kern_tc.c revision 1.6 1 1.6 bjh21 /* $NetBSD: kern_tc.c,v 1.6 2006/08/05 21:59:40 bjh21 Exp $ */
2 1.2 kardel
3 1.1 simonb /*-
4 1.1 simonb * ----------------------------------------------------------------------------
5 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
6 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
8 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 1.2 kardel * ---------------------------------------------------------------------------
10 1.1 simonb */
11 1.1 simonb
12 1.1 simonb #include <sys/cdefs.h>
13 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 1.6 bjh21 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.6 2006/08/05 21:59:40 bjh21 Exp $");
15 1.1 simonb
16 1.1 simonb #include "opt_ntp.h"
17 1.1 simonb
18 1.1 simonb #include <sys/param.h>
19 1.2 kardel #ifdef __HAVE_TIMECOUNTER /* XXX */
20 1.1 simonb #include <sys/kernel.h>
21 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 1.1 simonb #include <sys/sysctl.h>
23 1.1 simonb #include <sys/syslog.h>
24 1.1 simonb #include <sys/systm.h>
25 1.1 simonb #include <sys/timepps.h>
26 1.1 simonb #include <sys/timetc.h>
27 1.1 simonb #include <sys/timex.h>
28 1.2 kardel #include <sys/evcnt.h>
29 1.2 kardel #include <sys/kauth.h>
30 1.2 kardel
31 1.2 kardel /*
32 1.2 kardel * maximum name length for TC names in sysctl interface
33 1.2 kardel */
34 1.2 kardel #define MAX_TCNAMELEN 64
35 1.1 simonb
36 1.1 simonb /*
37 1.1 simonb * A large step happens on boot. This constant detects such steps.
38 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
39 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
40 1.1 simonb * forever when the time step is large.
41 1.1 simonb */
42 1.1 simonb #define LARGE_STEP 200
43 1.1 simonb
44 1.1 simonb /*
45 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
46 1.1 simonb * in the air. This allows the console and other early stuff to use
47 1.1 simonb * time services.
48 1.1 simonb */
49 1.1 simonb
50 1.1 simonb static u_int
51 1.1 simonb dummy_get_timecount(struct timecounter *tc)
52 1.1 simonb {
53 1.1 simonb static u_int now;
54 1.1 simonb
55 1.1 simonb return (++now);
56 1.1 simonb }
57 1.1 simonb
58 1.1 simonb static struct timecounter dummy_timecounter = {
59 1.1 simonb dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
60 1.1 simonb };
61 1.1 simonb
62 1.1 simonb struct timehands {
63 1.1 simonb /* These fields must be initialized by the driver. */
64 1.1 simonb struct timecounter *th_counter;
65 1.1 simonb int64_t th_adjustment;
66 1.1 simonb u_int64_t th_scale;
67 1.1 simonb u_int th_offset_count;
68 1.1 simonb struct bintime th_offset;
69 1.1 simonb struct timeval th_microtime;
70 1.1 simonb struct timespec th_nanotime;
71 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
72 1.1 simonb volatile u_int th_generation;
73 1.1 simonb struct timehands *th_next;
74 1.1 simonb };
75 1.1 simonb
76 1.1 simonb static struct timehands th0;
77 1.1 simonb static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
78 1.1 simonb static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
79 1.1 simonb static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
80 1.1 simonb static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
81 1.1 simonb static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
82 1.1 simonb static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
83 1.1 simonb static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
84 1.1 simonb static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
85 1.1 simonb static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
86 1.1 simonb static struct timehands th0 = {
87 1.1 simonb &dummy_timecounter,
88 1.1 simonb 0,
89 1.1 simonb (uint64_t)-1 / 1000000,
90 1.1 simonb 0,
91 1.1 simonb {1, 0},
92 1.1 simonb {0, 0},
93 1.1 simonb {0, 0},
94 1.1 simonb 1,
95 1.1 simonb &th1
96 1.1 simonb };
97 1.1 simonb
98 1.1 simonb static struct timehands *volatile timehands = &th0;
99 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
100 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
101 1.1 simonb
102 1.1 simonb time_t time_second = 1;
103 1.1 simonb time_t time_uptime = 1;
104 1.1 simonb
105 1.4 kardel static struct bintime timebasebin;
106 1.1 simonb
107 1.1 simonb static int timestepwarnings;
108 1.2 kardel
109 1.2 kardel #ifdef __FreeBSD__
110 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
111 1.1 simonb ×tepwarnings, 0, "");
112 1.2 kardel #endif /* __FreeBSD__ */
113 1.2 kardel
114 1.2 kardel /*
115 1.2 kardel * sysctl helper routine for kern.timercounter.current
116 1.2 kardel */
117 1.2 kardel static int
118 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
119 1.2 kardel {
120 1.2 kardel struct sysctlnode node;
121 1.2 kardel int error;
122 1.2 kardel char newname[MAX_TCNAMELEN];
123 1.2 kardel struct timecounter *newtc, *tc;
124 1.2 kardel
125 1.2 kardel tc = timecounter;
126 1.2 kardel
127 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
