kern_tc.c revision 1.72 1 1.72 riastrad /* $NetBSD: kern_tc.c,v 1.72 2023/07/17 21:51:30 riastradh Exp $ */
2 1.33 ad
3 1.33 ad /*-
4 1.39 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.33 ad * All rights reserved.
6 1.33 ad *
7 1.39 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.39 ad * by Andrew Doran.
9 1.39 ad *
10 1.33 ad * Redistribution and use in source and binary forms, with or without
11 1.33 ad * modification, are permitted provided that the following conditions
12 1.33 ad * are met:
13 1.33 ad * 1. Redistributions of source code must retain the above copyright
14 1.33 ad * notice, this list of conditions and the following disclaimer.
15 1.33 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.33 ad * notice, this list of conditions and the following disclaimer in the
17 1.33 ad * documentation and/or other materials provided with the distribution.
18 1.33 ad *
19 1.33 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.33 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.33 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.33 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.33 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.33 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.33 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.33 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.33 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.33 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.33 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.33 ad */
31 1.2 kardel
32 1.1 simonb /*-
33 1.1 simonb * ----------------------------------------------------------------------------
34 1.1 simonb * "THE BEER-WARE LICENSE" (Revision 42):
35 1.1 simonb * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 1.1 simonb * can do whatever you want with this stuff. If we meet some day, and you think
37 1.1 simonb * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 1.2 kardel * ---------------------------------------------------------------------------
39 1.1 simonb */
40 1.1 simonb
41 1.1 simonb #include <sys/cdefs.h>
42 1.2 kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 1.72 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.72 2023/07/17 21:51:30 riastradh Exp $");
44 1.58 rin
45 1.58 rin #ifdef _KERNEL_OPT
46 1.58 rin #include "opt_ntp.h"
47 1.58 rin #endif
48 1.1 simonb
49 1.1 simonb #include <sys/param.h>
50 1.63 riastrad
51 1.61 simonb #include <sys/atomic.h>
52 1.61 simonb #include <sys/evcnt.h>
53 1.61 simonb #include <sys/kauth.h>
54 1.1 simonb #include <sys/kernel.h>
55 1.63 riastrad #include <sys/lock.h>
56 1.61 simonb #include <sys/mutex.h>
57 1.2 kardel #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
58 1.1 simonb #include <sys/sysctl.h>
59 1.1 simonb #include <sys/syslog.h>
60 1.1 simonb #include <sys/systm.h>
61 1.1 simonb #include <sys/timepps.h>
62 1.1 simonb #include <sys/timetc.h>
63 1.1 simonb #include <sys/timex.h>
64 1.39 ad #include <sys/xcall.h>
65 1.2 kardel
66 1.2 kardel /*
67 1.1 simonb * A large step happens on boot. This constant detects such steps.
68 1.1 simonb * It is relatively small so that ntp_update_second gets called enough
69 1.1 simonb * in the typical 'missed a couple of seconds' case, but doesn't loop
70 1.1 simonb * forever when the time step is large.
71 1.1 simonb */
72 1.1 simonb #define LARGE_STEP 200
73 1.1 simonb
74 1.1 simonb /*
75 1.1 simonb * Implement a dummy timecounter which we can use until we get a real one
76 1.1 simonb * in the air. This allows the console and other early stuff to use
77 1.1 simonb * time services.
78 1.1 simonb */
79 1.1 simonb
80 1.1 simonb static u_int
81 1.16 yamt dummy_get_timecount(struct timecounter *tc)
82 1.1 simonb {
83 1.1 simonb static u_int now;
84 1.1 simonb
85 1.59 rin return ++now;
86 1.1 simonb }
87 1.1 simonb
88 1.1 simonb static struct timecounter dummy_timecounter = {
89 1.48 riastrad .tc_get_timecount = dummy_get_timecount,
90 1.48 riastrad .tc_counter_mask = ~0u,
91 1.48 riastrad .tc_frequency = 1000000,
92 1.48 riastrad .tc_name = "dummy",
93 1.48 riastrad .tc_quality = -1000000,
94 1.48 riastrad .tc_priv = NULL,
95 1.1 simonb };
96 1.1 simonb
97 1.1 simonb struct timehands {
98 1.1 simonb /* These fields must be initialized by the driver. */
99 1.40 kardel struct timecounter *th_counter; /* active timecounter */
100 1.40 kardel int64_t th_adjustment; /* frequency adjustment */
101 1.40 kardel /* (NTP/adjtime) */
102 1.57 rin uint64_t th_scale; /* scale factor (counter */
103 1.40 kardel /* tick->time) */
104 1.57 rin uint64_t th_offset_count; /* offset at last time */
105 1.40 kardel /* update (tc_windup()) */
106 1.40 kardel struct bintime th_offset; /* bin (up)time at windup */
107 1.40 kardel struct timeval th_microtime; /* cached microtime */
108 1.40 kardel struct timespec th_nanotime; /* cached nanotime */
109 1.1 simonb /* Fields not to be copied in tc_windup start with th_generation. */
110 1.40 kardel volatile u_int th_generation; /* current genration */
111 1.40 kardel struct timehands *th_next; /* next timehand */
112 1.1 simonb };
113 1.1 simonb
114 1.1 simonb static struct timehands th0;
115 1.10 christos static struct timehands th9 = { .th_next = &th0, };
116 1.10 christos static struct timehands th8 = { .th_next = &th9, };
117 1.10 christos static struct timehands th7 = { .th_next = &th8, };
118 1.10 christos static struct timehands th6 = { .th_next = &th7, };
119 1.10 christos static struct timehands th5 = { .th_next = &th6, };
120 1.10 christos static struct timehands th4 = { .th_next = &th5, };
121 1.10 christos static struct timehands th3 = { .th_next = &th4, };
122 1.10 christos static struct timehands th2 = { .th_next = &th3, };
123 1.10 christos static struct timehands th1 = { .th_next = &th2, };
124 1.1 simonb static struct timehands th0 = {
125 1.10 christos .th_counter = &dummy_timecounter,
126 1.10 christos .th_scale = (uint64_t)-1 / 1000000,
127 1.10 christos .th_offset = { .sec = 1, .frac = 0 },
128 1.10 christos .th_generation = 1,
129 1.10 christos .th_next = &th1,
130 1.1 simonb };
131 1.1 simonb
132 1.1 simonb static struct timehands *volatile timehands = &th0;
133 1.1 simonb struct timecounter *timecounter = &dummy_timecounter;
134 1.1 simonb static struct timecounter *timecounters = &dummy_timecounter;
135 1.1 simonb
136 1.68 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE
137 1.69 riastrad volatile time_t time__second __cacheline_aligned = 1;
138 1.69 riastrad volatile time_t time__uptime __cacheline_aligned = 1;
139 1.68 riastrad #else
140 1.63 riastrad static volatile struct {
141 1.63 riastrad uint32_t lo, hi;
142 1.63 riastrad } time__uptime32 __cacheline_aligned = {
143 1.63 riastrad .lo = 1,
144 1.63 riastrad }, time__second32 __cacheline_aligned = {
145 1.63 riastrad .lo = 1,
146 1.63 riastrad };
147 1.63 riastrad #endif
148 1.1 simonb
149 1.71 riastrad static struct {
150 1.71 riastrad struct bintime bin;
151 1.71 riastrad volatile unsigned gen; /* even when stable, odd when changing */
152 1.71 riastrad } timebase __cacheline_aligned;
153 1.1 simonb
154 1.1 simonb static int timestepwarnings;
155 1.2 kardel
156 1.33 ad kmutex_t timecounter_lock;
157 1.35 ad static u_int timecounter_mods;
158 1.39 ad static volatile int timecounter_removals = 1;
159 1.35 ad static u_int timecounter_bad;
160 1.25 ad
161 1.63 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE
162 1.63 riastrad
163 1.63 riastrad static inline void
164 1.63 riastrad setrealuptime(time_t second, time_t uptime)
165 1.63 riastrad {
166 1.63 riastrad
167 1.63 riastrad atomic_store_relaxed(&time__second, second);
168 1.63 riastrad atomic_store_relaxed(&time__uptime, uptime);
169 1.63 riastrad }
170 1.63 riastrad
171 1.63 riastrad #else
172 1.63 riastrad
173 1.63 riastrad static inline void
174 1.63 riastrad setrealuptime(time_t second, time_t uptime)
175 1.63 riastrad {
176 1.63 riastrad uint32_t seclo = second & 0xffffffff, sechi = second >> 32;
177 1.63 riastrad uint32_t uplo = uptime & 0xffffffff, uphi = uptime >> 32;
178 1.63 riastrad
179 1.63 riastrad KDASSERT(mutex_owned(&timecounter_lock));
180 1.63 riastrad
181 1.63 riastrad /*
182 1.63 riastrad * Fast path -- no wraparound, just updating the low bits, so
183 1.63 riastrad * no need for seqlocked access.
