime(&bt2);
682 1.1 simonb timespec2bintime(ts, &bt);
683 1.1 simonb bintime_sub(&bt, &bt2);
684 1.4 kardel bintime_add(&bt2, &timebasebin);
685 1.4 kardel timebasebin = bt;
686 1.30 ad tc_windup();
687 1.33 ad mutex_spin_exit(&timecounter_lock);
688 1.1 simonb
689 1.1 simonb if (timestepwarnings) {
690 1.1 simonb bintime2timespec(&bt2, &ts2);
691 1.38 christos log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
692 1.38 christos (long long)ts2.tv_sec, ts2.tv_nsec,
693 1.38 christos (long long)ts->tv_sec, ts->tv_nsec);
694 1.1 simonb }
695 1.1 simonb }
696 1.1 simonb
697 1.1 simonb /*
698 1.1 simonb * Initialize the next struct timehands in the ring and make
699 1.1 simonb * it the active timehands. Along the way we might switch to a different
700 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
701 1.1 simonb */
702 1.1 simonb static void
703 1.1 simonb tc_windup(void)
704 1.1 simonb {
705 1.1 simonb struct bintime bt;
706 1.1 simonb struct timehands *th, *tho;
707 1.1 simonb u_int64_t scale;
708 1.1 simonb u_int delta, ncount, ogen;
709 1.13 kardel int i, s_update;
710 1.1 simonb time_t t;
711 1.1 simonb
712 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
713 1.30 ad
714 1.13 kardel s_update = 0;
715 1.20 ad
716 1.1 simonb /*
717 1.1 simonb * Make the next timehands a copy of the current one, but do not
718 1.1 simonb * overwrite the generation or next pointer. While we update
719 1.20 ad * the contents, the generation must be zero. Ensure global
720 1.20 ad * visibility of the generation before proceeding.
721 1.1 simonb */
722 1.1 simonb tho = timehands;
723 1.1 simonb th = tho->th_next;
724 1.1 simonb ogen = th->th_generation;
725 1.1 simonb th->th_generation = 0;
726 1.27 ad membar_producer();
727 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
728 1.1 simonb
729 1.1 simonb /*
730 1.1 simonb * Capture a timecounter delta on the current timecounter and if
731 1.1 simonb * changing timecounters, a counter value from the new timecounter.
732 1.1 simonb * Update the offset fields accordingly.
733 1.1 simonb */
734 1.1 simonb delta = tc_delta(th);
735 1.1 simonb if (th->th_counter != timecounter)
736 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
737 1.1 simonb else
738 1.1 simonb ncount = 0;
739 1.1 simonb th->th_offset_count += delta;
740 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
741 1.1 simonb
742 1.1 simonb /*
743 1.1 simonb * Hardware latching timecounters may not generate interrupts on
744 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
745 1.1 simonb * the hardware might capture a count which is later than the one we
746 1.1 simonb * got above, and therefore possibly in the next NTP second which might
747 1.1 simonb * have a different rate than the current NTP second. It doesn't
748 1.1 simonb * matter in practice.
749 1.1 simonb */
750 1.1 simonb if (tho->th_counter->tc_poll_pps)
751 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
752 1.1 simonb
753 1.1 simonb /*
754 1.1 simonb * Deal with NTP second processing. The for loop normally
755 1.1 simonb * iterates at most once, but in extreme situations it might
756 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
757 1.1 simonb * At boot, the time step can be large when the TOD hardware
758 1.1 simonb * has been read, so on really large steps, we call
759 1.1 simonb * ntp_update_second only twice. We need to call it twice in
760 1.1 simonb * case we missed a leap second.
761 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
762 1.2 kardel * the adjustment resulting from adjtime() calls.
