Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.70
      1  1.70  riastrad /* $NetBSD: kern_tc.c,v 1.70 2023/07/17 15:41:05 riastradh Exp $ */
      2  1.33        ad 
      3  1.33        ad /*-
      4  1.39        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  1.33        ad  * All rights reserved.
      6  1.33        ad  *
      7  1.39        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.39        ad  * by Andrew Doran.
      9  1.39        ad  *
     10  1.33        ad  * Redistribution and use in source and binary forms, with or without
     11  1.33        ad  * modification, are permitted provided that the following conditions
     12  1.33        ad  * are met:
     13  1.33        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.33        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.33        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.33        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.33        ad  *    documentation and/or other materials provided with the distribution.
     18  1.33        ad  *
     19  1.33        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.33        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.33        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.33        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.33        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.33        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.33        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.33        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.33        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.33        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.33        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.33        ad  */
     31   1.2    kardel 
     32   1.1    simonb /*-
     33   1.1    simonb  * ----------------------------------------------------------------------------
     34   1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
     35   1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36   1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
     37   1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38   1.2    kardel  * ---------------------------------------------------------------------------
     39   1.1    simonb  */
     40   1.1    simonb 
     41   1.1    simonb #include <sys/cdefs.h>
     42   1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43  1.70  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.70 2023/07/17 15:41:05 riastradh Exp $");
     44  1.58       rin 
     45  1.58       rin #ifdef _KERNEL_OPT
     46  1.58       rin #include "opt_ntp.h"
     47  1.58       rin #endif
     48   1.1    simonb 
     49   1.1    simonb #include <sys/param.h>
     50  1.63  riastrad 
     51  1.61    simonb #include <sys/atomic.h>
     52  1.61    simonb #include <sys/evcnt.h>
     53  1.61    simonb #include <sys/kauth.h>
     54   1.1    simonb #include <sys/kernel.h>
     55  1.63  riastrad #include <sys/lock.h>
     56  1.61    simonb #include <sys/mutex.h>
     57   1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     58   1.1    simonb #include <sys/sysctl.h>
     59   1.1    simonb #include <sys/syslog.h>
     60   1.1    simonb #include <sys/systm.h>
     61   1.1    simonb #include <sys/timepps.h>
     62   1.1    simonb #include <sys/timetc.h>
     63   1.1    simonb #include <sys/timex.h>
     64  1.39        ad #include <sys/xcall.h>
     65   1.2    kardel 
     66   1.2    kardel /*
     67   1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     68   1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     69   1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     70   1.1    simonb  * forever when the time step is large.
     71   1.1    simonb  */
     72   1.1    simonb #define LARGE_STEP	200
     73   1.1    simonb 
     74   1.1    simonb /*
     75   1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     76   1.1    simonb  * in the air.  This allows the console and other early stuff to use
     77   1.1    simonb  * time services.
     78   1.1    simonb  */
     79   1.1    simonb 
     80   1.1    simonb static u_int
     81  1.16      yamt dummy_get_timecount(struct timecounter *tc)
     82   1.1    simonb {
     83   1.1    simonb 	static u_int now;
     84   1.1    simonb 
     85  1.59       rin 	return ++now;
     86   1.1    simonb }
     87   1.1    simonb 
     88   1.1    simonb static struct timecounter dummy_timecounter = {
     89  1.48  riastrad 	.tc_get_timecount	= dummy_get_timecount,
     90  1.48  riastrad 	.tc_counter_mask	= ~0u,
     91  1.48  riastrad 	.tc_frequency		= 1000000,
     92  1.48  riastrad 	.tc_name		= "dummy",
     93  1.48  riastrad 	.tc_quality		= -1000000,
     94  1.48  riastrad 	.tc_priv		= NULL,
     95   1.1    simonb };
     96   1.1    simonb 
     97   1.1    simonb struct timehands {
     98   1.1    simonb 	/* These fields must be initialized by the driver. */
     99  1.40    kardel 	struct timecounter	*th_counter;     /* active timecounter */
    100  1.40    kardel 	int64_t			th_adjustment;   /* frequency adjustment */
    101  1.40    kardel 						 /* (NTP/adjtime) */
    102  1.57       rin 	uint64_t		th_scale;        /* scale factor (counter */
    103  1.40    kardel 						 /* tick->time) */
    104  1.57       rin 	uint64_t 		th_offset_count; /* offset at last time */
    105  1.40    kardel 						 /* update (tc_windup()) */
    106  1.40    kardel 	struct bintime		th_offset;       /* bin (up)time at windup */
    107  1.40    kardel 	struct timeval		th_microtime;    /* cached microtime */
    108  1.40    kardel 	struct timespec		th_nanotime;     /* cached nanotime */
    109   1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
    110  1.40    kardel 	volatile u_int		th_generation;   /* current genration */
    111  1.40    kardel 	struct timehands	*th_next;        /* next timehand */
    112   1.1    simonb };
    113   1.1    simonb 
    114   1.1    simonb static struct timehands th0;
    115  1.10  christos static struct timehands th9 = { .th_next = &th0, };
    116  1.10  christos static struct timehands th8 = { .th_next = &th9, };
    117  1.10  christos static struct timehands th7 = { .th_next = &th8, };
    118  1.10  christos static struct timehands th6 = { .th_next = &th7, };
    119  1.10  christos static struct timehands th5 = { .th_next = &th6, };
    120  1.10  christos static struct timehands th4 = { .th_next = &th5, };
    121  1.10  christos static struct timehands th3 = { .th_next = &th4, };
    122  1.10  christos static struct timehands th2 = { .th_next = &th3, };
    123  1.10  christos static struct timehands th1 = { .th_next = &th2, };
    124   1.1    simonb static struct timehands th0 = {
    125  1.10  christos 	.th_counter = &dummy_timecounter,
    126  1.10  christos 	.th_scale = (uint64_t)-1 / 1000000,
    127  1.10  christos 	.th_offset = { .sec = 1, .frac = 0 },
    128  1.10  christos 	.th_generation = 1,
    129  1.10  christos 	.th_next = &th1,
    130   1.1    simonb };
    131   1.1    simonb 
    132   1.1    simonb static struct timehands *volatile timehands = &th0;
    133   1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
    134   1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
    135   1.1    simonb 
    136  1.68  riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE
    137  1.69  riastrad volatile time_t time__second __cacheline_aligned = 1;
    138  1.69  riastrad volatile time_t time__uptime __cacheline_aligned = 1;
    139  1.68  riastrad #else
    140  1.63  riastrad static volatile struct {
    141  1.63  riastrad 	uint32_t lo, hi;
    142  1.63  riastrad } time__uptime32 __cacheline_aligned = {
    143  1.63  riastrad 	.lo = 1,
    144  1.63  riastrad }, time__second32 __cacheline_aligned = {
    145  1.63  riastrad 	.lo = 1,
    146  1.63  riastrad };
    147  1.63  riastrad #endif
    148   1.1    simonb 
    149   1.4    kardel static struct bintime timebasebin;
    150   1.1    simonb 
    151   1.1    simonb static int timestepwarnings;
    152   1.2    kardel 
    153  1.33        ad kmutex_t timecounter_lock;
    154  1.35        ad static u_int timecounter_mods;
    155  1.39        ad static volatile int timecounter_removals = 1;
    156  1.35        ad static u_int timecounter_bad;
    157  1.25        ad 
    158  1.63  riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE
    159  1.63  riastrad 
    160  1.63  riastrad static inline void
    161  1.63  riastrad setrealuptime(time_t second, time_t uptime)
    162  1.63  riastrad {
    163  1.63  riastrad 
    164  1.63  riastrad 	atomic_store_relaxed(&time__second, second);
    165  1.63  riastrad 	atomic_store_relaxed(&time__uptime, uptime);
    166  1.63  riastrad }
    167  1.63  riastrad 
    168  1.63  riastrad #else
    169  1.63  riastrad 
    170  1.63  riastrad static inline void
    171  1.63  riastrad setrealuptime(time_t second, time_t uptime)
    172  1.63  riastrad {
    173  1.63  riastrad 	uint32_t seclo = second & 0xffffffff, sechi = second >> 32;
    174  1.63  riastrad 	uint32_t uplo = uptime & 0xffffffff, uphi = uptime >> 32;
    175  1.63  riastrad 
    176  1.63  riastrad 	KDASSERT(mutex_owned(&timecounter_lock));
    177  1.63  riastrad 
    178  1.63  riastrad 	/*
    179  1.63  riastrad 	 * Fast path -- no wraparound, just updating the low bits, so
    180  1.63  riastrad 	 * no need for seqlocked access.