128 1.2 kardel
129 1.2 kardel node = *rnode;
130 1.2 kardel node.sysctl_data = newname;
131 1.2 kardel node.sysctl_size = sizeof(newname);
132 1.2 kardel
133 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
134 1.2 kardel
135 1.2 kardel if (error ||
136 1.2 kardel newp == NULL ||
137 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
138 1.2 kardel return error;
139 1.1 simonb
140 1.5 ad if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
141 1.5 ad KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
142 1.2 kardel return (error);
143 1.2 kardel
144 1.2 kardel /* XXX locking */
145 1.2 kardel
146 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
147 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
148 1.2 kardel continue;
149 1.2 kardel
150 1.2 kardel /* Warm up new timecounter. */
151 1.2 kardel (void)newtc->tc_get_timecount(newtc);
152 1.2 kardel (void)newtc->tc_get_timecount(newtc);
153 1.2 kardel
154 1.2 kardel timecounter = newtc;
155 1.2 kardel
156 1.2 kardel /* XXX unlock */
157 1.2 kardel
158 1.2 kardel return (0);
159 1.2 kardel }
160 1.2 kardel
161 1.2 kardel /* XXX unlock */
162 1.2 kardel
163 1.2 kardel return (EINVAL);
164 1.2 kardel }
165 1.2 kardel
166 1.2 kardel static int
167 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
168 1.2 kardel {
169 1.2 kardel char buf[48];
170 1.2 kardel char *where = oldp;
171 1.2 kardel const char *spc;
172 1.2 kardel struct timecounter *tc;
173 1.2 kardel size_t needed, left, slen;
174 1.2 kardel int error;
175 1.2 kardel
176 1.2 kardel if (newp != NULL)
177 1.2 kardel return (EPERM);
178 1.2 kardel if (namelen != 0)
179 1.2 kardel return (EINVAL);
180 1.2 kardel
181 1.2 kardel spc = "";
182 1.2 kardel error = 0;
183 1.2 kardel needed = 0;
184 1.2 kardel left = *oldlenp;
185 1.2 kardel
186 1.2 kardel /* XXX locking */
187 1.2 kardel
188 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
189 1.2 kardel if (where == NULL) {
190 1.2 kardel needed += sizeof(buf); /* be conservative */
191 1.2 kardel } else {
192 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
193 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
194 1.2 kardel tc->tc_frequency);
195 1.2 kardel if (left < slen + 1)
196 1.2 kardel break;
197 1.2 kardel /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
198 1.2 kardel error = copyout(buf, where, slen + 1);
199 1.2 kardel spc = " ";
200 1.2 kardel where += slen;
201 1.2 kardel needed += slen;
202 1.2 kardel left -= slen;
203 1.2 kardel }
204 1.2 kardel }
205 1.2 kardel
206 1.2 kardel /* XXX unlock */
207 1.2 kardel
208 1.2 kardel *oldlenp = needed;
209 1.2 kardel return (error);
210 1.2 kardel }
211 1.2 kardel
212 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
213 1.2 kardel {
214 1.2 kardel const struct sysctlnode *node;
215 1.2 kardel
216 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
217 1.2 kardel CTLFLAG_PERMANENT,
218 1.2 kardel CTLTYPE_NODE, "timecounter",
219 1.2 kardel SYSCTL_DESCR("time counter information"),
220 1.2 kardel NULL, 0, NULL, 0,
221 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
222 1.2 kardel
223 1.2 kardel if (node != NULL) {
224 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
225 1.2 kardel CTLFLAG_PERMANENT,
226 1.2 kardel CTLTYPE_STRING, "choice",
227 1.2 kardel SYSCTL_DESCR("available counters"),
228 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
229 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
230 1.2 kardel
231 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
232 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
233 1.2 kardel CTLTYPE_STRING, "hardware",
234 1.2 kardel SYSCTL_DESCR("currently active time counter"),
235 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
236 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
237 1.2 kardel
238 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
239 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
240 1.2 kardel CTLTYPE_INT, "timestepwarnings",
241 1.2 kardel SYSCTL_DESCR("log time steps"),
242 1.2 kardel NULL, 0, ×tepwarnings, 0,
243 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
244 1.2 kardel }
245 1.2 kardel }
246 1.2 kardel
247 1.2 kardel #define TC_STATS(name) \
248 1.2 kardel static struct evcnt n##name = \
249 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
250 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
251 1.2 kardel
252 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
253 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
254 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
255 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
256 1.2 kardel TC_STATS(setclock);
257 1.1 simonb
258 1.1 simonb #undef TC_STATS
259 1.1 simonb
260 1.1 simonb static void tc_windup(void);
261 1.1 simonb
262 1.1 simonb /*
263 1.1 simonb * Return the difference between the timehands' counter value now and what
264 1.1 simonb * was when we copied it to the timehands' offset_count.