184 1.63 riastrad */
185 1.63 riastrad if (__predict_true(sechi == time__second32.hi) &&
186 1.63 riastrad __predict_true(uphi == time__uptime32.hi)) {
187 1.63 riastrad atomic_store_relaxed(&time__second32.lo, seclo);
188 1.63 riastrad atomic_store_relaxed(&time__uptime32.lo, uplo);
189 1.63 riastrad return;
190 1.63 riastrad }
191 1.63 riastrad
192 1.63 riastrad atomic_store_relaxed(&time__second32.hi, 0xffffffff);
193 1.63 riastrad atomic_store_relaxed(&time__uptime32.hi, 0xffffffff);
194 1.70 riastrad membar_producer();
195 1.63 riastrad atomic_store_relaxed(&time__second32.lo, seclo);
196 1.63 riastrad atomic_store_relaxed(&time__uptime32.lo, uplo);
197 1.70 riastrad membar_producer();
198 1.63 riastrad atomic_store_relaxed(&time__second32.hi, sechi);
199 1.64 riastrad atomic_store_relaxed(&time__uptime32.hi, uphi);
200 1.63 riastrad }
201 1.63 riastrad
202 1.63 riastrad time_t
203 1.63 riastrad getrealtime(void)
204 1.63 riastrad {
205 1.63 riastrad uint32_t lo, hi;
206 1.63 riastrad
207 1.63 riastrad do {
208 1.63 riastrad for (;;) {
209 1.63 riastrad hi = atomic_load_relaxed(&time__second32.hi);
210 1.63 riastrad if (__predict_true(hi != 0xffffffff))
211 1.63 riastrad break;
212 1.63 riastrad SPINLOCK_BACKOFF_HOOK;
213 1.63 riastrad }
214 1.70 riastrad membar_consumer();
215 1.63 riastrad lo = atomic_load_relaxed(&time__second32.lo);
216 1.70 riastrad membar_consumer();
217 1.63 riastrad } while (hi != atomic_load_relaxed(&time__second32.hi));
218 1.63 riastrad
219 1.63 riastrad return ((time_t)hi << 32) | lo;
220 1.63 riastrad }
221 1.63 riastrad
222 1.63 riastrad time_t
223 1.63 riastrad getuptime(void)
224 1.63 riastrad {
225 1.63 riastrad uint32_t lo, hi;
226 1.63 riastrad
227 1.63 riastrad do {
228 1.63 riastrad for (;;) {
229 1.63 riastrad hi = atomic_load_relaxed(&time__uptime32.hi);
230 1.63 riastrad if (__predict_true(hi != 0xffffffff))
231 1.63 riastrad break;
232 1.63 riastrad SPINLOCK_BACKOFF_HOOK;
233 1.63 riastrad }
234 1.70 riastrad membar_consumer();
235 1.63 riastrad lo = atomic_load_relaxed(&time__uptime32.lo);
236 1.70 riastrad membar_consumer();
237 1.63 riastrad } while (hi != atomic_load_relaxed(&time__uptime32.hi));
238 1.63 riastrad
239 1.63 riastrad return ((time_t)hi << 32) | lo;
240 1.63 riastrad }
241 1.63 riastrad
242 1.63 riastrad time_t
243 1.63 riastrad getboottime(void)
244 1.63 riastrad {
245 1.63 riastrad
246 1.63 riastrad return getrealtime() - getuptime();
247 1.63 riastrad }
248 1.63 riastrad
249 1.63 riastrad uint32_t
250 1.63 riastrad getuptime32(void)
251 1.63 riastrad {
252 1.63 riastrad
253 1.63 riastrad return atomic_load_relaxed(&time__uptime32.lo);
254 1.63 riastrad }
255 1.63 riastrad
256 1.63 riastrad #endif /* !defined(__HAVE_ATOMIC64_LOADSTORE) */
257 1.63 riastrad
258 1.2 kardel /*
259 1.28 yamt * sysctl helper routine for kern.timercounter.hardware
260 1.2 kardel */
261 1.2 kardel static int
262 1.2 kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
263 1.2 kardel {
264 1.2 kardel struct sysctlnode node;
265 1.2 kardel int error;
266 1.2 kardel char newname[MAX_TCNAMELEN];
267 1.2 kardel struct timecounter *newtc, *tc;
268 1.2 kardel
269 1.2 kardel tc = timecounter;
270 1.2 kardel
271 1.2 kardel strlcpy(newname, tc->tc_name, sizeof(newname));
272 1.2 kardel
273 1.2 kardel node = *rnode;
274 1.2 kardel node.sysctl_data = newname;
275 1.2 kardel node.sysctl_size = sizeof(newname);
276 1.2 kardel
277 1.2 kardel error = sysctl_lookup(SYSCTLFN_CALL(&node));
278 1.2 kardel
279 1.2 kardel if (error ||
280 1.2 kardel newp == NULL ||
281 1.2 kardel strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
282 1.2 kardel return error;
283 1.1 simonb
284 1.26 elad if (l != NULL && (error = kauth_authorize_system(l->l_cred,
285 1.26 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
286 1.26 elad NULL, NULL)) != 0)
287 1.59 rin return error;
288 1.2 kardel
289 1.22 ad if (!cold)
290 1.35 ad mutex_spin_enter(&timecounter_lock);
291 1.23 ad error = EINVAL;
292 1.2 kardel for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
293 1.2 kardel if (strcmp(newname, newtc->tc_name) != 0)
294 1.2 kardel continue;
295 1.2 kardel /* Warm up new timecounter. */
296 1.2 kardel (void)newtc->tc_get_timecount(newtc);
297 1.2 kardel (void)newtc->tc_get_timecount(newtc);
298 1.2 kardel timecounter = newtc;
299 1.22 ad error = 0;
300 1.23 ad break;
301 1.23 ad }
302 1.22 ad if (!cold)
303 1.35 ad mutex_spin_exit(&timecounter_lock);
304 1.22 ad return error;
305 1.2 kardel }
306 1.2 kardel
307 1.2 kardel static int
308 1.2 kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
309 1.2 kardel {
310 1.9 kardel char buf[MAX_TCNAMELEN+48];
311 1.35 ad char *where;
312 1.2 kardel const char *spc;
313 1.2 kardel struct timecounter *tc;
314 1.2 kardel size_t needed, left, slen;
315 1.35 ad int error, mods;
316 1.2 kardel
317 1.2 kardel if (newp != NULL)
318 1.59 rin return EPERM;
319 1.2 kardel if (namelen != 0)
320 1.59 rin return EINVAL;
321 1.2 kardel
322 1.35 ad mutex_spin_enter(&timecounter_lock);
323 1.35 ad retry:
324 1.2 kardel spc = "";
325 1.2 kardel error = 0;
326 1.2 kardel needed = 0;
327 1.2 kardel left = *oldlenp;
328 1.35 ad where = oldp;
329 1.2 kardel for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
330 1.2 kardel if (where == NULL) {
331 1.2 kardel needed += sizeof(buf); /* be conservative */
332 1.2 kardel } else {
333 1.2 kardel slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
334 1.2 kardel " Hz)", spc, tc->tc_name, tc->tc_quality,
335 1.2 kardel tc->tc_frequency);
336 1.2 kardel if (left < slen + 1)
337 1.2 kardel break;
338 1.35 ad mods = timecounter_mods;
339 1.35 ad mutex_spin_exit(&timecounter_lock);
340 1.2 kardel error = copyout(buf, where, slen + 1);
341 1.35 ad mutex_spin_enter(&timecounter_lock);
342 1.35 ad if (mods != timecounter_mods) {
343 1.35 ad goto retry;
344 1.35 ad }
345 1.2 kardel spc = " ";
346 1.2 kardel where += slen;
347 1.2 kardel needed += slen;
348 1.2 kardel left -= slen;
349 1.2 kardel }
350 1.2 kardel }
351 1.35 ad mutex_spin_exit(&timecounter_lock);
352 1.2 kardel
353 1.2 kardel *oldlenp = needed;
354 1.59 rin return error;
355 1.2 kardel }
356 1.2 kardel
357 1.2 kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
358 1.2 kardel {
359 1.2 kardel const struct sysctlnode *node;
360 1.2 kardel
361 1.2 kardel sysctl_createv(clog, 0, NULL, &node,
362 1.2 kardel CTLFLAG_PERMANENT,
363 1.2 kardel CTLTYPE_NODE, "timecounter",
364 1.2 kardel SYSCTL_DESCR("time counter information"),
365 1.2 kardel NULL, 0, NULL, 0,
366 1.2 kardel CTL_KERN, CTL_CREATE, CTL_EOL);
367 1.2 kardel
368 1.2 kardel if (node != NULL) {
369 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
370 1.2 kardel CTLFLAG_PERMANENT,
371 1.2 kardel CTLTYPE_STRING, "choice",
372 1.2 kardel SYSCTL_DESCR("available counters"),
373 1.2 kardel sysctl_kern_timecounter_choice, 0, NULL, 0,
374 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
375 1.2 kardel
376 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
377 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
378 1.2 kardel CTLTYPE_STRING, "hardware",
379 1.2 kardel SYSCTL_DESCR("currently active time counter"),
380 1.2 kardel sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
381 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
382 1.2 kardel
383 1.2 kardel sysctl_createv(clog, 0, NULL, NULL,
384 1.2 kardel CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
385 1.2 kardel CTLTYPE_INT, "timestepwarnings",
386 1.2 kardel SYSCTL_DESCR("log time steps"),
387 1.2 kardel NULL, 0, ×tepwarnings, 0,
388 1.2 kardel CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
389 1.2 kardel }
390 1.2 kardel }
391 1.2 kardel
392 1.32 ad #ifdef TC_COUNTERS
393 1.2 kardel #define TC_STATS(name) \
394 1.2 kardel static struct evcnt n##name = \
395 1.2 kardel EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
396 1.2 kardel EVCNT_ATTACH_STATIC(n##name)
397 1.2 kardel TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
398 1.2 kardel TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
399 1.2 kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
400 1.2 kardel TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
401 1.2 kardel TC_STATS(setclock);
402 1.32 ad #define TC_COUNT(var) var.ev_count++
403 1.1 simonb #undef TC_STATS
404 1.32 ad #else
405 1.32 ad #define TC_COUNT(var) /* nothing */
406 1.32 ad #endif /* TC_COUNTERS */
407 1.1 simonb
408 1.1 simonb static void tc_windup(void);
409 1.1 simonb
410 1.1 simonb /*
411 1.1 simonb * Return the difference between the timehands' counter value now and what
412 1.1 simonb * was when we copied it to the timehands' offset_count.