    181  1.63  riastrad 	 */
    182  1.63  riastrad 	if (__predict_true(sechi == time__second32.hi) &&
    183  1.63  riastrad 	    __predict_true(uphi == time__uptime32.hi)) {
    184  1.63  riastrad 		atomic_store_relaxed(&time__second32.lo, seclo);
    185  1.63  riastrad 		atomic_store_relaxed(&time__uptime32.lo, uplo);
    186  1.63  riastrad 		return;
    187  1.63  riastrad 	}
    188  1.63  riastrad 
    189  1.63  riastrad 	atomic_store_relaxed(&time__second32.hi, 0xffffffff);
    190  1.63  riastrad 	atomic_store_relaxed(&time__uptime32.hi, 0xffffffff);
    191  1.70  riastrad 	membar_producer();
    192  1.63  riastrad 	atomic_store_relaxed(&time__second32.lo, seclo);
    193  1.63  riastrad 	atomic_store_relaxed(&time__uptime32.lo, uplo);
    194  1.70  riastrad 	membar_producer();
    195  1.63  riastrad 	atomic_store_relaxed(&time__second32.hi, sechi);
    196  1.64  riastrad 	atomic_store_relaxed(&time__uptime32.hi, uphi);
    197  1.63  riastrad }
    198  1.63  riastrad 
    199  1.63  riastrad time_t
    200  1.63  riastrad getrealtime(void)
    201  1.63  riastrad {
    202  1.63  riastrad 	uint32_t lo, hi;
    203  1.63  riastrad 
    204  1.63  riastrad 	do {
    205  1.63  riastrad 		for (;;) {
    206  1.63  riastrad 			hi = atomic_load_relaxed(&time__second32.hi);
    207  1.63  riastrad 			if (__predict_true(hi != 0xffffffff))
    208  1.63  riastrad 				break;
    209  1.63  riastrad 			SPINLOCK_BACKOFF_HOOK;
    210  1.63  riastrad 		}
    211  1.70  riastrad 		membar_consumer();
    212  1.63  riastrad 		lo = atomic_load_relaxed(&time__second32.lo);
    213  1.70  riastrad 		membar_consumer();
    214  1.63  riastrad 	} while (hi != atomic_load_relaxed(&time__second32.hi));
    215  1.63  riastrad 
    216  1.63  riastrad 	return ((time_t)hi << 32) | lo;
    217  1.63  riastrad }
    218  1.63  riastrad 
    219  1.63  riastrad time_t
    220  1.63  riastrad getuptime(void)
    221  1.63  riastrad {
    222  1.63  riastrad 	uint32_t lo, hi;
    223  1.63  riastrad 
    224  1.63  riastrad 	do {
    225  1.63  riastrad 		for (;;) {
    226  1.63  riastrad 			hi = atomic_load_relaxed(&time__uptime32.hi);
    227  1.63  riastrad 			if (__predict_true(hi != 0xffffffff))
    228  1.63  riastrad 				break;
    229  1.63  riastrad 			SPINLOCK_BACKOFF_HOOK;
    230  1.63  riastrad 		}
    231  1.70  riastrad 		membar_consumer();
    232  1.63  riastrad 		lo = atomic_load_relaxed(&time__uptime32.lo);
    233  1.70  riastrad 		membar_consumer();
    234  1.63  riastrad 	} while (hi != atomic_load_relaxed(&time__uptime32.hi));
    235  1.63  riastrad 
    236  1.63  riastrad 	return ((time_t)hi << 32) | lo;
    237  1.63  riastrad }
    238  1.63  riastrad 
    239  1.63  riastrad time_t
    240  1.63  riastrad getboottime(void)
    241  1.63  riastrad {
    242  1.63  riastrad 
    243  1.63  riastrad 	return getrealtime() - getuptime();
    244  1.63  riastrad }
    245  1.63  riastrad 
    246  1.63  riastrad uint32_t
    247  1.63  riastrad getuptime32(void)
    248  1.63  riastrad {
    249  1.63  riastrad 
    250  1.63  riastrad 	return atomic_load_relaxed(&time__uptime32.lo);
    251  1.63  riastrad }
    252  1.63  riastrad 
    253  1.63  riastrad #endif	/* !defined(__HAVE_ATOMIC64_LOADSTORE) */
    254  1.63  riastrad 
    255   1.2    kardel /*
    256  1.28      yamt  * sysctl helper routine for kern.timercounter.hardware
    257   1.2    kardel  */
    258   1.2    kardel static int
    259   1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    260   1.2    kardel {
    261   1.2    kardel 	struct sysctlnode node;
    262   1.2    kardel 	int error;
    263   1.2    kardel 	char newname[MAX_TCNAMELEN];
    264   1.2    kardel 	struct timecounter *newtc, *tc;
    265   1.2    kardel 
    266   1.2    kardel 	tc = timecounter;
    267   1.2    kardel 
    268   1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    269   1.2    kardel 
    270   1.2    kardel 	node = *rnode;
    271   1.2    kardel 	node.sysctl_data = newname;
    272   1.2    kardel 	node.sysctl_size = sizeof(newname);
    273   1.2    kardel 
    274   1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    275   1.2    kardel 
    276   1.2    kardel 	if (error ||
    277   1.2    kardel 	    newp == NULL ||
    278   1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    279   1.2    kardel 		return error;
    280   1.1    simonb 
    281  1.26      elad 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    282  1.26      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    283  1.26      elad 	    NULL, NULL)) != 0)
    284  1.59       rin 		return error;
    285   1.2    kardel 
    286  1.22        ad 	if (!cold)
    287  1.35        ad 		mutex_spin_enter(&timecounter_lock);
    288  1.23        ad 	error = EINVAL;
    289   1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    290   1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    291   1.2    kardel 			continue;
    292   1.2    kardel 		/* Warm up new timecounter. */
    293   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    294   1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    295   1.2    kardel 		timecounter = newtc;
    296  1.22        ad 		error = 0;
    297  1.23        ad 		break;
    298  1.23        ad 	}
    299  1.22        ad 	if (!cold)
    300  1.35        ad 		mutex_spin_exit(&timecounter_lock);
    301  1.22        ad 	return error;
    302   1.2    kardel }
    303   1.2    kardel 
    304   1.2    kardel static int
    305   1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    306   1.2    kardel {
    307   1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    308  1.35        ad 	char *where;
    309   1.2    kardel 	const char *spc;
    310   1.2    kardel 	struct timecounter *tc;
    311   1.2    kardel 	size_t needed, left, slen;
    312  1.35        ad 	int error, mods;
    313   1.2    kardel 
    314   1.2    kardel 	if (newp != NULL)
    315  1.59       rin 		return EPERM;
    316   1.2    kardel 	if (namelen != 0)
    317  1.59       rin 		return EINVAL;
    318   1.2    kardel 
    319  1.35        ad 	mutex_spin_enter(&timecounter_lock);
    320  1.35        ad  retry:
    321   1.2    kardel 	spc = "";
    322   1.2    kardel 	error = 0;
    323   1.2    kardel 	needed = 0;
    324   1.2    kardel 	left = *oldlenp;
    325  1.35        ad 	where = oldp;
    326   1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    327   1.2    kardel 		if (where == NULL) {
    328   1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    329   1.2    kardel 		} else {
    330   1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    331   1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    332   1.2    kardel 					tc->tc_frequency);
    333   1.2    kardel 			if (left < slen + 1)
    334   1.2    kardel 				break;
    335  1.35        ad 		 	mods = timecounter_mods;
    336  1.35        ad 			mutex_spin_exit(&timecounter_lock);
    337   1.2    kardel 			error = copyout(buf, where, slen + 1);
    338  1.35        ad 			mutex_spin_enter(&timecounter_lock);
    339  1.35        ad 			if (mods != timecounter_mods) {
    340  1.35        ad 				goto retry;
    341  1.35        ad 			}
    342   1.2    kardel 			spc = " ";
    343   1.2    kardel 			where += slen;
    344   1.2    kardel 			needed += slen;
    345   1.2    kardel 			left -= slen;
    346   1.2    kardel 		}
    347   1.2    kardel 	}
    348  1.35        ad 	mutex_spin_exit(&timecounter_lock);
    349   1.2    kardel 
    350   1.2    kardel 	*oldlenp = needed;
    351  1.59       rin 	return error;
    352   1.2    kardel }
    353   1.2    kardel 
    354   1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    355   1.2    kardel {
    356   1.2    kardel 	const struct sysctlnode *node;
    357   1.2    kardel 
    358   1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    359   1.2    kardel 		       CTLFLAG_PERMANENT,
    360   1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    361   1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    362   1.2    kardel 		       NULL, 0, NULL, 0,
    363   1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    364   1.2    kardel 
    365   1.2    kardel 	if (node != NULL) {
    366   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    367   1.2    kardel 			       CTLFLAG_PERMANENT,
    368   1.2    kardel 			       CTLTYPE_STRING, "choice",
    369   1.2    kardel 			       SYSCTL_DESCR("available counters"),
    370   1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    371   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    372   1.2    kardel 
    373   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    374   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    375   1.2    kardel 			       CTLTYPE_STRING, "hardware",
    376   1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    377   1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    378   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    379   1.2    kardel 
    380   1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    381   1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    382   1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    383   1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    384   1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    385   1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    386   1.2    kardel 	}
    387   1.2    kardel }
    388   1.2    kardel 
    389  1.32        ad #ifdef TC_COUNTERS
    390   1.2    kardel #define	TC_STATS(name)							\
    391   1.2    kardel static struct evcnt n##name =						\
    392   1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    393   1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    394   1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    395   1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    396   1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    397   1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    398   1.2    kardel TC_STATS(setclock);
    399  1.32        ad #define	TC_COUNT(var)	var.ev_count++
    400   1.1    simonb #undef TC_STATS
    401  1.32        ad #else
    402  1.32        ad #define	TC_COUNT(var)	/* nothing */
    403  1.32        ad #endif	/* TC_COUNTERS */
    404   1.1    simonb 
    405   1.1    simonb static void tc_windup(void);
    406   1.1    simonb 
    407   1.1    simonb /*
    408   1.1    simonb  * Return the difference between the timehands' counter value now and what
    409   1.1    simonb  * was when we copied it to the timehands' offset_count.