265 1.1 simonb */
266 1.1 simonb static __inline u_int
267 1.1 simonb tc_delta(struct timehands *th)
268 1.1 simonb {
269 1.1 simonb struct timecounter *tc;
270 1.1 simonb
271 1.1 simonb tc = th->th_counter;
272 1.2 kardel return ((tc->tc_get_timecount(tc) -
273 1.2 kardel th->th_offset_count) & tc->tc_counter_mask);
274 1.1 simonb }
275 1.1 simonb
276 1.1 simonb /*
277 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
278 1.1 simonb * the timehands that we operated on was not updated under our feet. See
279 1.1 simonb * the comment in <sys/time.h> for a description of these 12 functions.
280 1.1 simonb */
281 1.1 simonb
282 1.1 simonb void
283 1.1 simonb binuptime(struct bintime *bt)
284 1.1 simonb {
285 1.1 simonb struct timehands *th;
286 1.1 simonb u_int gen;
287 1.1 simonb
288 1.2 kardel nbinuptime.ev_count++;
289 1.1 simonb do {
290 1.1 simonb th = timehands;
291 1.1 simonb gen = th->th_generation;
292 1.1 simonb *bt = th->th_offset;
293 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
294 1.1 simonb } while (gen == 0 || gen != th->th_generation);
295 1.1 simonb }
296 1.1 simonb
297 1.1 simonb void
298 1.1 simonb nanouptime(struct timespec *tsp)
299 1.1 simonb {
300 1.1 simonb struct bintime bt;
301 1.1 simonb
302 1.2 kardel nnanouptime.ev_count++;
303 1.1 simonb binuptime(&bt);
304 1.1 simonb bintime2timespec(&bt, tsp);
305 1.1 simonb }
306 1.1 simonb
307 1.1 simonb void
308 1.1 simonb microuptime(struct timeval *tvp)
309 1.1 simonb {
310 1.1 simonb struct bintime bt;
311 1.1 simonb
312 1.2 kardel nmicrouptime.ev_count++;
313 1.1 simonb binuptime(&bt);
314 1.1 simonb bintime2timeval(&bt, tvp);
315 1.1 simonb }
316 1.1 simonb
317 1.1 simonb void
318 1.1 simonb bintime(struct bintime *bt)
319 1.1 simonb {
320 1.1 simonb
321 1.2 kardel nbintime.ev_count++;
322 1.1 simonb binuptime(bt);
323 1.4 kardel bintime_add(bt, &timebasebin);
324 1.1 simonb }
325 1.1 simonb
326 1.1 simonb void
327 1.1 simonb nanotime(struct timespec *tsp)
328 1.1 simonb {
329 1.1 simonb struct bintime bt;
330 1.1 simonb
331 1.2 kardel nnanotime.ev_count++;
332 1.1 simonb bintime(&bt);
333 1.1 simonb bintime2timespec(&bt, tsp);
334 1.1 simonb }
335 1.1 simonb
336 1.1 simonb void
337 1.1 simonb microtime(struct timeval *tvp)
338 1.1 simonb {
339 1.1 simonb struct bintime bt;
340 1.1 simonb
341 1.2 kardel nmicrotime.ev_count++;
342 1.1 simonb bintime(&bt);
343 1.1 simonb bintime2timeval(&bt, tvp);
344 1.1 simonb }
345 1.1 simonb
346 1.1 simonb void
347 1.1 simonb getbinuptime(struct bintime *bt)
348 1.1 simonb {
349 1.1 simonb struct timehands *th;
350 1.1 simonb u_int gen;
351 1.1 simonb
352 1.2 kardel ngetbinuptime.ev_count++;
353 1.1 simonb do {
354 1.1 simonb th = timehands;
355 1.1 simonb gen = th->th_generation;
356 1.1 simonb *bt = th->th_offset;
357 1.1 simonb } while (gen == 0 || gen != th->th_generation);
358 1.1 simonb }
359 1.1 simonb
360 1.1 simonb void
361 1.1 simonb getnanouptime(struct timespec *tsp)
362 1.1 simonb {
363 1.1 simonb struct timehands *th;
364 1.1 simonb u_int gen;
365 1.1 simonb
366 1.2 kardel ngetnanouptime.ev_count++;
367 1.1 simonb do {
368 1.1 simonb th = timehands;
369 1.1 simonb gen = th->th_generation;
370 1.1 simonb bintime2timespec(&th->th_offset, tsp);
371 1.1 simonb } while (gen == 0 || gen != th->th_generation);
