kern_tc.c revision 1.68 1 1.68 riastrad /* $NetBSD: kern_tc.c,v 1.68 2023/07/17 13:44:24 riastradh Exp $ */
2 1.33 ad
3 1.33 ad /*-
4 1.39 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.33 ad * All rights reserved.
6 1.33 ad *
7 1.39 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.39 ad * by Andrew Doran.
9 1.39 ad *
10 1.33 ad * Redistribution and use in source and binary forms, with or without
11 1.33 ad * modification, are permitted provided that the following conditions
12 1.33 ad * are met:
13 1.33 ad * 1. Redistributions of source code must retain the above copyright
14 1.33 ad * notice, this list of conditions and the following disclaimer.
15 1.33 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.33 ad * notice, this list of conditions and the following disclaimer in the
17 1.33 ad * documentation and/or other materials provided with the distribution.
18 1.33 ad *
19 1.33 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.33 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.33 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.33 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.33 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.33 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.33 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.33 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.33 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.33 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.33 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.33 ad */
31 1.2 kardel
32 1.1 simonb /*-
33 1.1 simonb * ----------------------------------------------------------------------------
34 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
35 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
37 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 1.2 kardel * ---------------------------------------------------------------------------
39 1.1 simonb */
40 1.1 simonb
41 1.1 simonb #include <sys/cdefs.h>
42 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 1.68 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.68 2023/07/17 13:44:24 riastradh Exp $");
44 1.58 rin
45 1.58 rin #ifdef _KERNEL_OPT
46 1.58 rin #include "opt_ntp.h"
47 1.58 rin #endif
48 1.1 simonb
49 1.1 simonb #include <sys/param.h>
50 1.63 riastrad
51 1.61 simonb #include <sys/atomic.h>
52 1.61 simonb #include <sys/evcnt.h>
53 1.67 riastrad #include <sys/ipi.h>
54 1.61 simonb #include <sys/kauth.h>
55 1.1 simonb #include <sys/kernel.h>
56 1.63 riastrad #include <sys/lock.h>
57 1.61 simonb #include <sys/mutex.h>
58 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
59 1.1 simonb #include <sys/sysctl.h>
60 1.1 simonb #include <sys/syslog.h>
61 1.1 simonb #include <sys/systm.h>
62 1.1 simonb #include <sys/timepps.h>
63 1.1 simonb #include <sys/timetc.h>
64 1.1 simonb #include <sys/timex.h>
65 1.39 ad #include <sys/xcall.h>
66 1.2 kardel
67 1.2 kardel /*
68 1.1 simonb * A large step happens on boot. This constant detects such steps.
69 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
70 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
71 1.1 simonb * forever when the time step is large.
72 1.1 simonb */
73 1.1 simonb #define LARGE_STEP 200
74 1.1 simonb
75 1.1 simonb /*
76 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
77 1.1 simonb * in the air. This allows the console and other early stuff to use
78 1.1 simonb * time services.
79 1.1 simonb */
80 1.1 simonb
81 1.1 simonb static u_int
82 1.16 yamt dummy_get_timecount(struct timecounter *tc)
83 1.1 simonb {
84 1.1 simonb static u_int now;
85 1.1 simonb
86 1.59 rin return ++now;
87 1.1 simonb }
88 1.1 simonb
89 1.1 simonb static struct timecounter dummy_timecounter = {
90 1.48 riastrad .tc_get_timecount = dummy_get_timecount,
91 1.48 riastrad .tc_counter_mask = ~0u,
92 1.48 riastrad .tc_frequency = 1000000,
93 1.48 riastrad .tc_name = "dummy",
94 1.48 riastrad .tc_quality = -1000000,
95 1.48 riastrad .tc_priv = NULL,
96 1.1 simonb };
97 1.1 simonb
98 1.1 simonb struct timehands {
99 1.1 simonb /* These fields must be initialized by the driver. */
100 1.40 kardel struct timecounter *th_counter; /* active timecounter */
101 1.40 kardel int64_t th_adjustment; /* frequency adjustment */
102 1.40 kardel /* (NTP/adjtime) */
103 1.57 rin uint64_t th_scale; /* scale factor (counter */
104 1.40 kardel /* tick->time) */
105 1.57 rin uint64_t th_offset_count; /* offset at last time */
106 1.40 kardel /* update (tc_windup()) */
107 1.40 kardel struct bintime th_offset; /* bin (up)time at windup */
108 1.40 kardel struct timeval th_microtime; /* cached microtime */
109 1.40 kardel struct timespec th_nanotime; /* cached nanotime */
110 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
111 1.40 kardel volatile u_int th_generation; /* current genration */
112 1.40 kardel struct timehands *th_next; /* next timehand */
113 1.1 simonb };
114 1.1 simonb
115 1.1 simonb static struct timehands th0;
116 1.10 christos static struct timehands th9 = { .th_next = &th0, };
117 1.10 christos static struct timehands th8 = { .th_next = &th9, };
118 1.10 christos static struct timehands th7 = { .th_next = &th8, };
119 1.10 christos static struct timehands th6 = { .th_next = &th7, };
120 1.10 christos static struct timehands th5 = { .th_next = &th6, };
121 1.10 christos static struct timehands th4 = { .th_next = &th5, };
122 1.10 christos static struct timehands th3 = { .th_next = &th4, };
123 1.10 christos static struct timehands th2 = { .th_next = &th3, };
124 1.10 christos static struct timehands th1 = { .th_next = &th2, };
125 1.1 simonb static struct timehands th0 = {
126 1.10 christos .th_counter = &dummy_timecounter,
127 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
128 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
129 1.10 christos .th_generation = 1,
130 1.10 christos .th_next = &th1,
131 1.1 simonb };
132 1.1 simonb
133 1.1 simonb static struct timehands *volatile timehands = &th0;
134 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
135 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
136 1.1 simonb
137 1.68 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE
138 1.68 riastrad static volatile time_t time__second __cacheline_aligned = 1;
139 1.68 riastrad static volatile time_t time__uptime __cacheline_aligned = 1;
140 1.68 riastrad #else
141 1.63 riastrad static volatile struct {
142 1.63 riastrad uint32_t lo, hi;
143 1.63 riastrad } time__uptime32 __cacheline_aligned = {
144 1.63 riastrad .lo = 1,
145 1.63 riastrad }, time__second32 __cacheline_aligned = {
146 1.63 riastrad .lo = 1,
147 1.63 riastrad };
148 1.63 riastrad #endif
149 1.1 simonb
150 1.4 kardel static struct bintime timebasebin;
151 1.1 simonb
152 1.1 simonb static int timestepwarnings;
153 1.2 kardel
154 1.33 ad kmutex_t timecounter_lock;
155 1.35 ad static u_int timecounter_mods;
156 1.39 ad static volatile int timecounter_removals = 1;
157 1.35 ad static u_int timecounter_bad;
158 1.25 ad
159 1.63 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE
160 1.63 riastrad
161 1.63 riastrad static inline void
162 1.63 riastrad setrealuptime(time_t second, time_t uptime)
163 1.63 riastrad {
164 1.63 riastrad
165 1.63 riastrad atomic_store_relaxed(&time__second, second);
166 1.63 riastrad atomic_store_relaxed(&time__uptime, uptime);
167 1.63 riastrad }
168 1.63 riastrad
169 1.63 riastrad #else
170 1.63 riastrad
171 1.67 riastrad static void
172 1.67 riastrad nullipi(void *cookie)
173 1.67 riastrad {
174 1.67 riastrad }
175 1.67 riastrad
176 1.67 riastrad /*
177 1.67 riastrad * Issue membar_release on this CPU, and force membar_acquire on all
178 1.67 riastrad * CPUs.