    410   1.1    simonb  */
    411  1.41  uebayasi static inline u_int
    412   1.1    simonb tc_delta(struct timehands *th)
    413   1.1    simonb {
    414   1.1    simonb 	struct timecounter *tc;
    415   1.1    simonb 
    416   1.1    simonb 	tc = th->th_counter;
    417  1.59       rin 	return (tc->tc_get_timecount(tc) -
    418  1.59       rin 		 th->th_offset_count) & tc->tc_counter_mask;
    419   1.1    simonb }
    420   1.1    simonb 
    421   1.1    simonb /*
    422   1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    423   1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    424  1.21    simonb  * the comment in <sys/timevar.h> for a description of these 12 functions.
    425   1.1    simonb  */
    426   1.1    simonb 
    427   1.1    simonb void
    428   1.1    simonb binuptime(struct bintime *bt)
    429   1.1    simonb {
    430   1.1    simonb 	struct timehands *th;
    431  1.39        ad 	lwp_t *l;
    432  1.39        ad 	u_int lgen, gen;
    433   1.1    simonb 
    434  1.32        ad 	TC_COUNT(nbinuptime);
    435  1.39        ad 
    436  1.39        ad 	/*
    437  1.39        ad 	 * Provide exclusion against tc_detach().
    438  1.39        ad 	 *
    439  1.39        ad 	 * We record the number of timecounter removals before accessing
    440  1.39        ad 	 * timecounter state.  Note that the LWP can be using multiple
    441  1.39        ad 	 * "generations" at once, due to interrupts (interrupted while in
    442  1.39        ad 	 * this function).  Hardware interrupts will borrow the interrupted
    443  1.39        ad 	 * LWP's l_tcgen value for this purpose, and can themselves be
    444  1.39        ad 	 * interrupted by higher priority interrupts.  In this case we need
    445  1.39        ad 	 * to ensure that the oldest generation in use is recorded.
    446  1.39        ad 	 *
    447  1.39        ad 	 * splsched() is too expensive to use, so we take care to structure
    448  1.39        ad 	 * this code in such a way that it is not required.  Likewise, we
    449  1.39        ad 	 * do not disable preemption.
    450  1.39        ad 	 *
    451  1.39        ad 	 * Memory barriers are also too expensive to use for such a
    452  1.39        ad 	 * performance critical function.  The good news is that we do not
    453  1.39        ad 	 * need memory barriers for this type of exclusion, as the thread
    454  1.39        ad 	 * updating timecounter_removals will issue a broadcast cross call
    455  1.39        ad 	 * before inspecting our l_tcgen value (this elides memory ordering
    456  1.39        ad 	 * issues).
    457  1.39        ad 	 */
    458  1.39        ad 	l = curlwp;
    459  1.39        ad 	lgen = l->l_tcgen;
    460  1.39        ad 	if (__predict_true(lgen == 0)) {
    461  1.39        ad 		l->l_tcgen = timecounter_removals;
    462  1.39        ad 	}
    463  1.39        ad 	__insn_barrier();
    464  1.39        ad 
    465   1.1    simonb 	do {
    466   1.1    simonb 		th = timehands;
    467   1.1    simonb 		gen = th->th_generation;
    468   1.1    simonb 		*bt = th->th_offset;
    469   1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    470   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    471  1.39        ad 
    472  1.39        ad 	__insn_barrier();
    473  1.39        ad 	l->l_tcgen = lgen;
    474   1.1    simonb }
    475   1.1    simonb 
    476   1.1    simonb void
    477   1.1    simonb nanouptime(struct timespec *tsp)
    478   1.1    simonb {
    479   1.1    simonb 	struct bintime bt;
    480   1.1    simonb 
    481  1.32        ad 	TC_COUNT(nnanouptime);
    482   1.1    simonb 	binuptime(&bt);
    483   1.1    simonb 	bintime2timespec(&bt, tsp);
    484   1.1    simonb }
    485   1.1    simonb 
    486   1.1    simonb void
    487   1.1    simonb microuptime(struct timeval *tvp)
    488   1.1    simonb {
    489   1.1    simonb 	struct bintime bt;
    490   1.1    simonb 
    491  1.32        ad 	TC_COUNT(nmicrouptime);
    492   1.1    simonb 	binuptime(&bt);
    493   1.1    simonb 	bintime2timeval(&bt, tvp);
    494   1.1    simonb }
    495   1.1    simonb 
    496   1.1    simonb void
    497   1.1    simonb bintime(struct bintime *bt)
    498   1.1    simonb {
    499   1.1    simonb 
    500  1.32        ad 	TC_COUNT(nbintime);
    501   1.1    simonb 	binuptime(bt);
    502   1.4    kardel 	bintime_add(bt, &timebasebin);
    503   1.1    simonb }
    504   1.1    simonb 
    505   1.1    simonb void
    506   1.1    simonb nanotime(struct timespec *tsp)
    507   1.1    simonb {
    508   1.1    simonb 	struct bintime bt;
    509   1.1    simonb 
    510  1.32        ad 	TC_COUNT(nnanotime);
    511   1.1    simonb 	bintime(&bt);
    512   1.1    simonb 	bintime2timespec(&bt, tsp);
    513   1.1    simonb }
    514   1.1    simonb 
    515   1.1    simonb void
    516   1.1    simonb microtime(struct timeval *tvp)
    517   1.1    simonb {
    518   1.1    simonb 	struct bintime bt;
    519   1.1    simonb 
    520  1.32        ad 	TC_COUNT(nmicrotime);
    521   1.1    simonb 	bintime(&bt);
    522   1.1    simonb 	bintime2timeval(&bt, tvp);
    523   1.1    simonb }
    524   1.1    simonb 
    525   1.1    simonb void
    526   1.1    simonb getbinuptime(struct bintime *bt)
    527   1.1    simonb {
    528   1.1    simonb 	struct timehands *th;
    529   1.1    simonb 	u_int gen;
    530   1.1    simonb 
    531  1.32        ad 	TC_COUNT(ngetbinuptime);
    532   1.1    simonb 	do {
    533   1.1    simonb 		th = timehands;
    534   1.1    simonb 		gen = th->th_generation;
    535   1.1    simonb 		*bt = th->th_offset;
    536   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    537   1.1    simonb }
    538   1.1    simonb 
    539   1.1    simonb void
    540   1.1    simonb getnanouptime(struct timespec *tsp)
    541   1.1    simonb {
    542   1.1    simonb 	struct timehands *th;
    543   1.1    simonb 	u_int gen;
    544   1.1    simonb 
    545  1.32        ad 	TC_COUNT(ngetnanouptime);
    546   1.1    simonb 	do {
    547   1.1    simonb 		th = timehands;
    548   1.1    simonb 		gen = th->th_generation;
    549   1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    550   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    551   1.1    simonb }
    552   1.1    simonb 
    553   1.1    simonb void
    554   1.1    simonb getmicrouptime(struct timeval *tvp)
    555   1.1    simonb {
    556   1.1    simonb 	struct timehands *th;
    557   1.1    simonb 	u_int gen;
    558   1.1    simonb 
    559  1.32        ad 	TC_COUNT(ngetmicrouptime);
    560   1.1    simonb 	do {
    561   1.1    simonb 		th = timehands;
    562   1.1    simonb 		gen = th->th_generation;
    563   1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    564   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    565   1.1    simonb }
    566   1.1    simonb 
    567   1.1    simonb void
    568   1.1    simonb getbintime(struct bintime *bt)
    569   1.1    simonb {
    570   1.1    simonb 	struct timehands *th;
    571   1.1    simonb 	u_int gen;
    572   1.1    simonb 
    573  1.32        ad 	TC_COUNT(ngetbintime);
    574   1.1    simonb 	do {
    575   1.1    simonb 		th = timehands;
    576   1.1    simonb 		gen = th->th_generation;
    577   1.1    simonb 		*bt = th->th_offset;
    578   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    579   1.4    kardel 	bintime_add(bt, &timebasebin);
    580   1.1    simonb }
    581   1.1    simonb 
    582  1.47       chs static inline void
    583  1.47       chs dogetnanotime(struct timespec *tsp)
    584   1.1    simonb {
    585   1.1    simonb 	struct timehands *th;
    586   1.1    simonb 	u_int gen;
    587   1.1    simonb 
    588  1.32        ad 	TC_COUNT(ngetnanotime);
    589   1.1    simonb 	do {
    590   1.1    simonb 		th = timehands;
    591   1.1    simonb 		gen = th->th_generation;
    592   1.1    simonb 		*tsp = th->th_nanotime;