413 1.1 simonb */
414 1.41 uebayasi static inline u_int
415 1.1 simonb tc_delta(struct timehands *th)
416 1.1 simonb {
417 1.1 simonb struct timecounter *tc;
418 1.1 simonb
419 1.1 simonb tc = th->th_counter;
420 1.59 rin return (tc->tc_get_timecount(tc) -
421 1.59 rin th->th_offset_count) & tc->tc_counter_mask;
422 1.1 simonb }
423 1.1 simonb
424 1.1 simonb /*
425 1.1 simonb * Functions for reading the time. We have to loop until we are sure that
426 1.1 simonb * the timehands that we operated on was not updated under our feet. See
427 1.21 simonb * the comment in <sys/timevar.h> for a description of these 12 functions.
428 1.1 simonb */
429 1.1 simonb
430 1.1 simonb void
431 1.1 simonb binuptime(struct bintime *bt)
432 1.1 simonb {
433 1.1 simonb struct timehands *th;
434 1.39 ad lwp_t *l;
435 1.39 ad u_int lgen, gen;
436 1.1 simonb
437 1.32 ad TC_COUNT(nbinuptime);
438 1.39 ad
439 1.39 ad /*
440 1.39 ad * Provide exclusion against tc_detach().
441 1.39 ad *
442 1.39 ad * We record the number of timecounter removals before accessing
443 1.39 ad * timecounter state. Note that the LWP can be using multiple
444 1.39 ad * "generations" at once, due to interrupts (interrupted while in
445 1.39 ad * this function). Hardware interrupts will borrow the interrupted
446 1.39 ad * LWP's l_tcgen value for this purpose, and can themselves be
447 1.39 ad * interrupted by higher priority interrupts. In this case we need
448 1.39 ad * to ensure that the oldest generation in use is recorded.
449 1.39 ad *
450 1.39 ad * splsched() is too expensive to use, so we take care to structure
451 1.39 ad * this code in such a way that it is not required. Likewise, we
452 1.39 ad * do not disable preemption.
453 1.39 ad *
454 1.39 ad * Memory barriers are also too expensive to use for such a
455 1.39 ad * performance critical function. The good news is that we do not
456 1.39 ad * need memory barriers for this type of exclusion, as the thread
457 1.39 ad * updating timecounter_removals will issue a broadcast cross call
458 1.39 ad * before inspecting our l_tcgen value (this elides memory ordering
459 1.39 ad * issues).
460 1.39 ad */
461 1.39 ad l = curlwp;
462 1.39 ad lgen = l->l_tcgen;
463 1.39 ad if (__predict_true(lgen == 0)) {
464 1.39 ad l->l_tcgen = timecounter_removals;
465 1.39 ad }
466 1.39 ad __insn_barrier();
467 1.39 ad
468 1.1 simonb do {
469 1.72 riastrad th = atomic_load_consume(&timehands);
470 1.1 simonb gen = th->th_generation;
471 1.1 simonb *bt = th->th_offset;
472 1.1 simonb bintime_addx(bt, th->th_scale * tc_delta(th));
473 1.1 simonb } while (gen == 0 || gen != th->th_generation);
474 1.39 ad
475 1.39 ad __insn_barrier();
476 1.39 ad l->l_tcgen = lgen;
477 1.1 simonb }
478 1.1 simonb
479 1.1 simonb void
480 1.1 simonb nanouptime(struct timespec *tsp)
481 1.1 simonb {
482 1.1 simonb struct bintime bt;
483 1.1 simonb
484 1.32 ad TC_COUNT(nnanouptime);
485 1.1 simonb binuptime(&bt);
486 1.1 simonb bintime2timespec(&bt, tsp);
487 1.1 simonb }
488 1.1 simonb
489 1.1 simonb void
490 1.1 simonb microuptime(struct timeval *tvp)
491 1.1 simonb {
492 1.1 simonb struct bintime bt;
493 1.1 simonb
494 1.32 ad TC_COUNT(nmicrouptime);
495 1.1 simonb binuptime(&bt);
496 1.1 simonb bintime2timeval(&bt, tvp);
497 1.1 simonb }
498 1.1 simonb
499 1.1 simonb void
500 1.1 simonb bintime(struct bintime *bt)
501 1.1 simonb {
502 1.71 riastrad struct bintime boottime;
503 1.1 simonb
504 1.32 ad TC_COUNT(nbintime);
505 1.1 simonb binuptime(bt);
506 1.71 riastrad getbinboottime(&boottime);
507 1.71 riastrad bintime_add(bt, &boottime);
508 1.1 simonb }
509 1.1 simonb
510 1.1 simonb void
511 1.1 simonb nanotime(struct timespec *tsp)
512 1.1 simonb {
513 1.1 simonb struct bintime bt;
514 1.1 simonb
515 1.32 ad TC_COUNT(nnanotime);
516 1.1 simonb bintime(&bt);
517 1.1 simonb bintime2timespec(&bt, tsp);
518 1.1 simonb }
519 1.1 simonb
520 1.1 simonb void
521 1.1 simonb microtime(struct timeval *tvp)
522 1.1 simonb {
523 1.1 simonb struct bintime bt;
524 1.1 simonb
525 1.32 ad TC_COUNT(nmicrotime);
526 1.1 simonb bintime(&bt);
527 1.1 simonb bintime2timeval(&bt, tvp);
528 1.1 simonb }
529 1.1 simonb
530 1.1 simonb void
531 1.1 simonb getbinuptime(struct bintime *bt)
532 1.1 simonb {
533 1.1 simonb struct timehands *th;
534 1.1 simonb u_int gen;
535 1.1 simonb
536 1.32 ad TC_COUNT(ngetbinuptime);
537 1.1 simonb do {
538 1.72 riastrad th = atomic_load_consume(&timehands);
539 1.1 simonb gen = th->th_generation;
540 1.1 simonb *bt = th->th_offset;
541 1.1 simonb } while (gen == 0 || gen != th->th_generation);
542 1.1 simonb }
543 1.1 simonb
544 1.1 simonb void
545 1.1 simonb getnanouptime(struct timespec *tsp)
546 1.1 simonb {
547 1.1 simonb struct timehands *th;
548 1.1 simonb u_int gen;
549 1.1 simonb
550 1.32 ad TC_COUNT(ngetnanouptime);
551 1.1 simonb do {
552 1.72 riastrad th = atomic_load_consume(&timehands);
553 1.1 simonb gen = th->th_generation;
554 1.1 simonb bintime2timespec(&th->th_offset, tsp);
555 1.1 simonb } while (gen == 0 || gen != th->th_generation);
556 1.1 simonb }
557 1.1 simonb
558 1.1 simonb void
559 1.1 simonb getmicrouptime(struct timeval *tvp)
560 1.1 simonb {
561 1.1 simonb struct timehands *th;
562 1.1 simonb u_int gen;
563 1.1 simonb
564 1.32 ad TC_COUNT(ngetmicrouptime);
565 1.1 simonb do {
566 1.72 riastrad th = atomic_load_consume(&timehands);
567 1.1 simonb gen = th->th_generation;
568 1.1 simonb bintime2timeval(&th->th_offset, tvp);
569 1.1 simonb } while (gen == 0 || gen != th->th_generation);
570 1.1 simonb }
571 1.1 simonb
572 1.1 simonb void
573 1.1 simonb getbintime(struct bintime *bt)
574 1.1 simonb {
575 1.1 simonb struct timehands *th;
576 1.71 riastrad struct bintime boottime;
577 1.1 simonb u_int gen;
578 1.1 simonb
579 1.32 ad TC_COUNT(ngetbintime);
580 1.1 simonb do {
581 1.72 riastrad th = atomic_load_consume(&timehands);
582 1.1 simonb gen = th->th_generation;
583 1.1 simonb *bt = th->th_offset;
584 1.1 simonb } while (gen == 0 || gen != th->th_generation);
585 1.71 riastrad getbinboottime(&boottime);
586 1.71 riastrad bintime_add(bt, &boottime);
587 1.1 simonb }
588 1.1 simonb
589 1.47 chs static inline void
590 1.47 chs dogetnanotime(struct timespec *tsp)
591 1.1 simonb {
592 1.1 simonb struct timehands *th;
593 1.1 simonb u_int gen;
594 1.1 simonb
595 1.32 ad TC_COUNT(ngetnanotime);
596 1.1 simonb do {
597 1.72 riastrad th = atomic_load_consume(&timehands);
598 1.1 simonb gen = th->th_generation;
599 1.1 simonb *tsp = th->th_nanotime;
600 1.1 simonb } while (gen == 0 || gen != th->th_generation);
601 1.1 simonb }
