Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.49.2.1
      1  1.49.2.1  pgoyette /* $NetBSD: kern_tc.c,v 1.49.2.1 2018/07/28 04:38:08 pgoyette Exp $ */
      2      1.33        ad 
      3      1.33        ad /*-
      4      1.39        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.33        ad  * All rights reserved.
      6      1.33        ad  *
      7      1.39        ad  * This code is derived from software contributed to The NetBSD Foundation
      8      1.39        ad  * by Andrew Doran.
      9      1.39        ad  *
     10      1.33        ad  * Redistribution and use in source and binary forms, with or without
     11      1.33        ad  * modification, are permitted provided that the following conditions
     12      1.33        ad  * are met:
     13      1.33        ad  * 1. Redistributions of source code must retain the above copyright
     14      1.33        ad  *    notice, this list of conditions and the following disclaimer.
     15      1.33        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.33        ad  *    notice, this list of conditions and the following disclaimer in the
     17      1.33        ad  *    documentation and/or other materials provided with the distribution.
     18      1.33        ad  *
     19      1.33        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.33        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.33        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.33        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.33        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.33        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.33        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.33        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.33        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.33        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.33        ad  * POSSIBILITY OF SUCH DAMAGE.
     30      1.33        ad  */
     31       1.2    kardel 
     32       1.1    simonb /*-
     33       1.1    simonb  * ----------------------------------------------------------------------------
     34       1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
     35       1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36       1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
     37       1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38       1.2    kardel  * ---------------------------------------------------------------------------
     39       1.1    simonb  */
     40       1.1    simonb 
     41       1.1    simonb #include <sys/cdefs.h>
     42       1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43  1.49.2.1  pgoyette __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.49.2.1 2018/07/28 04:38:08 pgoyette Exp $");
     44       1.1    simonb 
     45      1.42     pooka #ifdef _KERNEL_OPT
     46       1.1    simonb #include "opt_ntp.h"
     47      1.42     pooka #endif
     48       1.1    simonb 
     49       1.1    simonb #include <sys/param.h>
     50       1.1    simonb #include <sys/kernel.h>
     51       1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     52       1.1    simonb #include <sys/sysctl.h>
     53       1.1    simonb #include <sys/syslog.h>
     54       1.1    simonb #include <sys/systm.h>
     55       1.1    simonb #include <sys/timepps.h>
     56       1.1    simonb #include <sys/timetc.h>
     57       1.1    simonb #include <sys/timex.h>
     58       1.2    kardel #include <sys/evcnt.h>
     59       1.2    kardel #include <sys/kauth.h>
     60      1.25        ad #include <sys/mutex.h>
     61      1.27        ad #include <sys/atomic.h>
     62      1.39        ad #include <sys/xcall.h>
     63       1.2    kardel 
     64       1.2    kardel /*
     65       1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     66       1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     67       1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     68       1.1    simonb  * forever when the time step is large.
     69       1.1    simonb  */
     70       1.1    simonb #define LARGE_STEP	200
     71       1.1    simonb 
     72       1.1    simonb /*
     73       1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     74       1.1    simonb  * in the air.  This allows the console and other early stuff to use
     75       1.1    simonb  * time services.
     76       1.1    simonb  */
     77       1.1    simonb 
     78       1.1    simonb static u_int
     79      1.16      yamt dummy_get_timecount(struct timecounter *tc)
     80       1.1    simonb {
     81       1.1    simonb 	static u_int now;
     82       1.1    simonb 
     83       1.1    simonb 	return (++now);
     84       1.1    simonb }
     85       1.1    simonb 
     86       1.1    simonb static struct timecounter dummy_timecounter = {
     87      1.48  riastrad 	.tc_get_timecount	= dummy_get_timecount,
     88      1.48  riastrad 	.tc_counter_mask	= ~0u,
     89      1.48  riastrad 	.tc_frequency		= 1000000,
     90      1.48  riastrad 	.tc_name		= "dummy",
     91      1.48  riastrad 	.tc_quality		= -1000000,
     92      1.48  riastrad 	.tc_priv		= NULL,
     93       1.1    simonb };
     94       1.1    simonb 
     95       1.1    simonb struct timehands {
     96       1.1    simonb 	/* These fields must be initialized by the driver. */
     97      1.40    kardel 	struct timecounter	*th_counter;     /* active timecounter */
     98      1.40    kardel 	int64_t			th_adjustment;   /* frequency adjustment */
     99      1.40    kardel 						 /* (NTP/adjtime) */
    100      1.40    kardel 	u_int64_t		th_scale;        /* scale factor (counter */
    101      1.40    kardel 						 /* tick->time) */
    102      1.40    kardel 	u_int64_t 		th_offset_count; /* offset at last time */
    103      1.40    kardel 						 /* update (tc_windup()) */
    104      1.40    kardel 	struct bintime		th_offset;       /* bin (up)time at windup */
    105      1.40    kardel 	struct timeval		th_microtime;    /* cached microtime */
    106      1.40    kardel 	struct timespec		th_nanotime;     /* cached nanotime */
    107       1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
    108      1.40    kardel 	volatile u_int		th_generation;   /* current genration */
    109      1.40    kardel 	struct timehands	*th_next;        /* next timehand */
    110       1.1    simonb };
    111       1.1    simonb 
    112       1.1    simonb static struct timehands th0;
    113      1.10  christos static struct timehands th9 = { .th_next = &th0, };
    114      1.10  christos static struct timehands th8 = { .th_next = &th9, };
    115      1.10  christos static struct timehands th7 = { .th_next = &th8, };
    116      1.10  christos static struct timehands th6 = { .th_next = &th7, };
    117      1.10  christos static struct timehands th5 = { .th_next = &th6, };
    118      1.10  christos static struct timehands th4 = { .th_next = &th5, };
    119      1.10  christos static struct timehands th3 = { .th_next = &th4, };
    120      1.10  christos static struct timehands th2 = { .th_next = &th3, };
    121      1.10  christos static struct timehands th1 = { .th_next = &th2, };
    122       1.1    simonb static struct timehands th0 = {
    123      1.10  christos 	.th_counter = &dummy_timecounter,
    124      1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
    125      1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
    126      1.10  christos 	.th_generation = 1,
    127      1.10  christos 	.th_next = &th1,
    128       1.1    simonb };
    129       1.1    simonb 
    130       1.1    simonb static struct timehands *volatile timehands = &th0;
    131       1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
    132       1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
    133       1.1    simonb 
    134      1.49      maxv volatile time_t time_second __cacheline_aligned = 1;
    135      1.49      maxv volatile time_t time_uptime __cacheline_aligned = 1;
    136       1.1    simonb 
    137       1.4    kardel static struct bintime timebasebin;
    138       1.1    simonb 
    139       1.1    simonb static int timestepwarnings;
    140       1.2    kardel 
    141      1.33        ad kmutex_t timecounter_lock;
    142      1.35        ad static u_int timecounter_mods;
    143      1.39        ad static volatile int timecounter_removals = 1;
    144      1.35        ad static u_int timecounter_bad;
    145      1.25        ad 
    146       1.2    kardel #ifdef __FreeBSD__
    147       1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    148       1.1    simonb     &timestepwarnings, 0, "");
    149       1.2    kardel #endif /* __FreeBSD__ */
    150       1.2    kardel 
    151       1.2    kardel /*
    152      1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    153       1.2    kardel  */
    154       1.2    kardel static int
    155       1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    156       1.2    kardel {
    157       1.2    kardel 	struct sysctlnode node;
    158       1.2    kardel 	int error;
    159       1.2    kardel 	char newname[MAX_TCNAMELEN];
    160       1.2    kardel 	struct timecounter *newtc, *tc;
    161       1.2    kardel 
    162       1.2    kardel 	tc = timecounter;
    163       1.2    kardel 
    164       1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    165       1.2    kardel 