    593   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    594   1.1    simonb }
    595   1.1    simonb 
    596   1.1    simonb void
    597  1.47       chs getnanotime(struct timespec *tsp)
    598  1.47       chs {
    599  1.47       chs 
    600  1.47       chs 	dogetnanotime(tsp);
    601  1.47       chs }
    602  1.47       chs 
    603  1.47       chs void dtrace_getnanotime(struct timespec *tsp);
    604  1.47       chs 
    605  1.47       chs void
    606  1.47       chs dtrace_getnanotime(struct timespec *tsp)
    607  1.47       chs {
    608  1.47       chs 
    609  1.47       chs 	dogetnanotime(tsp);
    610  1.47       chs }
    611  1.47       chs 
    612  1.47       chs void
    613   1.1    simonb getmicrotime(struct timeval *tvp)
    614   1.1    simonb {
    615   1.1    simonb 	struct timehands *th;
    616   1.1    simonb 	u_int gen;
    617   1.1    simonb 
    618  1.32        ad 	TC_COUNT(ngetmicrotime);
    619   1.1    simonb 	do {
    620   1.1    simonb 		th = timehands;
    621   1.1    simonb 		gen = th->th_generation;
    622   1.1    simonb 		*tvp = th->th_microtime;
    623   1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    624   1.1    simonb }
    625   1.1    simonb 
    626  1.54   thorpej void
    627  1.54   thorpej getnanoboottime(struct timespec *tsp)
    628  1.54   thorpej {
    629  1.54   thorpej 	struct bintime bt;
    630  1.54   thorpej 
    631  1.54   thorpej 	getbinboottime(&bt);
    632  1.54   thorpej 	bintime2timespec(&bt, tsp);
    633  1.54   thorpej }
    634  1.54   thorpej 
    635  1.54   thorpej void
    636  1.54   thorpej getmicroboottime(struct timeval *tvp)
    637  1.54   thorpej {
    638  1.54   thorpej 	struct bintime bt;
    639  1.54   thorpej 
    640  1.54   thorpej 	getbinboottime(&bt);
    641  1.54   thorpej 	bintime2timeval(&bt, tvp);
    642  1.54   thorpej }
    643  1.54   thorpej 
    644  1.54   thorpej void
    645  1.54   thorpej getbinboottime(struct bintime *bt)
    646  1.54   thorpej {
    647  1.54   thorpej 
    648  1.54   thorpej 	/*
    649  1.54   thorpej 	 * XXX Need lockless read synchronization around timebasebin
    650  1.54   thorpej 	 * (and not just here).
    651  1.54   thorpej 	 */
    652  1.54   thorpej 	*bt = timebasebin;
    653  1.54   thorpej }
    654  1.54   thorpej 
    655   1.1    simonb /*
    656   1.1    simonb  * Initialize a new timecounter and possibly use it.
    657   1.1    simonb  */
    658   1.1    simonb void
    659   1.1    simonb tc_init(struct timecounter *tc)
    660   1.1    simonb {
    661   1.1    simonb 	u_int u;
    662   1.1    simonb 
    663  1.60    simonb 	KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
    664  1.60    simonb 	    tc->tc_name);
    665  1.60    simonb 
    666   1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    667   1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    668   1.1    simonb 	u *= 11;
    669   1.1    simonb 	u /= 10;
    670   1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    671   1.1    simonb 		tc->tc_quality = -2000;
    672  1.18        ad 		aprint_verbose(
    673  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    674   1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    675  1.18        ad 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    676   1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    677  1.18        ad 		aprint_verbose(
    678  1.18        ad 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    679  1.18        ad 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    680   1.7     bjh21 		    tc->tc_quality);
    681   1.1    simonb 	}
    682   1.1    simonb 
    683  1.33        ad 	mutex_spin_enter(&timecounter_lock);
    684   1.1    simonb 	tc->tc_next = timecounters;
    685   1.1    simonb 	timecounters = tc;
    686  1.35        ad 	timecounter_mods++;
    687   1.1    simonb 	/*
    688   1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    689   1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    690   1.1    simonb 	 * worse since this timecounter may not be monotonous.
    691   1.1    simonb 	 */
    692  1.22        ad 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    693  1.24        ad 	    (tc->tc_quality == timecounter->tc_quality &&
    694  1.24        ad 	    tc->tc_frequency > timecounter->tc_frequency))) {
    695  1.22        ad 		(void)tc->tc_get_timecount(tc);
    696  1.22        ad 		(void)tc->tc_get_timecount(tc);
    697  1.22        ad 		timecounter = tc;
    698  1.22        ad 		tc_windup();
    699  1.22        ad 	}
    700  1.33        ad 	mutex_spin_exit(&timecounter_lock);
    701  1.35        ad }
    702  1.35        ad 
    703  1.35        ad /*
    704  1.35        ad  * Pick a new timecounter due to the existing counter going bad.
    705  1.35        ad  */
    706  1.35        ad static void
    707  1.35        ad tc_pick(void)
    708  1.35        ad {
    709  1.35        ad 	struct timecounter *best, *tc;
    710  1.35        ad 
    711  1.51  riastrad 	KASSERT(mutex_owned(&timecounter_lock));
    712  1.35        ad 
    713  1.35        ad 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    714  1.35        ad 		if (tc->tc_quality > best->tc_quality)
    715  1.35        ad 			best = tc;
    716  1.35        ad 		else if (tc->tc_quality < best->tc_quality)
    717  1.35        ad 			continue;
    718  1.35        ad 		else if (tc->tc_frequency > best->tc_frequency)
    719  1.35        ad 			best = tc;
    720  1.35        ad 	}
    721  1.35        ad 	(void)best->tc_get_timecount(best);
    722  1.35        ad 	(void)best->tc_get_timecount(best);
    723  1.35        ad 	timecounter = best;
    724  1.35        ad }
    725  1.35        ad 
    726  1.35        ad /*
    727  1.35        ad  * A timecounter has gone bad, arrange to pick a new one at the next
    728  1.35        ad  * clock tick.
    729  1.35        ad  */
    730  1.35        ad void
    731  1.35        ad tc_gonebad(struct timecounter *tc)
    732  1.35        ad {
    733  1.35        ad 
    734  1.35        ad 	tc->tc_quality = -100;
    735  1.35        ad 	membar_producer();
    736  1.35        ad 	atomic_inc_uint(&timecounter_bad);
    737   1.1    simonb }
    738   1.1    simonb 
    739  1.29    dyoung /*
    740  1.29    dyoung  * Stop using a timecounter and remove it from the timecounters list.
    741  1.29    dyoung  */
    742  1.29    dyoung int
    743  1.29    dyoung tc_detach(struct timecounter *target)
    744  1.29    dyoung {
    745  1.35        ad 	struct timecounter *tc;
    746  1.29    dyoung 	struct timecounter **tcp = NULL;
    747  1.39        ad 	int removals;
    748  1.39        ad 	lwp_t *l;
    749  1.29    dyoung 
    750  1.39        ad 	/* First, find the timecounter. */
    751  1.35        ad 	mutex_spin_enter(&timecounter_lock);
    752  1.29    dyoung 	for (tcp = &timecounters, tc = timecounters;
    753  1.29    dyoung 	     tc != NULL;
    754  1.29    dyoung 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    755  1.29    dyoung 		if (tc == target)
    756  1.29    dyoung 			break;
    757  1.29    dyoung 	}
    758  1.29    dyoung 	if (tc == NULL) {
    759  1.39        ad 		mutex_spin_exit(&timecounter_lock);
    760  1.39        ad 		return ESRCH;
    761  1.39        ad 	}
    762  1.39        ad 
    763  1.39        ad 	/* And now, remove it. */
    764  1.39        ad 	*tcp = tc->tc_next;
    765  1.39        ad 	if (timecounter == target) {
    766  1.39        ad 		tc_pick();
    767  1.39        ad 		tc_windup();
    768  1.39        ad 	}
    769  1.39        ad 	timecounter_mods++;
    770  1.39        ad 	removals = timecounter_removals++;
    771  1.39        ad 	mutex_spin_exit(&timecounter_lock);
    772  1.39        ad 
    773  1.39        ad 	/*
    774  1.39        ad 	 * We now have to determine if any threads in the system are still
    775  1.39        ad 	 * making use of this timecounter.