602 1.1 simonb
603 1.1 simonb void
604 1.47 chs getnanotime(struct timespec *tsp)
605 1.47 chs {
606 1.47 chs
607 1.47 chs dogetnanotime(tsp);
608 1.47 chs }
609 1.47 chs
610 1.47 chs void dtrace_getnanotime(struct timespec *tsp);
611 1.47 chs
612 1.47 chs void
613 1.47 chs dtrace_getnanotime(struct timespec *tsp)
614 1.47 chs {
615 1.47 chs
616 1.47 chs dogetnanotime(tsp);
617 1.47 chs }
618 1.47 chs
619 1.47 chs void
620 1.1 simonb getmicrotime(struct timeval *tvp)
621 1.1 simonb {
622 1.1 simonb struct timehands *th;
623 1.1 simonb u_int gen;
624 1.1 simonb
625 1.32 ad TC_COUNT(ngetmicrotime);
626 1.1 simonb do {
627 1.72 riastrad th = atomic_load_consume(&timehands);
628 1.1 simonb gen = th->th_generation;
629 1.1 simonb *tvp = th->th_microtime;
630 1.1 simonb } while (gen == 0 || gen != th->th_generation);
631 1.1 simonb }
632 1.1 simonb
633 1.54 thorpej void
634 1.54 thorpej getnanoboottime(struct timespec *tsp)
635 1.54 thorpej {
636 1.54 thorpej struct bintime bt;
637 1.54 thorpej
638 1.54 thorpej getbinboottime(&bt);
639 1.54 thorpej bintime2timespec(&bt, tsp);
640 1.54 thorpej }
641 1.54 thorpej
642 1.54 thorpej void
643 1.54 thorpej getmicroboottime(struct timeval *tvp)
644 1.54 thorpej {
645 1.54 thorpej struct bintime bt;
646 1.54 thorpej
647 1.54 thorpej getbinboottime(&bt);
648 1.54 thorpej bintime2timeval(&bt, tvp);
649 1.54 thorpej }
650 1.54 thorpej
651 1.54 thorpej void
652 1.71 riastrad getbinboottime(struct bintime *basep)
653 1.54 thorpej {
654 1.71 riastrad struct bintime base;
655 1.71 riastrad unsigned gen;
656 1.54 thorpej
657 1.71 riastrad do {
658 1.71 riastrad /* Spin until the timebase isn't changing. */
659 1.71 riastrad while ((gen = atomic_load_relaxed(&timebase.gen)) & 1)
660 1.71 riastrad SPINLOCK_BACKOFF_HOOK;
661 1.71 riastrad
662 1.71 riastrad /* Read out a snapshot of the timebase. */
663 1.71 riastrad membar_consumer();
664 1.71 riastrad base = timebase.bin;
665 1.71 riastrad membar_consumer();
666 1.71 riastrad
667 1.71 riastrad /* Restart if it changed while we were reading. */
668 1.71 riastrad } while (gen != atomic_load_relaxed(&timebase.gen));
669 1.71 riastrad
670 1.71 riastrad *basep = base;
671 1.54 thorpej }
672 1.54 thorpej
673 1.1 simonb /*
674 1.1 simonb * Initialize a new timecounter and possibly use it.
675 1.1 simonb */
676 1.1 simonb void
677 1.1 simonb tc_init(struct timecounter *tc)
678 1.1 simonb {
679 1.1 simonb u_int u;
680 1.1 simonb
681 1.60 simonb KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
682 1.60 simonb tc->tc_name);
683 1.60 simonb
684 1.1 simonb u = tc->tc_frequency / tc->tc_counter_mask;
685 1.1 simonb /* XXX: We need some margin here, 10% is a guess */
686 1.1 simonb u *= 11;
687 1.1 simonb u /= 10;
688 1.1 simonb if (u > hz && tc->tc_quality >= 0) {
689 1.1 simonb tc->tc_quality = -2000;
690 1.18 ad aprint_verbose(
691 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz",
692 1.7 bjh21 tc->tc_name, (uintmax_t)tc->tc_frequency);
693 1.18 ad aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
694 1.1 simonb } else if (tc->tc_quality >= 0 || bootverbose) {
695 1.18 ad aprint_verbose(
696 1.18 ad "timecounter: Timecounter \"%s\" frequency %ju Hz "
697 1.18 ad "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
698 1.7 bjh21 tc->tc_quality);
699 1.1 simonb }
700 1.1 simonb
701 1.33 ad mutex_spin_enter(&timecounter_lock);
702 1.1 simonb tc->tc_next = timecounters;
703 1.1 simonb timecounters = tc;
704 1.35 ad timecounter_mods++;
705 1.1 simonb /*
706 1.1 simonb * Never automatically use a timecounter with negative quality.
707 1.1 simonb * Even though we run on the dummy counter, switching here may be
708 1.1 simonb * worse since this timecounter may not be monotonous.
709 1.1 simonb */
710 1.22 ad if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
711 1.24 ad (tc->tc_quality == timecounter->tc_quality &&
712 1.24 ad tc->tc_frequency > timecounter->tc_frequency))) {
713 1.22 ad (void)tc->tc_get_timecount(tc);
714 1.22 ad (void)tc->tc_get_timecount(tc);
715 1.22 ad timecounter = tc;
716 1.22 ad tc_windup();
717 1.22 ad }
718 1.33 ad mutex_spin_exit(&timecounter_lock);
719 1.35 ad }
720 1.35 ad
721 1.35 ad /*
722 1.35 ad * Pick a new timecounter due to the existing counter going bad.
723 1.35 ad */
724 1.35 ad static void
725 1.35 ad tc_pick(void)
726 1.35 ad {
727 1.35 ad struct timecounter *best, *tc;
728 1.35 ad
729 1.51 riastrad KASSERT(mutex_owned(&timecounter_lock));
730 1.35 ad
731 1.35 ad for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
732 1.35 ad if (tc->tc_quality > best->tc_quality)
733 1.35 ad best = tc;
734 1.35 ad else if (tc->tc_quality < best->tc_quality)
735 1.35 ad continue;
736 1.35 ad else if (tc->tc_frequency > best->tc_frequency)
737 1.35 ad best = tc;
738 1.35 ad }
739 1.35 ad (void)best->tc_get_timecount(best);
740 1.35 ad (void)best->tc_get_timecount(best);
741 1.35 ad timecounter = best;
742 1.35 ad }
743 1.35 ad
744 1.35 ad /*
745 1.35 ad * A timecounter has gone bad, arrange to pick a new one at the next
746 1.35 ad * clock tick.
747 1.35 ad */
748 1.35 ad void
749 1.35 ad tc_gonebad(struct timecounter *tc)
750 1.35 ad {
751 1.35 ad
752 1.35 ad tc->tc_quality = -100;
753 1.35 ad membar_producer();
754 1.35 ad atomic_inc_uint(&timecounter_bad);
755 1.1 simonb }
756 1.1 simonb
757 1.29 dyoung /*
758 1.29 dyoung * Stop using a timecounter and remove it from the timecounters list.
759 1.29 dyoung */
760 1.29 dyoung int
761 1.29 dyoung tc_detach(struct timecounter *target)
762 1.29 dyoung {
763 1.35 ad struct timecounter *tc;
764 1.29 dyoung struct timecounter **tcp = NULL;
765 1.39 ad int removals;
766 1.39 ad lwp_t *l;
767 1.29 dyoung
768 1.39 ad /* First, find the timecounter. */
769 1.35 ad mutex_spin_enter(&timecounter_lock);
770 1.29 dyoung for (tcp = &timecounters, tc = timecounters;
771 1.29 dyoung tc != NULL;
772 1.29 dyoung tcp = &tc->tc_next, tc = tc->tc_next) {
773 1.29 dyoung if (tc == target)
774 1.29 dyoung break;
775 1.29 dyoung }
776 1.29 dyoung if (tc == NULL) {
777 1.39 ad mutex_spin_exit(&timecounter_lock);
778 1.39 ad return ESRCH;
779 1.39 ad }
780 1.39 ad
781 1.39 ad /* And now, remove it. */
782 1.39 ad *tcp = tc->tc_next;
783 1.39 ad if (timecounter == target) {
784 1.39 ad tc_pick();
785 1.39 ad tc_windup();
786 1.39 ad }
787 1.39 ad timecounter_mods++;
788 1.39 ad removals = timecounter_removals++;
789 1.39 ad mutex_spin_exit(&timecounter_lock);
790 1.39 ad
791 1.39 ad /*
792 1.39 ad * We now have to determine if any threads in the system are still
793 1.39 ad * making use of this timecounter.