763 1.1 simonb */
764 1.1 simonb bt = th->th_offset;
765 1.4 kardel bintime_add(&bt, &timebasebin);
766 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
767 1.1 simonb if (i > LARGE_STEP)
768 1.1 simonb i = 2;
769 1.1 simonb for (; i > 0; i--) {
770 1.1 simonb t = bt.sec;
771 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
772 1.13 kardel s_update = 1;
773 1.1 simonb if (bt.sec != t)
774 1.4 kardel timebasebin.sec += bt.sec - t;
775 1.1 simonb }
776 1.2 kardel
777 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
778 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
779 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
780 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
781 1.1 simonb /* Now is a good time to change timecounters. */
782 1.1 simonb if (th->th_counter != timecounter) {
783 1.1 simonb th->th_counter = timecounter;
784 1.1 simonb th->th_offset_count = ncount;
785 1.13 kardel s_update = 1;
786 1.1 simonb }
787 1.1 simonb
788 1.1 simonb /*-
789 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
790 1.1 simonb * fractions of a second per period of the hardware counter, taking
791 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
792 1.1 simonb * processing provides us with.
793 1.1 simonb *
794 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
795 1.1 simonb * fraction and we want 64 bit binary fraction of second:
796 1.1 simonb *
797 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
798 1.1 simonb *
799 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
800 1.1 simonb * we can only multiply by about 850 without overflowing, but that
801 1.1 simonb * leaves suitably precise fractions for multiply before divide.
802 1.1 simonb *
803 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
804 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
805 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
806 1.1 simonb *
807 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
808 1.1 simonb * to the goddess of code clarity.
809 1.1 simonb *
810 1.1 simonb */
811 1.13 kardel if (s_update) {
812 1.13 kardel scale = (u_int64_t)1 << 63;
813 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
814 1.13 kardel scale /= th->th_counter->tc_frequency;
815 1.13 kardel th->th_scale = scale * 2;
816 1.13 kardel }
817 1.1 simonb /*
818 1.1 simonb * Now that the struct timehands is again consistent, set the new
819 1.20 ad * generation number, making sure to not make it zero. Ensure
820 1.20 ad * changes are globally visible before changing.
821 1.1 simonb */
822 1.1 simonb if (++ogen == 0)
823 1.1 simonb ogen = 1;
824 1.27 ad membar_producer();
825 1.1 simonb th->th_generation = ogen;
826 1.1 simonb
827 1.20 ad /*
828 1.20 ad * Go live with the new struct timehands. Ensure changes are
829 1.20 ad * globally visible before changing.
830 1.20 ad */
831 1.1 simonb time_second = th->th_microtime.tv_sec;
832 1.1 simonb time_uptime = th->th_offset.sec;
833 1.27 ad membar_producer();
834 1.1 simonb timehands = th;
835 1.24 ad
836 1.24 ad /*
837 1.24 ad * Force users of the old timehand to move on. This is
838 1.24 ad * necessary for MP systems; we need to ensure that the
839 1.24 ad * consumers will move away from the old timehand before
840 1.24 ad * we begin updating it again when we eventually wrap
841 1.24 ad * around.
842 1.24 ad */
843 1.24 ad if (++tho->th_generation == 0)
844 1.24 ad tho->th_generation = 1;
845 1.1 simonb }
846 1.1 simonb
847 1.1 simonb /*
848 1.1 simonb * RFC 2783 PPS-API implementation.