    166       1.2    kardel 	node = *rnode;
    167       1.2    kardel 	node.sysctl_data = newname;
    168       1.2    kardel 	node.sysctl_size = sizeof(newname);
    169       1.2    kardel 
    170       1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    171       1.2    kardel 
    172       1.2    kardel 	if (error ||
    173       1.2    kardel 	    newp == NULL ||
    174       1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    175       1.2    kardel 		return error;
    176       1.1    simonb 
    177      1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    178      1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    179      1.26      elad 	    NULL, NULL)) != 0)
    180       1.2    kardel 		return (error);
    181       1.2    kardel 
    182      1.22        ad 	if (!cold)
    183      1.35        ad 		mutex_spin_enter(&timecounter_lock);
    184      1.23        ad 	error = EINVAL;
    185       1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    186       1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    187       1.2    kardel 			continue;
    188       1.2    kardel 		/* Warm up new timecounter. */
    189       1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    190       1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    191       1.2    kardel 		timecounter = newtc;
    192      1.22        ad 		error = 0;
    193      1.23        ad 		break;
    194      1.23        ad 	}
    195      1.22        ad 	if (!cold)
    196      1.35        ad 		mutex_spin_exit(&timecounter_lock);
    197      1.22        ad 	return error;
    198       1.2    kardel }
    199       1.2    kardel 
    200       1.2    kardel static int
    201       1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    202       1.2    kardel {
    203       1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    204      1.35        ad 	char *where;
    205       1.2    kardel 	const char *spc;
    206       1.2    kardel 	struct timecounter *tc;
    207       1.2    kardel 	size_t needed, left, slen;
    208      1.35        ad 	int error, mods;
    209       1.2    kardel 
    210       1.2    kardel 	if (newp != NULL)
    211       1.2    kardel 		return (EPERM);
    212       1.2    kardel 	if (namelen != 0)
    213       1.2    kardel 		return (EINVAL);
    214       1.2    kardel 
    215      1.35        ad 	mutex_spin_enter(&timecounter_lock);
    216      1.35        ad  retry:
    217       1.2    kardel 	spc = "";
    218       1.2    kardel 	error = 0;
    219       1.2    kardel 	needed = 0;
    220       1.2    kardel 	left = *oldlenp;
    221      1.35        ad 	where = oldp;
    222       1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    223       1.2    kardel 		if (where == NULL) {
    224       1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    225       1.2    kardel 		} else {
    226       1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    227       1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    228       1.2    kardel 					tc->tc_frequency);
    229       1.2    kardel 			if (left < slen + 1)
    230       1.2    kardel 				break;
    231      1.35        ad 		 	mods = timecounter_mods;
    232      1.35        ad 			mutex_spin_exit(&timecounter_lock);
    233       1.2    kardel 			error = copyout(buf, where, slen + 1);
    234      1.35        ad 			mutex_spin_enter(&timecounter_lock);
    235      1.35        ad 			if (mods != timecounter_mods) {
    236      1.35        ad 				goto retry;
    237      1.35        ad 			}
    238       1.2    kardel 			spc = " ";
    239       1.2    kardel 			where += slen;
    240       1.2    kardel 			needed += slen;
    241       1.2    kardel 			left -= slen;
    242       1.2    kardel 		}
    243       1.2    kardel 	}
    244      1.35        ad 	mutex_spin_exit(&timecounter_lock);
    245       1.2    kardel 
    246       1.2    kardel 	*oldlenp = needed;
    247       1.2    kardel 	return (error);
    248       1.2    kardel }
    249       1.2    kardel 
    250       1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    251       1.2    kardel {
    252       1.2    kardel 	const struct sysctlnode *node;
    253       1.2    kardel 
    254       1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    255       1.2    kardel 		       CTLFLAG_PERMANENT,
    256       1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    257       1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    258       1.2    kardel 		       NULL, 0, NULL, 0,
    259       1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    260       1.2    kardel 
    261       1.2    kardel 	if (node != NULL) {
    262       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    263       1.2    kardel 			       CTLFLAG_PERMANENT,
    264       1.2    kardel 			       CTLTYPE_STRING, "choice",
    265       1.2    kardel 			       SYSCTL_DESCR("available counters"),
    266       1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    267       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    268       1.2    kardel 
    269       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    270       1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    271       1.2    kardel 			       CTLTYPE_STRING, "hardware",
    272       1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    273       1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    274       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    275       1.2    kardel 
    276       1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    277       1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    278       1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    279       1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    280       1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    281       1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    282       1.2    kardel 	}
    283       1.2    kardel }
    284       1.2    kardel 
    285      1.32        ad #ifdef TC_COUNTERS
    286       1.2    kardel #define	TC_STATS(name)							\
    287       1.2    kardel static struct evcnt n##name =						\
    288       1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    289       1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    290       1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    291       1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    292       1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    293       1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    294       1.2    kardel TC_STATS(setclock);
    295      1.32        ad #define	TC_COUNT(var)	var.ev_count++
    296       1.1    simonb #undef TC_STATS
    297      1.32        ad #else
    298      1.32        ad #define	TC_COUNT(var)	/* nothing */
    299      1.32        ad #endif	/* TC_COUNTERS */
    300       1.1    simonb 
    301       1.1    simonb static void tc_windup(void);
    302       1.1    simonb 
    303       1.1    simonb /*
    304       1.1    simonb  * Return the difference between the timehands' counter value now and what
    305       1.1    simonb  * was when we copied it to the timehands' offset_count.
    306       1.1    simonb  */
    307      1.41  uebayasi static inline u_int
    308       1.1    simonb tc_delta(struct timehands *th)
    309       1.1    simonb {
    310       1.1    simonb 	struct timecounter *tc;
    311       1.1    simonb 
    312       1.1    simonb 	tc = th->th_counter;
    313       1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    314       1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    315       1.1    simonb }
    316       1.1    simonb 
    317       1.1    simonb /*
    318       1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    319       1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    320      1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    321       1.1    simonb  */
    322       1.1    simonb 
    323       1.1    simonb void
    324       1.1    simonb binuptime(struct bintime *bt)
    325       1.1    simonb {
    326       1.1    simonb 	struct timehands *th;
    327      1.39        ad 	lwp_t *l;
    328      1.39        ad 	u_int lgen, gen;
    329       1.1    simonb 
    330      1.32        ad 	TC_COUNT(nbinuptime);
    331      1.39        ad 
    332      1.39        ad 	/*
    333      1.39        ad 	 * Provide exclusion against tc_detach().
    334      1.39        ad 	 *
    335      1.39        ad 	 * We record the number of timecounter removals before accessing
    336      1.39        ad 	 * timecounter state.  Note that the LWP can be using multiple
    337      1.39        ad 	 * "generations" at once, due to interrupts (interrupted while in
    338      1.39        ad 	 * this function).  Hardware interrupts will borrow the interrupted
    339      1.39        ad 	 * LWP's l_tcgen value for this purpose, and can themselves be
    340      1.39        ad 	 * interrupted by higher priority interrupts.  In this case we need
    341      1.39        ad 	 * to ensure that the oldest generation in use is recorded.
    342      1.39        ad 	 *
    343      1.39        ad 	 * splsched() is too expensive to use, so we take care to structure
    344      1.39        ad 	 * this code in such a way that it is not required.  Likewise, we
    345      1.39        ad 	 * do not disable preemption.