    776  1.39        ad 	 *
    777  1.39        ad 	 * We issue a broadcast cross call to elide memory ordering issues,
    778  1.39        ad 	 * then scan all LWPs in the system looking at each's timecounter
    779  1.39        ad 	 * generation number.  We need to see a value of zero (not actively
    780  1.39        ad 	 * using a timecounter) or a value greater than our removal value.
    781  1.39        ad 	 *
    782  1.39        ad 	 * We may race with threads that read `timecounter_removals' and
    783  1.39        ad 	 * and then get preempted before updating `l_tcgen'.  This is not
    784  1.39        ad 	 * a problem, since it means that these threads have not yet started
    785  1.39        ad 	 * accessing timecounter state.  All we do need is one clean
    786  1.39        ad 	 * snapshot of the system where every thread appears not to be using
    787  1.39        ad 	 * old timecounter state.
    788  1.39        ad 	 */
    789  1.39        ad 	for (;;) {
    790  1.52       uwe 		xc_barrier(0);
    791  1.39        ad 
    792  1.55        ad 		mutex_enter(&proc_lock);
    793  1.39        ad 		LIST_FOREACH(l, &alllwp, l_list) {
    794  1.39        ad 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    795  1.39        ad 				/*
    796  1.39        ad 				 * Not using timecounter or old timecounter
    797  1.39        ad 				 * state at time of our xcall or later.
    798  1.39        ad 				 */
    799  1.39        ad 				continue;
    800  1.39        ad 			}
    801  1.39        ad 			break;
    802  1.39        ad 		}
    803  1.55        ad 		mutex_exit(&proc_lock);
    804  1.39        ad 
    805  1.39        ad 		/*
    806  1.39        ad 		 * If the timecounter is still in use, wait at least 10ms
    807  1.39        ad 		 * before retrying.
    808  1.39        ad 		 */
    809  1.39        ad 		if (l == NULL) {
    810  1.62  riastrad 			break;
    811  1.35        ad 		}
    812  1.39        ad 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    813  1.29    dyoung 	}
    814  1.62  riastrad 
    815  1.62  riastrad 	tc->tc_next = NULL;
    816  1.62  riastrad 	return 0;
    817  1.29    dyoung }
    818  1.29    dyoung 
    819   1.1    simonb /* Report the frequency of the current timecounter. */
    820  1.57       rin uint64_t
    821   1.1    simonb tc_getfrequency(void)
    822   1.1    simonb {
    823   1.1    simonb 
    824  1.59       rin 	return timehands->th_counter->tc_frequency;
    825   1.1    simonb }
    826   1.1    simonb 
    827   1.1    simonb /*
    828   1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    829   1.1    simonb  * when we booted.
    830   1.1    simonb  */
    831   1.1    simonb void
    832  1.38  christos tc_setclock(const struct timespec *ts)
    833   1.1    simonb {
    834   1.1    simonb 	struct timespec ts2;
    835   1.1    simonb 	struct bintime bt, bt2;
    836   1.1    simonb 
    837  1.33        ad 	mutex_spin_enter(&timecounter_lock);
    838  1.32        ad 	TC_COUNT(nsetclock);
    839   1.1    simonb 	binuptime(&bt2);
    840   1.1    simonb 	timespec2bintime(ts, &bt);
    841   1.1    simonb 	bintime_sub(&bt, &bt2);
    842   1.4    kardel 	bintime_add(&bt2, &timebasebin);
    843   1.4    kardel 	timebasebin = bt;
    844  1.30        ad 	tc_windup();
    845  1.33        ad 	mutex_spin_exit(&timecounter_lock);
    846   1.1    simonb 
    847   1.1    simonb 	if (timestepwarnings) {
    848   1.1    simonb 		bintime2timespec(&bt2, &ts2);
    849  1.45    kardel 		log(LOG_INFO,
    850  1.45    kardel 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
    851  1.38  christos 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    852  1.38  christos 		    (long long)ts->tv_sec, ts->tv_nsec);
    853   1.1    simonb 	}
    854   1.1    simonb }
    855   1.1    simonb 
    856   1.1    simonb /*
    857   1.1    simonb  * Initialize the next struct timehands in the ring and make
    858   1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    859   1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    860   1.1    simonb  */
    861   1.1    simonb static void
    862   1.1    simonb tc_windup(void)
    863   1.1    simonb {
    864   1.1    simonb 	struct bintime bt;
    865   1.1    simonb 	struct timehands *th, *tho;
    866  1.57       rin 	uint64_t scale;
    867   1.1    simonb 	u_int delta, ncount, ogen;
    868  1.13    kardel 	int i, s_update;
    869   1.1    simonb 	time_t t;
    870   1.1    simonb 
    871  1.51  riastrad 	KASSERT(mutex_owned(&timecounter_lock));
    872  1.30        ad 
    873  1.13    kardel 	s_update = 0;
    874  1.20        ad 
    875   1.1    simonb 	/*
    876   1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    877   1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    878  1.20        ad 	 * the contents, the generation must be zero.  Ensure global
    879  1.20        ad 	 * visibility of the generation before proceeding.
    880   1.1    simonb 	 */
    881   1.1    simonb 	tho = timehands;
    882   1.1    simonb 	th = tho->th_next;
    883   1.1    simonb 	ogen = th->th_generation;
    884   1.1    simonb 	th->th_generation = 0;
    885  1.27        ad 	membar_producer();
    886   1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    887   1.1    simonb 
    888   1.1    simonb 	/*
    889   1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    890   1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    891   1.1    simonb 	 * Update the offset fields accordingly.
    892   1.1    simonb 	 */
    893   1.1    simonb 	delta = tc_delta(th);
    894   1.1    simonb 	if (th->th_counter != timecounter)
    895   1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    896   1.1    simonb 	else
    897   1.1    simonb 		ncount = 0;
    898   1.1    simonb 	th->th_offset_count += delta;
    899   1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    900   1.1    simonb 
    901   1.1    simonb 	/*
    902   1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    903   1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    904   1.1    simonb 	 * the hardware might capture a count which is later than the one we
    905   1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    906   1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    907   1.1    simonb 	 * matter in practice.
    908   1.1    simonb 	 */
    909   1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    910   1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    911   1.1    simonb 
    912   1.1    simonb 	/*
    913   1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    914   1.1    simonb 	 * iterates at most once, but in extreme situations it might
    915   1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    916   1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    917   1.1    simonb 	 * has been read, so on really large steps, we call
    918   1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    919   1.1    simonb 	 * case we missed a leap second.
    920   1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    921   1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    922   1.1    simonb 	 */
    923   1.1    simonb 	bt = th->th_offset;
    924   1.4    kardel 	bintime_add(&bt, &timebasebin);
    925   1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    926   1.1    simonb 	if (i > LARGE_STEP)
    927   1.1    simonb 		i = 2;
    928   1.1    simonb 	for (; i > 0; i--) {
    929   1.1    simonb 		t = bt.sec;
    930   1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    931  1.13    kardel 		s_update = 1;
    932   1.1    simonb 		if (bt.sec != t)
    933   1.4    kardel 			timebasebin.sec += bt.sec - t;
    934   1.1    simonb 	}
    935   1.2    kardel 
    936   1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    937   1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    938   1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    939   1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    940   1.1    simonb 	/* Now is a good time to change timecounters. */
    941   1.1    simonb 	if (th->th_counter != timecounter) {
    942   1.1    simonb 		th->th_counter = timecounter;
    943   1.1    simonb 		th->th_offset_count = ncount;
    944  1.13    kardel 		s_update = 1;
    945   1.1    simonb 	}
    946   1.1    simonb 
    947   1.1    simonb 	/*-
    948   1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    949   1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    950   1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    951   1.1    simonb 	 * processing provides us with.
    952   1.1    simonb 	 *
    953   1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    954   1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    955   1.1    simonb 	 *
    956   1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    957   1.1    simonb 	 *
    958   1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    959   1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    960   1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    961   1.1    simonb 	 *
    962   1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    963   1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    964   1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    965   1.1    simonb  	 *
    966   1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    967   1.1    simonb 	 * to the goddess of code clarity.