179 1.67 riastrad */
180 1.67 riastrad static void
181 1.67 riastrad ipi_barrier(void)
182 1.67 riastrad {
183 1.67 riastrad ipi_msg_t msg = { .func = nullipi };
184 1.67 riastrad
185 1.67 riastrad ipi_broadcast(&msg, /*skip_self*/true);
186 1.67 riastrad ipi_wait(&msg);
187 1.67 riastrad }
188 1.67 riastrad
189 1.63 riastrad static inline void
190 1.63 riastrad setrealuptime(time_t second, time_t uptime)
191 1.63 riastrad {
192 1.63 riastrad uint32_t seclo = second & 0xffffffff, sechi = second >> 32;
193 1.63 riastrad uint32_t uplo = uptime & 0xffffffff, uphi = uptime >> 32;
194 1.63 riastrad
195 1.63 riastrad KDASSERT(mutex_owned(&timecounter_lock));
196 1.63 riastrad
197 1.63 riastrad /*
198 1.63 riastrad * Fast path -- no wraparound, just updating the low bits, so
199 1.63 riastrad * no need for seqlocked access.
200 1.63 riastrad */
201 1.63 riastrad if (__predict_true(sechi == time__second32.hi) &&
202 1.63 riastrad __predict_true(uphi == time__uptime32.hi)) {
203 1.63 riastrad atomic_store_relaxed(&time__second32.lo, seclo);
204 1.63 riastrad atomic_store_relaxed(&time__uptime32.lo, uplo);
205 1.63 riastrad return;
206 1.63 riastrad }
207 1.63 riastrad
208 1.63 riastrad atomic_store_relaxed(&time__second32.hi, 0xffffffff);
209 1.63 riastrad atomic_store_relaxed(&time__uptime32.hi, 0xffffffff);
210 1.67 riastrad ipi_barrier();
211 1.63 riastrad atomic_store_relaxed(&time__second32.lo, seclo);
212 1.63 riastrad atomic_store_relaxed(&time__uptime32.lo, uplo);
213 1.67 riastrad ipi_barrier();
214 1.63 riastrad atomic_store_relaxed(&time__second32.hi, sechi);
215 1.64 riastrad atomic_store_relaxed(&time__uptime32.hi, uphi);
216 1.63 riastrad }
217 1.63 riastrad
218 1.63 riastrad time_t
219 1.63 riastrad getrealtime(void)
220 1.63 riastrad {
221 1.63 riastrad uint32_t lo, hi;
222 1.63 riastrad
223 1.63 riastrad do {
224 1.63 riastrad for (;;) {
225 1.63 riastrad hi = atomic_load_relaxed(&time__second32.hi);
226 1.63 riastrad if (__predict_true(hi != 0xffffffff))
227 1.63 riastrad break;
228 1.63 riastrad SPINLOCK_BACKOFF_HOOK;
229 1.63 riastrad }
230 1.67 riastrad __insn_barrier();
231 1.63 riastrad lo = atomic_load_relaxed(&time__second32.lo);
232 1.67 riastrad __insn_barrier();
233 1.63 riastrad } while (hi != atomic_load_relaxed(&time__second32.hi));
234 1.63 riastrad
235 1.63 riastrad return ((time_t)hi << 32) | lo;
236 1.63 riastrad }
237 1.63 riastrad
238 1.63 riastrad time_t
239 1.63 riastrad getuptime(void)
240 1.63 riastrad {
241 1.63 riastrad uint32_t lo, hi;
242 1.63 riastrad
243 1.63 riastrad do {
244 1.63 riastrad for (;;) {
245 1.63 riastrad hi = atomic_load_relaxed(&time__uptime32.hi);
246 1.63 riastrad if (__predict_true(hi != 0xffffffff))
247 1.63 riastrad break;
248 1.63 riastrad SPINLOCK_BACKOFF_HOOK;
249 1.63 riastrad }
250 1.67 riastrad __insn_barrier();
251 1.63 riastrad lo = atomic_load_relaxed(&time__uptime32.lo);
252 1.67 riastrad __insn_barrier();
253 1.63 riastrad } while (hi != atomic_load_relaxed(&time__uptime32.hi));
254 1.63 riastrad
255 1.63 riastrad return ((time_t)hi << 32) | lo;
256 1.63 riastrad }
257 1.63 riastrad
258 1.63 riastrad time_t
259 1.63 riastrad getboottime(void)
260 1.63 riastrad {
261 1.63 riastrad
262 1.63 riastrad return getrealtime() - getuptime();
263 1.63 riastrad }
264 1.63 riastrad
265 1.63 riastrad uint32_t
266 1.63 riastrad getuptime32(void)
267 1.63 riastrad {
268 1.63 riastrad
269 1.63 riastrad return atomic_load_relaxed(&time__uptime32.lo);
270 1.63 riastrad }
271 1.63 riastrad
272 1.63 riastrad #endif /* !defined(__HAVE_ATOMIC64_LOADSTORE) */
273 1.63 riastrad
274 1.2 kardel /*
275 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
276 1.2 kardel */
277 1.2 kardel static int
278 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
279 1.2 kardel {
280 1.2 kardel struct sysctlnode node;
281 1.2 kardel int error;
282 1.2 kardel char newname[MAX_TCNAMELEN];
283 1.2 kardel struct timecounter *newtc, *tc;
284 1.2 kardel
285 1.2 kardel tc = timecounter;
286 1.2 kardel
287 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
288 1.2 kardel
289 1.2 kardel node = *rnode;
290 1.2 kardel node.sysctl_data = newname;
291 1.2 kardel node.sysctl_size = sizeof(newname);
292 1.2 kardel
293 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
294 1.2 kardel
295 1.2 kardel if (error ||
296 1.2 kardel newp == NULL ||
297 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
298 1.2 kardel return error;
299 1.1 simonb
300 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
301 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
302 1.26 elad NULL, NULL)) != 0)
303 1.59 rin return error;
304 1.2 kardel
305 1.22 ad if (!cold)
306 1.35 ad mutex_spin_enter(&timecounter_lock);
307 1.23 ad error = EINVAL;
308 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
309 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
310 1.2 kardel continue;
311 1.2 kardel /* Warm up new timecounter. */
312 1.2 kardel (void)newtc->tc_get_timecount(newtc);
313 1.2 kardel (void)newtc->tc_get_timecount(newtc);
314 1.2 kardel timecounter = newtc;
315 1.22 ad error = 0;
316 1.23 ad break;
317 1.23 ad }
318 1.22 ad if (!cold)
319 1.35 ad mutex_spin_exit(&timecounter_lock);
320 1.22 ad return error;
321 1.2 kardel }
322 1.2 kardel
323 1.2 kardel static int
324 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
325 1.2 kardel {
326 1.9 kardel char buf[MAX_TCNAMELEN+48];
327 1.35 ad char *where;
328 1.2 kardel const char *spc;
329 1.2 kardel struct timecounter *tc;
330 1.2 kardel size_t needed, left, slen;
331 1.35 ad int error, mods;
332 1.2 kardel
333 1.2 kardel if (newp != NULL)
334 1.59 rin return EPERM;
335 1.2 kardel if (namelen != 0)
336 1.59 rin return EINVAL;
337 1.2 kardel
338 1.35 ad mutex_spin_enter(&timecounter_lock);
339 1.35 ad retry:
340 1.2 kardel spc = "";
341 1.2 kardel error = 0;
342 1.2 kardel needed = 0;
343 1.2 kardel left = *oldlenp;
344 1.35 ad where = oldp;
345 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
346 1.2 kardel if (where == NULL) {
347 1.2 kardel needed += sizeof(buf); /* be conservative */
348 1.2 kardel } else {
349 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
350 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
351 1.2 kardel tc->tc_frequency);
352 1.2 kardel if (left < slen + 1)
353 1.2 kardel break;
354 1.35 ad mods = timecounter_mods;
355 1.35 ad mutex_spin_exit(&timecounter_lock);
356 1.2 kardel error = copyout(buf, where, slen + 1);
357 1.35 ad mutex_spin_enter(&timecounter_lock);
358 1.35 ad if (mods != timecounter_mods) {
359 1.35 ad goto retry;
360 1.35 ad }
361 1.2 kardel spc = " ";
362 1.2 kardel where += slen;
363 1.2 kardel needed += slen;
364 1.2 kardel left -= slen;
365 1.2 kardel }
366 1.2 kardel }
367 1.35 ad mutex_spin_exit(&timecounter_lock);
368 1.2 kardel
369 1.2 kardel *oldlenp = needed;
370 1.59 rin return error;
371 1.2 kardel }
372 1.2 kardel
373 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
374 1.2 kardel {
375 1.2 kardel const struct sysctlnode *node;
376 1.2 kardel
377 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
378 1.2 kardel CTLFLAG_PERMANENT,
379 1.2 kardel CTLTYPE_NODE, "timecounter",
380 1.2 kardel SYSCTL_DESCR("time counter information"),
381 1.2 kardel NULL, 0, NULL, 0,
382 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
383 1.2 kardel
384 1.2 kardel if (node != NULL) {
385 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
386 1.2 kardel CTLFLAG_PERMANENT,
387 1.2 kardel CTLTYPE_STRING, "choice",
388 1.2 kardel SYSCTL_DESCR("available counters"),
389 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
390 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
391 1.2 kardel
392 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
393 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 1.2 kardel CTLTYPE_STRING, "hardware",
395 1.2 kardel SYSCTL_DESCR("currently active time counter"),
396 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
397 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
398 1.2 kardel
399 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
400 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 1.2 kardel CTLTYPE_INT, "timestepwarnings",
402 1.2 kardel SYSCTL_DESCR("log time steps"),
403 1.2 kardel NULL, 0, ×tepwarnings, 0,
404 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
405 1.2 kardel }
406 1.2 kardel }
407 1.2 kardel
408 1.32 ad #ifdef TC_COUNTERS
409 1.2 kardel #define TC_STATS(name) \
410 1.2 kardel static struct evcnt n##name = \
411 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
412 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
413 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
414 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
415 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
416 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
417 1.2 kardel TC_STATS(setclock);
418 1.32 ad #define TC_COUNT(var) var.ev_count++
419 1.1 simonb #undef TC_STATS
420 1.32 ad #else
421 1.32 ad #define TC_COUNT(var) /* nothing */
422 1.32 ad #endif /* TC_COUNTERS */
423 1.1 simonb
424 1.1 simonb static void tc_windup(void);
425 1.1 simonb
426 1.1 simonb /*
427 1.1 simonb * Return the difference between the timehands' counter value now and what
428 1.1 simonb * was when we copied it to the timehands' offset_count.
