kern_tc.c revision 1.49.4.1 1 1.49.4.1 christos /* $NetBSD: kern_tc.c,v 1.49.4.1 2019/06/10 22:09:03 christos Exp $ */
2 1.33 ad
3 1.33 ad /*-
4 1.39 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.33 ad * All rights reserved.
6 1.33 ad *
7 1.39 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.39 ad * by Andrew Doran.
9 1.39 ad *
10 1.33 ad * Redistribution and use in source and binary forms, with or without
11 1.33 ad * modification, are permitted provided that the following conditions
12 1.33 ad * are met:
13 1.33 ad * 1. Redistributions of source code must retain the above copyright
14 1.33 ad * notice, this list of conditions and the following disclaimer.
15 1.33 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.33 ad * notice, this list of conditions and the following disclaimer in the
17 1.33 ad * documentation and/or other materials provided with the distribution.
18 1.33 ad *
19 1.33 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.33 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.33 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.33 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.33 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.33 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.33 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.33 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.33 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.33 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.33 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.33 ad */
31 1.2 kardel
32 1.1 simonb /*-
33 1.1 simonb * ----------------------------------------------------------------------------
34 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
35 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
37 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 1.2 kardel * ---------------------------------------------------------------------------
39 1.1 simonb */
40 1.1 simonb
41 1.1 simonb #include <sys/cdefs.h>
42 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 1.49.4.1 christos __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.49.4.1 2019/06/10 22:09:03 christos Exp $");
44 1.1 simonb
45 1.42 pooka #ifdef _KERNEL_OPT
46 1.1 simonb #include "opt_ntp.h"
47 1.42 pooka #endif
48 1.1 simonb
49 1.1 simonb #include <sys/param.h>
50 1.1 simonb #include <sys/kernel.h>
51 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
52 1.1 simonb #include <sys/sysctl.h>
53 1.1 simonb #include <sys/syslog.h>
54 1.1 simonb #include <sys/systm.h>
55 1.1 simonb #include <sys/timepps.h>
56 1.1 simonb #include <sys/timetc.h>
57 1.1 simonb #include <sys/timex.h>
58 1.2 kardel #include <sys/evcnt.h>
59 1.2 kardel #include <sys/kauth.h>
60 1.25 ad #include <sys/mutex.h>
61 1.27 ad #include <sys/atomic.h>
62 1.39 ad #include <sys/xcall.h>
63 1.2 kardel
64 1.2 kardel /*
65 1.1 simonb * A large step happens on boot. This constant detects such steps.
66 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
67 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
68 1.1 simonb * forever when the time step is large.
69 1.1 simonb */
70 1.1 simonb #define LARGE_STEP 200
71 1.1 simonb
72 1.1 simonb /*
73 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
74 1.1 simonb * in the air. This allows the console and other early stuff to use
75 1.1 simonb * time services.
76 1.1 simonb */
77 1.1 simonb
78 1.1 simonb static u_int
79 1.16 yamt dummy_get_timecount(struct timecounter *tc)
80 1.1 simonb {
81 1.1 simonb static u_int now;
82 1.1 simonb
83 1.1 simonb return (++now);
84 1.1 simonb }
85 1.1 simonb
86 1.1 simonb static struct timecounter dummy_timecounter = {
87 1.48 riastrad .tc_get_timecount = dummy_get_timecount,
88 1.48 riastrad .tc_counter_mask = ~0u,
89 1.48 riastrad .tc_frequency = 1000000,
90 1.48 riastrad .tc_name = "dummy",
91 1.48 riastrad .tc_quality = -1000000,
92 1.48 riastrad .tc_priv = NULL,
93 1.1 simonb };
94 1.1 simonb
95 1.1 simonb struct timehands {
96 1.1 simonb /* These fields must be initialized by the driver. */
97 1.40 kardel struct timecounter *th_counter; /* active timecounter */
98 1.40 kardel int64_t th_adjustment; /* frequency adjustment */
99 1.40 kardel /* (NTP/adjtime) */
100 1.40 kardel u_int64_t th_scale; /* scale factor (counter */
101 1.40 kardel /* tick->time) */
102 1.40 kardel u_int64_t th_offset_count; /* offset at last time */
103 1.40 kardel /* update (tc_windup()) */
104 1.40 kardel struct bintime th_offset; /* bin (up)time at windup */
105 1.40 kardel struct timeval th_microtime; /* cached microtime */
106 1.40 kardel struct timespec th_nanotime; /* cached nanotime */
107 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
108 1.40 kardel volatile u_int th_generation; /* current genration */
109 1.40 kardel struct timehands *th_next; /* next timehand */
110 1.1 simonb };
111 1.1 simonb
112 1.1 simonb static struct timehands th0;
113 1.10 christos static struct timehands th9 = { .th_next = &th0, };
114 1.10 christos static struct timehands th8 = { .th_next = &th9, };
115 1.10 christos static struct timehands th7 = { .th_next = &th8, };
116 1.10 christos static struct timehands th6 = { .th_next = &th7, };
117 1.10 christos static struct timehands th5 = { .th_next = &th6, };
118 1.10 christos static struct timehands th4 = { .th_next = &th5, };
119 1.10 christos static struct timehands th3 = { .th_next = &th4, };
120 1.10 christos static struct timehands th2 = { .th_next = &th3, };
121 1.10 christos static struct timehands th1 = { .th_next = &th2, };
122 1.1 simonb static struct timehands th0 = {
123 1.10 christos .th_counter = &dummy_timecounter,
124 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
125 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
126 1.10 christos .th_generation = 1,
127 1.10 christos .th_next = &th1,
128 1.1 simonb };
129 1.1 simonb
130 1.1 simonb static struct timehands *volatile timehands = &th0;
131 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
132 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
133 1.1 simonb
134 1.49 maxv volatile time_t time_second __cacheline_aligned = 1;
135 1.49 maxv volatile time_t time_uptime __cacheline_aligned = 1;
136 1.1 simonb
137 1.4 kardel static struct bintime timebasebin;
138 1.1 simonb
139 1.1 simonb static int timestepwarnings;
140 1.2 kardel
141 1.33 ad kmutex_t timecounter_lock;
142 1.35 ad static u_int timecounter_mods;
143 1.39 ad static volatile int timecounter_removals = 1;
144 1.35 ad static u_int timecounter_bad;
145 1.25 ad
146 1.2 kardel #ifdef __FreeBSD__
147 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
148 1.1 simonb ×tepwarnings, 0, "");
149 1.2 kardel #endif /* __FreeBSD__ */
150 1.2 kardel
151 1.2 kardel /*
152 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
153 1.2 kardel */
154 1.2 kardel static int
155 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
156 1.2 kardel {
157 1.2 kardel struct sysctlnode node;
158 1.2 kardel int error;
159 1.2 kardel char newname[MAX_TCNAMELEN];
160 1.2 kardel struct timecounter *newtc, *tc;
161 1.2 kardel
162 1.2 kardel tc = timecounter;
163 1.2 kardel
164 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
165 1.2 kardel
166 1.2 kardel node = *rnode;
167 1.2 kardel node.sysctl_data = newname;