    346      1.39        ad 	 *
    347      1.39        ad 	 * Memory barriers are also too expensive to use for such a
    348      1.39        ad 	 * performance critical function.  The good news is that we do not
    349      1.39        ad 	 * need memory barriers for this type of exclusion, as the thread
    350      1.39        ad 	 * updating timecounter_removals will issue a broadcast cross call
    351      1.39        ad 	 * before inspecting our l_tcgen value (this elides memory ordering
    352      1.39        ad 	 * issues).
    353      1.39        ad 	 */
    354      1.39        ad 	l = curlwp;
    355      1.39        ad 	lgen = l->l_tcgen;
    356      1.39        ad 	if (__predict_true(lgen == 0)) {
    357      1.39        ad 		l->l_tcgen = timecounter_removals;
    358      1.39        ad 	}
    359      1.39        ad 	__insn_barrier();
    360      1.39        ad 
    361       1.1    simonb 	do {
    362       1.1    simonb 		th = timehands;
    363       1.1    simonb 		gen = th->th_generation;
    364       1.1    simonb 		*bt = th->th_offset;
    365       1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    366       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    367      1.39        ad 
    368      1.39        ad 	__insn_barrier();
    369      1.39        ad 	l->l_tcgen = lgen;
    370       1.1    simonb }
    371       1.1    simonb 
    372       1.1    simonb void
    373       1.1    simonb nanouptime(struct timespec *tsp)
    374       1.1    simonb {
    375       1.1    simonb 	struct bintime bt;
    376       1.1    simonb 
    377      1.32        ad 	TC_COUNT(nnanouptime);
    378       1.1    simonb 	binuptime(&bt);
    379       1.1    simonb 	bintime2timespec(&bt, tsp);
    380       1.1    simonb }
    381       1.1    simonb 
    382       1.1    simonb void
    383       1.1    simonb microuptime(struct timeval *tvp)
    384       1.1    simonb {
    385       1.1    simonb 	struct bintime bt;
    386       1.1    simonb 
    387      1.32        ad 	TC_COUNT(nmicrouptime);
    388       1.1    simonb 	binuptime(&bt);
    389       1.1    simonb 	bintime2timeval(&bt, tvp);
    390       1.1    simonb }
    391       1.1    simonb 
    392       1.1    simonb void
    393       1.1    simonb bintime(struct bintime *bt)
    394       1.1    simonb {
    395       1.1    simonb 
    396      1.32        ad 	TC_COUNT(nbintime);
    397       1.1    simonb 	binuptime(bt);
    398       1.4    kardel 	bintime_add(bt, &timebasebin);
    399       1.1    simonb }
    400       1.1    simonb 
    401       1.1    simonb void
    402       1.1    simonb nanotime(struct timespec *tsp)
    403       1.1    simonb {
    404       1.1    simonb 	struct bintime bt;
    405       1.1    simonb 
    406      1.32        ad 	TC_COUNT(nnanotime);
    407       1.1    simonb 	bintime(&bt);
    408       1.1    simonb 	bintime2timespec(&bt, tsp);
    409       1.1    simonb }
    410       1.1    simonb 
    411       1.1    simonb void
    412       1.1    simonb microtime(struct timeval *tvp)
    413       1.1    simonb {
    414       1.1    simonb 	struct bintime bt;
    415       1.1    simonb 
    416      1.32        ad 	TC_COUNT(nmicrotime);
    417       1.1    simonb 	bintime(&bt);
    418       1.1    simonb 	bintime2timeval(&bt, tvp);
    419       1.1    simonb }
    420       1.1    simonb 
    421       1.1    simonb void
    422       1.1    simonb getbinuptime(struct bintime *bt)
    423       1.1    simonb {
    424       1.1    simonb 	struct timehands *th;
    425       1.1    simonb 	u_int gen;
    426       1.1    simonb 
    427      1.32        ad 	TC_COUNT(ngetbinuptime);
    428       1.1    simonb 	do {
    429       1.1    simonb 		th = timehands;
    430       1.1    simonb 		gen = th->th_generation;
    431       1.1    simonb 		*bt = th->th_offset;
    432       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    433       1.1    simonb }
    434       1.1    simonb 
    435       1.1    simonb void
    436       1.1    simonb getnanouptime(struct timespec *tsp)
    437       1.1    simonb {
    438       1.1    simonb 	struct timehands *th;
    439       1.1    simonb 	u_int gen;
    440       1.1    simonb 
    441      1.32        ad 	TC_COUNT(ngetnanouptime);
    442       1.1    simonb 	do {
    443       1.1    simonb 		th = timehands;
    444       1.1    simonb 		gen = th->th_generation;
    445       1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    446       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    447       1.1    simonb }
    448       1.1    simonb 
    449       1.1    simonb void
    450       1.1    simonb getmicrouptime(struct timeval *tvp)
    451       1.1    simonb {
    452       1.1    simonb 	struct timehands *th;
    453       1.1    simonb 	u_int gen;
    454       1.1    simonb 
    455      1.32        ad 	TC_COUNT(ngetmicrouptime);
    456       1.1    simonb 	do {
    457       1.1    simonb 		th = timehands;
    458       1.1    simonb 		gen = th->th_generation;
    459       1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    460       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    461       1.1    simonb }
    462       1.1    simonb 
    463       1.1    simonb void
    464       1.1    simonb getbintime(struct bintime *bt)
    465       1.1    simonb {
    466       1.1    simonb 	struct timehands *th;
    467       1.1    simonb 	u_int gen;
    468       1.1    simonb 
    469      1.32        ad 	TC_COUNT(ngetbintime);
    470       1.1    simonb 	do {
    471       1.1    simonb 		th = timehands;
    472       1.1    simonb 		gen = th->th_generation;
    473       1.1    simonb 		*bt = th->th_offset;
    474       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    475       1.4    kardel 	bintime_add(bt, &timebasebin);
    476       1.1    simonb }
    477       1.1    simonb 
    478      1.47       chs static inline void
    479      1.47       chs dogetnanotime(struct timespec *tsp)
    480       1.1    simonb {
    481       1.1    simonb 	struct timehands *th;
    482       1.1    simonb 	u_int gen;
    483       1.1    simonb 
    484      1.32        ad 	TC_COUNT(ngetnanotime);
    485       1.1    simonb 	do {
    486       1.1    simonb 		th = timehands;
    487       1.1    simonb 		gen = th->th_generation;
    488       1.1    simonb 		*tsp = th->th_nanotime;
    489       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    490       1.1    simonb }
    491       1.1    simonb 
    492       1.1    simonb void
    493      1.47       chs getnanotime(struct timespec *tsp)
    494      1.47       chs {
    495      1.47       chs 
    496      1.47       chs 	dogetnanotime(tsp);
    497      1.47       chs }
    498      1.47       chs 
    499      1.47       chs void dtrace_getnanotime(struct timespec *tsp);
    500      1.47       chs 
    501      1.47       chs void
    502      1.47       chs dtrace_getnanotime(struct timespec *tsp)
    503      1.47       chs {
    504      1.47       chs 
    505      1.47       chs 	dogetnanotime(tsp);
    506      1.47       chs }
    507      1.47       chs 
    508      1.47       chs void
    509       1.1    simonb getmicrotime(struct timeval *tvp)
    510       1.1    simonb {
    511       1.1    simonb 	struct timehands *th;
    512       1.1    simonb 	u_int gen;
    513       1.1    simonb 
    514      1.32        ad 	TC_COUNT(ngetmicrotime);
    515       1.1    simonb 	do {
    516       1.1    simonb 		th = timehands;
    517       1.1    simonb 		gen = th->th_generation;
    518       1.1    simonb 		*tvp = th->th_microtime;
    519       1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    520       1.1    simonb }
    521       1.1    simonb 
    522       1.1    simonb /*
    523       1.1    simonb  * Initialize a new timecounter and possibly use it.