429 1.1 simonb */
430 1.41 uebayasi static inline u_int
431 1.1 simonb tc_delta(struct timehands *th)
432 1.1 simonb {
433 1.1 simonb struct timecounter *tc;
434 1.1 simonb
435 1.1 simonb tc = th->th_counter;
436 1.59 rin return (tc->tc_get_timecount(tc) -
437 1.59 rin th->th_offset_count) & tc->tc_counter_mask;
438 1.1 simonb }
439 1.1 simonb
440 1.1 simonb /*
441 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
442 1.1 simonb * the timehands that we operated on was not updated under our feet. See
443 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
444 1.1 simonb */
445 1.1 simonb
446 1.1 simonb void
447 1.1 simonb binuptime(struct bintime *bt)
448 1.1 simonb {
449 1.1 simonb struct timehands *th;
450 1.39 ad lwp_t *l;
451 1.39 ad u_int lgen, gen;
452 1.1 simonb
453 1.32 ad TC_COUNT(nbinuptime);
454 1.39 ad
455 1.39 ad /*
456 1.39 ad * Provide exclusion against tc_detach().
457 1.39 ad *
458 1.39 ad * We record the number of timecounter removals before accessing
459 1.39 ad * timecounter state. Note that the LWP can be using multiple
460 1.39 ad * "generations" at once, due to interrupts (interrupted while in
461 1.39 ad * this function). Hardware interrupts will borrow the interrupted
462 1.39 ad * LWP's l_tcgen value for this purpose, and can themselves be
463 1.39 ad * interrupted by higher priority interrupts. In this case we need
464 1.39 ad * to ensure that the oldest generation in use is recorded.
465 1.39 ad *
466 1.39 ad * splsched() is too expensive to use, so we take care to structure
467 1.39 ad * this code in such a way that it is not required. Likewise, we
468 1.39 ad * do not disable preemption.
469 1.39 ad *
470 1.39 ad * Memory barriers are also too expensive to use for such a
471 1.39 ad * performance critical function. The good news is that we do not
472 1.39 ad * need memory barriers for this type of exclusion, as the thread
473 1.39 ad * updating timecounter_removals will issue a broadcast cross call
474 1.39 ad * before inspecting our l_tcgen value (this elides memory ordering
475 1.39 ad * issues).
476 1.39 ad */
477 1.39 ad l = curlwp;
478 1.39 ad lgen = l->l_tcgen;
479 1.39 ad if (__predict_true(lgen == 0)) {
480 1.39 ad l->l_tcgen = timecounter_removals;
481 1.39 ad }
482 1.39 ad __insn_barrier();
483 1.39 ad
484 1.1 simonb do {
485 1.1 simonb th = timehands;
486 1.1 simonb gen = th->th_generation;
487 1.1 simonb *bt = th->th_offset;
488 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
489 1.1 simonb } while (gen == 0 || gen != th->th_generation);
490 1.39 ad
491 1.39 ad __insn_barrier();
492 1.39 ad l->l_tcgen = lgen;
493 1.1 simonb }
494 1.1 simonb
495 1.1 simonb void
496 1.1 simonb nanouptime(struct timespec *tsp)
497 1.1 simonb {
498 1.1 simonb struct bintime bt;
499 1.1 simonb
500 1.32 ad TC_COUNT(nnanouptime);
501 1.1 simonb binuptime(&bt);
502 1.1 simonb bintime2timespec(&bt, tsp);
503 1.1 simonb }
504 1.1 simonb
505 1.1 simonb void
506 1.1 simonb microuptime(struct timeval *tvp)
507 1.1 simonb {
508 1.1 simonb struct bintime bt;
509 1.1 simonb
510 1.32 ad TC_COUNT(nmicrouptime);
511 1.1 simonb binuptime(&bt);
512 1.1 simonb bintime2timeval(&bt, tvp);
513 1.1 simonb }
514 1.1 simonb
515 1.1 simonb void
516 1.1 simonb bintime(struct bintime *bt)
517 1.1 simonb {
518 1.1 simonb
519 1.32 ad TC_COUNT(nbintime);
520 1.1 simonb binuptime(bt);
521 1.4 kardel bintime_add(bt, &timebasebin);
522 1.1 simonb }
523 1.1 simonb
524 1.1 simonb void
525 1.1 simonb nanotime(struct timespec *tsp)
526 1.1 simonb {
527 1.1 simonb struct bintime bt;
528 1.1 simonb
529 1.32 ad TC_COUNT(nnanotime);
530 1.1 simonb bintime(&bt);
531 1.1 simonb bintime2timespec(&bt, tsp);
532 1.1 simonb }
533 1.1 simonb
534 1.1 simonb void
535 1.1 simonb microtime(struct timeval *tvp)
536 1.1 simonb {
537 1.1 simonb struct bintime bt;
538 1.1 simonb
539 1.32 ad TC_COUNT(nmicrotime);
540 1.1 simonb bintime(&bt);
541 1.1 simonb bintime2timeval(&bt, tvp);
542 1.1 simonb }
543 1.1 simonb
544 1.1 simonb void
545 1.1 simonb getbinuptime(struct bintime *bt)
546 1.1 simonb {
547 1.1 simonb struct timehands *th;
548 1.1 simonb u_int gen;
549 1.1 simonb
550 1.32 ad TC_COUNT(ngetbinuptime);
551 1.1 simonb do {
552 1.1 simonb th = timehands;
553 1.1 simonb gen = th->th_generation;
554 1.1 simonb *bt = th->th_offset;
555 1.1 simonb } while (gen == 0 || gen != th->th_generation);
556 1.1 simonb }
557 1.1 simonb
558 1.1 simonb void
559 1.1 simonb getnanouptime(struct timespec *tsp)
560 1.1 simonb {
561 1.1 simonb struct timehands *th;
562 1.1 simonb u_int gen;
563 1.1 simonb
564 1.32 ad TC_COUNT(ngetnanouptime);
565 1.1 simonb do {
566 1.1 simonb th = timehands;
567 1.1 simonb gen = th->th_generation;
568 1.1 simonb bintime2timespec(&th->th_offset, tsp);
569 1.1 simonb } while (gen == 0 || gen != th->th_generation);
570 1.1 simonb }
571 1.1 simonb
572 1.1 simonb void
573 1.1 simonb getmicrouptime(struct timeval *tvp)
574 1.1 simonb {
575 1.1 simonb struct timehands *th;
576 1.1 simonb u_int gen;
577 1.1 simonb
578 1.32 ad TC_COUNT(ngetmicrouptime);
579 1.1 simonb do {
580 1.1 simonb th = timehands;
581 1.1 simonb gen = th->th_generation;
582 1.1 simonb bintime2timeval(&th->th_offset, tvp);
583 1.1 simonb } while (gen == 0 || gen != th->th_generation);
584 1.1 simonb }
585 1.1 simonb
586 1.1 simonb void
587 1.1 simonb getbintime(struct bintime *bt)
588 1.1 simonb {
589 1.1 simonb struct timehands *th;
590 1.1 simonb u_int gen;
591 1.1 simonb
592 1.32 ad TC_COUNT(ngetbintime);
593 1.1 simonb do {
594 1.1 simonb th = timehands;
595 1.1 simonb gen = th->th_generation;
596 1.1 simonb *bt = th->th_offset;
597 1.1 simonb } while (gen == 0 || gen != th->th_generation);
598 1.4 kardel bintime_add(bt, &timebasebin);
599 1.1 simonb }
600 1.1 simonb
601 1.47 chs static inline void
602 1.47 chs dogetnanotime(struct timespec *tsp)
603 1.1 simonb {
604 1.1 simonb struct timehands *th;
605 1.1 simonb u_int gen;
606 1.1 simonb
607 1.32 ad TC_COUNT(ngetnanotime);
608 1.1 simonb do {
609 1.1 simonb th = timehands;
610 1.1 simonb gen = th->th_generation;
611 1.1 simonb *tsp = th->th_nanotime;