168 1.2 kardel node.sysctl_size = sizeof(newname);
169 1.2 kardel
170 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
171 1.2 kardel
172 1.2 kardel if (error ||
173 1.2 kardel newp == NULL ||
174 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
175 1.2 kardel return error;
176 1.1 simonb
177 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
178 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
179 1.26 elad NULL, NULL)) != 0)
180 1.2 kardel return (error);
181 1.2 kardel
182 1.22 ad if (!cold)
183 1.35 ad mutex_spin_enter(&timecounter_lock);
184 1.23 ad error = EINVAL;
185 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
186 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
187 1.2 kardel continue;
188 1.2 kardel /* Warm up new timecounter. */
189 1.2 kardel (void)newtc->tc_get_timecount(newtc);
190 1.2 kardel (void)newtc->tc_get_timecount(newtc);
191 1.2 kardel timecounter = newtc;
192 1.22 ad error = 0;
193 1.23 ad break;
194 1.23 ad }
195 1.22 ad if (!cold)
196 1.35 ad mutex_spin_exit(&timecounter_lock);
197 1.22 ad return error;
198 1.2 kardel }
199 1.2 kardel
200 1.2 kardel static int
201 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
202 1.2 kardel {
203 1.9 kardel char buf[MAX_TCNAMELEN+48];
204 1.35 ad char *where;
205 1.2 kardel const char *spc;
206 1.2 kardel struct timecounter *tc;
207 1.2 kardel size_t needed, left, slen;
208 1.35 ad int error, mods;
209 1.2 kardel
210 1.2 kardel if (newp != NULL)
211 1.2 kardel return (EPERM);
212 1.2 kardel if (namelen != 0)
213 1.2 kardel return (EINVAL);
214 1.2 kardel
215 1.35 ad mutex_spin_enter(&timecounter_lock);
216 1.35 ad retry:
217 1.2 kardel spc = "";
218 1.2 kardel error = 0;
219 1.2 kardel needed = 0;
220 1.2 kardel left = *oldlenp;
221 1.35 ad where = oldp;
222 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
223 1.2 kardel if (where == NULL) {
224 1.2 kardel needed += sizeof(buf); /* be conservative */
225 1.2 kardel } else {
226 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
227 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
228 1.2 kardel tc->tc_frequency);
229 1.2 kardel if (left < slen + 1)
230 1.2 kardel break;
231 1.35 ad mods = timecounter_mods;
232 1.35 ad mutex_spin_exit(&timecounter_lock);
233 1.2 kardel error = copyout(buf, where, slen + 1);
234 1.35 ad mutex_spin_enter(&timecounter_lock);
235 1.35 ad if (mods != timecounter_mods) {
236 1.35 ad goto retry;
237 1.35 ad }
238 1.2 kardel spc = " ";
239 1.2 kardel where += slen;
240 1.2 kardel needed += slen;
241 1.2 kardel left -= slen;
242 1.2 kardel }
243 1.2 kardel }
244 1.35 ad mutex_spin_exit(&timecounter_lock);
245 1.2 kardel
246 1.2 kardel *oldlenp = needed;
247 1.2 kardel return (error);
248 1.2 kardel }
249 1.2 kardel
250 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
251 1.2 kardel {
252 1.2 kardel const struct sysctlnode *node;
253 1.2 kardel
254 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
255 1.2 kardel CTLFLAG_PERMANENT,
256 1.2 kardel CTLTYPE_NODE, "timecounter",
257 1.2 kardel SYSCTL_DESCR("time counter information"),
258 1.2 kardel NULL, 0, NULL, 0,
259 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
260 1.2 kardel
261 1.2 kardel if (node != NULL) {
262 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
263 1.2 kardel CTLFLAG_PERMANENT,
264 1.2 kardel CTLTYPE_STRING, "choice",
265 1.2 kardel SYSCTL_DESCR("available counters"),
266 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
267 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268 1.2 kardel
269 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
270 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
271 1.2 kardel CTLTYPE_STRING, "hardware",
272 1.2 kardel SYSCTL_DESCR("currently active time counter"),
273 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
274 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
275 1.2 kardel
276 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
277 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
278 1.2 kardel CTLTYPE_INT, "timestepwarnings",
279 1.2 kardel SYSCTL_DESCR("log time steps"),
280 1.2 kardel NULL, 0, ×tepwarnings, 0,
281 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
282 1.2 kardel }
283 1.2 kardel }
284 1.2 kardel
285 1.32 ad #ifdef TC_COUNTERS
286 1.2 kardel #define TC_STATS(name) \
287 1.2 kardel static struct evcnt n##name = \
288 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
289 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
290 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
291 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
292 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
293 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
294 1.2 kardel TC_STATS(setclock);
295 1.32 ad #define TC_COUNT(var) var.ev_count++
296 1.1 simonb #undef TC_STATS
297 1.32 ad #else
298 1.32 ad #define TC_COUNT(var) /* nothing */
299 1.32 ad #endif /* TC_COUNTERS */
300 1.1 simonb
301 1.1 simonb static void tc_windup(void);
302 1.1 simonb
303 1.1 simonb /*
304 1.1 simonb * Return the difference between the timehands' counter value now and what
305 1.1 simonb * was when we copied it to the timehands' offset_count.
306 1.1 simonb */
307 1.41 uebayasi static inline u_int
308 1.1 simonb tc_delta(struct timehands *th)
309 1.1 simonb {
310 1.1 simonb struct timecounter *tc;
311 1.1 simonb
312 1.1 simonb tc = th->th_counter;
313 1.2 kardel return ((tc->tc_get_timecount(tc) -
314 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
315 1.1 simonb }
316 1.1 simonb
317 1.1 simonb /*
318 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
319 1.1 simonb * the timehands that we operated on was not updated under our feet. See
320 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
321 1.1 simonb */
322 1.1 simonb
323 1.1 simonb void
324 1.1 simonb binuptime(struct bintime *bt)
325 1.1 simonb {
326 1.1 simonb struct timehands *th;
327 1.39 ad lwp_t *l;
328 1.39 ad u_int lgen, gen;
329 1.1 simonb
330 1.32 ad TC_COUNT(nbinuptime);
331 1.39 ad
332 1.39 ad /*
333 1.39 ad * Provide exclusion against tc_detach().
334 1.39 ad *
335 1.39 ad * We record the number of timecounter removals before accessing
336 1.39 ad * timecounter state. Note that the LWP can be using multiple
337 1.39 ad * "generations" at once, due to interrupts (interrupted while in
338 1.39 ad * this function). Hardware interrupts will borrow the interrupted
339 1.39 ad * LWP's l_tcgen value for this purpose, and can themselves be
340 1.39 ad * interrupted by higher priority interrupts. In this case we need
341 1.39 ad * to ensure that the oldest generation in use is recorded.
342 1.39 ad *
343 1.39 ad * splsched() is too expensive to use, so we take care to structure
344 1.39 ad * this code in such a way that it is not required. Likewise, we
345 1.39 ad * do not disable preemption.
346 1.39 ad *
347 1.39 ad * Memory barriers are also too expensive to use for such a
348 1.39 ad * performance critical function. The good news is that we do not
349 1.39 ad * need memory barriers for this type of exclusion, as the thread
350 1.39 ad * updating timecounter_removals will issue a broadcast cross call
351 1.39 ad * before inspecting our l_tcgen value (this elides memory ordering
352 1.39 ad * issues).