794 1.39 ad *
795 1.39 ad * We issue a broadcast cross call to elide memory ordering issues,
796 1.39 ad * then scan all LWPs in the system looking at each's timecounter
797 1.39 ad * generation number. We need to see a value of zero (not actively
798 1.39 ad * using a timecounter) or a value greater than our removal value.
799 1.39 ad *
800 1.39 ad * We may race with threads that read `timecounter_removals' and
801 1.39 ad * and then get preempted before updating `l_tcgen'. This is not
802 1.39 ad * a problem, since it means that these threads have not yet started
803 1.39 ad * accessing timecounter state. All we do need is one clean
804 1.39 ad * snapshot of the system where every thread appears not to be using
805 1.39 ad * old timecounter state.
806 1.39 ad */
807 1.39 ad for (;;) {
808 1.52 uwe xc_barrier(0);
809 1.39 ad
810 1.55 ad mutex_enter(&proc_lock);
811 1.39 ad LIST_FOREACH(l, &alllwp, l_list) {
812 1.39 ad if (l->l_tcgen == 0 || l->l_tcgen > removals) {
813 1.39 ad /*
814 1.39 ad * Not using timecounter or old timecounter
815 1.39 ad * state at time of our xcall or later.
816 1.39 ad */
817 1.39 ad continue;
818 1.39 ad }
819 1.39 ad break;
820 1.39 ad }
821 1.55 ad mutex_exit(&proc_lock);
822 1.39 ad
823 1.39 ad /*
824 1.39 ad * If the timecounter is still in use, wait at least 10ms
825 1.39 ad * before retrying.
826 1.39 ad */
827 1.39 ad if (l == NULL) {
828 1.62 riastrad break;
829 1.35 ad }
830 1.39 ad (void)kpause("tcdetach", false, mstohz(10), NULL);
831 1.29 dyoung }
832 1.62 riastrad
833 1.62 riastrad tc->tc_next = NULL;
834 1.62 riastrad return 0;
835 1.29 dyoung }
836 1.29 dyoung
837 1.1 simonb /* Report the frequency of the current timecounter. */
838 1.57 rin uint64_t
839 1.1 simonb tc_getfrequency(void)
840 1.1 simonb {
841 1.1 simonb
842 1.72 riastrad return atomic_load_consume(&timehands)->th_counter->tc_frequency;
843 1.1 simonb }
844 1.1 simonb
845 1.1 simonb /*
846 1.1 simonb * Step our concept of UTC. This is done by modifying our estimate of
847 1.1 simonb * when we booted.
848 1.1 simonb */
849 1.1 simonb void
850 1.38 christos tc_setclock(const struct timespec *ts)
851 1.1 simonb {
852 1.1 simonb struct timespec ts2;
853 1.1 simonb struct bintime bt, bt2;
854 1.1 simonb
855 1.33 ad mutex_spin_enter(&timecounter_lock);
856 1.32 ad TC_COUNT(nsetclock);
857 1.1 simonb binuptime(&bt2);
858 1.1 simonb timespec2bintime(ts, &bt);
859 1.1 simonb bintime_sub(&bt, &bt2);
860 1.71 riastrad bintime_add(&bt2, &timebase.bin);
861 1.71 riastrad timebase.gen |= 1; /* change in progress */
862 1.71 riastrad membar_producer();
863 1.71 riastrad timebase.bin = bt;
864 1.71 riastrad membar_producer();
865 1.71 riastrad timebase.gen++; /* commit change */
866 1.30 ad tc_windup();
867 1.33 ad mutex_spin_exit(&timecounter_lock);
868 1.1 simonb
869 1.1 simonb if (timestepwarnings) {
870 1.1 simonb bintime2timespec(&bt2, &ts2);
871 1.45 kardel log(LOG_INFO,
872 1.45 kardel "Time stepped from %lld.%09ld to %lld.%09ld\n",
873 1.38 christos (long long)ts2.tv_sec, ts2.tv_nsec,
874 1.38 christos (long long)ts->tv_sec, ts->tv_nsec);
875 1.1 simonb }
876 1.1 simonb }
877 1.1 simonb
878 1.1 simonb /*
879 1.1 simonb * Initialize the next struct timehands in the ring and make
880 1.1 simonb * it the active timehands. Along the way we might switch to a different
881 1.1 simonb * timecounter and/or do seconds processing in NTP. Slightly magic.
882 1.1 simonb */
883 1.1 simonb static void
884 1.1 simonb tc_windup(void)
885 1.1 simonb {
886 1.1 simonb struct bintime bt;
887 1.1 simonb struct timehands *th, *tho;
888 1.57 rin uint64_t scale;
889 1.1 simonb u_int delta, ncount, ogen;
890 1.13 kardel int i, s_update;
891 1.1 simonb time_t t;
892 1.1 simonb
893 1.51 riastrad KASSERT(mutex_owned(&timecounter_lock));
894 1.30 ad
895 1.13 kardel s_update = 0;
896 1.20 ad
897 1.1 simonb /*
898 1.1 simonb * Make the next timehands a copy of the current one, but do not
899 1.1 simonb * overwrite the generation or next pointer. While we update
900 1.20 ad * the contents, the generation must be zero. Ensure global
901 1.20 ad * visibility of the generation before proceeding.
902 1.1 simonb */
903 1.1 simonb tho = timehands;
904 1.1 simonb th = tho->th_next;
905 1.1 simonb ogen = th->th_generation;
906 1.1 simonb th->th_generation = 0;
907 1.27 ad membar_producer();
908 1.1 simonb bcopy(tho, th, offsetof(struct timehands, th_generation));
909 1.1 simonb
910 1.1 simonb /*
911 1.1 simonb * Capture a timecounter delta on the current timecounter and if
912 1.1 simonb * changing timecounters, a counter value from the new timecounter.
913 1.1 simonb * Update the offset fields accordingly.
914 1.1 simonb */
915 1.1 simonb delta = tc_delta(th);
916 1.1 simonb if (th->th_counter != timecounter)
917 1.1 simonb ncount = timecounter->tc_get_timecount(timecounter);
918 1.1 simonb else
919 1.1 simonb ncount = 0;
920 1.1 simonb th->th_offset_count += delta;
921 1.1 simonb bintime_addx(&th->th_offset, th->th_scale * delta);
922 1.1 simonb
923 1.1 simonb /*
924 1.1 simonb * Hardware latching timecounters may not generate interrupts on
925 1.1 simonb * PPS events, so instead we poll them. There is a finite risk that
926 1.1 simonb * the hardware might capture a count which is later than the one we
927 1.1 simonb * got above, and therefore possibly in the next NTP second which might
928 1.1 simonb * have a different rate than the current NTP second. It doesn't
929 1.1 simonb * matter in practice.
930 1.1 simonb */
931 1.1 simonb if (tho->th_counter->tc_poll_pps)
932 1.1 simonb tho->th_counter->tc_poll_pps(tho->th_counter);
933 1.1 simonb
934 1.1 simonb /*
935 1.1 simonb * Deal with NTP second processing. The for loop normally
936 1.1 simonb * iterates at most once, but in extreme situations it might
937 1.1 simonb * keep NTP sane if timeouts are not run for several seconds.
938 1.1 simonb * At boot, the time step can be large when the TOD hardware
939 1.1 simonb * has been read, so on really large steps, we call
940 1.1 simonb * ntp_update_second only twice. We need to call it twice in
941 1.1 simonb * case we missed a leap second.
942 1.2 kardel * If NTP is not compiled in ntp_update_second still calculates
943 1.2 kardel * the adjustment resulting from adjtime() calls.
944 1.1 simonb */
945 1.1 simonb bt = th->th_offset;
946 1.71 riastrad bintime_add(&bt, &timebase.bin);
947 1.1 simonb i = bt.sec - tho->th_microtime.tv_sec;
948 1.1 simonb if (i > LARGE_STEP)
949 1.1 simonb i = 2;
950 1.1 simonb for (; i > 0; i--) {
951 1.1 simonb t = bt.sec;
952 1.1 simonb ntp_update_second(&th->th_adjustment, &bt.sec);
953 1.13 kardel s_update = 1;
954 1.71 riastrad if (bt.sec != t) {
955 1.71 riastrad timebase.gen |= 1; /* change in progress */
956 1.71 riastrad membar_producer();
957 1.71 riastrad timebase.bin.sec += bt.sec - t;
958 1.71 riastrad membar_producer();
959 1.71 riastrad timebase.gen++; /* commit change */
960 1.71 riastrad }
961 1.1 simonb }
962 1.2 kardel
963 1.1 simonb /* Update the UTC timestamps used by the get*() functions. */
964 1.1 simonb /* XXX shouldn't do this here. Should force non-`get' versions. */
965 1.1 simonb bintime2timeval(&bt, &th->th_microtime);
966 1.1 simonb bintime2timespec(&bt, &th->th_nanotime);
967 1.1 simonb /* Now is a good time to change timecounters. */
968 1.1 simonb if (th->th_counter != timecounter) {
969 1.1 simonb th->th_counter = timecounter;
970 1.1 simonb th->th_offset_count = ncount;
971 1.13 kardel s_update = 1;
972 1.1 simonb }
973 1.1 simonb
974 1.1 simonb /*-
975 1.1 simonb * Recalculate the scaling factor. We want the number of 1/2^64
976 1.1 simonb * fractions of a second per period of the hardware counter, taking
977 1.1 simonb * into account the th_adjustment factor which the NTP PLL/adjtime(2)
978 1.1 simonb * processing provides us with.