    524       1.1    simonb  */
    525       1.1    simonb void
    526       1.1    simonb tc_init(struct timecounter *tc)
    527       1.1    simonb {
    528       1.1    simonb 	u_int u;
    529       1.1    simonb 
    530       1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    531       1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    532       1.1    simonb 	u *= 11;
    533       1.1    simonb 	u /= 10;
    534       1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    535       1.1    simonb 		tc->tc_quality = -2000;
    536      1.18        ad 		aprint_verbose(
    537      1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    538       1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    539      1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    540       1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    541      1.18        ad 		aprint_verbose(
    542      1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    543      1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    544       1.7     bjh21 		    tc->tc_quality);
    545       1.1    simonb 	}
    546       1.1    simonb 
    547      1.33        ad 	mutex_spin_enter(&timecounter_lock);
    548       1.1    simonb 	tc->tc_next = timecounters;
    549       1.1    simonb 	timecounters = tc;
    550      1.35        ad 	timecounter_mods++;
    551       1.1    simonb 	/*
    552       1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    553       1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    554       1.1    simonb 	 * worse since this timecounter may not be monotonous.
    555       1.1    simonb 	 */
    556      1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    557      1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    558      1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    559      1.22        ad 		(void)tc->tc_get_timecount(tc);
    560      1.22        ad 		(void)tc->tc_get_timecount(tc);
    561      1.22        ad 		timecounter = tc;
    562      1.22        ad 		tc_windup();
    563      1.22        ad 	}
    564      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    565      1.35        ad }
    566      1.35        ad 
    567      1.35        ad /*
    568      1.35        ad  * Pick a new timecounter due to the existing counter going bad.
    569      1.35        ad  */
    570      1.35        ad static void
    571      1.35        ad tc_pick(void)
    572      1.35        ad {
    573      1.35        ad 	struct timecounter *best, *tc;
    574      1.35        ad 
    575      1.35        ad 	KASSERT(mutex_owned(&timecounter_lock));
    576      1.35        ad 
    577      1.35        ad 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    578      1.35        ad 		if (tc->tc_quality > best->tc_quality)
    579      1.35        ad 			best = tc;
    580      1.35        ad 		else if (tc->tc_quality < best->tc_quality)
    581      1.35        ad 			continue;
    582      1.35        ad 		else if (tc->tc_frequency > best->tc_frequency)
    583      1.35        ad 			best = tc;
    584      1.35        ad 	}
    585      1.35        ad 	(void)best->tc_get_timecount(best);
    586      1.35        ad 	(void)best->tc_get_timecount(best);
    587      1.35        ad 	timecounter = best;
    588      1.35        ad }
    589      1.35        ad 
    590      1.35        ad /*
    591      1.35        ad  * A timecounter has gone bad, arrange to pick a new one at the next
    592      1.35        ad  * clock tick.
    593      1.35        ad  */
    594      1.35        ad void
    595      1.35        ad tc_gonebad(struct timecounter *tc)
    596      1.35        ad {
    597      1.35        ad 
    598      1.35        ad 	tc->tc_quality = -100;
    599      1.35        ad 	membar_producer();
    600      1.35        ad 	atomic_inc_uint(&timecounter_bad);
    601       1.1    simonb }
    602       1.1    simonb 
    603      1.29    dyoung /*
    604      1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    605      1.29    dyoung  */
    606      1.29    dyoung int
    607      1.29    dyoung tc_detach(struct timecounter *target)
    608      1.29    dyoung {
    609      1.35        ad 	struct timecounter *tc;
    610      1.29    dyoung 	struct timecounter **tcp = NULL;
    611      1.39        ad 	int removals;
    612      1.39        ad 	uint64_t where;
    613      1.39        ad 	lwp_t *l;
    614      1.29    dyoung 
    615      1.39        ad 	/* First, find the timecounter. */
    616      1.35        ad 	mutex_spin_enter(&timecounter_lock);
    617      1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    618      1.29    dyoung 	     tc != NULL;
    619      1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    620      1.29    dyoung 		if (tc == target)
    621      1.29    dyoung 			break;
    622      1.29    dyoung 	}
    623      1.29    dyoung 	if (tc == NULL) {
    624      1.39        ad 		mutex_spin_exit(&timecounter_lock);
    625      1.39        ad 		return ESRCH;
    626      1.39        ad 	}
    627      1.39        ad 
    628      1.39        ad 	/* And now, remove it. */
    629      1.39        ad 	*tcp = tc->tc_next;
    630      1.39        ad 	if (timecounter == target) {
    631      1.39        ad 		tc_pick();
    632      1.39        ad 		tc_windup();
    633      1.39        ad 	}
    634      1.39        ad 	timecounter_mods++;
    635      1.39        ad 	removals = timecounter_removals++;
    636      1.39        ad 	mutex_spin_exit(&timecounter_lock);
    637      1.39        ad 
    638      1.39        ad 	/*
    639      1.39        ad 	 * We now have to determine if any threads in the system are still
    640      1.39        ad 	 * making use of this timecounter.
    641      1.39        ad 	 *
    642      1.39        ad 	 * We issue a broadcast cross call to elide memory ordering issues,
    643      1.39        ad 	 * then scan all LWPs in the system looking at each's timecounter
    644      1.39        ad 	 * generation number.  We need to see a value of zero (not actively
    645      1.39        ad 	 * using a timecounter) or a value greater than our removal value.
    646      1.39        ad 	 *
    647      1.39        ad 	 * We may race with threads that read `timecounter_removals' and
    648      1.39        ad 	 * and then get preempted before updating `l_tcgen'.  This is not
    649      1.39        ad 	 * a problem, since it means that these threads have not yet started
    650      1.39        ad 	 * accessing timecounter state.  All we do need is one clean
    651      1.39        ad 	 * snapshot of the system where every thread appears not to be using
    652      1.39        ad 	 * old timecounter state.
    653      1.39        ad 	 */
    654      1.39        ad 	for (;;) {
    655      1.39        ad 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    656      1.39        ad 		xc_wait(where);
    657      1.39        ad 
    658      1.39        ad 		mutex_enter(proc_lock);
    659      1.39        ad 		LIST_FOREACH(l, &alllwp, l_list) {
    660      1.39        ad 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    661      1.39        ad 				/*
    662      1.39        ad 				 * Not using timecounter or old timecounter
    663      1.39        ad 				 * state at time of our xcall or later.
    664      1.39        ad 				 */
    665      1.39        ad 				continue;
    666      1.39        ad 			}
    667      1.39        ad 			break;
    668      1.39        ad 		}
    669      1.39        ad 		mutex_exit(proc_lock);
    670      1.39        ad 
    671      1.39        ad 		/*
    672      1.39        ad 		 * If the timecounter is still in use, wait at least 10ms
    673      1.39        ad 		 * before retrying.
    674      1.39        ad 		 */
    675      1.39        ad 		if (l == NULL) {
    676      1.39        ad 			return 0;
    677      1.35        ad 		}
    678      1.39        ad 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    679      1.29    dyoung 	}
    680      1.29    dyoung }
    681      1.29    dyoung 
    682       1.1    simonb /* Report the frequency of the current timecounter. */
    683       1.1    simonb u_int64_t
    684       1.1    simonb tc_getfrequency(void)
    685       1.1    simonb {
    686       1.1    simonb 
    687       1.1    simonb 	return (timehands->th_counter->tc_frequency);
    688       1.1    simonb }
    689       1.1    simonb 
    690       1.1    simonb /*
    691       1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    692       1.1    simonb  * when we booted.