849 1.1 simonb */
850 1.1 simonb
851 1.1 simonb int
852 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
853 1.1 simonb {
854 1.1 simonb pps_params_t *app;
855 1.2 kardel pps_info_t *pipi;
856 1.1 simonb #ifdef PPS_SYNC
857 1.2 kardel int *epi;
858 1.1 simonb #endif
859 1.1 simonb
860 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
861 1.33 ad
862 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
863 1.1 simonb switch (cmd) {
864 1.1 simonb case PPS_IOC_CREATE:
865 1.1 simonb return (0);
866 1.1 simonb case PPS_IOC_DESTROY:
867 1.1 simonb return (0);
868 1.1 simonb case PPS_IOC_SETPARAMS:
869 1.1 simonb app = (pps_params_t *)data;
870 1.1 simonb if (app->mode & ~pps->ppscap)
871 1.1 simonb return (EINVAL);
872 1.1 simonb pps->ppsparam = *app;
873 1.1 simonb return (0);
874 1.1 simonb case PPS_IOC_GETPARAMS:
875 1.1 simonb app = (pps_params_t *)data;
876 1.1 simonb *app = pps->ppsparam;
877 1.1 simonb app->api_version = PPS_API_VERS_1;
878 1.1 simonb return (0);
879 1.1 simonb case PPS_IOC_GETCAP:
880 1.1 simonb *(int*)data = pps->ppscap;
881 1.1 simonb return (0);
882 1.1 simonb case PPS_IOC_FETCH:
883 1.2 kardel pipi = (pps_info_t *)data;
884 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
885 1.2 kardel *pipi = pps->ppsinfo;
886 1.1 simonb return (0);
887 1.1 simonb case PPS_IOC_KCBIND:
888 1.1 simonb #ifdef PPS_SYNC
889 1.2 kardel epi = (int *)data;
890 1.1 simonb /* XXX Only root should be able to do this */
891 1.2 kardel if (*epi & ~pps->ppscap)
892 1.1 simonb return (EINVAL);
893 1.2 kardel pps->kcmode = *epi;
894 1.1 simonb return (0);
895 1.1 simonb #else
896 1.1 simonb return (EOPNOTSUPP);
897 1.1 simonb #endif
898 1.1 simonb default:
899 1.2 kardel return (EPASSTHROUGH);
900 1.1 simonb }
901 1.1 simonb }
902 1.1 simonb
903 1.1 simonb void
904 1.1 simonb pps_init(struct pps_state *pps)
905 1.1 simonb {
906 1.33 ad
907 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
908 1.33 ad
909 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
910 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
911 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
912 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
913 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
914 1.1 simonb }
915 1.1 simonb
916 1.1 simonb void
917 1.1 simonb pps_capture(struct pps_state *pps)
918 1.1 simonb {
919 1.1 simonb struct timehands *th;
920 1.1 simonb
921 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
922 1.33 ad KASSERT(pps != NULL);
923 1.33 ad
924 1.1 simonb th = timehands;
925 1.1 simonb pps->capgen = th->th_generation;
926 1.1 simonb pps->capth = th;
927 1.40 kardel pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
928 1.1 simonb if (pps->capgen != th->th_generation)
929 1.1 simonb pps->capgen = 0;
930 1.1 simonb }
931 1.1 simonb
932 1.1 simonb void
933 1.1 simonb pps_event(struct pps_state *pps, int event)
934 1.1 simonb {
935 1.1 simonb struct bintime bt;
936 1.1 simonb struct timespec ts, *tsp, *osp;
937 1.40 kardel u_int64_t tcount, *pcount;
938 1.42.8.2 yamt int foff;
939 1.42.8.2 yamt #ifdef PPS_SYNC
940 1.42.8.2 yamt int fhard;
941 1.42.8.2 yamt #endif
942 1.1 simonb pps_seq_t *pseq;
943 1.1 simonb
944 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
945 1.33 ad
946 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
947 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
948 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
949 1.1 simonb return;
950 1.1 simonb
951 1.1 simonb /* Things would be easier with arrays. */
952 1.1 simonb if (event == PPS_CAPTUREASSERT) {
953 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
954 1.1 simonb osp = &pps->ppsparam.assert_offset;
955 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
956 1.42.8.2 yamt #ifdef PPS_SYNC
957 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
958 1.42.8.2 yamt #endif
959 1.1 simonb pcount = &pps->ppscount[0];
960 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
961 1.1 simonb } else {
962 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
963 1.1 simonb osp = &pps->ppsparam.clear_offset;
964 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
965 1.42.8.2 yamt #ifdef PPS_SYNC
966 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
967 1.42.8.2 yamt #endif
968 1.1 simonb pcount = &pps->ppscount[1];
969 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
970 1.1 simonb }
971 1.1 simonb
972 1.1 simonb /*
973 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
974 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
975 1.1 simonb */
976 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
977 1.1 simonb pps->ppstc = pps->capth->th_counter;
978 1.1 simonb *pcount = pps->capcount;
979 1.1 simonb pps->ppscount[2] = pps->capcount;
980 1.1 simonb return;
981 1.1 simonb }
982 1.1 simonb
983 1.1 simonb /* Convert the count to a timespec. */
984 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
985 1.1 simonb bt = pps->capth->th_offset;
986 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
987 1.4 kardel bintime_add(&bt, &timebasebin);
988 1.1 simonb bintime2timespec(&bt, &ts);
989 1.1 simonb
990 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
991 1.1 simonb if (pps->capgen != pps->capth->th_generation)
992 1.1 simonb return;
993 1.1 simonb
994 1.1 simonb *pcount = pps->capcount;
995 1.1 simonb (*pseq)++;
996 1.1 simonb *tsp = ts;
997 1.1 simonb
998 1.1 simonb if (foff) {
999 1.2 kardel timespecadd(tsp, osp, tsp);
1000 1.1 simonb if (tsp->tv_nsec < 0) {
1001 1.1 simonb tsp->tv_nsec += 1000000000;
1002 1.1 simonb tsp->tv_sec -= 1;
1003 1.1 simonb }
1004 1.1 simonb }
1005 1.1 simonb #ifdef PPS_SYNC
1006 1.1 simonb if (fhard) {
1007 1.1 simonb u_int64_t scale;
1008 1.1 simonb
1009 1.1 simonb /*
1010 1.1 simonb * Feed the NTP PLL/FLL.