979 1.1 simonb *
980 1.1 simonb * The th_adjustment is nanoseconds per second with 32 bit binary
981 1.1 simonb * fraction and we want 64 bit binary fraction of second:
982 1.1 simonb *
983 1.1 simonb * x = a * 2^32 / 10^9 = a * 4.294967296
984 1.1 simonb *
985 1.1 simonb * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
986 1.1 simonb * we can only multiply by about 850 without overflowing, but that
987 1.1 simonb * leaves suitably precise fractions for multiply before divide.
988 1.1 simonb *
989 1.1 simonb * Divide before multiply with a fraction of 2199/512 results in a
990 1.1 simonb * systematic undercompensation of 10PPM of th_adjustment. On a
991 1.1 simonb * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
992 1.1 simonb *
993 1.1 simonb * We happily sacrifice the lowest of the 64 bits of our result
994 1.1 simonb * to the goddess of code clarity.
995 1.1 simonb *
996 1.1 simonb */
997 1.13 kardel if (s_update) {
998 1.57 rin scale = (uint64_t)1 << 63;
999 1.13 kardel scale += (th->th_adjustment / 1024) * 2199;
1000 1.13 kardel scale /= th->th_counter->tc_frequency;
1001 1.13 kardel th->th_scale = scale * 2;
1002 1.13 kardel }
1003 1.1 simonb /*
1004 1.1 simonb * Now that the struct timehands is again consistent, set the new
1005 1.20 ad * generation number, making sure to not make it zero. Ensure
1006 1.20 ad * changes are globally visible before changing.
1007 1.1 simonb */
1008 1.1 simonb if (++ogen == 0)
1009 1.1 simonb ogen = 1;
1010 1.27 ad membar_producer();
1011 1.1 simonb th->th_generation = ogen;
1012 1.1 simonb
1013 1.20 ad /*
1014 1.20 ad * Go live with the new struct timehands. Ensure changes are
1015 1.20 ad * globally visible before changing.
1016 1.20 ad */
1017 1.63 riastrad setrealuptime(th->th_microtime.tv_sec, th->th_offset.sec);
1018 1.72 riastrad atomic_store_release(&timehands, th);
1019 1.24 ad
1020 1.24 ad /*
1021 1.24 ad * Force users of the old timehand to move on. This is
1022 1.24 ad * necessary for MP systems; we need to ensure that the
1023 1.24 ad * consumers will move away from the old timehand before
1024 1.24 ad * we begin updating it again when we eventually wrap
1025 1.24 ad * around.
1026 1.24 ad */
1027 1.24 ad if (++tho->th_generation == 0)
1028 1.24 ad tho->th_generation = 1;
1029 1.1 simonb }
1030 1.1 simonb
1031 1.1 simonb /*
1032 1.1 simonb * RFC 2783 PPS-API implementation.
1033 1.1 simonb */
1034 1.1 simonb
1035 1.1 simonb int
1036 1.19 christos pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
1037 1.1 simonb {
1038 1.1 simonb pps_params_t *app;
1039 1.2 kardel pps_info_t *pipi;
1040 1.1 simonb #ifdef PPS_SYNC
1041 1.2 kardel int *epi;
1042 1.1 simonb #endif
1043 1.1 simonb
1044 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1045 1.33 ad
1046 1.45 kardel KASSERT(pps != NULL);
1047 1.45 kardel
1048 1.1 simonb switch (cmd) {
1049 1.1 simonb case PPS_IOC_CREATE:
1050 1.59 rin return 0;
1051 1.1 simonb case PPS_IOC_DESTROY:
1052 1.59 rin return 0;
1053 1.1 simonb case PPS_IOC_SETPARAMS:
1054 1.1 simonb app = (pps_params_t *)data;
1055 1.1 simonb if (app->mode & ~pps->ppscap)
1056 1.59 rin return EINVAL;
1057 1.1 simonb pps->ppsparam = *app;
1058 1.59 rin return 0;
1059 1.1 simonb case PPS_IOC_GETPARAMS:
1060 1.1 simonb app = (pps_params_t *)data;
1061 1.1 simonb *app = pps->ppsparam;
1062 1.1 simonb app->api_version = PPS_API_VERS_1;
1063 1.59 rin return 0;
1064 1.1 simonb case PPS_IOC_GETCAP:
1065 1.1 simonb *(int*)data = pps->ppscap;
1066 1.59 rin return 0;
1067 1.1 simonb case PPS_IOC_FETCH:
1068 1.2 kardel pipi = (pps_info_t *)data;
1069 1.1 simonb pps->ppsinfo.current_mode = pps->ppsparam.mode;
1070 1.2 kardel *pipi = pps->ppsinfo;
1071 1.59 rin return 0;
1072 1.1 simonb case PPS_IOC_KCBIND:
1073 1.1 simonb #ifdef PPS_SYNC
1074 1.2 kardel epi = (int *)data;
1075 1.1 simonb /* XXX Only root should be able to do this */
1076 1.2 kardel if (*epi & ~pps->ppscap)
1077 1.59 rin return EINVAL;
1078 1.2 kardel pps->kcmode = *epi;
1079 1.59 rin return 0;
1080 1.1 simonb #else
1081 1.59 rin return EOPNOTSUPP;
1082 1.1 simonb #endif
1083 1.1 simonb default:
1084 1.59 rin return EPASSTHROUGH;
1085 1.1 simonb }
1086 1.1 simonb }
1087 1.1 simonb
1088 1.1 simonb void
1089 1.1 simonb pps_init(struct pps_state *pps)
1090 1.1 simonb {
1091 1.33 ad
1092 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1093 1.33 ad
1094 1.1 simonb pps->ppscap |= PPS_TSFMT_TSPEC;
1095 1.1 simonb if (pps->ppscap & PPS_CAPTUREASSERT)
1096 1.1 simonb pps->ppscap |= PPS_OFFSETASSERT;
1097 1.1 simonb if (pps->ppscap & PPS_CAPTURECLEAR)
1098 1.1 simonb pps->ppscap |= PPS_OFFSETCLEAR;
1099 1.1 simonb }
1100 1.1 simonb
1101 1.45 kardel /*
1102 1.45 kardel * capture a timetamp in the pps structure
1103 1.45 kardel */
1104 1.1 simonb void
1105 1.1 simonb pps_capture(struct pps_state *pps)
1106 1.1 simonb {
1107 1.1 simonb struct timehands *th;
1108 1.1 simonb
1109 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1110 1.33 ad KASSERT(pps != NULL);
1111 1.33 ad
1112 1.1 simonb th = timehands;
1113 1.1 simonb pps->capgen = th->th_generation;
1114 1.1 simonb pps->capth = th;
1115 1.57 rin pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1116 1.1 simonb if (pps->capgen != th->th_generation)
1117 1.1 simonb pps->capgen = 0;
1118 1.1 simonb }
1119 1.1 simonb
1120 1.45 kardel #ifdef PPS_DEBUG
1121 1.45 kardel int ppsdebug = 0;
1122 1.45 kardel #endif
1123 1.45 kardel
1124 1.45 kardel /*
1125 1.45 kardel * process a pps_capture()ed event
1126 1.45 kardel */
1127 1.1 simonb void
1128 1.1 simonb pps_event(struct pps_state *pps, int event)
1129 1.1 simonb {
1130 1.45 kardel pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
1131 1.45 kardel }
1132 1.45 kardel
1133 1.45 kardel /*
1134 1.45 kardel * extended pps api / kernel pll/fll entry point
1135 1.45 kardel *
1136 1.45 kardel * feed reference time stamps to PPS engine
1137 1.45 kardel *
1138 1.45 kardel * will simulate a PPS event and feed
1139 1.45 kardel * the NTP PLL/FLL if requested.
1140 1.45 kardel *
1141 1.45 kardel * the ref time stamps should be roughly once
1142 1.45 kardel * a second but do not need to be exactly in phase
1143 1.45 kardel * with the UTC second but should be close to it.
1144 1.45 kardel * this relaxation of requirements allows callout
1145 1.45 kardel * driven timestamping mechanisms to feed to pps
1146 1.45 kardel * capture/kernel pll logic.