612 1.1 simonb } while (gen == 0 || gen != th->th_generation);
613 1.1 simonb }
614 1.1 simonb
615 1.1 simonb void
616 1.47 chs getnanotime(struct timespec *tsp)
617 1.47 chs {
618 1.47 chs
619 1.47 chs dogetnanotime(tsp);
620 1.47 chs }
621 1.47 chs
622 1.47 chs void dtrace_getnanotime(struct timespec *tsp);
623 1.47 chs
624 1.47 chs void
625 1.47 chs dtrace_getnanotime(struct timespec *tsp)
626 1.47 chs {
627 1.47 chs
628 1.47 chs dogetnanotime(tsp);
629 1.47 chs }
630 1.47 chs
631 1.47 chs void
632 1.1 simonb getmicrotime(struct timeval *tvp)
633 1.1 simonb {
634 1.1 simonb struct timehands *th;
635 1.1 simonb u_int gen;
636 1.1 simonb
637 1.32 ad TC_COUNT(ngetmicrotime);
638 1.1 simonb do {
639 1.1 simonb th = timehands;
640 1.1 simonb gen = th->th_generation;
641 1.1 simonb *tvp = th->th_microtime;
642 1.1 simonb } while (gen == 0 || gen != th->th_generation);
643 1.1 simonb }
644 1.1 simonb
645 1.54 thorpej void
646 1.54 thorpej getnanoboottime(struct timespec *tsp)
647 1.54 thorpej {
648 1.54 thorpej struct bintime bt;
649 1.54 thorpej
650 1.54 thorpej getbinboottime(&bt);
651 1.54 thorpej bintime2timespec(&bt, tsp);
652 1.54 thorpej }
653 1.54 thorpej
654 1.54 thorpej void
655 1.54 thorpej getmicroboottime(struct timeval *tvp)
656 1.54 thorpej {
657 1.54 thorpej struct bintime bt;
658 1.54 thorpej
659 1.54 thorpej getbinboottime(&bt);
660 1.54 thorpej bintime2timeval(&bt, tvp);
661 1.54 thorpej }
662 1.54 thorpej
663 1.54 thorpej void
664 1.54 thorpej getbinboottime(struct bintime *bt)
665 1.54 thorpej {
666 1.54 thorpej
667 1.54 thorpej /*
668 1.54 thorpej * XXX Need lockless read synchronization around timebasebin
669 1.54 thorpej * (and not just here).
670 1.54 thorpej */
671 1.54 thorpej *bt = timebasebin;
672 1.54 thorpej }
673 1.54 thorpej
674 1.1 simonb /*
675 1.1 simonb * Initialize a new timecounter and possibly use it.
676 1.1 simonb */
677 1.1 simonb void
678 1.1 simonb tc_init(struct timecounter *tc)
679 1.1 simonb {
680 1.1 simonb u_int u;
681 1.1 simonb
682 1.60 simonb KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
683 1.60 simonb tc->tc_name);
684 1.60 simonb
685 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
686 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
687 1.1 simonb u *= 11;
688 1.1 simonb u /= 10;
689 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
690 1.1 simonb tc->tc_quality = -2000;
691 1.18 ad aprint_verbose(
692 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
693 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
694 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
695 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
696 1.18 ad aprint_verbose(
697 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
698 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
699 1.7 bjh21 tc->tc_quality);
700 1.1 simonb }
701 1.1 simonb
702 1.33 ad mutex_spin_enter(&timecounter_lock);
703 1.1 simonb tc->tc_next = timecounters;
704 1.1 simonb timecounters = tc;
705 1.35 ad timecounter_mods++;
706 1.1 simonb /*
707 1.1 simonb * Never automatically use a timecounter with negative quality.
708 1.1 simonb * Even though we run on the dummy counter, switching here may be
709 1.1 simonb * worse since this timecounter may not be monotonous.
710 1.1 simonb */
711 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
712 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
713 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
714 1.22 ad (void)tc->tc_get_timecount(tc);
715 1.22 ad (void)tc->tc_get_timecount(tc);
716 1.22 ad timecounter = tc;
717 1.22 ad tc_windup();
718 1.22 ad }
719 1.33 ad mutex_spin_exit(&timecounter_lock);
720 1.35 ad }
721 1.35 ad
722 1.35 ad /*
723 1.35 ad * Pick a new timecounter due to the existing counter going bad.
724 1.35 ad */
725 1.35 ad static void
726 1.35 ad tc_pick(void)
727 1.35 ad {
728 1.35 ad struct timecounter *best, *tc;
729 1.35 ad
730 1.51 riastrad KASSERT(mutex_owned(&timecounter_lock));
731 1.35 ad
732 1.35 ad for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
733 1.35 ad if (tc->tc_quality > best->tc_quality)
734 1.35 ad best = tc;
735 1.35 ad else if (tc->tc_quality < best->tc_quality)
736 1.35 ad continue;
737 1.35 ad else if (tc->tc_frequency > best->tc_frequency)
738 1.35 ad best = tc;
739 1.35 ad }
740 1.35 ad (void)best->tc_get_timecount(best);
741 1.35 ad (void)best->tc_get_timecount(best);
742 1.35 ad timecounter = best;
743 1.35 ad }
744 1.35 ad
745 1.35 ad /*
746 1.35 ad * A timecounter has gone bad, arrange to pick a new one at the next
747 1.35 ad * clock tick.
748 1.35 ad */
749 1.35 ad void
750 1.35 ad tc_gonebad(struct timecounter *tc)
751 1.35 ad {
752 1.35 ad
753 1.35 ad tc->tc_quality = -100;
754 1.35 ad membar_producer();
755 1.35 ad atomic_inc_uint(&timecounter_bad);
756 1.1 simonb }
757 1.1 simonb
758 1.29 dyoung /*
759 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
760 1.29 dyoung */
761 1.29 dyoung int
762 1.29 dyoung tc_detach(struct timecounter *target)
763 1.29 dyoung {
764 1.35 ad struct timecounter *tc;
765 1.29 dyoung struct timecounter **tcp = NULL;
766 1.39 ad int removals;
767 1.39 ad lwp_t *l;
768 1.29 dyoung
769 1.39 ad /* First, find the timecounter. */
770 1.35 ad mutex_spin_enter(&timecounter_lock);
771 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
772 1.29 dyoung tc != NULL;
773 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
774 1.29 dyoung if (tc == target)
775 1.29 dyoung break;
776 1.29 dyoung }
777 1.29 dyoung if (tc == NULL) {
778 1.39 ad mutex_spin_exit(&timecounter_lock);
779 1.39 ad return ESRCH;
780 1.39 ad }
781 1.39 ad
782 1.39 ad /* And now, remove it. */
783 1.39 ad *tcp = tc->tc_next;
784 1.39 ad if (timecounter == target) {
785 1.39 ad tc_pick();
786 1.39 ad tc_windup();
787 1.39 ad }
788 1.39 ad timecounter_mods++;
789 1.39 ad removals = timecounter_removals++;
790 1.39 ad mutex_spin_exit(&timecounter_lock);
791 1.39 ad
792 1.39 ad /*
793 1.39 ad * We now have to determine if any threads in the system are still
794 1.39 ad * making use of this timecounter.