353 1.39 ad */
354 1.39 ad l = curlwp;
355 1.39 ad lgen = l->l_tcgen;
356 1.39 ad if (__predict_true(lgen == 0)) {
357 1.39 ad l->l_tcgen = timecounter_removals;
358 1.39 ad }
359 1.39 ad __insn_barrier();
360 1.39 ad
361 1.1 simonb do {
362 1.1 simonb th = timehands;
363 1.1 simonb gen = th->th_generation;
364 1.1 simonb *bt = th->th_offset;
365 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
366 1.1 simonb } while (gen == 0 || gen != th->th_generation);
367 1.39 ad
368 1.39 ad __insn_barrier();
369 1.39 ad l->l_tcgen = lgen;
370 1.1 simonb }
371 1.1 simonb
372 1.1 simonb void
373 1.1 simonb nanouptime(struct timespec *tsp)
374 1.1 simonb {
375 1.1 simonb struct bintime bt;
376 1.1 simonb
377 1.32 ad TC_COUNT(nnanouptime);
378 1.1 simonb binuptime(&bt);
379 1.1 simonb bintime2timespec(&bt, tsp);
380 1.1 simonb }
381 1.1 simonb
382 1.1 simonb void
383 1.1 simonb microuptime(struct timeval *tvp)
384 1.1 simonb {
385 1.1 simonb struct bintime bt;
386 1.1 simonb
387 1.32 ad TC_COUNT(nmicrouptime);
388 1.1 simonb binuptime(&bt);
389 1.1 simonb bintime2timeval(&bt, tvp);
390 1.1 simonb }
391 1.1 simonb
392 1.1 simonb void
393 1.1 simonb bintime(struct bintime *bt)
394 1.1 simonb {
395 1.1 simonb
396 1.32 ad TC_COUNT(nbintime);
397 1.1 simonb binuptime(bt);
398 1.4 kardel bintime_add(bt, &timebasebin);
399 1.1 simonb }
400 1.1 simonb
401 1.1 simonb void
402 1.1 simonb nanotime(struct timespec *tsp)
403 1.1 simonb {
404 1.1 simonb struct bintime bt;
405 1.1 simonb
406 1.32 ad TC_COUNT(nnanotime);
407 1.1 simonb bintime(&bt);
408 1.1 simonb bintime2timespec(&bt, tsp);
409 1.1 simonb }
410 1.1 simonb
411 1.1 simonb void
412 1.1 simonb microtime(struct timeval *tvp)
413 1.1 simonb {
414 1.1 simonb struct bintime bt;
415 1.1 simonb
416 1.32 ad TC_COUNT(nmicrotime);
417 1.1 simonb bintime(&bt);
418 1.1 simonb bintime2timeval(&bt, tvp);
419 1.1 simonb }
420 1.1 simonb
421 1.1 simonb void
422 1.1 simonb getbinuptime(struct bintime *bt)
423 1.1 simonb {
424 1.1 simonb struct timehands *th;
425 1.1 simonb u_int gen;
426 1.1 simonb
427 1.32 ad TC_COUNT(ngetbinuptime);
428 1.1 simonb do {
429 1.1 simonb th = timehands;
430 1.1 simonb gen = th->th_generation;
431 1.1 simonb *bt = th->th_offset;
432 1.1 simonb } while (gen == 0 || gen != th->th_generation);
433 1.1 simonb }
434 1.1 simonb
435 1.1 simonb void
436 1.1 simonb getnanouptime(struct timespec *tsp)
437 1.1 simonb {
438 1.1 simonb struct timehands *th;
439 1.1 simonb u_int gen;
440 1.1 simonb
441 1.32 ad TC_COUNT(ngetnanouptime);
442 1.1 simonb do {
443 1.1 simonb th = timehands;
444 1.1 simonb gen = th->th_generation;
445 1.1 simonb bintime2timespec(&th->th_offset, tsp);
446 1.1 simonb } while (gen == 0 || gen != th->th_generation);
447 1.1 simonb }
448 1.1 simonb
449 1.1 simonb void
450 1.1 simonb getmicrouptime(struct timeval *tvp)
451 1.1 simonb {
452 1.1 simonb struct timehands *th;
453 1.1 simonb u_int gen;
454 1.1 simonb
455 1.32 ad TC_COUNT(ngetmicrouptime);
456 1.1 simonb do {
457 1.1 simonb th = timehands;
458 1.1 simonb gen = th->th_generation;
459 1.1 simonb bintime2timeval(&th->th_offset, tvp);
460 1.1 simonb } while (gen == 0 || gen != th->th_generation);
461 1.1 simonb }
462 1.1 simonb
463 1.1 simonb void
464 1.1 simonb getbintime(struct bintime *bt)
465 1.1 simonb {
466 1.1 simonb struct timehands *th;
467 1.1 simonb u_int gen;
468 1.1 simonb
469 1.32 ad TC_COUNT(ngetbintime);
470 1.1 simonb do {
471 1.1 simonb th = timehands;
472 1.1 simonb gen = th->th_generation;
473 1.1 simonb *bt = th->th_offset;
474 1.1 simonb } while (gen == 0 || gen != th->th_generation);
475 1.4 kardel bintime_add(bt, &timebasebin);
476 1.1 simonb }
477 1.1 simonb
478 1.47 chs static inline void
479 1.47 chs dogetnanotime(struct timespec *tsp)
480 1.1 simonb {
481 1.1 simonb struct timehands *th;
482 1.1 simonb u_int gen;
483 1.1 simonb
484 1.32 ad TC_COUNT(ngetnanotime);
485 1.1 simonb do {
486 1.1 simonb th = timehands;
487 1.1 simonb gen = th->th_generation;
488 1.1 simonb *tsp = th->th_nanotime;
489 1.1 simonb } while (gen == 0 || gen != th->th_generation);
490 1.1 simonb }
491 1.1 simonb
492 1.1 simonb void
493 1.47 chs getnanotime(struct timespec *tsp)
494 1.47 chs {
495 1.47 chs
496 1.47 chs dogetnanotime(tsp);
497 1.47 chs }
498 1.47 chs
499 1.47 chs void dtrace_getnanotime(struct timespec *tsp);
500 1.47 chs
501 1.47 chs void
502 1.47 chs dtrace_getnanotime(struct timespec *tsp)
503 1.47 chs {
504 1.47 chs
505 1.47 chs dogetnanotime(tsp);
506 1.47 chs }
507 1.47 chs
508 1.47 chs void
509 1.1 simonb getmicrotime(struct timeval *tvp)
510 1.1 simonb {
511 1.1 simonb struct timehands *th;
512 1.1 simonb u_int gen;
513 1.1 simonb
514 1.32 ad TC_COUNT(ngetmicrotime);
515 1.1 simonb do {
516 1.1 simonb th = timehands;
517 1.1 simonb gen = th->th_generation;
518 1.1 simonb *tvp = th->th_microtime;
519 1.1 simonb } while (gen == 0 || gen != th->th_generation);
520 1.1 simonb }
521 1.1 simonb
522 1.1 simonb /*
523 1.1 simonb * Initialize a new timecounter and possibly use it.