1011 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
1012 1.1 simonb * elapsed since the previous event.
1013 1.1 simonb */
1014 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
1015 1.1 simonb pps->ppscount[2] = pps->capcount;
1016 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
1017 1.1 simonb scale = (u_int64_t)1 << 63;
1018 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
1019 1.1 simonb scale *= 2;
1020 1.1 simonb bt.sec = 0;
1021 1.1 simonb bt.frac = 0;
1022 1.1 simonb bintime_addx(&bt, scale * tcount);
1023 1.1 simonb bintime2timespec(&bt, &ts);
1024 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1025 1.1 simonb }
1026 1.1 simonb #endif
1027 1.1 simonb }
1028 1.1 simonb
1029 1.1 simonb /*
1030 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
1031 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
1032 1.1 simonb * used by the get*() family of functions, so their precision depends on
1033 1.1 simonb * the update frequency.
1034 1.1 simonb */
1035 1.1 simonb
1036 1.1 simonb static int tc_tick;
1037 1.1 simonb
1038 1.1 simonb void
1039 1.1 simonb tc_ticktock(void)
1040 1.1 simonb {
1041 1.1 simonb static int count;
1042 1.1 simonb
1043 1.1 simonb if (++count < tc_tick)
1044 1.1 simonb return;
1045 1.1 simonb count = 0;
1046 1.33 ad mutex_spin_enter(&timecounter_lock);
1047 1.35 ad if (timecounter_bad != 0) {
1048 1.35 ad /* An existing timecounter has gone bad, pick a new one. */
1049 1.35 ad (void)atomic_swap_uint(&timecounter_bad, 0);
1050 1.35 ad if (timecounter->tc_quality < 0) {
1051 1.35 ad tc_pick();
1052 1.35 ad }
1053 1.35 ad }
1054 1.1 simonb tc_windup();
1055 1.33 ad mutex_spin_exit(&timecounter_lock);
1056 1.1 simonb }
1057 1.1 simonb
1058 1.2 kardel void
1059 1.2 kardel inittimecounter(void)
1060 1.1 simonb {
1061 1.1 simonb u_int p;
1062 1.1 simonb
1063 1.37 kardel mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1064 1.30 ad
1065 1.1 simonb /*
1066 1.1 simonb * Set the initial timeout to
1067 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
1068 1.1 simonb * People should probably not use the sysctl to set the timeout
1069 1.1 simonb * to smaller than its inital value, since that value is the
1070 1.1 simonb * smallest reasonable one. If they want better timestamps they
1071 1.1 simonb * should use the non-"get"* functions.
1072 1.1 simonb */
1073 1.1 simonb if (hz > 1000)
1074 1.1 simonb tc_tick = (hz + 500) / 1000;
1075 1.1 simonb else
1076 1.1 simonb tc_tick = 1;
1077 1.1 simonb p = (tc_tick * 1000000) / hz;
1078 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1079 1.18 ad p / 1000, p % 1000);
1080 1.1 simonb
1081 1.1 simonb /* warm up new timecounter (again) and get rolling. */
1082 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1083 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1084 1.1 simonb }
1085