372 1.1 simonb }
373 1.1 simonb
374 1.1 simonb void
375 1.1 simonb getmicrouptime(struct timeval *tvp)
376 1.1 simonb {
377 1.1 simonb struct timehands *th;
378 1.1 simonb u_int gen;
379 1.1 simonb
380 1.2 kardel ngetmicrouptime.ev_count++;
381 1.1 simonb do {
382 1.1 simonb th = timehands;
383 1.1 simonb gen = th->th_generation;
384 1.1 simonb bintime2timeval(&th->th_offset, tvp);
385 1.1 simonb } while (gen == 0 || gen != th->th_generation);
386 1.1 simonb }
387 1.1 simonb
388 1.1 simonb void
389 1.1 simonb getbintime(struct bintime *bt)
390 1.1 simonb {
391 1.1 simonb struct timehands *th;
392 1.1 simonb u_int gen;
393 1.1 simonb
394 1.2 kardel ngetbintime.ev_count++;
395 1.1 simonb do {
396 1.1 simonb th = timehands;
397 1.1 simonb gen = th->th_generation;
398 1.1 simonb *bt = th->th_offset;
399 1.1 simonb } while (gen == 0 || gen != th->th_generation);
400 1.4 kardel bintime_add(bt, &timebasebin);
401 1.1 simonb }
402 1.1 simonb
403 1.1 simonb void
404 1.1 simonb getnanotime(struct timespec *tsp)
405 1.1 simonb {
406 1.1 simonb struct timehands *th;
407 1.1 simonb u_int gen;
408 1.1 simonb
409 1.2 kardel ngetnanotime.ev_count++;
410 1.1 simonb do {
411 1.1 simonb th = timehands;
412 1.1 simonb gen = th->th_generation;
413 1.1 simonb *tsp = th->th_nanotime;
414 1.1 simonb } while (gen == 0 || gen != th->th_generation);
415 1.1 simonb }
416 1.1 simonb
417 1.1 simonb void
418 1.1 simonb getmicrotime(struct timeval *tvp)
419 1.1 simonb {
420 1.1 simonb struct timehands *th;
421 1.1 simonb u_int gen;
422 1.1 simonb
423 1.2 kardel ngetmicrotime.ev_count++;
424 1.1 simonb do {
425 1.1 simonb th = timehands;
426 1.1 simonb gen = th->th_generation;
427 1.1 simonb *tvp = th->th_microtime;
428 1.1 simonb } while (gen == 0 || gen != th->th_generation);
429 1.1 simonb }
430 1.1 simonb
431 1.1 simonb /*
432 1.1 simonb * Initialize a new timecounter and possibly use it.
433 1.1 simonb */
434 1.1 simonb void
435 1.1 simonb tc_init(struct timecounter *tc)
436 1.1 simonb {
437 1.1 simonb u_int u;
438 1.6 bjh21 char freqstr[9];
439 1.1 simonb
440 1.6 bjh21 humanize_number(freqstr, sizeof(freqstr), tc->tc_frequency,
441 1.6 bjh21 "Hz", 1000);
442 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
443 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
444 1.1 simonb u *= 11;
445 1.1 simonb u /= 10;
446 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
447 1.1 simonb tc->tc_quality = -2000;
448 1.1 simonb if (bootverbose) {
449 1.6 bjh21 printf("timecounter: Timecounter \"%s\" frequency %s",
450 1.6 bjh21 tc->tc_name, freqstr);
451 1.1 simonb printf(" -- Insufficient hz, needs at least %u\n", u);
452 1.1 simonb }
453 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
454 1.6 bjh21 printf("timecounter: Timecounter \"%s\" frequency %s "
455 1.6 bjh21 "quality %d\n", tc->tc_name, freqstr, tc->tc_quality);
456 1.1 simonb }
457 1.1 simonb
458 1.2 kardel /* XXX locking */
459 1.1 simonb tc->tc_next = timecounters;
460 1.1 simonb timecounters = tc;
461 1.1 simonb /*
462 1.1 simonb * Never automatically use a timecounter with negative quality.
463 1.1 simonb * Even though we run on the dummy counter, switching here may be
464 1.1 simonb * worse since this timecounter may not be monotonous.