    968   1.1    simonb 	 *
    969   1.1    simonb 	 */
    970  1.13    kardel 	if (s_update) {
    971  1.57       rin 		scale = (uint64_t)1 << 63;
    972  1.13    kardel 		scale += (th->th_adjustment / 1024) * 2199;
    973  1.13    kardel 		scale /= th->th_counter->tc_frequency;
    974  1.13    kardel 		th->th_scale = scale * 2;
    975  1.13    kardel 	}
    976   1.1    simonb 	/*
    977   1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    978  1.20        ad 	 * generation number, making sure to not make it zero.  Ensure
    979  1.20        ad 	 * changes are globally visible before changing.
    980   1.1    simonb 	 */
    981   1.1    simonb 	if (++ogen == 0)
    982   1.1    simonb 		ogen = 1;
    983  1.27        ad 	membar_producer();
    984   1.1    simonb 	th->th_generation = ogen;
    985   1.1    simonb 
    986  1.20        ad 	/*
    987  1.20        ad 	 * Go live with the new struct timehands.  Ensure changes are
    988  1.20        ad 	 * globally visible before changing.
    989  1.20        ad 	 */
    990  1.63  riastrad 	setrealuptime(th->th_microtime.tv_sec, th->th_offset.sec);
    991  1.27        ad 	membar_producer();
    992   1.1    simonb 	timehands = th;
    993  1.24        ad 
    994  1.24        ad 	/*
    995  1.24        ad 	 * Force users of the old timehand to move on.  This is
    996  1.24        ad 	 * necessary for MP systems; we need to ensure that the
    997  1.24        ad 	 * consumers will move away from the old timehand before
    998  1.24        ad 	 * we begin updating it again when we eventually wrap
    999  1.24        ad 	 * around.
   1000  1.24        ad 	 */
   1001  1.24        ad 	if (++tho->th_generation == 0)
   1002  1.24        ad 		tho->th_generation = 1;
   1003   1.1    simonb }
   1004   1.1    simonb 
   1005   1.1    simonb /*
   1006   1.1    simonb  * RFC 2783 PPS-API implementation.
   1007   1.1    simonb  */
   1008   1.1    simonb 
   1009   1.1    simonb int
   1010  1.19  christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
   1011   1.1    simonb {
   1012   1.1    simonb 	pps_params_t *app;
   1013   1.2    kardel 	pps_info_t *pipi;
   1014   1.1    simonb #ifdef PPS_SYNC
   1015   1.2    kardel 	int *epi;
   1016   1.1    simonb #endif
   1017   1.1    simonb 
   1018  1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
   1019  1.33        ad 
   1020  1.45    kardel 	KASSERT(pps != NULL);
   1021  1.45    kardel 
   1022   1.1    simonb 	switch (cmd) {
   1023   1.1    simonb 	case PPS_IOC_CREATE:
   1024  1.59       rin 		return 0;
   1025   1.1    simonb 	case PPS_IOC_DESTROY:
   1026  1.59       rin 		return 0;
   1027   1.1    simonb 	case PPS_IOC_SETPARAMS:
   1028   1.1    simonb 		app = (pps_params_t *)data;
   1029   1.1    simonb 		if (app->mode & ~pps->ppscap)
   1030  1.59       rin 			return EINVAL;
   1031   1.1    simonb 		pps->ppsparam = *app;
   1032  1.59       rin 		return 0;
   1033   1.1    simonb 	case PPS_IOC_GETPARAMS:
   1034   1.1    simonb 		app = (pps_params_t *)data;
   1035   1.1    simonb 		*app = pps->ppsparam;
   1036   1.1    simonb 		app->api_version = PPS_API_VERS_1;
   1037  1.59       rin 		return 0;
   1038   1.1    simonb 	case PPS_IOC_GETCAP:
   1039   1.1    simonb 		*(int*)data = pps->ppscap;
   1040  1.59       rin 		return 0;
   1041   1.1    simonb 	case PPS_IOC_FETCH:
   1042   1.2    kardel 		pipi = (pps_info_t *)data;
   1043   1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
   1044   1.2    kardel 		*pipi = pps->ppsinfo;
   1045  1.59       rin 		return 0;
   1046   1.1    simonb 	case PPS_IOC_KCBIND:
   1047   1.1    simonb #ifdef PPS_SYNC
   1048   1.2    kardel 		epi = (int *)data;
   1049   1.1    simonb 		/* XXX Only root should be able to do this */
   1050   1.2    kardel 		if (*epi & ~pps->ppscap)
   1051  1.59       rin 			return EINVAL;
   1052   1.2    kardel 		pps->kcmode = *epi;
   1053  1.59       rin 		return 0;
   1054   1.1    simonb #else
   1055  1.59       rin 		return EOPNOTSUPP;
   1056   1.1    simonb #endif
   1057   1.1    simonb 	default:
   1058  1.59       rin 		return EPASSTHROUGH;
   1059   1.1    simonb 	}
   1060   1.1    simonb }
   1061   1.1    simonb 
   1062   1.1    simonb void
   1063   1.1    simonb pps_init(struct pps_state *pps)
   1064   1.1    simonb {
   1065  1.33        ad 
   1066  1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
   1067  1.33        ad 
   1068   1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
   1069   1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
   1070   1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
   1071   1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
   1072   1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
   1073   1.1    simonb }
   1074   1.1    simonb 
   1075  1.45    kardel /*
   1076  1.45    kardel  * capture a timetamp in the pps structure
   1077  1.45    kardel  */
   1078   1.1    simonb void
   1079   1.1    simonb pps_capture(struct pps_state *pps)
   1080   1.1    simonb {
   1081   1.1    simonb 	struct timehands *th;
   1082   1.1    simonb 
   1083  1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
   1084  1.33        ad 	KASSERT(pps != NULL);
   1085  1.33        ad 
   1086   1.1    simonb 	th = timehands;
   1087   1.1    simonb 	pps->capgen = th->th_generation;
   1088   1.1    simonb 	pps->capth = th;
   1089  1.57       rin 	pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1090   1.1    simonb 	if (pps->capgen != th->th_generation)
   1091   1.1    simonb 		pps->capgen = 0;
   1092   1.1    simonb }
   1093   1.1    simonb 
   1094  1.45    kardel #ifdef PPS_DEBUG
   1095  1.45    kardel int ppsdebug = 0;
   1096  1.45    kardel #endif
   1097  1.45    kardel 
   1098  1.45    kardel /*
   1099  1.45    kardel  * process a pps_capture()ed event
   1100  1.45    kardel  */
   1101   1.1    simonb void
   1102   1.1    simonb pps_event(struct pps_state *pps, int event)
   1103   1.1    simonb {
   1104  1.45    kardel 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
   1105  1.45    kardel }
   1106  1.45    kardel 
   1107  1.45    kardel /*
   1108  1.45    kardel  * extended pps api /  kernel pll/fll entry point
   1109  1.45    kardel  *
   1110  1.45    kardel  * feed reference time stamps to PPS engine
   1111  1.45    kardel  *
   1112  1.45    kardel  * will simulate a PPS event and feed
   1113  1.45    kardel  * the NTP PLL/FLL if requested.
   1114  1.45    kardel  *
   1115  1.45    kardel  * the ref time stamps should be roughly once
   1116  1.45    kardel  * a second but do not need to be exactly in phase
   1117  1.45    kardel  * with the UTC second but should be close to it.
   1118  1.45    kardel  * this relaxation of requirements allows callout
   1119  1.45    kardel  * driven timestamping mechanisms to feed to pps
   1120  1.45    kardel  * capture/kernel pll logic.