    693       1.1    simonb  */
    694       1.1    simonb void
    695      1.38  christos tc_setclock(const struct timespec *ts)
    696       1.1    simonb {
    697       1.1    simonb 	struct timespec ts2;
    698       1.1    simonb 	struct bintime bt, bt2;
    699       1.1    simonb 
    700      1.33        ad 	mutex_spin_enter(&timecounter_lock);
    701      1.32        ad 	TC_COUNT(nsetclock);
    702       1.1    simonb 	binuptime(&bt2);
    703       1.1    simonb 	timespec2bintime(ts, &bt);
    704       1.1    simonb 	bintime_sub(&bt, &bt2);
    705       1.4    kardel 	bintime_add(&bt2, &timebasebin);
    706       1.4    kardel 	timebasebin = bt;
    707      1.30        ad 	tc_windup();
    708      1.33        ad 	mutex_spin_exit(&timecounter_lock);
    709       1.1    simonb 
    710       1.1    simonb 	if (timestepwarnings) {
    711       1.1    simonb 		bintime2timespec(&bt2, &ts2);
    712      1.45    kardel 		log(LOG_INFO,
    713      1.45    kardel 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
    714      1.38  christos 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    715      1.38  christos 		    (long long)ts->tv_sec, ts->tv_nsec);
    716       1.1    simonb 	}
    717       1.1    simonb }
    718       1.1    simonb 
    719       1.1    simonb /*
    720       1.1    simonb  * Initialize the next struct timehands in the ring and make
    721       1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    722       1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    723       1.1    simonb  */
    724       1.1    simonb static void
    725       1.1    simonb tc_windup(void)
    726       1.1    simonb {
    727       1.1    simonb 	struct bintime bt;
    728       1.1    simonb 	struct timehands *th, *tho;
    729       1.1    simonb 	u_int64_t scale;
    730       1.1    simonb 	u_int delta, ncount, ogen;
    731      1.13    kardel 	int i, s_update;
    732       1.1    simonb 	time_t t;
    733       1.1    simonb 
    734      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    735      1.30        ad 
    736      1.13    kardel 	s_update = 0;
    737      1.20        ad 
    738       1.1    simonb 	/*
    739       1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    740       1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    741      1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    742      1.20        ad 	 * visibility of the generation before proceeding.
    743       1.1    simonb 	 */
    744       1.1    simonb 	tho = timehands;
    745       1.1    simonb 	th = tho->th_next;
    746       1.1    simonb 	ogen = th->th_generation;
    747       1.1    simonb 	th->th_generation = 0;
    748      1.27        ad 	membar_producer();
    749       1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    750       1.1    simonb 
    751       1.1    simonb 	/*
    752       1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    753       1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    754       1.1    simonb 	 * Update the offset fields accordingly.
    755       1.1    simonb 	 */
    756       1.1    simonb 	delta = tc_delta(th);
    757       1.1    simonb 	if (th->th_counter != timecounter)
    758       1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    759       1.1    simonb 	else
    760       1.1    simonb 		ncount = 0;
    761       1.1    simonb 	th->th_offset_count += delta;
    762       1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    763       1.1    simonb 
    764       1.1    simonb 	/*
    765       1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    766       1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    767       1.1    simonb 	 * the hardware might capture a count which is later than the one we
    768       1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    769       1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    770       1.1    simonb 	 * matter in practice.
    771       1.1    simonb 	 */
    772       1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    773       1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    774       1.1    simonb 
    775       1.1    simonb 	/*
    776       1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    777       1.1    simonb 	 * iterates at most once, but in extreme situations it might
    778       1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    779       1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    780       1.1    simonb 	 * has been read, so on really large steps, we call
    781       1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    782       1.1    simonb 	 * case we missed a leap second.
    783       1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    784       1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    785       1.1    simonb 	 */
    786       1.1    simonb 	bt = th->th_offset;
    787       1.4    kardel 	bintime_add(&bt, &timebasebin);
    788       1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    789       1.1    simonb 	if (i > LARGE_STEP)
    790       1.1    simonb 		i = 2;
    791       1.1    simonb 	for (; i > 0; i--) {
    792       1.1    simonb 		t = bt.sec;
    793       1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    794      1.13    kardel 		s_update = 1;
    795       1.1    simonb 		if (bt.sec != t)
    796       1.4    kardel 			timebasebin.sec += bt.sec - t;
    797       1.1    simonb 	}
    798       1.2    kardel 
    799       1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    800       1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    801       1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    802       1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    803       1.1    simonb 	/* Now is a good time to change timecounters. */
    804       1.1    simonb 	if (th->th_counter != timecounter) {
    805       1.1    simonb 		th->th_counter = timecounter;
    806       1.1    simonb 		th->th_offset_count = ncount;
    807      1.13    kardel 		s_update = 1;
    808       1.1    simonb 	}
    809       1.1    simonb 
    810       1.1    simonb 	/*-
    811       1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    812       1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    813       1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    814       1.1    simonb 	 * processing provides us with.
    815       1.1    simonb 	 *
    816       1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    817       1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    818       1.1    simonb 	 *
    819       1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    820       1.1    simonb 	 *
    821       1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    822       1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    823       1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    824       1.1    simonb 	 *
    825       1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    826       1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    827       1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    828       1.1    simonb  	 *
    829       1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    830       1.1    simonb 	 * to the goddess of code clarity.
    831       1.1    simonb 	 *
    832       1.1    simonb 	 */
    833      1.13    kardel 	if (s_update) {
    834      1.13    kardel 		scale = (u_int64_t)1 << 63;
    835      1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    836      1.13    kardel 		scale /= th->th_counter->tc_frequency;
    837      1.13    kardel 		th->th_scale = scale * 2;
    838      1.13    kardel 	}
    839       1.1    simonb 	/*
    840       1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    841      1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    842      1.20        ad 	 * changes are globally visible before changing.
    843       1.1    simonb 	 */
    844       1.1    simonb 	if (++ogen == 0)
    845       1.1    simonb 		ogen = 1;
    846      1.27        ad 	membar_producer();
    847       1.1    simonb 	th->th_generation = ogen;
    848       1.1    simonb 
    849      1.20        ad 	/*
    850      1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    851      1.20        ad 	 * globally visible before changing.
    852      1.20        ad 	 */
    853       1.1    simonb 	time_second = th->th_microtime.tv_sec;
    854       1.1    simonb 	time_uptime = th->th_offset.sec;
    855      1.27        ad 	membar_producer();
    856       1.1    simonb 	timehands = th;
    857      1.24        ad 
    858      1.24        ad 	/*
    859      1.24        ad 	 * Force users of the old timehand to move on.  This is
    860      1.24        ad 	 * necessary for MP systems; we need to ensure that the
    861      1.24        ad 	 * consumers will move away from the old timehand before
    862      1.24        ad 	 * we begin updating it again when we eventually wrap
    863      1.24        ad 	 * around.
    864      1.24        ad 	 */
    865      1.24        ad 	if (++tho->th_generation == 0)
    866      1.24        ad 		tho->th_generation = 1;
    867       1.1    simonb }
    868       1.1    simonb 
    869       1.1    simonb /*
    870       1.1    simonb  * RFC 2783 PPS-API implementation.