465 1.1 simonb */
466 1.1 simonb if (tc->tc_quality < 0)
467 1.1 simonb return;
468 1.1 simonb if (tc->tc_quality < timecounter->tc_quality)
469 1.1 simonb return;
470 1.1 simonb if (tc->tc_quality == timecounter->tc_quality &&
471 1.1 simonb tc->tc_frequency < timecounter->tc_frequency)
472 1.1 simonb return;
473 1.1 simonb (void)tc->tc_get_timecount(tc);
474 1.1 simonb (void)tc->tc_get_timecount(tc);
475 1.1 simonb timecounter = tc;
476 1.3 kardel tc_windup();
477 1.1 simonb }
478 1.1 simonb
479 1.1 simonb /* Report the frequency of the current timecounter. */
480 1.1 simonb u_int64_t
481 1.1 simonb tc_getfrequency(void)
482 1.1 simonb {
483 1.1 simonb
484 1.1 simonb return (timehands->th_counter->tc_frequency);
485 1.1 simonb }
486 1.1 simonb
487 1.1 simonb /*
488 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
489 1.1 simonb * when we booted.
490 1.1 simonb * XXX: not locked.
491 1.1 simonb */
492 1.1 simonb void
493 1.1 simonb tc_setclock(struct timespec *ts)
494 1.1 simonb {
495 1.1 simonb struct timespec ts2;
496 1.1 simonb struct bintime bt, bt2;
497 1.1 simonb
498 1.2 kardel nsetclock.ev_count++;
499 1.1 simonb binuptime(&bt2);
500 1.1 simonb timespec2bintime(ts, &bt);
501 1.1 simonb bintime_sub(&bt, &bt2);
502 1.4 kardel bintime_add(&bt2, &timebasebin);
503 1.4 kardel timebasebin = bt;
504 1.1 simonb
505 1.1 simonb /* XXX fiddle all the little crinkly bits around the fiords... */
506 1.1 simonb tc_windup();
507 1.1 simonb if (timestepwarnings) {
508 1.1 simonb bintime2timespec(&bt2, &ts2);
509 1.1 simonb log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
510 1.1 simonb (intmax_t)ts2.tv_sec, ts2.tv_nsec,
511 1.1 simonb (intmax_t)ts->tv_sec, ts->tv_nsec);
512 1.1 simonb }
513 1.1 simonb }
514 1.1 simonb
515 1.1 simonb /*
516 1.1 simonb * Initialize the next struct timehands in the ring and make
517 1.1 simonb * it the active timehands. Along the way we might switch to a different
518 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
519 1.1 simonb */
520 1.1 simonb static void
521 1.1 simonb tc_windup(void)
522 1.1 simonb {
523 1.1 simonb struct bintime bt;
524 1.1 simonb struct timehands *th, *tho;
525 1.1 simonb u_int64_t scale;
526 1.1 simonb u_int delta, ncount, ogen;
527 1.1 simonb int i;
528 1.1 simonb time_t t;
529 1.1 simonb
530 1.1 simonb /*
531 1.1 simonb * Make the next timehands a copy of the current one, but do not
532 1.1 simonb * overwrite the generation or next pointer. While we update
533 1.1 simonb * the contents, the generation must be zero.
534 1.1 simonb */
535 1.1 simonb tho = timehands;
536 1.1 simonb th = tho->th_next;
537 1.1 simonb ogen = th->th_generation;
538 1.1 simonb th->th_generation = 0;
539 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
540 1.1 simonb
541 1.1 simonb /*
542 1.1 simonb * Capture a timecounter delta on the current timecounter and if
543 1.1 simonb * changing timecounters, a counter value from the new timecounter.
544 1.1 simonb * Update the offset fields accordingly.
545 1.1 simonb */
546 1.1 simonb delta = tc_delta(th);
547 1.1 simonb if (th->th_counter != timecounter)
548 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
549 1.1 simonb else
550 1.1 simonb ncount = 0;
551 1.1 simonb th->th_offset_count += delta;
552 1.1 simonb th->th_offset_count &= th->th_counter->tc_counter_mask;
553 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
554 1.1 simonb
555 1.1 simonb /*
556 1.1 simonb * Hardware latching timecounters may not generate interrupts on
557 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
558 1.1 simonb * the hardware might capture a count which is later than the one we
559 1.1 simonb * got above, and therefore possibly in the next NTP second which might
560 1.1 simonb * have a different rate than the current NTP second. It doesn't
561 1.1 simonb * matter in practice.
562 1.1 simonb */
563 1.1 simonb if (tho->th_counter->tc_poll_pps)
564 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
565 1.1 simonb
566 1.1 simonb /*
567 1.1 simonb * Deal with NTP second processing. The for loop normally
568 1.1 simonb * iterates at most once, but in extreme situations it might
569 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
570 1.1 simonb * At boot, the time step can be large when the TOD hardware
571 1.1 simonb * has been read, so on really large steps, we call
572 1.1 simonb * ntp_update_second only twice. We need to call it twice in
573 1.1 simonb * case we missed a leap second.
574 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
575 1.2 kardel * the adjustment resulting from adjtime() calls.