   1121  1.45    kardel  *
   1122  1.45    kardel  * calling pattern is:
   1123  1.45    kardel  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
   1124  1.45    kardel  *  read timestamp from reference source
   1125  1.45    kardel  *  pps_ref_event()
   1126  1.45    kardel  *
   1127  1.45    kardel  * supported refmodes:
   1128  1.45    kardel  *  PPS_REFEVNT_CAPTURE
   1129  1.45    kardel  *    use system timestamp of pps_capture()
   1130  1.45    kardel  *  PPS_REFEVNT_CURRENT
   1131  1.45    kardel  *    use system timestamp of this call
   1132  1.45    kardel  *  PPS_REFEVNT_CAPCUR
   1133  1.45    kardel  *    use average of read capture and current system time stamp
   1134  1.45    kardel  *  PPS_REFEVNT_PPS
   1135  1.45    kardel  *    assume timestamp on second mark - ref_ts is ignored
   1136  1.45    kardel  *
   1137  1.45    kardel  */
   1138  1.45    kardel 
   1139  1.45    kardel void
   1140  1.45    kardel pps_ref_event(struct pps_state *pps,
   1141  1.45    kardel 	      int event,
   1142  1.45    kardel 	      struct bintime *ref_ts,
   1143  1.45    kardel 	      int refmode
   1144  1.45    kardel 	)
   1145  1.45    kardel {
   1146  1.45    kardel 	struct bintime bt;	/* current time */
   1147  1.45    kardel 	struct bintime btd;	/* time difference */
   1148  1.45    kardel 	struct bintime bt_ref;	/* reference time */
   1149   1.1    simonb 	struct timespec ts, *tsp, *osp;
   1150  1.45    kardel 	struct timehands *th;
   1151  1.57       rin 	uint64_t tcount, acount, dcount, *pcount;
   1152  1.46    martin 	int foff, gen;
   1153  1.46    martin #ifdef PPS_SYNC
   1154  1.46    martin 	int fhard;
   1155  1.46    martin #endif
   1156   1.1    simonb 	pps_seq_t *pseq;
   1157   1.1    simonb 
   1158  1.33        ad 	KASSERT(mutex_owned(&timecounter_lock));
   1159  1.33        ad 
   1160  1.45    kardel 	KASSERT(pps != NULL);
   1161  1.45    kardel 
   1162  1.45    kardel         /* pick up current time stamp if needed */
   1163  1.45    kardel 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
   1164  1.45    kardel 		/* pick up current time stamp */
   1165  1.45    kardel 		th = timehands;
   1166  1.45    kardel 		gen = th->th_generation;
   1167  1.57       rin 		tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1168  1.45    kardel 		if (gen != th->th_generation)
   1169  1.45    kardel 			gen = 0;
   1170  1.45    kardel 
   1171  1.45    kardel 		/* If the timecounter was wound up underneath us, bail out. */
   1172  1.45    kardel 		if (pps->capgen == 0 ||
   1173  1.45    kardel 		    pps->capgen != pps->capth->th_generation ||
   1174  1.45    kardel 		    gen == 0 ||
   1175  1.45    kardel 		    gen != pps->capgen) {
   1176  1.45    kardel #ifdef PPS_DEBUG
   1177  1.45    kardel 			if (ppsdebug & 0x1) {
   1178  1.45    kardel 				log(LOG_DEBUG,
   1179  1.45    kardel 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
   1180  1.45    kardel 				    pps, event);
   1181  1.45    kardel 			}
   1182  1.45    kardel #endif
   1183  1.45    kardel 			return;
   1184  1.45    kardel 		}
   1185  1.45    kardel 	} else {
   1186  1.45    kardel 		tcount = 0;	/* keep GCC happy */
   1187  1.45    kardel 	}
   1188  1.45    kardel 
   1189  1.45    kardel #ifdef PPS_DEBUG
   1190  1.45    kardel 	if (ppsdebug & 0x1) {
   1191  1.45    kardel 		struct timespec tmsp;
   1192  1.45    kardel 
   1193  1.45    kardel 		if (ref_ts == NULL) {
   1194  1.45    kardel 			tmsp.tv_sec = 0;
   1195  1.45    kardel 			tmsp.tv_nsec = 0;
   1196  1.45    kardel 		} else {
   1197  1.45    kardel 			bintime2timespec(ref_ts, &tmsp);
   1198  1.45    kardel 		}
   1199  1.45    kardel 
   1200  1.45    kardel 		log(LOG_DEBUG,
   1201  1.45    kardel 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
   1202  1.45    kardel 		    ".%09"PRIi32", refmode=0x%1x)\n",
   1203  1.45    kardel 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
   1204  1.45    kardel 	}
   1205  1.45    kardel #endif
   1206   1.1    simonb 
   1207  1.45    kardel 	/* setup correct event references */
   1208   1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
   1209   1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
   1210   1.1    simonb 		osp = &pps->ppsparam.assert_offset;
   1211   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
   1212  1.46    martin #ifdef PPS_SYNC
   1213   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
   1214  1.46    martin #endif
   1215   1.1    simonb 		pcount = &pps->ppscount[0];
   1216   1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
   1217   1.1    simonb 	} else {
   1218   1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
   1219   1.1    simonb 		osp = &pps->ppsparam.clear_offset;
   1220   1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
   1221  1.46    martin #ifdef PPS_SYNC
   1222   1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
   1223  1.46    martin #endif
   1224   1.1    simonb 		pcount = &pps->ppscount[1];
   1225   1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
   1226   1.1    simonb 	}
   1227   1.1    simonb 
   1228  1.45    kardel 	/* determine system time stamp according to refmode */
   1229  1.45    kardel 	dcount = 0;		/* keep GCC happy */
   1230  1.45    kardel 	switch (refmode & PPS_REFEVNT_RMASK) {
   1231  1.45    kardel 	case PPS_REFEVNT_CAPTURE:
   1232  1.45    kardel 		acount = pps->capcount;	/* use capture timestamp */
   1233  1.45    kardel 		break;
   1234  1.45    kardel 
   1235  1.45    kardel 	case PPS_REFEVNT_CURRENT:
   1236  1.45    kardel 		acount = tcount; /* use current timestamp */
   1237  1.45    kardel 		break;
   1238  1.45    kardel 
   1239  1.45    kardel 	case PPS_REFEVNT_CAPCUR:
   1240  1.45    kardel 		/*
   1241  1.45    kardel 		 * calculate counter value between pps_capture() and
   1242  1.45    kardel 		 * pps_ref_event()
   1243  1.45    kardel 		 */
   1244  1.45    kardel 		dcount = tcount - pps->capcount;
   1245  1.45    kardel 		acount = (dcount / 2) + pps->capcount;
   1246  1.45    kardel 		break;
   1247  1.45    kardel 
   1248  1.45    kardel 	default:		/* ignore call error silently */
   1249  1.45    kardel 		return;
   1250  1.45    kardel 	}
   1251  1.45    kardel 
   1252   1.1    simonb 	/*
   1253   1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
   1254   1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
   1255   1.1    simonb 	 */
   1256   1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
   1257   1.1    simonb 		pps->ppstc = pps->capth->th_counter;
   1258  1.45    kardel 		pps->capcount = acount;
   1259  1.45    kardel 		*pcount = acount;
   1260  1.45    kardel 		pps->ppscount[2] = acount;
   1261  1.45    kardel #ifdef PPS_DEBUG
   1262  1.45    kardel 		if (ppsdebug & 0x1) {
   1263  1.45    kardel 			log(LOG_DEBUG,
   1264  1.45    kardel 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
   1265  1.45    kardel 			    pps, event);
   1266  1.45    kardel 		}
   1267  1.45    kardel #endif
   1268   1.1    simonb 		return;
   1269   1.1    simonb 	}
   1270   1.1    simonb 
   1271  1.45    kardel 	pps->capcount = acount;
   1272  1.45    kardel 
   1273  1.45    kardel 	/* Convert the count to a bintime. */
   1274   1.1    simonb 	bt = pps->capth->th_offset;
   1275  1.45    kardel 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
   1276   1.4    kardel 	bintime_add(&bt, &timebasebin);
   1277  1.45    kardel 
   1278  1.45    kardel 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
   1279  1.45    kardel 		/* determine difference to reference time stamp */
   1280  1.45    kardel 		bt_ref = *ref_ts;
   1281  1.45    kardel 
   1282  1.45    kardel 		btd = bt;
   1283  1.45    kardel 		bintime_sub(&btd, &bt_ref);
   1284  1.45    kardel 
   1285  1.45    kardel 		/*
   1286  1.45    kardel 		 * simulate a PPS timestamp by dropping the fraction
   1287  1.45    kardel 		 * and applying the offset
   1288  1.45    kardel 		 */
   1289  1.45    kardel 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1290  1.45    kardel 			bt.sec++;
   1291  1.45    kardel 		bt.frac = 0;
   1292  1.45    kardel 		bintime_add(&bt, &btd);
   1293  1.45    kardel 	} else {
   1294  1.45    kardel 		/*
   1295  1.45    kardel 		 * create ref_ts from current time -
   1296  1.45    kardel 		 * we are supposed to be called on
   1297  1.45    kardel 		 * the second mark
   1298  1.45    kardel 		 */
   1299  1.45    kardel 		bt_ref = bt;
   1300  1.45    kardel 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1301  1.45    kardel 			bt_ref.sec++;
   1302  1.45    kardel 		bt_ref.frac = 0;
   1303  1.45    kardel 	}
   1304  1.45    kardel 
   1305  1.45    kardel 	/* convert bintime to timestamp */
   1306   1.1    simonb 	bintime2timespec(&bt, &ts);
   1307   1.1    simonb 
   1308   1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
   1309   1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
   1310   1.1    simonb 		return;
   1311   1.1    simonb 
   1312  1.45    kardel 	/* store time stamp */
   1313   1.1    simonb 	*pcount = pps->capcount;
   1314   1.1    simonb 	(*pseq)++;
   1315   1.1    simonb 	*tsp = ts;
   1316   1.1    simonb 
   1317  1.45    kardel 	/* add offset correction */
   1318   1.1    simonb 	if (foff) {
   1319   1.2    kardel 		timespecadd(tsp, osp, tsp);
   1320   1.1    simonb 		if (tsp->tv_nsec < 0) {
   1321   1.1    simonb 			tsp->tv_nsec += 1000000000;
   1322   1.1    simonb 			tsp->tv_sec -= 1;
   1323   1.1    simonb 		}
   1324   1.1    simonb 	}
   1325  1.45    kardel 
   1326  1.45    kardel #ifdef PPS_DEBUG
   1327  1.45    kardel 	if (ppsdebug & 0x2) {
   1328  1.45    kardel 		struct timespec ts2;
   1329  1.45    kardel 		struct timespec ts3;
   1330  1.45    kardel 
   1331  1.45    kardel 		bintime2timespec(&bt_ref, &ts2);
   1332  1.45    kardel 
   1333  1.45    kardel 		bt.sec = 0;
   1334  1.45    kardel 		bt.frac = 0;
   1335  1.45    kardel 
   1336  1.45    kardel 		if (refmode & PPS_REFEVNT_CAPCUR) {
   1337  1.45    kardel 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
   1338  1.45    kardel 		}
   1339  1.45    kardel 		bintime2timespec(&bt, &ts3);
   1340  1.45    kardel 
   1341  1.45    kardel 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
   1342  1.45    kardel 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
   1343  1.45    kardel 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1344  1.45    kardel 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1345  1.45    kardel 		    timespec2ns(&ts3));
   1346  1.45    kardel 	}
   1347  1.45    kardel #endif
   1348  1.45    kardel 
   1349   1.1    simonb #ifdef PPS_SYNC
   1350   1.1    simonb 	if (fhard) {
   1351  1.45    kardel 		uint64_t scale;
   1352  1.45    kardel 		uint64_t div;
   1353   1.1    simonb 
   1354   1.1    simonb 		/*
   1355   1.1    simonb 		 * Feed the NTP PLL/FLL.