1147 1.45 kardel *
1148 1.45 kardel * calling pattern is:
1149 1.45 kardel * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
1150 1.45 kardel * read timestamp from reference source
1151 1.45 kardel * pps_ref_event()
1152 1.45 kardel *
1153 1.45 kardel * supported refmodes:
1154 1.45 kardel * PPS_REFEVNT_CAPTURE
1155 1.45 kardel * use system timestamp of pps_capture()
1156 1.45 kardel * PPS_REFEVNT_CURRENT
1157 1.45 kardel * use system timestamp of this call
1158 1.45 kardel * PPS_REFEVNT_CAPCUR
1159 1.45 kardel * use average of read capture and current system time stamp
1160 1.45 kardel * PPS_REFEVNT_PPS
1161 1.45 kardel * assume timestamp on second mark - ref_ts is ignored
1162 1.45 kardel *
1163 1.45 kardel */
1164 1.45 kardel
1165 1.45 kardel void
1166 1.45 kardel pps_ref_event(struct pps_state *pps,
1167 1.45 kardel int event,
1168 1.45 kardel struct bintime *ref_ts,
1169 1.45 kardel int refmode
1170 1.45 kardel )
1171 1.45 kardel {
1172 1.45 kardel struct bintime bt; /* current time */
1173 1.45 kardel struct bintime btd; /* time difference */
1174 1.45 kardel struct bintime bt_ref; /* reference time */
1175 1.1 simonb struct timespec ts, *tsp, *osp;
1176 1.45 kardel struct timehands *th;
1177 1.57 rin uint64_t tcount, acount, dcount, *pcount;
1178 1.46 martin int foff, gen;
1179 1.46 martin #ifdef PPS_SYNC
1180 1.46 martin int fhard;
1181 1.46 martin #endif
1182 1.1 simonb pps_seq_t *pseq;
1183 1.1 simonb
1184 1.33 ad KASSERT(mutex_owned(&timecounter_lock));
1185 1.33 ad
1186 1.45 kardel KASSERT(pps != NULL);
1187 1.45 kardel
1188 1.45 kardel /* pick up current time stamp if needed */
1189 1.45 kardel if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1190 1.45 kardel /* pick up current time stamp */
1191 1.45 kardel th = timehands;
1192 1.45 kardel gen = th->th_generation;
1193 1.57 rin tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1194 1.45 kardel if (gen != th->th_generation)
1195 1.45 kardel gen = 0;
1196 1.45 kardel
1197 1.45 kardel /* If the timecounter was wound up underneath us, bail out. */
1198 1.45 kardel if (pps->capgen == 0 ||
1199 1.45 kardel pps->capgen != pps->capth->th_generation ||
1200 1.45 kardel gen == 0 ||
1201 1.45 kardel gen != pps->capgen) {
1202 1.45 kardel #ifdef PPS_DEBUG
1203 1.45 kardel if (ppsdebug & 0x1) {
1204 1.45 kardel log(LOG_DEBUG,
1205 1.45 kardel "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1206 1.45 kardel pps, event);
1207 1.45 kardel }
1208 1.45 kardel #endif
1209 1.45 kardel return;
1210 1.45 kardel }
1211 1.45 kardel } else {
1212 1.45 kardel tcount = 0; /* keep GCC happy */
1213 1.45 kardel }
1214 1.45 kardel
1215 1.45 kardel #ifdef PPS_DEBUG
1216 1.45 kardel if (ppsdebug & 0x1) {
1217 1.45 kardel struct timespec tmsp;
1218 1.45 kardel
1219 1.45 kardel if (ref_ts == NULL) {
1220 1.45 kardel tmsp.tv_sec = 0;
1221 1.45 kardel tmsp.tv_nsec = 0;
1222 1.45 kardel } else {
1223 1.45 kardel bintime2timespec(ref_ts, &tmsp);
1224 1.45 kardel }
1225 1.45 kardel
1226 1.45 kardel log(LOG_DEBUG,
1227 1.45 kardel "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1228 1.45 kardel ".%09"PRIi32", refmode=0x%1x)\n",
1229 1.45 kardel pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1230 1.45 kardel }
1231 1.45 kardel #endif
1232 1.1 simonb
1233 1.45 kardel /* setup correct event references */
1234 1.1 simonb if (event == PPS_CAPTUREASSERT) {
1235 1.1 simonb tsp = &pps->ppsinfo.assert_timestamp;
1236 1.1 simonb osp = &pps->ppsparam.assert_offset;
1237 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1238 1.46 martin #ifdef PPS_SYNC
1239 1.1 simonb fhard = pps->kcmode & PPS_CAPTUREASSERT;
1240 1.46 martin #endif
1241 1.1 simonb pcount = &pps->ppscount[0];
1242 1.1 simonb pseq = &pps->ppsinfo.assert_sequence;
1243 1.1 simonb } else {
1244 1.1 simonb tsp = &pps->ppsinfo.clear_timestamp;
1245 1.1 simonb osp = &pps->ppsparam.clear_offset;
1246 1.1 simonb foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1247 1.46 martin #ifdef PPS_SYNC
1248 1.1 simonb fhard = pps->kcmode & PPS_CAPTURECLEAR;
1249 1.46 martin #endif
1250 1.1 simonb pcount = &pps->ppscount[1];
1251 1.1 simonb pseq = &pps->ppsinfo.clear_sequence;
1252 1.1 simonb }
1253 1.1 simonb
1254 1.45 kardel /* determine system time stamp according to refmode */
1255 1.45 kardel dcount = 0; /* keep GCC happy */
1256 1.45 kardel switch (refmode & PPS_REFEVNT_RMASK) {
1257 1.45 kardel case PPS_REFEVNT_CAPTURE:
1258 1.45 kardel acount = pps->capcount; /* use capture timestamp */
1259 1.45 kardel break;
1260 1.45 kardel
1261 1.45 kardel case PPS_REFEVNT_CURRENT:
1262 1.45 kardel acount = tcount; /* use current timestamp */
1263 1.45 kardel break;
1264 1.45 kardel
1265 1.45 kardel case PPS_REFEVNT_CAPCUR:
1266 1.45 kardel /*
1267 1.45 kardel * calculate counter value between pps_capture() and
1268 1.45 kardel * pps_ref_event()
1269 1.45 kardel */
1270 1.45 kardel dcount = tcount - pps->capcount;
1271 1.45 kardel acount = (dcount / 2) + pps->capcount;
1272 1.45 kardel break;
1273 1.45 kardel
1274 1.45 kardel default: /* ignore call error silently */
1275 1.45 kardel return;
1276 1.45 kardel }
1277 1.45 kardel
1278 1.1 simonb /*
1279 1.1 simonb * If the timecounter changed, we cannot compare the count values, so
1280 1.1 simonb * we have to drop the rest of the PPS-stuff until the next event.