524 1.1 simonb */
525 1.1 simonb void
526 1.1 simonb tc_init(struct timecounter *tc)
527 1.1 simonb {
528 1.1 simonb u_int u;
529 1.1 simonb
530 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
531 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
532 1.1 simonb u *= 11;
533 1.1 simonb u /= 10;
534 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
535 1.1 simonb tc->tc_quality = -2000;
536 1.18 ad aprint_verbose(
537 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
538 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
539 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
540 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
541 1.18 ad aprint_verbose(
542 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
543 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
544 1.7 bjh21 tc->tc_quality);
545 1.1 simonb }
546 1.1 simonb
547 1.33 ad mutex_spin_enter(&timecounter_lock);
548 1.1 simonb tc->tc_next = timecounters;
549 1.1 simonb timecounters = tc;
550 1.35 ad timecounter_mods++;
551 1.1 simonb /*
552 1.1 simonb * Never automatically use a timecounter with negative quality.
553 1.1 simonb * Even though we run on the dummy counter, switching here may be
554 1.1 simonb * worse since this timecounter may not be monotonous.
555 1.1 simonb */
556 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
557 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
558 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
559 1.22 ad (void)tc->tc_get_timecount(tc);
560 1.22 ad (void)tc->tc_get_timecount(tc);
561 1.22 ad timecounter = tc;
562 1.22 ad tc_windup();
563 1.22 ad }
564 1.33 ad mutex_spin_exit(&timecounter_lock);
565 1.35 ad }
566 1.35 ad
567 1.35 ad /*
568 1.35 ad * Pick a new timecounter due to the existing counter going bad.
569 1.35 ad */
570 1.35 ad static void
571 1.35 ad tc_pick(void)
572 1.35 ad {
573 1.35 ad struct timecounter *best, *tc;
574 1.35 ad
575 1.35 ad KASSERT(mutex_owned(&timecounter_lock));
576 1.35 ad
577 1.35 ad for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
578 1.35 ad if (tc->tc_quality > best->tc_quality)
579 1.35 ad best = tc;
580 1.35 ad else if (tc->tc_quality < best->tc_quality)
581 1.35 ad continue;
582 1.35 ad else if (tc->tc_frequency > best->tc_frequency)
583 1.35 ad best = tc;
584 1.35 ad }
585 1.35 ad (void)best->tc_get_timecount(best);
586 1.35 ad (void)best->tc_get_timecount(best);
587 1.35 ad timecounter = best;
588 1.35 ad }
589 1.35 ad
590 1.35 ad /*
591 1.35 ad * A timecounter has gone bad, arrange to pick a new one at the next
592 1.35 ad * clock tick.
593 1.35 ad */
594 1.35 ad void
595 1.35 ad tc_gonebad(struct timecounter *tc)
596 1.35 ad {
597 1.35 ad
598 1.35 ad tc->tc_quality = -100;
599 1.35 ad membar_producer();
600 1.35 ad atomic_inc_uint(&timecounter_bad);
601 1.1 simonb }
602 1.1 simonb
603 1.29 dyoung /*
604 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
605 1.29 dyoung */
606 1.29 dyoung int
607 1.29 dyoung tc_detach(struct timecounter *target)
608 1.29 dyoung {
609 1.35 ad struct timecounter *tc;
610 1.29 dyoung struct timecounter **tcp = NULL;
611 1.39 ad int removals;
612 1.39 ad uint64_t where;
613 1.39 ad lwp_t *l;
614 1.29 dyoung
615 1.39 ad /* First, find the timecounter. */
616 1.35 ad mutex_spin_enter(&timecounter_lock);
617 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
618 1.29 dyoung tc != NULL;
619 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
620 1.29 dyoung if (tc == target)
621 1.29 dyoung break;
622 1.29 dyoung }
623 1.29 dyoung if (tc == NULL) {
624 1.39 ad mutex_spin_exit(&timecounter_lock);
625 1.39 ad return ESRCH;
626 1.39 ad }
627 1.39 ad
628 1.39 ad /* And now, remove it. */
629 1.39 ad *tcp = tc->tc_next;
630 1.39 ad if (timecounter == target) {
631 1.39 ad tc_pick();
632 1.39 ad tc_windup();
633 1.39 ad }
634 1.39 ad timecounter_mods++;
635 1.39 ad removals = timecounter_removals++;
636 1.39 ad mutex_spin_exit(&timecounter_lock);
637 1.39 ad
638 1.39 ad /*
639 1.39 ad * We now have to determine if any threads in the system are still
640 1.39 ad * making use of this timecounter.
641 1.39 ad *
642 1.39 ad * We issue a broadcast cross call to elide memory ordering issues,
643 1.39 ad * then scan all LWPs in the system looking at each's timecounter
644 1.39 ad * generation number. We need to see a value of zero (not actively
645 1.39 ad * using a timecounter) or a value greater than our removal value.
646 1.39 ad *
647 1.39 ad * We may race with threads that read `timecounter_removals' and
648 1.39 ad * and then get preempted before updating `l_tcgen'. This is not
649 1.39 ad * a problem, since it means that these threads have not yet started
650 1.39 ad * accessing timecounter state. All we do need is one clean
651 1.39 ad * snapshot of the system where every thread appears not to be using
652 1.39 ad * old timecounter state.
653 1.39 ad */
654 1.39 ad for (;;) {
655 1.39 ad where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
656 1.39 ad xc_wait(where);
657 1.39 ad
658 1.39 ad mutex_enter(proc_lock);
659 1.39 ad LIST_FOREACH(l, &alllwp, l_list) {
660 1.39 ad if (l->l_tcgen == 0 || l->l_tcgen > removals) {
661 1.39 ad /*
662 1.39 ad * Not using timecounter or old timecounter
663 1.39 ad * state at time of our xcall or later.
664 1.39 ad */
665 1.39 ad continue;
666 1.39 ad }
667 1.39 ad break;
668 1.39 ad }
669 1.39 ad mutex_exit(proc_lock);
670 1.39 ad
671 1.39 ad /*
672 1.39 ad * If the timecounter is still in use, wait at least 10ms
673 1.39 ad * before retrying.
674 1.39 ad */
675 1.39 ad if (l == NULL) {
676 1.39 ad return 0;
677 1.35 ad }
678 1.39 ad (void)kpause("tcdetach", false, mstohz(10), NULL);
679 1.29 dyoung }
680 1.29 dyoung }
681 1.29 dyoung
682 1.1 simonb /* Report the frequency of the current timecounter. */
683 1.1 simonb u_int64_t
684 1.1 simonb tc_getfrequency(void)
685 1.1 simonb {
686 1.1 simonb
687 1.1 simonb return (timehands->th_counter->tc_frequency);
688 1.1 simonb }
689 1.1 simonb
690 1.1 simonb /*
691 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
692 1.1 simonb * when we booted.