795 1.39 ad *
796 1.39 ad * We issue a broadcast cross call to elide memory ordering issues,
797 1.39 ad * then scan all LWPs in the system looking at each's timecounter
798 1.39 ad * generation number. We need to see a value of zero (not actively
799 1.39 ad * using a timecounter) or a value greater than our removal value.
800 1.39 ad *
801 1.39 ad * We may race with threads that read `timecounter_removals' and
802 1.39 ad * and then get preempted before updating `l_tcgen'. This is not
803 1.39 ad * a problem, since it means that these threads have not yet started
804 1.39 ad * accessing timecounter state. All we do need is one clean
805 1.39 ad * snapshot of the system where every thread appears not to be using
806 1.39 ad * old timecounter state.
807 1.39 ad */
808 1.39 ad for (;;) {
809 1.52 uwe xc_barrier(0);
810 1.39 ad
811 1.55 ad mutex_enter(&proc_lock);
812 1.39 ad LIST_FOREACH(l, &alllwp, l_list) {
813 1.39 ad if (l->l_tcgen == 0 || l->l_tcgen > removals) {
814 1.39 ad /*
815 1.39 ad * Not using timecounter or old timecounter
816 1.39 ad * state at time of our xcall or later.
817 1.39 ad */
818 1.39 ad continue;
819 1.39 ad }
820 1.39 ad break;
821 1.39 ad }
822 1.55 ad mutex_exit(&proc_lock);
823 1.39 ad
824 1.39 ad /*
825 1.39 ad * If the timecounter is still in use, wait at least 10ms
826 1.39 ad * before retrying.
827 1.39 ad */
828 1.39 ad if (l == NULL) {
829 1.62 riastrad break;
830 1.35 ad }
831 1.39 ad (void)kpause("tcdetach", false, mstohz(10), NULL);
832 1.29 dyoung }
833 1.62 riastrad
834 1.62 riastrad tc->tc_next = NULL;
835 1.62 riastrad return 0;
836 1.29 dyoung }
837 1.29 dyoung
838 1.1 simonb /* Report the frequency of the current timecounter. */
839 1.57 rin uint64_t
840 1.1 simonb tc_getfrequency(void)
841 1.1 simonb {
842 1.1 simonb
843 1.59 rin return timehands->th_counter->tc_frequency;
844 1.1 simonb }
845 1.1 simonb
846 1.1 simonb /*
847 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
848 1.1 simonb * when we booted.
849 1.1 simonb */
850 1.1 simonb void
851 1.38 christos tc_setclock(const struct timespec *ts)
852 1.1 simonb {
853 1.1 simonb struct timespec ts2;
854 1.1 simonb struct bintime bt, bt2;
855 1.1 simonb
856 1.33 ad mutex_spin_enter(&timecounter_lock);
857 1.32 ad TC_COUNT(nsetclock);
858 1.1 simonb binuptime(&bt2);
859 1.1 simonb timespec2bintime(ts, &bt);
860 1.1 simonb bintime_sub(&bt, &bt2);
861 1.4 kardel bintime_add(&bt2, &timebasebin);
862 1.4 kardel timebasebin = bt;
863 1.30 ad tc_windup();
864 1.33 ad mutex_spin_exit(&timecounter_lock);
865 1.1 simonb
866 1.1 simonb if (timestepwarnings) {
867 1.1 simonb bintime2timespec(&bt2, &ts2);
868 1.45 kardel log(LOG_INFO,
869 1.45 kardel "Time stepped from %lld.%09ld to %lld.%09ld\n",
870 1.38 christos (long long)ts2.tv_sec, ts2.tv_nsec,
871 1.38 christos (long long)ts->tv_sec, ts->tv_nsec);
872 1.1 simonb }
873 1.1 simonb }
874 1.1 simonb
875 1.1 simonb /*
876 1.1 simonb * Initialize the next struct timehands in the ring and make
877 1.1 simonb * it the active timehands. Along the way we might switch to a different
878 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
879 1.1 simonb */
880 1.1 simonb static void
881 1.1 simonb tc_windup(void)
882 1.1 simonb {
883 1.1 simonb struct bintime bt;
884 1.1 simonb struct timehands *th, *tho;
885 1.57 rin uint64_t scale;
886 1.1 simonb u_int delta, ncount, ogen;
887 1.13 kardel int i, s_update;
888 1.1 simonb time_t t;
889 1.1 simonb
890 1.51 riastrad KASSERT(mutex_owned(&timecounter_lock));
891 1.30 ad
892 1.13 kardel s_update = 0;
893 1.20 ad
894 1.1 simonb /*
895 1.1 simonb * Make the next timehands a copy of the current one, but do not
896 1.1 simonb * overwrite the generation or next pointer. While we update
897 1.20 ad * the contents, the generation must be zero. Ensure global
898 1.20 ad * visibility of the generation before proceeding.
899 1.1 simonb */
900 1.1 simonb tho = timehands;
901 1.1 simonb th = tho->th_next;
902 1.1 simonb ogen = th->th_generation;
903 1.1 simonb th->th_generation = 0;
904 1.27 ad membar_producer();
905 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
906 1.1 simonb
907 1.1 simonb /*
908 1.1 simonb * Capture a timecounter delta on the current timecounter and if
909 1.1 simonb * changing timecounters, a counter value from the new timecounter.
910 1.1 simonb * Update the offset fields accordingly.
911 1.1 simonb */
912 1.1 simonb delta = tc_delta(th);
913 1.1 simonb if (th->th_counter != timecounter)
914 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
915 1.1 simonb else
916 1.1 simonb ncount = 0;
917 1.1 simonb th->th_offset_count += delta;
918 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
919 1.1 simonb
920 1.1 simonb /*
921 1.1 simonb * Hardware latching timecounters may not generate interrupts on
922 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
923 1.1 simonb * the hardware might capture a count which is later than the one we
924 1.1 simonb * got above, and therefore possibly in the next NTP second which might
925 1.1 simonb * have a different rate than the current NTP second. It doesn't
926 1.1 simonb * matter in practice.
927 1.1 simonb */
928 1.1 simonb if (tho->th_counter->tc_poll_pps)
929 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
930 1.1 simonb
931 1.1 simonb /*
932 1.1 simonb * Deal with NTP second processing. The for loop normally
933 1.1 simonb * iterates at most once, but in extreme situations it might
934 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
935 1.1 simonb * At boot, the time step can be large when the TOD hardware
936 1.1 simonb * has been read, so on really large steps, we call
937 1.1 simonb * ntp_update_second only twice. We need to call it twice in
938 1.1 simonb * case we missed a leap second.
939 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
940 1.2 kardel * the adjustment resulting from adjtime() calls.
941 1.1 simonb */
942 1.1 simonb bt = th->th_offset;
943 1.4 kardel bintime_add(&bt, &timebasebin);
944 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
945 1.1 simonb if (i > LARGE_STEP)
946 1.1 simonb i = 2;
947 1.1 simonb for (; i > 0; i--) {
948 1.1 simonb t = bt.sec;
949 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
950 1.13 kardel s_update = 1;
951 1.1 simonb if (bt.sec != t)
952 1.4 kardel timebasebin.sec += bt.sec - t;
953 1.1 simonb }
954 1.2 kardel
955 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
956 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
957 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
958 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
959 1.1 simonb /* Now is a good time to change timecounters. */
960 1.1 simonb if (th->th_counter != timecounter) {
961 1.1 simonb th->th_counter = timecounter;
962 1.1 simonb th->th_offset_count = ncount;
963 1.13 kardel s_update = 1;
964 1.1 simonb }
965 1.1 simonb
966 1.1 simonb /*-
967 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
968 1.1 simonb * fractions of a second per period of the hardware counter, taking
969 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
970 1.1 simonb * processing provides us with.