1281 1.1 simonb */
1282 1.1 simonb if (pps->ppstc != pps->capth->th_counter) {
1283 1.1 simonb pps->ppstc = pps->capth->th_counter;
1284 1.45 kardel pps->capcount = acount;
1285 1.45 kardel *pcount = acount;
1286 1.45 kardel pps->ppscount[2] = acount;
1287 1.45 kardel #ifdef PPS_DEBUG
1288 1.45 kardel if (ppsdebug & 0x1) {
1289 1.45 kardel log(LOG_DEBUG,
1290 1.45 kardel "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1291 1.45 kardel pps, event);
1292 1.45 kardel }
1293 1.45 kardel #endif
1294 1.1 simonb return;
1295 1.1 simonb }
1296 1.1 simonb
1297 1.45 kardel pps->capcount = acount;
1298 1.45 kardel
1299 1.45 kardel /* Convert the count to a bintime. */
1300 1.1 simonb bt = pps->capth->th_offset;
1301 1.45 kardel bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1302 1.71 riastrad bintime_add(&bt, &timebase.bin);
1303 1.45 kardel
1304 1.45 kardel if ((refmode & PPS_REFEVNT_PPS) == 0) {
1305 1.45 kardel /* determine difference to reference time stamp */
1306 1.45 kardel bt_ref = *ref_ts;
1307 1.45 kardel
1308 1.45 kardel btd = bt;
1309 1.45 kardel bintime_sub(&btd, &bt_ref);
1310 1.45 kardel
1311 1.45 kardel /*
1312 1.45 kardel * simulate a PPS timestamp by dropping the fraction
1313 1.45 kardel * and applying the offset
1314 1.45 kardel */
1315 1.45 kardel if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1316 1.45 kardel bt.sec++;
1317 1.45 kardel bt.frac = 0;
1318 1.45 kardel bintime_add(&bt, &btd);
1319 1.45 kardel } else {
1320 1.45 kardel /*
1321 1.45 kardel * create ref_ts from current time -
1322 1.45 kardel * we are supposed to be called on
1323 1.45 kardel * the second mark
1324 1.45 kardel */
1325 1.45 kardel bt_ref = bt;
1326 1.45 kardel if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1327 1.45 kardel bt_ref.sec++;
1328 1.45 kardel bt_ref.frac = 0;
1329 1.45 kardel }
1330 1.45 kardel
1331 1.45 kardel /* convert bintime to timestamp */
1332 1.1 simonb bintime2timespec(&bt, &ts);
1333 1.1 simonb
1334 1.1 simonb /* If the timecounter was wound up underneath us, bail out. */
1335 1.1 simonb if (pps->capgen != pps->capth->th_generation)
1336 1.1 simonb return;
1337 1.1 simonb
1338 1.45 kardel /* store time stamp */
1339 1.1 simonb *pcount = pps->capcount;
1340 1.1 simonb (*pseq)++;
1341 1.1 simonb *tsp = ts;
1342 1.1 simonb
1343 1.45 kardel /* add offset correction */
1344 1.1 simonb if (foff) {
1345 1.2 kardel timespecadd(tsp, osp, tsp);
1346 1.1 simonb if (tsp->tv_nsec < 0) {
1347 1.1 simonb tsp->tv_nsec += 1000000000;
1348 1.1 simonb tsp->tv_sec -= 1;
1349 1.1 simonb }
1350 1.1 simonb }
1351 1.45 kardel
1352 1.45 kardel #ifdef PPS_DEBUG
1353 1.45 kardel if (ppsdebug & 0x2) {
1354 1.45 kardel struct timespec ts2;
1355 1.45 kardel struct timespec ts3;
1356 1.45 kardel
1357 1.45 kardel bintime2timespec(&bt_ref, &ts2);
1358 1.45 kardel
1359 1.45 kardel bt.sec = 0;
1360 1.45 kardel bt.frac = 0;
1361 1.45 kardel
1362 1.45 kardel if (refmode & PPS_REFEVNT_CAPCUR) {
1363 1.45 kardel bintime_addx(&bt, pps->capth->th_scale * dcount);
1364 1.45 kardel }
1365 1.45 kardel bintime2timespec(&bt, &ts3);
1366 1.45 kardel
1367 1.45 kardel log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1368 1.45 kardel ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1369 1.45 kardel ts2.tv_sec, (int32_t)ts2.tv_nsec,
1370 1.45 kardel tsp->tv_sec, (int32_t)tsp->tv_nsec,
1371 1.45 kardel timespec2ns(&ts3));
1372 1.45 kardel }
1373 1.45 kardel #endif
1374 1.45 kardel
1375 1.1 simonb #ifdef PPS_SYNC
1376 1.1 simonb if (fhard) {
1377 1.45 kardel uint64_t scale;
1378 1.45 kardel uint64_t div;
1379 1.1 simonb
1380 1.1 simonb /*
1381 1.1 simonb * Feed the NTP PLL/FLL.
1382 1.1 simonb * The FLL wants to know how many (hardware) nanoseconds
1383 1.45 kardel * elapsed since the previous event (mod 1 second) thus
1384 1.45 kardel * we are actually looking at the frequency difference scaled
1385 1.45 kardel * in nsec.
1386 1.45 kardel * As the counter time stamps are not truly at 1Hz
1387 1.45 kardel * we need to scale the count by the elapsed
1388 1.45 kardel * reference time.
1389 1.45 kardel * valid sampling interval: [0.5..2[ sec
1390 1.1 simonb */
1391 1.45 kardel
1392 1.45 kardel /* calculate elapsed raw count */
1393 1.1 simonb tcount = pps->capcount - pps->ppscount[2];
1394 1.1 simonb pps->ppscount[2] = pps->capcount;
1395 1.1 simonb tcount &= pps->capth->th_counter->tc_counter_mask;
1396 1.45 kardel
1397 1.45 kardel /* calculate elapsed ref time */
1398 1.45 kardel btd = bt_ref;
1399 1.45 kardel bintime_sub(&btd, &pps->ref_time);
1400 1.45 kardel pps->ref_time = bt_ref;
1401 1.45 kardel
1402 1.45 kardel /* check that we stay below 2 sec */
1403 1.45 kardel if (btd.sec < 0 || btd.sec > 1)
1404 1.45 kardel return;
1405 1.45 kardel
1406 1.45 kardel /* we want at least 0.5 sec between samples */
1407 1.45 kardel if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1408 1.45 kardel return;
1409 1.45 kardel
1410 1.45 kardel /*
1411 1.45 kardel * calculate cycles per period by multiplying
1412 1.45 kardel * the frequency with the elapsed period
1413 1.45 kardel * we pick a fraction of 30 bits
1414 1.45 kardel * ~1ns resolution for elapsed time
1415 1.45 kardel */
1416 1.45 kardel div = (uint64_t)btd.sec << 30;
1417 1.45 kardel div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1418 1.45 kardel div *= pps->capth->th_counter->tc_frequency;
1419 1.45 kardel div >>= 30;
1420 1.45 kardel
1421 1.45 kardel if (div == 0) /* safeguard */
1422 1.45 kardel return;
1423 1.45 kardel
1424 1.45 kardel scale = (uint64_t)1 << 63;
1425 1.45 kardel scale /= div;
1426 1.1 simonb scale *= 2;
1427 1.45 kardel
1428 1.1 simonb bt.sec = 0;
1429 1.1 simonb bt.frac = 0;
1430 1.1 simonb bintime_addx(&bt, scale * tcount);
1431 1.1 simonb bintime2timespec(&bt, &ts);
1432 1.45 kardel
1433 1.45 kardel #ifdef PPS_DEBUG
1434 1.45 kardel if (ppsdebug & 0x4) {
1435 1.45 kardel struct timespec ts2;
1436 1.45 kardel int64_t df;
1437 1.45 kardel
1438 1.45 kardel bintime2timespec(&bt_ref, &ts2);
1439 1.45 kardel df = timespec2ns(&ts);
1440 1.45 kardel if (df > 500000000)
1441 1.45 kardel df -= 1000000000;
1442 1.45 kardel log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1443 1.45 kardel ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1444 1.45 kardel ", freqdiff=%"PRIi64" ns/s\n",
1445 1.45 kardel ts2.tv_sec, (int32_t)ts2.tv_nsec,
1446 1.45 kardel tsp->tv_sec, (int32_t)tsp->tv_nsec,
1447 1.45 kardel df);
1448 1.45 kardel }
1449 1.45 kardel #endif
1450 1.45 kardel
1451 1.45 kardel hardpps(tsp, timespec2ns(&ts));
1452 1.1 simonb }
1453 1.1 simonb #endif
1454 1.1 simonb }
1455 1.1 simonb
1456 1.1 simonb /*
1457 1.1 simonb * Timecounters need to be updated every so often to prevent the hardware
1458 1.1 simonb * counter from overflowing. Updating also recalculates the cached values
1459 1.1 simonb * used by the get*() family of functions, so their precision depends on
1460 1.1 simonb * the update frequency.
1461 1.1 simonb */
1462 1.1 simonb
1463 1.1 simonb static int tc_tick;
1464 1.1 simonb
1465 1.1 simonb void
1466 1.1 simonb tc_ticktock(void)
1467 1.1 simonb {
1468 1.1 simonb static int count;
1469 1.1 simonb
1470 1.1 simonb if (++count < tc_tick)
1471 1.1 simonb return;
1472 1.1 simonb count = 0;
1473 1.51 riastrad mutex_spin_enter(&timecounter_lock);
1474 1.56 rin if (__predict_false(timecounter_bad != 0)) {
1475 1.35 ad /* An existing timecounter has gone bad, pick a new one. */
1476 1.35 ad (void)atomic_swap_uint(&timecounter_bad, 0);
1477 1.35 ad if (timecounter->tc_quality < 0) {
1478 1.35 ad tc_pick();
1479 1.35 ad }
1480 1.35 ad }
1481 1.1 simonb tc_windup();
1482 1.51 riastrad mutex_spin_exit(&timecounter_lock);
1483 1.1 simonb }
1484 1.1 simonb
1485 1.2 kardel void
1486 1.2 kardel inittimecounter(void)
1487 1.1 simonb {
1488 1.1 simonb u_int p;
1489 1.1 simonb
1490 1.37 kardel mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1491 1.30 ad
1492 1.1 simonb /*
1493 1.1 simonb * Set the initial timeout to
1494 1.1 simonb * max(1, <approx. number of hardclock ticks in a millisecond>).
1495 1.1 simonb * People should probably not use the sysctl to set the timeout
1496 1.53 msaitoh * to smaller than its initial value, since that value is the
1497 1.1 simonb * smallest reasonable one. If they want better timestamps they
1498 1.1 simonb * should use the non-"get"* functions.
1499 1.1 simonb */
1500 1.1 simonb if (hz > 1000)
1501 1.1 simonb tc_tick = (hz + 500) / 1000;
1502 1.1 simonb else
1503 1.1 simonb tc_tick = 1;
1504 1.1 simonb p = (tc_tick * 1000000) / hz;
1505 1.18 ad aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1506 1.18 ad p / 1000, p % 1000);
1507 1.1 simonb
1508 1.1 simonb /* warm up new timecounter (again) and get rolling. */
1509 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1510 1.1 simonb (void)timecounter->tc_get_timecount(timecounter);
1511 1.1 simonb }
1512