693 1.1 simonb */
694 1.1 simonb void
695 1.38 christos tc_setclock(const struct timespec *ts)
696 1.1 simonb {
697 1.1 simonb struct timespec ts2;
698 1.1 simonb struct bintime bt, bt2;
699 1.1 simonb
700 1.33 ad mutex_spin_enter(&timecounter_lock);
701 1.32 ad TC_COUNT(nsetclock);
702 1.1 simonb binuptime(&bt2);
703 1.1 simonb timespec2bintime(ts, &bt);
704 1.1 simonb bintime_sub(&bt, &bt2);
705 1.4 kardel bintime_add(&bt2, &timebasebin);
706 1.4 kardel timebasebin = bt;
707 1.30 ad tc_windup();
708 1.33 ad mutex_spin_exit(&timecounter_lock);
709 1.1 simonb
710 1.1 simonb if (timestepwarnings) {
711 1.1 simonb bintime2timespec(&bt2, &ts2);
712 1.45 kardel log(LOG_INFO,
713 1.45 kardel "Time stepped from %lld.%09ld to %lld.%09ld\n",
714 1.38 christos (long long)ts2.tv_sec, ts2.tv_nsec,
715 1.38 christos (long long)ts->tv_sec, ts->tv_nsec);
716 1.1 simonb }
717 1.1 simonb }
718 1.1 simonb
719 1.1 simonb /*
720 1.1 simonb * Initialize the next struct timehands in the ring and make
721 1.1 simonb * it the active timehands. Along the way we might switch to a different
722 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
723 1.1 simonb */
724 1.1 simonb static void
725 1.1 simonb tc_windup(void)
726 1.1 simonb {
727 1.1 simonb struct bintime bt;
728 1.1 simonb struct timehands *th, *tho;
729 1.1 simonb u_int64_t scale;
730 1.1 simonb u_int delta, ncount, ogen;
731 1.13 kardel int i, s_update;
732 1.1 simonb time_t t;
733 1.1 simonb
734 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
735 1.30 ad
736 1.13 kardel s_update = 0;
737 1.20 ad
738 1.1 simonb /*
739 1.1 simonb * Make the next timehands a copy of the current one, but do not
740 1.1 simonb * overwrite the generation or next pointer. While we update
741 1.20 ad * the contents, the generation must be zero. Ensure global
742 1.20 ad * visibility of the generation before proceeding.
743 1.1 simonb */
744 1.1 simonb tho = timehands;
745 1.1 simonb th = tho->th_next;
746 1.1 simonb ogen = th->th_generation;
747 1.1 simonb th->th_generation = 0;
748 1.27 ad membar_producer();
749 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
750 1.1 simonb
751 1.1 simonb /*
752 1.1 simonb * Capture a timecounter delta on the current timecounter and if
753 1.1 simonb * changing timecounters, a counter value from the new timecounter.
754 1.1 simonb * Update the offset fields accordingly.
755 1.1 simonb */
756 1.1 simonb delta = tc_delta(th);
757 1.1 simonb if (th->th_counter != timecounter)
758 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
759 1.1 simonb else
760 1.1 simonb ncount = 0;
761 1.1 simonb th->th_offset_count += delta;
762 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
763 1.1 simonb
764 1.1 simonb /*
765 1.1 simonb * Hardware latching timecounters may not generate interrupts on
766 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
767 1.1 simonb * the hardware might capture a count which is later than the one we
768 1.1 simonb * got above, and therefore possibly in the next NTP second which might
769 1.1 simonb * have a different rate than the current NTP second. It doesn't
770 1.1 simonb * matter in practice.
771 1.1 simonb */
772 1.1 simonb if (tho->th_counter->tc_poll_pps)
773 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
774 1.1 simonb
775 1.1 simonb /*
776 1.1 simonb * Deal with NTP second processing. The for loop normally
777 1.1 simonb * iterates at most once, but in extreme situations it might
778 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
779 1.1 simonb * At boot, the time step can be large when the TOD hardware
780 1.1 simonb * has been read, so on really large steps, we call
781 1.1 simonb * ntp_update_second only twice. We need to call it twice in
782 1.1 simonb * case we missed a leap second.
783 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
784 1.2 kardel * the adjustment resulting from adjtime() calls.
785 1.1 simonb */
786 1.1 simonb bt = th->th_offset;
787 1.4 kardel bintime_add(&bt, &timebasebin);
788 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
789 1.1 simonb if (i > LARGE_STEP)
790 1.1 simonb i = 2;
791 1.1 simonb for (; i > 0; i--) {
792 1.1 simonb t = bt.sec;
793 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
794 1.13 kardel s_update = 1;
795 1.1 simonb if (bt.sec != t)
796 1.4 kardel timebasebin.sec += bt.sec - t;
797 1.1 simonb }
798 1.2 kardel
799 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
800 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
801 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
802 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
803 1.1 simonb /* Now is a good time to change timecounters. */
804 1.1 simonb if (th->th_counter != timecounter) {
805 1.1 simonb th->th_counter = timecounter;
806 1.1 simonb th->th_offset_count = ncount;
807 1.13 kardel s_update = 1;
808 1.1 simonb }
809 1.1 simonb
810 1.1 simonb /*-
811 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
812 1.1 simonb * fractions of a second per period of the hardware counter, taking
813 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
814 1.1 simonb * processing provides us with.
815 1.1 simonb *
816 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
817 1.1 simonb * fraction and we want 64 bit binary fraction of second:
818 1.1 simonb *
819 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
820 1.1 simonb *
821 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
822 1.1 simonb * we can only multiply by about 850 without overflowing, but that
823 1.1 simonb * leaves suitably precise fractions for multiply before divide.
824 1.1 simonb *
825 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
826 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
827 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
828 1.1 simonb *
829 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
830 1.1 simonb * to the goddess of code clarity.
831 1.1 simonb *
832 1.1 simonb */
833 1.13 kardel if (s_update) {
834 1.13 kardel scale = (u_int64_t)1 << 63;
835 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
836 1.13 kardel scale /= th->th_counter->tc_frequency;
837 1.13 kardel th->th_scale = scale * 2;
838 1.13 kardel }
839 1.1 simonb /*
840 1.1 simonb * Now that the struct timehands is again consistent, set the new
841 1.20 ad * generation number, making sure to not make it zero. Ensure
842 1.20 ad * changes are globally visible before changing.
843 1.1 simonb */
844 1.1 simonb if (++ogen == 0)
845 1.1 simonb ogen = 1;
846 1.27 ad membar_producer();
847 1.1 simonb th->th_generation = ogen;
848 1.1 simonb
849 1.20 ad /*
850 1.20 ad * Go live with the new struct timehands. Ensure changes are
851 1.20 ad * globally visible before changing.
852 1.20 ad */
853 1.1 simonb time_second = th->th_microtime.tv_sec;
854 1.1 simonb time_uptime = th->th_offset.sec;
855 1.27 ad membar_producer();
856 1.1 simonb timehands = th;
857 1.24 ad
858 1.24 ad /*
859 1.24 ad * Force users of the old timehand to move on. This is
860 1.24 ad * necessary for MP systems; we need to ensure that the
861 1.24 ad * consumers will move away from the old timehand before
862 1.24 ad * we begin updating it again when we eventually wrap
863 1.24 ad * around.
864 1.24 ad */
865 1.24 ad if (++tho->th_generation == 0)
866 1.24 ad tho->th_generation = 1;
867 1.1 simonb }
868 1.1 simonb
869 1.1 simonb /*
870 1.1 simonb * RFC 2783 PPS-API implementation.