576 1.1 simonb */
577 1.1 simonb bt = th->th_offset;
578 1.4 kardel bintime_add(&bt, &timebasebin);
579 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
580 1.1 simonb if (i > LARGE_STEP)
581 1.1 simonb i = 2;
582 1.1 simonb for (; i > 0; i--) {
583 1.1 simonb t = bt.sec;
584 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
585 1.1 simonb if (bt.sec != t)
586 1.4 kardel timebasebin.sec += bt.sec - t;
587 1.1 simonb }
588 1.2 kardel
589 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
590 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
591 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
592 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
593 1.1 simonb
594 1.1 simonb /* Now is a good time to change timecounters. */
595 1.1 simonb if (th->th_counter != timecounter) {
596 1.6 bjh21 char freqstr[9];
597 1.1 simonb th->th_counter = timecounter;
598 1.1 simonb th->th_offset_count = ncount;
599 1.2 kardel
600 1.6 bjh21 humanize_number(freqstr, sizeof(freqstr),
601 1.6 bjh21 timecounter->tc_frequency, "Hz", 1000);
602 1.6 bjh21 printf("timecounter: selected timecounter \"%s\" "
603 1.6 bjh21 "frequency %s quality %d\n",
604 1.6 bjh21 timecounter->tc_name, freqstr, timecounter->tc_quality);
605 1.1 simonb }
606 1.1 simonb
607 1.1 simonb /*-
608 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
609 1.1 simonb * fractions of a second per period of the hardware counter, taking
610 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
611 1.1 simonb * processing provides us with.
612 1.1 simonb *
613 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
614 1.1 simonb * fraction and we want 64 bit binary fraction of second:
615 1.1 simonb *
616 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
617 1.1 simonb *
618 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
619 1.1 simonb * we can only multiply by about 850 without overflowing, but that
620 1.1 simonb * leaves suitably precise fractions for multiply before divide.
621 1.1 simonb *
622 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
623 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
624 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
625 1.1 simonb *
626 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
627 1.1 simonb * to the goddess of code clarity.
628 1.1 simonb *
629 1.1 simonb */
630 1.1 simonb scale = (u_int64_t)1 << 63;
631 1.1 simonb scale += (th->th_adjustment / 1024) * 2199;
632 1.1 simonb scale /= th->th_counter->tc_frequency;
633 1.1 simonb th->th_scale = scale * 2;
634 1.1 simonb
635 1.1 simonb /*
636 1.1 simonb * Now that the struct timehands is again consistent, set the new
637 1.1 simonb * generation number, making sure to not make it zero.
638 1.1 simonb */
639 1.1 simonb if (++ogen == 0)
640 1.1 simonb ogen = 1;
641 1.1 simonb th->th_generation = ogen;
642 1.1 simonb
643 1.1 simonb /* Go live with the new struct timehands. */
644 1.1 simonb time_second = th->th_microtime.tv_sec;
645 1.1 simonb time_uptime = th->th_offset.sec;
646 1.1 simonb timehands = th;
647 1.1 simonb }
648 1.1 simonb
649 1.2 kardel #ifdef __FreeBSD__
650 1.1 simonb /* Report or change the active timecounter hardware. */
651 1.1 simonb static int
652 1.1 simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
653 1.1 simonb {
654 1.1 simonb char newname[32];
655 1.1 simonb struct timecounter *newtc, *tc;
656 1.1 simonb int error;
657 1.1 simonb
658 1.1 simonb tc = timecounter;
659 1.1 simonb strlcpy(newname, tc->tc_name, sizeof(newname));
660 1.1 simonb
661 1.1 simonb error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
662 1.1 simonb if (error != 0 || req->newptr == NULL ||
663 1.1 simonb strcmp(newname, tc->tc_name) == 0)
664 1.1 simonb return (error);
665 1.2 kardel
666 1.1 simonb for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
667 1.1 simonb if (strcmp(newname, newtc->tc_name) != 0)
668 1.1 simonb continue;
669 1.1 simonb
670 1.1 simonb /* Warm up new timecounter. */
671 1.1 simonb (void)newtc->tc_get_timecount(newtc);
672 1.1 simonb (void)newtc->tc_get_timecount(newtc);
673 1.1 simonb
674 1.1 simonb timecounter = newtc;
675 1.1 simonb return (0);
676 1.1 simonb }
677 1.1 simonb return (EINVAL);
678 1.1 simonb }
679 1.1 simonb
680 1.1 simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
681 1.1 simonb 0, 0, sysctl_kern_timecounter_hardware, "A", "");
682 1.1 simonb
683 1.1 simonb
684 1.1 simonb /* Report or change the active timecounter hardware. */
685 1.1 simonb static int
686 1.1 simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
687 1.1 simonb {
688 1.1 simonb char buf[32], *spc;
689 1.1 simonb struct timecounter *tc;
690 1.1 simonb int error;
691 1.1 simonb
692 1.1 simonb spc = "";
693 1.1 simonb error = 0;
694 1.1 simonb for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
695 1.1 simonb sprintf(buf, "%s%s(%d)",
696 1.1 simonb spc, tc->tc_name, tc->tc_quality);
697 1.1 simonb error = SYSCTL_OUT(req, buf, strlen(buf));
698 1.1 simonb spc = " ";
699 1.1 simonb }
700 1.1 simonb return (error);
701 1.1 simonb }
702 1.1 simonb
703 1.1 simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
704 1.1 simonb 0, 0, sysctl_kern_timecounter_choice, "A", "");
705 1.2 kardel #endif /* __FreeBSD__ */
706 1.1 simonb
707 1.1 simonb /*
708 1.1 simonb * RFC 2783 PPS-API implementation.