971 1.1 simonb *
972 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
973 1.1 simonb * fraction and we want 64 bit binary fraction of second:
974 1.1 simonb *
975 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
976 1.1 simonb *
977 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
978 1.1 simonb * we can only multiply by about 850 without overflowing, but that
979 1.1 simonb * leaves suitably precise fractions for multiply before divide.
980 1.1 simonb *
981 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
982 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
983 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
984 1.1 simonb *
985 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
986 1.1 simonb * to the goddess of code clarity.
987 1.1 simonb *
988 1.1 simonb */
989 1.13 kardel if (s_update) {
990 1.57 rin scale = (uint64_t)1 << 63;
991 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
992 1.13 kardel scale /= th->th_counter->tc_frequency;
993 1.13 kardel th->th_scale = scale * 2;
994 1.13 kardel }
995 1.1 simonb /*
996 1.1 simonb * Now that the struct timehands is again consistent, set the new
997 1.20 ad * generation number, making sure to not make it zero. Ensure
998 1.20 ad * changes are globally visible before changing.
999 1.1 simonb */
1000 1.1 simonb if (++ogen == 0)
1001 1.1 simonb ogen = 1;
1002 1.27 ad membar_producer();
1003 1.1 simonb th->th_generation = ogen;
1004 1.1 simonb
1005 1.20 ad /*
1006 1.20 ad * Go live with the new struct timehands. Ensure changes are
1007 1.20 ad * globally visible before changing.
1008 1.20 ad */
1009 1.63 riastrad setrealuptime(th->th_microtime.tv_sec, th->th_offset.sec);
1010 1.27 ad membar_producer();
1011 1.1 simonb timehands = th;
1012 1.24 ad
1013 1.24 ad /*
1014 1.24 ad * Force users of the old timehand to move on. This is
1015 1.24 ad * necessary for MP systems; we need to ensure that the
1016 1.24 ad * consumers will move away from the old timehand before
1017 1.24 ad * we begin updating it again when we eventually wrap
1018 1.24 ad * around.
1019 1.24 ad */
1020 1.24 ad if (++tho->th_generation == 0)
1021 1.24 ad tho->th_generation = 1;
1022 1.1 simonb }
1023 1.1 simonb
1024 1.1 simonb /*
1025 1.1 simonb * RFC 2783 PPS-API implementation.
1026 1.1 simonb */
1027 1.1 simonb
1028 1.1 simonb int
1029 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
1030 1.1 simonb {
1031 1.1 simonb pps_params_t *app;
1032 1.2 kardel pps_info_t *pipi;
1033 1.1 simonb #ifdef PPS_SYNC
1034 1.2 kardel int *epi;
1035 1.1 simonb #endif
1036 1.1 simonb
1037 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1038 1.33 ad
1039 1.45 kardel KASSERT(pps != NULL);
1040 1.45 kardel
1041 1.1 simonb switch (cmd) {
1042 1.1 simonb case PPS_IOC_CREATE:
1043 1.59 rin return 0;
1044 1.1 simonb case PPS_IOC_DESTROY:
1045 1.59 rin return 0;
1046 1.1 simonb case PPS_IOC_SETPARAMS:
1047 1.1 simonb app = (pps_params_t *)data;
1048 1.1 simonb if (app->mode & ~pps->ppscap)
1049 1.59 rin return EINVAL;
1050 1.1 simonb pps->ppsparam = *app;
1051 1.59 rin return 0;
1052 1.1 simonb case PPS_IOC_GETPARAMS:
1053 1.1 simonb app = (pps_params_t *)data;
1054 1.1 simonb *app = pps->ppsparam;
1055 1.1 simonb app->api_version = PPS_API_VERS_1;
1056 1.59 rin return 0;
1057 1.1 simonb case PPS_IOC_GETCAP:
1058 1.1 simonb *(int*)data = pps->ppscap;
1059 1.59 rin return 0;
1060 1.1 simonb case PPS_IOC_FETCH:
1061 1.2 kardel pipi = (pps_info_t *)data;
1062 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
1063 1.2 kardel *pipi = pps->ppsinfo;
1064 1.59 rin return 0;
1065 1.1 simonb case PPS_IOC_KCBIND:
1066 1.1 simonb #ifdef PPS_SYNC
1067 1.2 kardel epi = (int *)data;
1068 1.1 simonb /* XXX Only root should be able to do this */
1069 1.2 kardel if (*epi & ~pps->ppscap)
1070 1.59 rin return EINVAL;
1071 1.2 kardel pps->kcmode = *epi;
1072 1.59 rin return 0;
1073 1.1 simonb #else
1074 1.59 rin return EOPNOTSUPP;
1075 1.1 simonb #endif
1076 1.1 simonb default:
1077 1.59 rin return EPASSTHROUGH;
1078 1.1 simonb }
1079 1.1 simonb }
1080 1.1 simonb
1081 1.1 simonb void
1082 1.1 simonb pps_init(struct pps_state *pps)
1083 1.1 simonb {
1084 1.33 ad
1085 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1086 1.33 ad
1087 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
1088 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
1089 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
1090 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
1091 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
1092 1.1 simonb }
1093 1.1 simonb
1094 1.45 kardel /*
1095 1.45 kardel * capture a timetamp in the pps structure
1096 1.45 kardel */
1097 1.1 simonb void
1098 1.1 simonb pps_capture(struct pps_state *pps)
1099 1.1 simonb {
1100 1.1 simonb struct timehands *th;
1101 1.1 simonb
1102 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1103 1.33 ad KASSERT(pps != NULL);
1104 1.33 ad
1105 1.1 simonb th = timehands;
1106 1.1 simonb pps->capgen = th->th_generation;
1107 1.1 simonb pps->capth = th;
1108 1.57 rin pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1109 1.1 simonb if (pps->capgen != th->th_generation)
1110 1.1 simonb pps->capgen = 0;
1111 1.1 simonb }
1112 1.1 simonb
1113 1.45 kardel #ifdef PPS_DEBUG
1114 1.45 kardel int ppsdebug = 0;
1115 1.45 kardel #endif
1116 1.45 kardel
1117 1.45 kardel /*
1118 1.45 kardel * process a pps_capture()ed event
1119 1.45 kardel */
1120 1.1 simonb void
1121 1.1 simonb pps_event(struct pps_state *pps, int event)
1122 1.1 simonb {
1123 1.45 kardel pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
1124 1.45 kardel }
1125 1.45 kardel
1126 1.45 kardel /*
1127 1.45 kardel * extended pps api / kernel pll/fll entry point
1128 1.45 kardel *
1129 1.45 kardel * feed reference time stamps to PPS engine
1130 1.45 kardel *
1131 1.45 kardel * will simulate a PPS event and feed
1132 1.45 kardel * the NTP PLL/FLL if requested.
1133 1.45 kardel *
1134 1.45 kardel * the ref time stamps should be roughly once
1135 1.45 kardel * a second but do not need to be exactly in phase
1136 1.45 kardel * with the UTC second but should be close to it.
1137 1.45 kardel * this relaxation of requirements allows callout
1138 1.45 kardel * driven timestamping mechanisms to feed to pps
1139 1.45 kardel * capture/kernel pll logic.