    871       1.1    simonb  */
    872       1.1    simonb 
    873       1.1    simonb int
    874      1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    875       1.1    simonb {
    876       1.1    simonb 	pps_params_t *app;
    877       1.2    kardel 	pps_info_t *pipi;
    878       1.1    simonb #ifdef PPS_SYNC
    879       1.2    kardel 	int *epi;
    880       1.1    simonb #endif
    881       1.1    simonb 
    882      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    883      1.33        ad 
    884      1.45    kardel 	KASSERT(pps != NULL);
    885      1.45    kardel 
    886       1.1    simonb 	switch (cmd) {
    887       1.1    simonb 	case PPS_IOC_CREATE:
    888       1.1    simonb 		return (0);
    889       1.1    simonb 	case PPS_IOC_DESTROY:
    890       1.1    simonb 		return (0);
    891       1.1    simonb 	case PPS_IOC_SETPARAMS:
    892       1.1    simonb 		app = (pps_params_t *)data;
    893       1.1    simonb 		if (app->mode & ~pps->ppscap)
    894       1.1    simonb 			return (EINVAL);
    895       1.1    simonb 		pps->ppsparam = *app;
    896       1.1    simonb 		return (0);
    897       1.1    simonb 	case PPS_IOC_GETPARAMS:
    898       1.1    simonb 		app = (pps_params_t *)data;
    899       1.1    simonb 		*app = pps->ppsparam;
    900       1.1    simonb 		app->api_version = PPS_API_VERS_1;
    901       1.1    simonb 		return (0);
    902       1.1    simonb 	case PPS_IOC_GETCAP:
    903       1.1    simonb 		*(int*)data = pps->ppscap;
    904       1.1    simonb 		return (0);
    905       1.1    simonb 	case PPS_IOC_FETCH:
    906       1.2    kardel 		pipi = (pps_info_t *)data;
    907       1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    908       1.2    kardel 		*pipi = pps->ppsinfo;
    909       1.1    simonb 		return (0);
    910       1.1    simonb 	case PPS_IOC_KCBIND:
    911       1.1    simonb #ifdef PPS_SYNC
    912       1.2    kardel 		epi = (int *)data;
    913       1.1    simonb 		/* XXX Only root should be able to do this */
    914       1.2    kardel 		if (*epi & ~pps->ppscap)
    915       1.1    simonb 			return (EINVAL);
    916       1.2    kardel 		pps->kcmode = *epi;
    917       1.1    simonb 		return (0);
    918       1.1    simonb #else
    919       1.1    simonb 		return (EOPNOTSUPP);
    920       1.1    simonb #endif
    921       1.1    simonb 	default:
    922       1.2    kardel 		return (EPASSTHROUGH);
    923       1.1    simonb 	}
    924       1.1    simonb }
    925       1.1    simonb 
    926       1.1    simonb void
    927       1.1    simonb pps_init(struct pps_state *pps)
    928       1.1    simonb {
    929      1.33        ad 
    930      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    931      1.33        ad 
    932       1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    933       1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    934       1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    935       1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    936       1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    937       1.1    simonb }
    938       1.1    simonb 
    939      1.45    kardel /*
    940      1.45    kardel  * capture a timetamp in the pps structure
    941      1.45    kardel  */
    942       1.1    simonb void
    943       1.1    simonb pps_capture(struct pps_state *pps)
    944       1.1    simonb {
    945       1.1    simonb 	struct timehands *th;
    946       1.1    simonb 
    947      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
    948      1.33        ad 	KASSERT(pps != NULL);
    949      1.33        ad 
    950       1.1    simonb 	th = timehands;
    951       1.1    simonb 	pps->capgen = th->th_generation;
    952       1.1    simonb 	pps->capth = th;
    953      1.40    kardel 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
    954       1.1    simonb 	if (pps->capgen != th->th_generation)
    955       1.1    simonb 		pps->capgen = 0;
    956       1.1    simonb }
    957       1.1    simonb 
    958      1.45    kardel #ifdef PPS_DEBUG
    959      1.45    kardel int ppsdebug = 0;
    960      1.45    kardel #endif
    961      1.45    kardel 
    962      1.45    kardel /*
    963      1.45    kardel  * process a pps_capture()ed event
    964      1.45    kardel  */
    965       1.1    simonb void
    966       1.1    simonb pps_event(struct pps_state *pps, int event)
    967       1.1    simonb {
    968      1.45    kardel 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
    969      1.45    kardel }
    970      1.45    kardel 
    971      1.45    kardel /*
    972      1.45    kardel  * extended pps api /  kernel pll/fll entry point
    973      1.45    kardel  *
    974      1.45    kardel  * feed reference time stamps to PPS engine
    975      1.45    kardel  *
    976      1.45    kardel  * will simulate a PPS event and feed
    977      1.45    kardel  * the NTP PLL/FLL if requested.
    978      1.45    kardel  *
    979      1.45    kardel  * the ref time stamps should be roughly once
    980      1.45    kardel  * a second but do not need to be exactly in phase
    981      1.45    kardel  * with the UTC second but should be close to it.
    982      1.45    kardel  * this relaxation of requirements allows callout
    983      1.45    kardel  * driven timestamping mechanisms to feed to pps
    984      1.45    kardel  * capture/kernel pll logic.
    985      1.45    kardel  *
    986      1.45    kardel  * calling pattern is:
    987      1.45    kardel  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
    988      1.45    kardel  *  read timestamp from reference source
    989      1.45    kardel  *  pps_ref_event()
    990      1.45    kardel  *
    991      1.45    kardel  * supported refmodes:
    992      1.45    kardel  *  PPS_REFEVNT_CAPTURE
    993      1.45    kardel  *    use system timestamp of pps_capture()
    994      1.45    kardel  *  PPS_REFEVNT_CURRENT
    995      1.45    kardel  *    use system timestamp of this call
    996      1.45    kardel  *  PPS_REFEVNT_CAPCUR
    997      1.45    kardel  *    use average of read capture and current system time stamp
    998      1.45    kardel  *  PPS_REFEVNT_PPS
    999      1.45    kardel  *    assume timestamp on second mark - ref_ts is ignored
   1000      1.45    kardel  *
   1001      1.45    kardel  */
   1002      1.45    kardel 
   1003      1.45    kardel void
   1004      1.45    kardel pps_ref_event(struct pps_state *pps,
   1005      1.45    kardel 	      int event,
   1006      1.45    kardel 	      struct bintime *ref_ts,
   1007      1.45    kardel 	      int refmode
   1008      1.45    kardel 	)
   1009      1.45    kardel {
   1010      1.45    kardel 	struct bintime bt;	/* current time */
   1011      1.45    kardel 	struct bintime btd;	/* time difference */
   1012      1.45    kardel 	struct bintime bt_ref;	/* reference time */
   1013       1.1    simonb 	struct timespec ts, *tsp, *osp;
   1014      1.45    kardel 	struct timehands *th;
   1015      1.45    kardel 	u_int64_t tcount, acount, dcount, *pcount;
   1016      1.46    martin 	int foff, gen;
   1017      1.46    martin #ifdef PPS_SYNC
   1018      1.46    martin 	int fhard;
   1019      1.46    martin #endif
   1020       1.1    simonb 	pps_seq_t *pseq;
   1021       1.1    simonb 
   1022      1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
   1023      1.33        ad 
   1024      1.45    kardel 	KASSERT(pps != NULL);
   1025      1.45    kardel 
   1026      1.45    kardel         /* pick up current time stamp if needed */
   1027      1.45    kardel 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
   1028      1.45    kardel 		/* pick up current time stamp */
   1029      1.45    kardel 		th = timehands;
   1030      1.45    kardel 		gen = th->th_generation;
   1031      1.45    kardel 		tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
   1032      1.45    kardel 		if (gen != th->th_generation)
   1033      1.45    kardel 			gen = 0;
   1034      1.45    kardel 
   1035      1.45    kardel 		/* If the timecounter was wound up underneath us, bail out. */
   1036      1.45    kardel 		if (pps->capgen == 0 ||
   1037      1.45    kardel 		    pps->capgen != pps->capth->th_generation ||
   1038      1.45    kardel 		    gen == 0 ||
   1039      1.45    kardel 		    gen != pps->capgen) {
   1040      1.45    kardel #ifdef PPS_DEBUG
   1041      1.45    kardel 			if (ppsdebug & 0x1) {
   1042      1.45    kardel 				log(LOG_DEBUG,
   1043      1.45    kardel 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
   1044      1.45    kardel 				    pps, event);