709 1.1 simonb */
710 1.1 simonb
711 1.1 simonb int
712 1.1 simonb pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
713 1.1 simonb {
714 1.1 simonb pps_params_t *app;
715 1.2 kardel pps_info_t *pipi;
716 1.1 simonb #ifdef PPS_SYNC
717 1.2 kardel int *epi;
718 1.1 simonb #endif
719 1.1 simonb
720 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
721 1.1 simonb switch (cmd) {
722 1.1 simonb case PPS_IOC_CREATE:
723 1.1 simonb return (0);
724 1.1 simonb case PPS_IOC_DESTROY:
725 1.1 simonb return (0);
726 1.1 simonb case PPS_IOC_SETPARAMS:
727 1.1 simonb app = (pps_params_t *)data;
728 1.1 simonb if (app->mode & ~pps->ppscap)
729 1.1 simonb return (EINVAL);
730 1.1 simonb pps->ppsparam = *app;
731 1.1 simonb return (0);
732 1.1 simonb case PPS_IOC_GETPARAMS:
733 1.1 simonb app = (pps_params_t *)data;
734 1.1 simonb *app = pps->ppsparam;
735 1.1 simonb app->api_version = PPS_API_VERS_1;
736 1.1 simonb return (0);
737 1.1 simonb case PPS_IOC_GETCAP:
738 1.1 simonb *(int*)data = pps->ppscap;
739 1.1 simonb return (0);
740 1.1 simonb case PPS_IOC_FETCH:
741 1.2 kardel pipi = (pps_info_t *)data;
742 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
743 1.2 kardel *pipi = pps->ppsinfo;
744 1.1 simonb return (0);
745 1.1 simonb case PPS_IOC_KCBIND:
746 1.1 simonb #ifdef PPS_SYNC
747 1.2 kardel epi = (int *)data;
748 1.1 simonb /* XXX Only root should be able to do this */
749 1.2 kardel if (*epi & ~pps->ppscap)
750 1.1 simonb return (EINVAL);
751 1.2 kardel pps->kcmode = *epi;
752 1.1 simonb return (0);
753 1.1 simonb #else
754 1.1 simonb return (EOPNOTSUPP);
755 1.1 simonb #endif
756 1.1 simonb default:
757 1.2 kardel return (EPASSTHROUGH);
758 1.1 simonb }
759 1.1 simonb }
760 1.1 simonb
761 1.1 simonb void
762 1.1 simonb pps_init(struct pps_state *pps)
763 1.1 simonb {
764 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
765 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
766 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
767 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
768 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
769 1.1 simonb }
770 1.1 simonb
771 1.1 simonb void
772 1.1 simonb pps_capture(struct pps_state *pps)
773 1.1 simonb {
774 1.1 simonb struct timehands *th;
775 1.1 simonb
776 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
777 1.1 simonb th = timehands;
778 1.1 simonb pps->capgen = th->th_generation;
779 1.1 simonb pps->capth = th;
780 1.1 simonb pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
781 1.1 simonb if (pps->capgen != th->th_generation)
782 1.1 simonb pps->capgen = 0;
783 1.1 simonb }
784 1.1 simonb
785 1.1 simonb void
786 1.1 simonb pps_event(struct pps_state *pps, int event)
787 1.1 simonb {
788 1.1 simonb struct bintime bt;
789 1.1 simonb struct timespec ts, *tsp, *osp;
790 1.1 simonb u_int tcount, *pcount;
791 1.1 simonb int foff, fhard;
792 1.1 simonb pps_seq_t *pseq;
793 1.1 simonb
794 1.2 kardel KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
795 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
796 1.1 simonb if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
797 1.1 simonb return;
798 1.1 simonb
799 1.1 simonb /* Things would be easier with arrays. */
800 1.1 simonb if (event == PPS_CAPTUREASSERT) {
801 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
802 1.1 simonb osp = &pps->ppsparam.assert_offset;
803 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
804 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
805 1.1 simonb pcount = &pps->ppscount[0];
806 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
807 1.1 simonb } else {
808 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
809 1.1 simonb osp = &pps->ppsparam.clear_offset;
810 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
811 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
812 1.1 simonb pcount = &pps->ppscount[1];
813 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
814 1.1 simonb }
815 1.1 simonb
816 1.1 simonb /*
817 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