1140 1.45 kardel *
1141 1.45 kardel * calling pattern is:
1142 1.45 kardel * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
1143 1.45 kardel * read timestamp from reference source
1144 1.45 kardel * pps_ref_event()
1145 1.45 kardel *
1146 1.45 kardel * supported refmodes:
1147 1.45 kardel * PPS_REFEVNT_CAPTURE
1148 1.45 kardel * use system timestamp of pps_capture()
1149 1.45 kardel * PPS_REFEVNT_CURRENT
1150 1.45 kardel * use system timestamp of this call
1151 1.45 kardel * PPS_REFEVNT_CAPCUR
1152 1.45 kardel * use average of read capture and current system time stamp
1153 1.45 kardel * PPS_REFEVNT_PPS
1154 1.45 kardel * assume timestamp on second mark - ref_ts is ignored
1155 1.45 kardel *
1156 1.45 kardel */
1157 1.45 kardel
1158 1.45 kardel void
1159 1.45 kardel pps_ref_event(struct pps_state *pps,
1160 1.45 kardel int event,
1161 1.45 kardel struct bintime *ref_ts,
1162 1.45 kardel int refmode
1163 1.45 kardel )
1164 1.45 kardel {
1165 1.45 kardel struct bintime bt; /* current time */
1166 1.45 kardel struct bintime btd; /* time difference */
1167 1.45 kardel struct bintime bt_ref; /* reference time */
1168 1.1 simonb struct timespec ts, *tsp, *osp;
1169 1.45 kardel struct timehands *th;
1170 1.57 rin uint64_t tcount, acount, dcount, *pcount;
1171 1.46 martin int foff, gen;
1172 1.46 martin #ifdef PPS_SYNC
1173 1.46 martin int fhard;
1174 1.46 martin #endif
1175 1.1 simonb pps_seq_t *pseq;
1176 1.1 simonb
1177 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1178 1.33 ad
1179 1.45 kardel KASSERT(pps != NULL);
1180 1.45 kardel
1181 1.45 kardel /* pick up current time stamp if needed */
1182 1.45 kardel if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1183 1.45 kardel /* pick up current time stamp */
1184 1.45 kardel th = timehands;
1185 1.45 kardel gen = th->th_generation;
1186 1.57 rin tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1187 1.45 kardel if (gen != th->th_generation)
1188 1.45 kardel gen = 0;
1189 1.45 kardel
1190 1.45 kardel /* If the timecounter was wound up underneath us, bail out. */
1191 1.45 kardel if (pps->capgen == 0 ||
1192 1.45 kardel pps->capgen != pps->capth->th_generation ||
1193 1.45 kardel gen == 0 ||
1194 1.45 kardel gen != pps->capgen) {
1195 1.45 kardel #ifdef PPS_DEBUG
1196 1.45 kardel if (ppsdebug & 0x1) {
1197 1.45 kardel log(LOG_DEBUG,
1198 1.45 kardel "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1199 1.45 kardel pps, event);
1200 1.45 kardel }
1201 1.45 kardel #endif
1202 1.45 kardel return;
1203 1.45 kardel }
1204 1.45 kardel } else {
1205 1.45 kardel tcount = 0; /* keep GCC happy */
1206 1.45 kardel }
1207 1.45 kardel
1208 1.45 kardel #ifdef PPS_DEBUG
1209 1.45 kardel if (ppsdebug & 0x1) {
1210 1.45 kardel struct timespec tmsp;
1211 1.45 kardel
1212 1.45 kardel if (ref_ts == NULL) {
1213 1.45 kardel tmsp.tv_sec = 0;
1214 1.45 kardel tmsp.tv_nsec = 0;
1215 1.45 kardel } else {
1216 1.45 kardel bintime2timespec(ref_ts, &tmsp);
1217 1.45 kardel }
1218 1.45 kardel
1219 1.45 kardel log(LOG_DEBUG,
1220 1.45 kardel "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1221 1.45 kardel ".%09"PRIi32", refmode=0x%1x)\n",
1222 1.45 kardel pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1223 1.45 kardel }
1224 1.45 kardel #endif
1225 1.1 simonb
1226 1.45 kardel /* setup correct event references */
1227 1.1 simonb if (event == PPS_CAPTUREASSERT) {
1228 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
1229 1.1 simonb osp = &pps->ppsparam.assert_offset;
1230 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1231 1.46 martin #ifdef PPS_SYNC
1232 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
1233 1.46 martin #endif
1234 1.1 simonb pcount = &pps->ppscount[0];
1235 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
1236 1.1 simonb } else {
1237 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
1238 1.1 simonb osp = &pps->ppsparam.clear_offset;
1239 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1240 1.46 martin #ifdef PPS_SYNC
1241 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
1242 1.46 martin #endif
1243 1.1 simonb pcount = &pps->ppscount[1];
1244 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
1245 1.1 simonb }
1246 1.1 simonb
1247 1.45 kardel /* determine system time stamp according to refmode */
1248 1.45 kardel dcount = 0; /* keep GCC happy */
1249 1.45 kardel switch (refmode & PPS_REFEVNT_RMASK) {
1250 1.45 kardel case PPS_REFEVNT_CAPTURE:
1251 1.45 kardel acount = pps->capcount; /* use capture timestamp */
1252 1.45 kardel break;
1253 1.45 kardel
1254 1.45 kardel case PPS_REFEVNT_CURRENT:
1255 1.45 kardel acount = tcount; /* use current timestamp */
1256 1.45 kardel break;
1257 1.45 kardel
1258 1.45 kardel case PPS_REFEVNT_CAPCUR:
1259 1.45 kardel /*
1260 1.45 kardel * calculate counter value between pps_capture() and
1261 1.45 kardel * pps_ref_event()
1262 1.45 kardel */
1263 1.45 kardel dcount = tcount - pps->capcount;
1264 1.45 kardel acount = (dcount / 2) + pps->capcount;
1265 1.45 kardel break;
1266 1.45 kardel
1267 1.45 kardel default: /* ignore call error silently */
1268 1.45 kardel return;
1269 1.45 kardel }
1270 1.45 kardel
1271 1.1 simonb /*
1272 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
1273 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
1274 1.1 simonb */
1275 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
1276 1.1 simonb pps->ppstc = pps->capth->th_counter;
1277 1.45 kardel pps->capcount = acount;
1278 1.45 kardel *pcount = acount;
1279 1.45 kardel pps->ppscount[2] = acount;
1280 1.45 kardel #ifdef PPS_DEBUG
1281 1.45 kardel if (ppsdebug & 0x1) {
1282 1.45 kardel log(LOG_DEBUG,
1283 1.45 kardel "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1284 1.45 kardel pps, event);
1285 1.45 kardel }
1286 1.45 kardel #endif
1287 1.1 simonb return;
1288 1.1 simonb }
1289 1.1 simonb
1290 1.45 kardel pps->capcount = acount;
1291 1.45 kardel
1292 1.45 kardel /* Convert the count to a bintime. */
1293 1.1 simonb bt = pps->capth->th_offset;
1294 1.45 kardel bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1295 1.4 kardel bintime_add(&bt, &timebasebin);
1296 1.45 kardel
1297 1.45 kardel if ((refmode & PPS_REFEVNT_PPS) == 0) {
1298 1.45 kardel /* determine difference to reference time stamp */
1299 1.45 kardel bt_ref = *ref_ts;
1300 1.45 kardel
1301 1.45 kardel btd = bt;
1302 1.45 kardel bintime_sub(&btd, &bt_ref);
1303 1.45 kardel
1304 1.45 kardel /*
1305 1.45 kardel * simulate a PPS timestamp by dropping the fraction
1306 1.45 kardel * and applying the offset
1307 1.45 kardel */
1308 1.45 kardel if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1309 1.45 kardel bt.sec++;
1310 1.45 kardel bt.frac = 0;
1311 1.45 kardel bintime_add(&bt, &btd);
1312 1.45 kardel } else {
1313 1.45 kardel /*
1314 1.45 kardel * create ref_ts from current time -
1315 1.45 kardel * we are supposed to be called on
1316 1.45 kardel * the second mark
1317 1.45 kardel */
1318 1.45 kardel bt_ref = bt;
1319 1.45 kardel if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1320 1.45 kardel bt_ref.sec++;
1321 1.45 kardel bt_ref.frac = 0;
1322 1.45 kardel }
1323 1.45 kardel
1324 1.45 kardel /* convert bintime to timestamp */
1325 1.1 simonb bintime2timespec(&bt, &ts);
1326 1.1 simonb
1327 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
1328 1.1 simonb if (pps->capgen != pps->capth->th_generation)
1329 1.1 simonb return;
1330 1.1 simonb
1331 1.45 kardel /* store time stamp */
1332 1.1 simonb *pcount = pps->capcount;
1333 1.1 simonb (*pseq)++;
1334 1.1 simonb *tsp = ts;
1335 1.1 simonb
1336 1.45 kardel /* add offset correction */
1337 1.1 simonb if (foff) {
1338 1.2 kardel timespecadd(tsp, osp, tsp);
1339 1.1 simonb if (tsp->tv_nsec < 0) {
1340 1.1 simonb tsp->tv_nsec += 1000000000;
1341 1.1 simonb tsp->tv_sec -= 1;
1342 1.1 simonb }
1343 1.1 simonb }
1344 1.45 kardel
1345 1.45 kardel #ifdef PPS_DEBUG
1346 1.45 kardel if (ppsdebug & 0x2) {
1347 1.45 kardel struct timespec ts2;
1348 1.45 kardel struct timespec ts3;
1349 1.45 kardel
1350 1.45 kardel bintime2timespec(&bt_ref, &ts2);
1351 1.45 kardel
1352 1.45 kardel bt.sec = 0;
1353 1.45 kardel bt.frac = 0;
1354 1.45 kardel
1355 1.45 kardel if (refmode & PPS_REFEVNT_CAPCUR) {
1356 1.45 kardel bintime_addx(&bt, pps->capth->th_scale * dcount);
1357 1.45 kardel }
1358 1.45 kardel bintime2timespec(&bt, &ts3);
1359 1.45 kardel
1360 1.45 kardel log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1361 1.45 kardel ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1362 1.45 kardel ts2.tv_sec, (int32_t)ts2.tv_nsec,
1363 1.45 kardel tsp->tv_sec, (int32_t)tsp->tv_nsec,
1364 1.45 kardel timespec2ns(&ts3));
1365 1.45 kardel }
1366 1.45 kardel #endif
1367 1.45 kardel
1368 1.1 simonb #ifdef PPS_SYNC
1369 1.1 simonb if (fhard) {
1370 1.45 kardel uint64_t scale;
1371 1.45 kardel uint64_t div;
1372 1.1 simonb
1373 1.1 simonb /*
1374 1.1 simonb * Feed the NTP PLL/FLL.