   1045      1.45    kardel 			}
   1046      1.45    kardel #endif
   1047      1.45    kardel 			return;
   1048      1.45    kardel 		}
   1049      1.45    kardel 	} else {
   1050      1.45    kardel 		tcount = 0;	/* keep GCC happy */
   1051      1.45    kardel 	}
   1052      1.45    kardel 
   1053      1.45    kardel #ifdef PPS_DEBUG
   1054      1.45    kardel 	if (ppsdebug & 0x1) {
   1055      1.45    kardel 		struct timespec tmsp;
   1056      1.45    kardel 
   1057      1.45    kardel 		if (ref_ts == NULL) {
   1058      1.45    kardel 			tmsp.tv_sec = 0;
   1059      1.45    kardel 			tmsp.tv_nsec = 0;
   1060      1.45    kardel 		} else {
   1061      1.45    kardel 			bintime2timespec(ref_ts, &tmsp);
   1062      1.45    kardel 		}
   1063      1.45    kardel 
   1064      1.45    kardel 		log(LOG_DEBUG,
   1065      1.45    kardel 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
   1066      1.45    kardel 		    ".%09"PRIi32", refmode=0x%1x)\n",
   1067      1.45    kardel 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
   1068      1.45    kardel 	}
   1069      1.45    kardel #endif
   1070       1.1    simonb 
   1071      1.45    kardel 	/* setup correct event references */
   1072       1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
   1073       1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
   1074       1.1    simonb 		osp = &pps->ppsparam.assert_offset;
   1075       1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
   1076      1.46    martin #ifdef PPS_SYNC
   1077       1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
   1078      1.46    martin #endif
   1079       1.1    simonb 		pcount = &pps->ppscount[0];
   1080       1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
   1081       1.1    simonb 	} else {
   1082       1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
   1083       1.1    simonb 		osp = &pps->ppsparam.clear_offset;
   1084       1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
   1085      1.46    martin #ifdef PPS_SYNC
   1086       1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
   1087      1.46    martin #endif
   1088       1.1    simonb 		pcount = &pps->ppscount[1];
   1089       1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
   1090       1.1    simonb 	}
   1091       1.1    simonb 
   1092      1.45    kardel 	/* determine system time stamp according to refmode */
   1093      1.45    kardel 	dcount = 0;		/* keep GCC happy */
   1094      1.45    kardel 	switch (refmode & PPS_REFEVNT_RMASK) {
   1095      1.45    kardel 	case PPS_REFEVNT_CAPTURE:
   1096      1.45    kardel 		acount = pps->capcount;	/* use capture timestamp */
   1097      1.45    kardel 		break;
   1098      1.45    kardel 
   1099      1.45    kardel 	case PPS_REFEVNT_CURRENT:
   1100      1.45    kardel 		acount = tcount; /* use current timestamp */
   1101      1.45    kardel 		break;
   1102      1.45    kardel 
   1103      1.45    kardel 	case PPS_REFEVNT_CAPCUR:
   1104      1.45    kardel 		/*
   1105      1.45    kardel 		 * calculate counter value between pps_capture() and
   1106      1.45    kardel 		 * pps_ref_event()
   1107      1.45    kardel 		 */
   1108      1.45    kardel 		dcount = tcount - pps->capcount;
   1109      1.45    kardel 		acount = (dcount / 2) + pps->capcount;
   1110      1.45    kardel 		break;
   1111      1.45    kardel 
   1112      1.45    kardel 	default:		/* ignore call error silently */
   1113      1.45    kardel 		return;
   1114      1.45    kardel 	}
   1115      1.45    kardel 
   1116       1.1    simonb 	/*
   1117       1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
   1118       1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
   1119       1.1    simonb 	 */
   1120       1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
   1121       1.1    simonb 		pps->ppstc = pps->capth->th_counter;
   1122      1.45    kardel 		pps->capcount = acount;
   1123      1.45    kardel 		*pcount = acount;
   1124      1.45    kardel 		pps->ppscount[2] = acount;
   1125      1.45    kardel #ifdef PPS_DEBUG
   1126      1.45    kardel 		if (ppsdebug & 0x1) {
   1127      1.45    kardel 			log(LOG_DEBUG,
   1128      1.45    kardel 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
   1129      1.45    kardel 			    pps, event);
   1130      1.45    kardel 		}
   1131      1.45    kardel #endif
   1132       1.1    simonb 		return;
   1133       1.1    simonb 	}
   1134       1.1    simonb 
   1135      1.45    kardel 	pps->capcount = acount;
   1136      1.45    kardel 
   1137      1.45    kardel 	/* Convert the count to a bintime. */
   1138       1.1    simonb 	bt = pps->capth->th_offset;
   1139      1.45    kardel 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
   1140       1.4    kardel 	bintime_add(&bt, &timebasebin);
   1141      1.45    kardel 
   1142      1.45    kardel 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
   1143      1.45    kardel 		/* determine difference to reference time stamp */
   1144      1.45    kardel 		bt_ref = *ref_ts;
   1145      1.45    kardel 
   1146      1.45    kardel 		btd = bt;
   1147      1.45    kardel 		bintime_sub(&btd, &bt_ref);
   1148      1.45    kardel 
   1149      1.45    kardel 		/*
   1150      1.45    kardel 		 * simulate a PPS timestamp by dropping the fraction
   1151      1.45    kardel 		 * and applying the offset
   1152      1.45    kardel 		 */
   1153      1.45    kardel 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1154      1.45    kardel 			bt.sec++;
   1155      1.45    kardel 		bt.frac = 0;
   1156      1.45    kardel 		bintime_add(&bt, &btd);
   1157      1.45    kardel 	} else {
   1158      1.45    kardel 		/*
   1159      1.45    kardel 		 * create ref_ts from current time -
   1160      1.45    kardel 		 * we are supposed to be called on
   1161      1.45    kardel 		 * the second mark
   1162      1.45    kardel 		 */
   1163      1.45    kardel 		bt_ref = bt;
   1164      1.45    kardel 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1165      1.45    kardel 			bt_ref.sec++;
   1166      1.45    kardel 		bt_ref.frac = 0;
   1167      1.45    kardel 	}
   1168      1.45    kardel 
   1169      1.45    kardel 	/* convert bintime to timestamp */
   1170       1.1    simonb 	bintime2timespec(&bt, &ts);
   1171       1.1    simonb 
   1172       1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
   1173       1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
   1174       1.1    simonb 		return;
   1175       1.1    simonb 
   1176      1.45    kardel 	/* store time stamp */
   1177       1.1    simonb 	*pcount = pps->capcount;
   1178       1.1    simonb 	(*pseq)++;
   1179       1.1    simonb 	*tsp = ts;
   1180       1.1    simonb 
   1181      1.45    kardel 	/* add offset correction */
   1182       1.1    simonb 	if (foff) {
   1183       1.2    kardel 		timespecadd(tsp, osp, tsp);
   1184       1.1    simonb 		if (tsp->tv_nsec < 0) {
   1185       1.1    simonb 			tsp->tv_nsec += 1000000000;
   1186       1.1    simonb 			tsp->tv_sec -= 1;
   1187       1.1    simonb 		}
   1188       1.1    simonb 	}
   1189      1.45    kardel 
   1190      1.45    kardel #ifdef PPS_DEBUG
   1191      1.45    kardel 	if (ppsdebug & 0x2) {
   1192      1.45    kardel 		struct timespec ts2;
   1193      1.45    kardel 		struct timespec ts3;
   1194      1.45    kardel 
   1195      1.45    kardel 		bintime2timespec(&bt_ref, &ts2);
   1196      1.45    kardel 
   1197      1.45    kardel 		bt.sec = 0;
   1198      1.45    kardel 		bt.frac = 0;
   1199      1.45    kardel 
   1200      1.45    kardel 		if (refmode & PPS_REFEVNT_CAPCUR) {
   1201      1.45    kardel 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
   1202      1.45    kardel 		}
   1203      1.45    kardel 		bintime2timespec(&bt, &ts3);
   1204      1.45    kardel 
   1205      1.45    kardel 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
   1206      1.45    kardel 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
   1207      1.45    kardel 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1208      1.45    kardel 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1209      1.45    kardel 		    timespec2ns(&ts3));
   1210      1.45    kardel 	}
   1211      1.45    kardel #endif
   1212      1.45    kardel 
   1213       1.1    simonb #ifdef PPS_SYNC
   1214       1.1    simonb 	if (fhard) {
   1215      1.45    kardel 		uint64_t scale;
   1216      1.45    kardel 		uint64_t div;
   1217       1.1    simonb 
   1218       1.1    simonb 		/*
   1219       1.1    simonb 		 * Feed the NTP PLL/FLL.