818 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
819 1.1 simonb */
820 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
821 1.1 simonb pps->ppstc = pps->capth->th_counter;
822 1.1 simonb *pcount = pps->capcount;
823 1.1 simonb pps->ppscount[2] = pps->capcount;
824 1.1 simonb return;
825 1.1 simonb }
826 1.1 simonb
827 1.1 simonb /* Convert the count to a timespec. */
828 1.1 simonb tcount = pps->capcount - pps->capth->th_offset_count;
829 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
830 1.1 simonb bt = pps->capth->th_offset;
831 1.1 simonb bintime_addx(&bt, pps->capth->th_scale * tcount);
832 1.4 kardel bintime_add(&bt, &timebasebin);
833 1.1 simonb bintime2timespec(&bt, &ts);
834 1.1 simonb
835 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
836 1.1 simonb if (pps->capgen != pps->capth->th_generation)
837 1.1 simonb return;
838 1.1 simonb
839 1.1 simonb *pcount = pps->capcount;
840 1.1 simonb (*pseq)++;
841 1.1 simonb *tsp = ts;
842 1.1 simonb
843 1.1 simonb if (foff) {
844 1.2 kardel timespecadd(tsp, osp, tsp);
845 1.1 simonb if (tsp->tv_nsec < 0) {
846 1.1 simonb tsp->tv_nsec += 1000000000;
847 1.1 simonb tsp->tv_sec -= 1;
848 1.1 simonb }
849 1.1 simonb }
850 1.1 simonb #ifdef PPS_SYNC
851 1.1 simonb if (fhard) {
852 1.1 simonb u_int64_t scale;
853 1.1 simonb
854 1.1 simonb /*
855 1.1 simonb * Feed the NTP PLL/FLL.
856 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
857 1.1 simonb * elapsed since the previous event.
858 1.1 simonb */
859 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
860 1.1 simonb pps->ppscount[2] = pps->capcount;
861 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
862 1.1 simonb scale = (u_int64_t)1 << 63;
863 1.1 simonb scale /= pps->capth->th_counter->tc_frequency;
864 1.1 simonb scale *= 2;
865 1.1 simonb bt.sec = 0;
866 1.1 simonb bt.frac = 0;
867 1.1 simonb bintime_addx(&bt, scale * tcount);
868 1.1 simonb bintime2timespec(&bt, &ts);
869 1.1 simonb hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
870 1.1 simonb }
871 1.1 simonb #endif
872 1.1 simonb }
873 1.1 simonb
874 1.1 simonb /*
875 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
876 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
877 1.1 simonb * used by the get*() family of functions, so their precision depends on
878 1.1 simonb * the update frequency.
879 1.1 simonb */
880 1.1 simonb
881 1.1 simonb static int tc_tick;
882 1.2 kardel #ifdef __FreeBSD__
883 1.1 simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
884 1.2 kardel #endif /* __FreeBSD__ */
885 1.1 simonb
886 1.1 simonb void
887 1.1 simonb tc_ticktock(void)
888 1.1 simonb {
889 1.1 simonb static int count;
890 1.1 simonb
891 1.1 simonb if (++count < tc_tick)
892 1.1 simonb return;
893 1.1 simonb count = 0;
894 1.1 simonb tc_windup();
895 1.1 simonb }
896 1.1 simonb
897 1.2 kardel void
898 1.2 kardel inittimecounter(void)
899 1.1 simonb {
900 1.1 simonb u_int p;
901 1.1 simonb
902 1.1 simonb /*
903 1.1 simonb * Set the initial timeout to
904 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
905 1.1 simonb * People should probably not use the sysctl to set the timeout
906 1.1 simonb * to smaller than its inital value, since that value is the
907 1.1 simonb * smallest reasonable one. If they want better timestamps they
908 1.1 simonb * should use the non-"get"* functions.
909 1.1 simonb */
910 1.1 simonb if (hz > 1000)
911 1.1 simonb tc_tick = (hz + 500) / 1000;
912 1.1 simonb else
913 1.1 simonb tc_tick = 1;
914 1.1 simonb p = (tc_tick * 1000000) / hz;
915 1.2 kardel printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
916 1.1 simonb
917 1.1 simonb /* warm up new timecounter (again) and get rolling. */
918 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
919 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
920 1.1 simonb }
921 1.1 simonb
922 1.2 kardel #ifdef __FreeBSD__
923 1.1 simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
924 1.2 kardel #endif /* __FreeBSD__ */
925 1.2 kardel #endif /* __HAVE_TIMECOUNTER */
926