871 1.1 simonb */
872 1.1 simonb
873 1.1 simonb int
874 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
875 1.1 simonb {
876 1.1 simonb pps_params_t *app;
877 1.2 kardel pps_info_t *pipi;
878 1.1 simonb #ifdef PPS_SYNC
879 1.2 kardel int *epi;
880 1.1 simonb #endif
881 1.1 simonb
882 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
883 1.33 ad
884 1.45 kardel KASSERT(pps != NULL);
885 1.45 kardel
886 1.1 simonb switch (cmd) {
887 1.1 simonb case PPS_IOC_CREATE:
888 1.1 simonb return (0);
889 1.1 simonb case PPS_IOC_DESTROY:
890 1.1 simonb return (0);
891 1.1 simonb case PPS_IOC_SETPARAMS:
892 1.1 simonb app = (pps_params_t *)data;
893 1.1 simonb if (app->mode & ~pps->ppscap)
894 1.1 simonb return (EINVAL);
895 1.1 simonb pps->ppsparam = *app;
896 1.1 simonb return (0);
897 1.1 simonb case PPS_IOC_GETPARAMS:
898 1.1 simonb app = (pps_params_t *)data;
899 1.1 simonb *app = pps->ppsparam;
900 1.1 simonb app->api_version = PPS_API_VERS_1;
901 1.1 simonb return (0);
902 1.1 simonb case PPS_IOC_GETCAP:
903 1.1 simonb *(int*)data = pps->ppscap;
904 1.1 simonb return (0);
905 1.1 simonb case PPS_IOC_FETCH:
906 1.2 kardel pipi = (pps_info_t *)data;
907 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
908 1.2 kardel *pipi = pps->ppsinfo;
909 1.1 simonb return (0);
910 1.1 simonb case PPS_IOC_KCBIND:
911 1.1 simonb #ifdef PPS_SYNC
912 1.2 kardel epi = (int *)data;
913 1.1 simonb /* XXX Only root should be able to do this */
914 1.2 kardel if (*epi & ~pps->ppscap)
915 1.1 simonb return (EINVAL);
916 1.2 kardel pps->kcmode = *epi;
917 1.1 simonb return (0);
918 1.1 simonb #else
919 1.1 simonb return (EOPNOTSUPP);
920 1.1 simonb #endif
921 1.1 simonb default:
922 1.2 kardel return (EPASSTHROUGH);
923 1.1 simonb }
924 1.1 simonb }
925 1.1 simonb
926 1.1 simonb void
927 1.1 simonb pps_init(struct pps_state *pps)
928 1.1 simonb {
929 1.33 ad
930 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
931 1.33 ad
932 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
933 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
934 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
935 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
936 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
937 1.1 simonb }
938 1.1 simonb
939 1.45 kardel /*
940 1.45 kardel * capture a timetamp in the pps structure
941 1.45 kardel */
942 1.1 simonb void
943 1.1 simonb pps_capture(struct pps_state *pps)
944 1.1 simonb {
945 1.1 simonb struct timehands *th;
946 1.1 simonb
947 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
948 1.33 ad KASSERT(pps != NULL);
949 1.33 ad
950 1.1 simonb th = timehands;
951 1.1 simonb pps->capgen = th->th_generation;
952 1.1 simonb pps->capth = th;
953 1.40 kardel pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
954 1.1 simonb if (pps->capgen != th->th_generation)
955 1.1 simonb pps->capgen = 0;
956 1.1 simonb }
957 1.1 simonb
958 1.45 kardel #ifdef PPS_DEBUG
959 1.45 kardel int ppsdebug = 0;
960 1.45 kardel #endif
961 1.45 kardel
962 1.45 kardel /*
963 1.45 kardel * process a pps_capture()ed event
964 1.45 kardel */
965 1.1 simonb void
966 1.1 simonb pps_event(struct pps_state *pps, int event)
967 1.1 simonb {
968 1.45 kardel pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
969 1.45 kardel }
970 1.45 kardel
971 1.45 kardel /*
972 1.45 kardel * extended pps api / kernel pll/fll entry point
973 1.45 kardel *
974 1.45 kardel * feed reference time stamps to PPS engine
975 1.45 kardel *
976 1.45 kardel * will simulate a PPS event and feed
977 1.45 kardel * the NTP PLL/FLL if requested.
978 1.45 kardel *
979 1.45 kardel * the ref time stamps should be roughly once
980 1.45 kardel * a second but do not need to be exactly in phase
981 1.45 kardel * with the UTC second but should be close to it.
982 1.45 kardel * this relaxation of requirements allows callout
983 1.45 kardel * driven timestamping mechanisms to feed to pps
984 1.45 kardel * capture/kernel pll logic.
985 1.45 kardel *
986 1.45 kardel * calling pattern is:
987 1.45 kardel * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
988 1.45 kardel * read timestamp from reference source
989 1.45 kardel * pps_ref_event()
990 1.45 kardel *
991 1.45 kardel * supported refmodes:
992 1.45 kardel * PPS_REFEVNT_CAPTURE
993 1.45 kardel * use system timestamp of pps_capture()
994 1.45 kardel * PPS_REFEVNT_CURRENT
995 1.45 kardel * use system timestamp of this call
996 1.45 kardel * PPS_REFEVNT_CAPCUR
997 1.45 kardel * use average of read capture and current system time stamp
998 1.45 kardel * PPS_REFEVNT_PPS
999 1.45 kardel * assume timestamp on second mark - ref_ts is ignored
1000 1.45 kardel *
1001 1.45 kardel */
1002 1.45 kardel
1003 1.45 kardel void
1004 1.45 kardel pps_ref_event(struct pps_state *pps,
1005 1.45 kardel int event,
1006 1.45 kardel struct bintime *ref_ts,
1007 1.45 kardel int refmode
1008 1.45 kardel )
1009 1.45 kardel {
1010 1.45 kardel struct bintime bt; /* current time */
1011 1.45 kardel struct bintime btd; /* time difference */
1012 1.45 kardel struct bintime bt_ref; /* reference time */
1013 1.1 simonb struct timespec ts, *tsp, *osp;
1014 1.45 kardel struct timehands *th;
1015 1.45 kardel u_int64_t tcount, acount, dcount, *pcount;
1016 1.46 martin int foff, gen;
1017 1.46 martin #ifdef PPS_SYNC
1018 1.46 martin int fhard;
1019 1.46 martin #endif
1020 1.1 simonb pps_seq_t *pseq;
1021 1.1 simonb
1022 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1023 1.33 ad
1024 1.45 kardel KASSERT(pps != NULL);
1025 1.45 kardel
1026 1.45 kardel /* pick up current time stamp if needed */
1027 1.45 kardel if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1028 1.45 kardel /* pick up current time stamp */
1029 1.45 kardel th = timehands;
1030 1.45 kardel gen = th->th_generation;
1031 1.45 kardel tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1032 1.45 kardel if (gen != th->th_generation)
1033 1.45 kardel gen = 0;
1034 1.45 kardel
1035 1.45 kardel /* If the timecounter was wound up underneath us, bail out. */
1036 1.45 kardel if (pps->capgen == 0 ||
1037 1.45 kardel pps->capgen != pps->capth->th_generation ||
1038 1.45 kardel gen == 0 ||
1039 1.45 kardel gen != pps->capgen) {
1040 1.45 kardel #ifdef PPS_DEBUG
1041 1.45 kardel if (ppsdebug & 0x1) {
1042 1.45 kardel log(LOG_DEBUG,
1043 1.45 kardel "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1044 1.45 kardel pps, event);
1045 1.45 kardel }