   1356   1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
   1357  1.45    kardel 		 * elapsed since the previous event (mod 1 second) thus
   1358  1.45    kardel 		 * we are actually looking at the frequency difference scaled
   1359  1.45    kardel 		 * in nsec.
   1360  1.45    kardel 		 * As the counter time stamps are not truly at 1Hz
   1361  1.45    kardel 		 * we need to scale the count by the elapsed
   1362  1.45    kardel 		 * reference time.
   1363  1.45    kardel 		 * valid sampling interval: [0.5..2[ sec
   1364   1.1    simonb 		 */
   1365  1.45    kardel 
   1366  1.45    kardel 		/* calculate elapsed raw count */
   1367   1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
   1368   1.1    simonb 		pps->ppscount[2] = pps->capcount;
   1369   1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1370  1.45    kardel 
   1371  1.45    kardel 		/* calculate elapsed ref time */
   1372  1.45    kardel 		btd = bt_ref;
   1373  1.45    kardel 		bintime_sub(&btd, &pps->ref_time);
   1374  1.45    kardel 		pps->ref_time = bt_ref;
   1375  1.45    kardel 
   1376  1.45    kardel 		/* check that we stay below 2 sec */
   1377  1.45    kardel 		if (btd.sec < 0 || btd.sec > 1)
   1378  1.45    kardel 			return;
   1379  1.45    kardel 
   1380  1.45    kardel 		/* we want at least 0.5 sec between samples */
   1381  1.45    kardel 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
   1382  1.45    kardel 			return;
   1383  1.45    kardel 
   1384  1.45    kardel 		/*
   1385  1.45    kardel 		 * calculate cycles per period by multiplying
   1386  1.45    kardel 		 * the frequency with the elapsed period
   1387  1.45    kardel 		 * we pick a fraction of 30 bits
   1388  1.45    kardel 		 * ~1ns resolution for elapsed time
   1389  1.45    kardel 		 */
   1390  1.45    kardel 		div   = (uint64_t)btd.sec << 30;
   1391  1.45    kardel 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
   1392  1.45    kardel 		div  *= pps->capth->th_counter->tc_frequency;
   1393  1.45    kardel 		div >>= 30;
   1394  1.45    kardel 
   1395  1.45    kardel 		if (div == 0)	/* safeguard */
   1396  1.45    kardel 			return;
   1397  1.45    kardel 
   1398  1.45    kardel 		scale = (uint64_t)1 << 63;
   1399  1.45    kardel 		scale /= div;
   1400   1.1    simonb 		scale *= 2;
   1401  1.45    kardel 
   1402   1.1    simonb 		bt.sec = 0;
   1403   1.1    simonb 		bt.frac = 0;
   1404   1.1    simonb 		bintime_addx(&bt, scale * tcount);
   1405   1.1    simonb 		bintime2timespec(&bt, &ts);
   1406  1.45    kardel 
   1407  1.45    kardel #ifdef PPS_DEBUG
   1408  1.45    kardel 		if (ppsdebug & 0x4) {
   1409  1.45    kardel 			struct timespec ts2;
   1410  1.45    kardel 			int64_t df;
   1411  1.45    kardel 
   1412  1.45    kardel 			bintime2timespec(&bt_ref, &ts2);
   1413  1.45    kardel 			df = timespec2ns(&ts);
   1414  1.45    kardel 			if (df > 500000000)
   1415  1.45    kardel 				df -= 1000000000;
   1416  1.45    kardel 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
   1417  1.45    kardel 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
   1418  1.45    kardel 			    ", freqdiff=%"PRIi64" ns/s\n",
   1419  1.45    kardel 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1420  1.45    kardel 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1421  1.45    kardel 			    df);
   1422  1.45    kardel 		}
   1423  1.45    kardel #endif
   1424  1.45    kardel 
   1425  1.45    kardel 		hardpps(tsp, timespec2ns(&ts));
   1426   1.1    simonb 	}
   1427   1.1    simonb #endif
   1428   1.1    simonb }
   1429   1.1    simonb 
   1430   1.1    simonb /*
   1431   1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
   1432   1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
   1433   1.1    simonb  * used by the get*() family of functions, so their precision depends on
   1434   1.1    simonb  * the update frequency.
   1435   1.1    simonb  */
   1436   1.1    simonb 
   1437   1.1    simonb static int tc_tick;
   1438   1.1    simonb 
   1439   1.1    simonb void
   1440   1.1    simonb tc_ticktock(void)
   1441   1.1    simonb {
   1442   1.1    simonb 	static int count;
   1443   1.1    simonb 
   1444   1.1    simonb 	if (++count < tc_tick)
   1445   1.1    simonb 		return;
   1446   1.1    simonb 	count = 0;
   1447  1.51  riastrad 	mutex_spin_enter(&timecounter_lock);
   1448  1.56       rin 	if (__predict_false(timecounter_bad != 0)) {
   1449  1.35        ad 		/* An existing timecounter has gone bad, pick a new one. */
   1450  1.35        ad 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1451  1.35        ad 		if (timecounter->tc_quality < 0) {
   1452  1.35        ad 			tc_pick();
   1453  1.35        ad 		}
   1454  1.35        ad 	}
   1455   1.1    simonb 	tc_windup();
   1456  1.51  riastrad 	mutex_spin_exit(&timecounter_lock);
   1457   1.1    simonb }
   1458   1.1    simonb 
   1459   1.2    kardel void
   1460   1.2    kardel inittimecounter(void)
   1461   1.1    simonb {
   1462   1.1    simonb 	u_int p;
   1463   1.1    simonb 
   1464  1.37    kardel 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1465  1.30        ad 
   1466   1.1    simonb 	/*
   1467   1.1    simonb 	 * Set the initial timeout to
   1468   1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1469   1.1    simonb 	 * People should probably not use the sysctl to set the timeout
   1470  1.53   msaitoh 	 * to smaller than its initial value, since that value is the
   1471   1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
   1472   1.1    simonb 	 * should use the non-"get"* functions.
   1473   1.1    simonb 	 */
   1474   1.1    simonb 	if (hz > 1000)
   1475   1.1    simonb 		tc_tick = (hz + 500) / 1000;
   1476   1.1    simonb 	else
   1477   1.1    simonb 		tc_tick = 1;
   1478   1.1    simonb 	p = (tc_tick * 1000000) / hz;
   1479  1.18        ad 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1480  1.18        ad 	    p / 1000, p % 1000);
   1481   1.1    simonb 
   1482   1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
   1483   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1484   1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
   1485   1.1    simonb }
   1486