1375 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
1376 1.45 kardel * elapsed since the previous event (mod 1 second) thus
1377 1.45 kardel * we are actually looking at the frequency difference scaled
1378 1.45 kardel * in nsec.
1379 1.45 kardel * As the counter time stamps are not truly at 1Hz
1380 1.45 kardel * we need to scale the count by the elapsed
1381 1.45 kardel * reference time.
1382 1.45 kardel * valid sampling interval: [0.5..2[ sec
1383 1.1 simonb */
1384 1.45 kardel
1385 1.45 kardel /* calculate elapsed raw count */
1386 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
1387 1.1 simonb pps->ppscount[2] = pps->capcount;
1388 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
1389 1.45 kardel
1390 1.45 kardel /* calculate elapsed ref time */
1391 1.45 kardel btd = bt_ref;
1392 1.45 kardel bintime_sub(&btd, &pps->ref_time);
1393 1.45 kardel pps->ref_time = bt_ref;
1394 1.45 kardel
1395 1.45 kardel /* check that we stay below 2 sec */
1396 1.45 kardel if (btd.sec < 0 || btd.sec > 1)
1397 1.45 kardel return;
1398 1.45 kardel
1399 1.45 kardel /* we want at least 0.5 sec between samples */
1400 1.45 kardel if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1401 1.45 kardel return;
1402 1.45 kardel
1403 1.45 kardel /*
1404 1.45 kardel * calculate cycles per period by multiplying
1405 1.45 kardel * the frequency with the elapsed period
1406 1.45 kardel * we pick a fraction of 30 bits
1407 1.45 kardel * ~1ns resolution for elapsed time
1408 1.45 kardel */
1409 1.45 kardel div = (uint64_t)btd.sec << 30;
1410 1.45 kardel div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1411 1.45 kardel div *= pps->capth->th_counter->tc_frequency;
1412 1.45 kardel div >>= 30;
1413 1.45 kardel
1414 1.45 kardel if (div == 0) /* safeguard */
1415 1.45 kardel return;
1416 1.45 kardel
1417 1.45 kardel scale = (uint64_t)1 << 63;
1418 1.45 kardel scale /= div;
1419 1.1 simonb scale *= 2;
1420 1.45 kardel
1421 1.1 simonb bt.sec = 0;
1422 1.1 simonb bt.frac = 0;
1423 1.1 simonb bintime_addx(&bt, scale * tcount);
1424 1.1 simonb bintime2timespec(&bt, &ts);
1425 1.45 kardel
1426 1.45 kardel #ifdef PPS_DEBUG
1427 1.45 kardel if (ppsdebug & 0x4) {
1428 1.45 kardel struct timespec ts2;
1429 1.45 kardel int64_t df;
1430 1.45 kardel
1431 1.45 kardel bintime2timespec(&bt_ref, &ts2);
1432 1.45 kardel df = timespec2ns(&ts);
1433 1.45 kardel if (df > 500000000)
1434 1.45 kardel df -= 1000000000;
1435 1.45 kardel log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1436 1.45 kardel ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1437 1.45 kardel ", freqdiff=%"PRIi64" ns/s\n",
1438 1.45 kardel ts2.tv_sec, (int32_t)ts2.tv_nsec,
1439 1.45 kardel tsp->tv_sec, (int32_t)tsp->tv_nsec,
1440 1.45 kardel df);
1441 1.45 kardel }
1442 1.45 kardel #endif
1443 1.45 kardel
1444 1.45 kardel hardpps(tsp, timespec2ns(&ts));
1445 1.1 simonb }
1446 1.1 simonb #endif
1447 1.1 simonb }
1448 1.1 simonb
1449 1.1 simonb /*
1450 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
1451 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
1452 1.1 simonb * used by the get*() family of functions, so their precision depends on
1453 1.1 simonb * the update frequency.
1454 1.1 simonb */
1455 1.1 simonb
1456 1.1 simonb static int tc_tick;
1457 1.1 simonb
1458 1.1 simonb void
1459 1.1 simonb tc_ticktock(void)
1460 1.1 simonb {
1461 1.1 simonb static int count;
1462 1.1 simonb
1463 1.1 simonb if (++count < tc_tick)
1464 1.1 simonb return;
1465 1.1 simonb count = 0;
1466 1.51 riastrad mutex_spin_enter(&timecounter_lock);
1467 1.56 rin if (__predict_false(timecounter_bad != 0)) {
1468 1.35 ad /* An existing timecounter has gone bad, pick a new one. */
1469 1.35 ad (void)atomic_swap_uint(&timecounter_bad, 0);
1470 1.35 ad if (timecounter->tc_quality < 0) {
1471 1.35 ad tc_pick();
1472 1.35 ad }
1473 1.35 ad }
1474 1.1 simonb tc_windup();
1475 1.51 riastrad mutex_spin_exit(&timecounter_lock);
1476 1.1 simonb }
1477 1.1 simonb
1478 1.2 kardel void
1479 1.2 kardel inittimecounter(void)
1480 1.1 simonb {
1481 1.1 simonb u_int p;
1482 1.1 simonb
1483 1.37 kardel mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1484 1.30 ad
1485 1.1 simonb /*
1486 1.1 simonb * Set the initial timeout to
1487 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
1488 1.1 simonb * People should probably not use the sysctl to set the timeout
1489 1.53 msaitoh * to smaller than its initial value, since that value is the
1490 1.1 simonb * smallest reasonable one. If they want better timestamps they
1491 1.1 simonb * should use the non-"get"* functions.
1492 1.1 simonb */
1493 1.1 simonb if (hz > 1000)
1494 1.1 simonb tc_tick = (hz + 500) / 1000;
1495 1.1 simonb else
1496 1.1 simonb tc_tick = 1;
1497 1.1 simonb p = (tc_tick * 1000000) / hz;
1498 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1499 1.18 ad p / 1000, p % 1000);
1500 1.1 simonb
1501 1.1 simonb /* warm up new timecounter (again) and get rolling. */
1502 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1503 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1504 1.1 simonb }
1505