1046 1.45 kardel #endif
1047 1.45 kardel return;
1048 1.45 kardel }
1049 1.45 kardel } else {
1050 1.45 kardel tcount = 0; /* keep GCC happy */
1051 1.45 kardel }
1052 1.45 kardel
1053 1.45 kardel #ifdef PPS_DEBUG
1054 1.45 kardel if (ppsdebug & 0x1) {
1055 1.45 kardel struct timespec tmsp;
1056 1.45 kardel
1057 1.45 kardel if (ref_ts == NULL) {
1058 1.45 kardel tmsp.tv_sec = 0;
1059 1.45 kardel tmsp.tv_nsec = 0;
1060 1.45 kardel } else {
1061 1.45 kardel bintime2timespec(ref_ts, &tmsp);
1062 1.45 kardel }
1063 1.45 kardel
1064 1.45 kardel log(LOG_DEBUG,
1065 1.45 kardel "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1066 1.45 kardel ".%09"PRIi32", refmode=0x%1x)\n",
1067 1.45 kardel pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1068 1.45 kardel }
1069 1.45 kardel #endif
1070 1.1 simonb
1071 1.45 kardel /* setup correct event references */
1072 1.1 simonb if (event == PPS_CAPTUREASSERT) {
1073 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
1074 1.1 simonb osp = &pps->ppsparam.assert_offset;
1075 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1076 1.46 martin #ifdef PPS_SYNC
1077 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
1078 1.46 martin #endif
1079 1.1 simonb pcount = &pps->ppscount[0];
1080 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
1081 1.1 simonb } else {
1082 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
1083 1.1 simonb osp = &pps->ppsparam.clear_offset;
1084 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1085 1.46 martin #ifdef PPS_SYNC
1086 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
1087 1.46 martin #endif
1088 1.1 simonb pcount = &pps->ppscount[1];
1089 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
1090 1.1 simonb }
1091 1.1 simonb
1092 1.45 kardel /* determine system time stamp according to refmode */
1093 1.45 kardel dcount = 0; /* keep GCC happy */
1094 1.45 kardel switch (refmode & PPS_REFEVNT_RMASK) {
1095 1.45 kardel case PPS_REFEVNT_CAPTURE:
1096 1.45 kardel acount = pps->capcount; /* use capture timestamp */
1097 1.45 kardel break;
1098 1.45 kardel
1099 1.45 kardel case PPS_REFEVNT_CURRENT:
1100 1.45 kardel acount = tcount; /* use current timestamp */
1101 1.45 kardel break;
1102 1.45 kardel
1103 1.45 kardel case PPS_REFEVNT_CAPCUR:
1104 1.45 kardel /*
1105 1.45 kardel * calculate counter value between pps_capture() and
1106 1.45 kardel * pps_ref_event()
1107 1.45 kardel */
1108 1.45 kardel dcount = tcount - pps->capcount;
1109 1.45 kardel acount = (dcount / 2) + pps->capcount;
1110 1.45 kardel break;
1111 1.45 kardel
1112 1.45 kardel default: /* ignore call error silently */
1113 1.45 kardel return;
1114 1.45 kardel }
1115 1.45 kardel
1116 1.1 simonb /*
1117 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
1118 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
1119 1.1 simonb */
1120 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
1121 1.1 simonb pps->ppstc = pps->capth->th_counter;
1122 1.45 kardel pps->capcount = acount;
1123 1.45 kardel *pcount = acount;
1124 1.45 kardel pps->ppscount[2] = acount;
1125 1.45 kardel #ifdef PPS_DEBUG
1126 1.45 kardel if (ppsdebug & 0x1) {
1127 1.45 kardel log(LOG_DEBUG,
1128 1.45 kardel "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1129 1.45 kardel pps, event);
1130 1.45 kardel }
1131 1.45 kardel #endif
1132 1.1 simonb return;
1133 1.1 simonb }
1134 1.1 simonb
1135 1.45 kardel pps->capcount = acount;
1136 1.45 kardel
1137 1.45 kardel /* Convert the count to a bintime. */
1138 1.1 simonb bt = pps->capth->th_offset;
1139 1.45 kardel bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1140 1.4 kardel bintime_add(&bt, &timebasebin);
1141 1.45 kardel
1142 1.45 kardel if ((refmode & PPS_REFEVNT_PPS) == 0) {
1143 1.45 kardel /* determine difference to reference time stamp */
1144 1.45 kardel bt_ref = *ref_ts;
1145 1.45 kardel
1146 1.45 kardel btd = bt;
1147 1.45 kardel bintime_sub(&btd, &bt_ref);
1148 1.45 kardel
1149 1.45 kardel /*
1150 1.45 kardel * simulate a PPS timestamp by dropping the fraction
1151 1.45 kardel * and applying the offset
1152 1.45 kardel */
1153 1.45 kardel if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1154 1.45 kardel bt.sec++;
1155 1.45 kardel bt.frac = 0;
1156 1.45 kardel bintime_add(&bt, &btd);
1157 1.45 kardel } else {
1158 1.45 kardel /*
1159 1.45 kardel * create ref_ts from current time -
1160 1.45 kardel * we are supposed to be called on
1161 1.45 kardel * the second mark
1162 1.45 kardel */
1163 1.45 kardel bt_ref = bt;
1164 1.45 kardel if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1165 1.45 kardel bt_ref.sec++;
1166 1.45 kardel bt_ref.frac = 0;
1167 1.45 kardel }
1168 1.45 kardel
1169 1.45 kardel /* convert bintime to timestamp */
1170 1.1 simonb bintime2timespec(&bt, &ts);
1171 1.1 simonb
1172 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
1173 1.1 simonb if (pps->capgen != pps->capth->th_generation)
1174 1.1 simonb return;
1175 1.1 simonb
1176 1.45 kardel /* store time stamp */
1177 1.1 simonb *pcount = pps->capcount;
1178 1.1 simonb (*pseq)++;
1179 1.1 simonb *tsp = ts;
1180 1.1 simonb
1181 1.45 kardel /* add offset correction */
1182 1.1 simonb if (foff) {
1183 1.2 kardel timespecadd(tsp, osp, tsp);
1184 1.1 simonb if (tsp->tv_nsec < 0) {
1185 1.1 simonb tsp->tv_nsec += 1000000000;
1186 1.1 simonb tsp->tv_sec -= 1;
1187 1.1 simonb }
1188 1.1 simonb }
1189 1.45 kardel
1190 1.45 kardel #ifdef PPS_DEBUG
1191 1.45 kardel if (ppsdebug & 0x2) {
1192 1.45 kardel struct timespec ts2;
1193 1.45 kardel struct timespec ts3;
1194 1.45 kardel
1195 1.45 kardel bintime2timespec(&bt_ref, &ts2);
1196 1.45 kardel
1197 1.45 kardel bt.sec = 0;
1198 1.45 kardel bt.frac = 0;
1199 1.45 kardel
1200 1.45 kardel if (refmode & PPS_REFEVNT_CAPCUR) {
1201 1.45 kardel bintime_addx(&bt, pps->capth->th_scale * dcount);
1202 1.45 kardel }
1203 1.45 kardel bintime2timespec(&bt, &ts3);
1204 1.45 kardel
1205 1.45 kardel log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1206 1.45 kardel ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1207 1.45 kardel ts2.tv_sec, (int32_t)ts2.tv_nsec,
1208 1.45 kardel tsp->tv_sec, (int32_t)tsp->tv_nsec,
1209 1.45 kardel timespec2ns(&ts3));
1210 1.45 kardel }
1211 1.45 kardel #endif
1212 1.45 kardel
1213 1.1 simonb #ifdef PPS_SYNC
1214 1.1 simonb if (fhard) {
1215 1.45 kardel uint64_t scale;
1216 1.45 kardel uint64_t div;
1217 1.1 simonb
1218 1.1 simonb /*
1219 1.1 simonb * Feed the NTP PLL/FLL.