   1220       1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
   1221      1.45    kardel 		 * elapsed since the previous event (mod 1 second) thus
   1222      1.45    kardel 		 * we are actually looking at the frequency difference scaled
   1223      1.45    kardel 		 * in nsec.
   1224      1.45    kardel 		 * As the counter time stamps are not truly at 1Hz
   1225      1.45    kardel 		 * we need to scale the count by the elapsed
   1226      1.45    kardel 		 * reference time.
   1227      1.45    kardel 		 * valid sampling interval: [0.5..2[ sec
   1228       1.1    simonb 		 */
   1229      1.45    kardel 
   1230      1.45    kardel 		/* calculate elapsed raw count */
   1231       1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
   1232       1.1    simonb 		pps->ppscount[2] = pps->capcount;
   1233       1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1234      1.45    kardel 
   1235      1.45    kardel 		/* calculate elapsed ref time */
   1236      1.45    kardel 		btd = bt_ref;
   1237      1.45    kardel 		bintime_sub(&btd, &pps->ref_time);
   1238      1.45    kardel 		pps->ref_time = bt_ref;
   1239      1.45    kardel 
   1240      1.45    kardel 		/* check that we stay below 2 sec */
   1241      1.45    kardel 		if (btd.sec < 0 || btd.sec > 1)
   1242      1.45    kardel 			return;
   1243      1.45    kardel 
   1244      1.45    kardel 		/* we want at least 0.5 sec between samples */
   1245      1.45    kardel 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
   1246      1.45    kardel 			return;
   1247      1.45    kardel 
   1248      1.45    kardel 		/*
   1249      1.45    kardel 		 * calculate cycles per period by multiplying
   1250      1.45    kardel 		 * the frequency with the elapsed period
   1251      1.45    kardel 		 * we pick a fraction of 30 bits
   1252      1.45    kardel 		 * ~1ns resolution for elapsed time
   1253      1.45    kardel 		 */
   1254      1.45    kardel 		div   = (uint64_t)btd.sec << 30;
   1255      1.45    kardel 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
   1256      1.45    kardel 		div  *= pps->capth->th_counter->tc_frequency;
   1257      1.45    kardel 		div >>= 30;
   1258      1.45    kardel 
   1259      1.45    kardel 		if (div == 0)	/* safeguard */
   1260      1.45    kardel 			return;
   1261      1.45    kardel 
   1262      1.45    kardel 		scale = (uint64_t)1 << 63;
   1263      1.45    kardel 		scale /= div;
   1264       1.1    simonb 		scale *= 2;
   1265      1.45    kardel 
   1266       1.1    simonb 		bt.sec = 0;
   1267       1.1    simonb 		bt.frac = 0;
   1268       1.1    simonb 		bintime_addx(&bt, scale * tcount);
   1269       1.1    simonb 		bintime2timespec(&bt, &ts);
   1270      1.45    kardel 
   1271      1.45    kardel #ifdef PPS_DEBUG
   1272      1.45    kardel 		if (ppsdebug & 0x4) {
   1273      1.45    kardel 			struct timespec ts2;
   1274      1.45    kardel 			int64_t df;
   1275      1.45    kardel 
   1276      1.45    kardel 			bintime2timespec(&bt_ref, &ts2);
   1277      1.45    kardel 			df = timespec2ns(&ts);
   1278      1.45    kardel 			if (df > 500000000)
   1279      1.45    kardel 				df -= 1000000000;
   1280      1.45    kardel 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
   1281      1.45    kardel 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
   1282      1.45    kardel 			    ", freqdiff=%"PRIi64" ns/s\n",
   1283      1.45    kardel 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1284      1.45    kardel 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1285      1.45    kardel 			    df);
   1286      1.45    kardel 		}
   1287      1.45    kardel #endif
   1288      1.45    kardel 
   1289      1.45    kardel 		hardpps(tsp, timespec2ns(&ts));
   1290       1.1    simonb 	}
   1291       1.1    simonb #endif
   1292       1.1    simonb }
   1293       1.1    simonb 
   1294       1.1    simonb /*
   1295       1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
   1296       1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
   1297       1.1    simonb  * used by the get*() family of functions, so their precision depends on
   1298       1.1    simonb  * the update frequency.
   1299       1.1    simonb  */
   1300       1.1    simonb 
   1301       1.1    simonb static int tc_tick;
   1302       1.1    simonb 
   1303       1.1    simonb void
   1304       1.1    simonb tc_ticktock(void)
   1305       1.1    simonb {
   1306       1.1    simonb 	static int count;
   1307       1.1    simonb 
   1308       1.1    simonb 	if (++count < tc_tick)
   1309       1.1    simonb 		return;
   1310       1.1    simonb 	count = 0;
   1311      1.33        ad 	mutex_spin_enter(&timecounter_lock);
   1312      1.35        ad 	if (timecounter_bad != 0) {
   1313      1.35        ad 		/* An existing timecounter has gone bad, pick a new one. */
   1314      1.35        ad 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1315      1.35        ad 		if (timecounter->tc_quality < 0) {
   1316      1.35        ad 			tc_pick();
   1317      1.35        ad 		}
   1318      1.35        ad 	}
   1319       1.1    simonb 	tc_windup();
   1320      1.33        ad 	mutex_spin_exit(&timecounter_lock);
   1321       1.1    simonb }
   1322       1.1    simonb 
   1323       1.2    kardel void
   1324       1.2    kardel inittimecounter(void)
   1325       1.1    simonb {
   1326       1.1    simonb 	u_int p;
   1327       1.1    simonb 
   1328      1.37    kardel 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1329      1.30        ad 
   1330       1.1    simonb 	/*
   1331       1.1    simonb 	 * Set the initial timeout to
   1332       1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1333       1.1    simonb 	 * People should probably not use the sysctl to set the timeout
   1334       1.1    simonb 	 * to smaller than its inital value, since that value is the
   1335       1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
   1336       1.1    simonb 	 * should use the non-"get"* functions.
   1337       1.1    simonb 	 */
   1338       1.1    simonb 	if (hz > 1000)
   1339       1.1    simonb 		tc_tick = (hz + 500) / 1000;
   1340       1.1    simonb 	else
   1341       1.1    simonb 		tc_tick = 1;
   1342       1.1    simonb 	p = (tc_tick * 1000000) / hz;
   1343      1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1344      1.18        ad 	    p / 1000, p % 1000);
   1345       1.1    simonb 
   1346       1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
   1347       1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1348       1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1349       1.1    simonb }
   1350