1220 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
1221 1.45 kardel * elapsed since the previous event (mod 1 second) thus
1222 1.45 kardel * we are actually looking at the frequency difference scaled
1223 1.45 kardel * in nsec.
1224 1.45 kardel * As the counter time stamps are not truly at 1Hz
1225 1.45 kardel * we need to scale the count by the elapsed
1226 1.45 kardel * reference time.
1227 1.45 kardel * valid sampling interval: [0.5..2[ sec
1228 1.1 simonb */
1229 1.45 kardel
1230 1.45 kardel /* calculate elapsed raw count */
1231 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
1232 1.1 simonb pps->ppscount[2] = pps->capcount;
1233 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
1234 1.45 kardel
1235 1.45 kardel /* calculate elapsed ref time */
1236 1.45 kardel btd = bt_ref;
1237 1.45 kardel bintime_sub(&btd, &pps->ref_time);
1238 1.45 kardel pps->ref_time = bt_ref;
1239 1.45 kardel
1240 1.45 kardel /* check that we stay below 2 sec */
1241 1.45 kardel if (btd.sec < 0 || btd.sec > 1)
1242 1.45 kardel return;
1243 1.45 kardel
1244 1.45 kardel /* we want at least 0.5 sec between samples */
1245 1.45 kardel if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1246 1.45 kardel return;
1247 1.45 kardel
1248 1.45 kardel /*
1249 1.45 kardel * calculate cycles per period by multiplying
1250 1.45 kardel * the frequency with the elapsed period
1251 1.45 kardel * we pick a fraction of 30 bits
1252 1.45 kardel * ~1ns resolution for elapsed time
1253 1.45 kardel */
1254 1.45 kardel div = (uint64_t)btd.sec << 30;
1255 1.45 kardel div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1256 1.45 kardel div *= pps->capth->th_counter->tc_frequency;
1257 1.45 kardel div >>= 30;
1258 1.45 kardel
1259 1.45 kardel if (div == 0) /* safeguard */
1260 1.45 kardel return;
1261 1.45 kardel
1262 1.45 kardel scale = (uint64_t)1 << 63;
1263 1.45 kardel scale /= div;
1264 1.1 simonb scale *= 2;
1265 1.45 kardel
1266 1.1 simonb bt.sec = 0;
1267 1.1 simonb bt.frac = 0;
1268 1.1 simonb bintime_addx(&bt, scale * tcount);
1269 1.1 simonb bintime2timespec(&bt, &ts);
1270 1.45 kardel
1271 1.45 kardel #ifdef PPS_DEBUG
1272 1.45 kardel if (ppsdebug & 0x4) {
1273 1.45 kardel struct timespec ts2;
1274 1.45 kardel int64_t df;
1275 1.45 kardel
1276 1.45 kardel bintime2timespec(&bt_ref, &ts2);
1277 1.45 kardel df = timespec2ns(&ts);
1278 1.45 kardel if (df > 500000000)
1279 1.45 kardel df -= 1000000000;
1280 1.45 kardel log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1281 1.45 kardel ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1282 1.45 kardel ", freqdiff=%"PRIi64" ns/s\n",
1283 1.45 kardel ts2.tv_sec, (int32_t)ts2.tv_nsec,
1284 1.45 kardel tsp->tv_sec, (int32_t)tsp->tv_nsec,
1285 1.45 kardel df);
1286 1.45 kardel }
1287 1.45 kardel #endif
1288 1.45 kardel
1289 1.45 kardel hardpps(tsp, timespec2ns(&ts));
1290 1.1 simonb }
1291 1.1 simonb #endif
1292 1.1 simonb }
1293 1.1 simonb
1294 1.1 simonb /*
1295 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
1296 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
1297 1.1 simonb * used by the get*() family of functions, so their precision depends on
1298 1.1 simonb * the update frequency.
1299 1.1 simonb */
1300 1.1 simonb
1301 1.1 simonb static int tc_tick;
1302 1.1 simonb
1303 1.1 simonb void
1304 1.1 simonb tc_ticktock(void)
1305 1.1 simonb {
1306 1.1 simonb static int count;
1307 1.1 simonb
1308 1.1 simonb if (++count < tc_tick)
1309 1.1 simonb return;
1310 1.1 simonb count = 0;
1311 1.33 ad mutex_spin_enter(&timecounter_lock);
1312 1.35 ad if (timecounter_bad != 0) {
1313 1.35 ad /* An existing timecounter has gone bad, pick a new one. */
1314 1.35 ad (void)atomic_swap_uint(&timecounter_bad, 0);
1315 1.35 ad if (timecounter->tc_quality < 0) {
1316 1.35 ad tc_pick();
1317 1.35 ad }
1318 1.35 ad }
1319 1.1 simonb tc_windup();
1320 1.33 ad mutex_spin_exit(&timecounter_lock);
1321 1.1 simonb }
1322 1.1 simonb
1323 1.2 kardel void
1324 1.2 kardel inittimecounter(void)
1325 1.1 simonb {
1326 1.1 simonb u_int p;
1327 1.1 simonb
1328 1.37 kardel mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1329 1.30 ad
1330 1.1 simonb /*
1331 1.1 simonb * Set the initial timeout to
1332 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
1333 1.1 simonb * People should probably not use the sysctl to set the timeout
1334 1.1 simonb * to smaller than its inital value, since that value is the
1335 1.1 simonb * smallest reasonable one. If they want better timestamps they
1336 1.1 simonb * should use the non-"get"* functions.
1337 1.1 simonb */
1338 1.1 simonb if (hz > 1000)
1339 1.1 simonb tc_tick = (hz + 500) / 1000;
1340 1.1 simonb else
1341 1.1 simonb tc_tick = 1;
1342 1.1 simonb p = (tc_tick * 1000000) / hz;
1343 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1344 1.18 ad p / 1000, p % 1000);
1345 1.1 simonb
1346 1.1 simonb /* warm up new timecounter (again) and get rolling. */
1347 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1348 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1349 1.1 simonb }
1350